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Boltzmann equation describing probabilistic ballistic annihilation.
Such a model describes a system of hard spheres such that, when-
ever two particles meet, they either annihilate with probability
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1 − α. For such a model, the number of particles, the linear mo-
mentum and the kinetic energy are not conserved. We show that,
for α smaller than some explicit threshold value α∗, a self-similar
solution exists.
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1. Introduction

In the physics literature, various kinetic models have been proposed in the recent years in order
to test the relevance of non-equilibrium statistical mechanics for systems of reacting particles. Such
models are very challenging in particular for the derivation of suitable hydrodynamic models because
of the lack of collisional invariants. We investigate in the present paper a recent model, introduced
in [7,9,10,16,24,28] to describe the so-called probabilistic ballistic annihilation. Such a model describes
a system of (elastic) hard spheres that interact in the following way: particles moves freely (ballisti-
cally) between collisions while, whenever two particles meet, they either annihilate with probability
α ∈ (0,1) (and both the interacting particles disappear from the system), or they undergo an elastic
collision with probability 1 −α. For such a model, not only the kinetic energy is not conserved during
binary encounters, but also the number of particles and the linear momentum. Notice that, originally
only pure annihilation has been considered [7,16] (corresponding to α = 1). Later on, a more elabo-
rate model has been built which allows to recover the classical Boltzmann equation for hard spheres
in the limit α = 0. Notice that such a Boltzmann equation for ballistic annihilation in the special (and
unphysical) case of Maxwellian molecules has already been studied in the mid-80’s [26,25] and was
referred to as Boltzmann equation with removal.

The present paper is the first mathematical investigation of the physical model of probabilistic
ballistic annihilation for the physical relevant hard-spheres interactions, with the noticeable exception
of the results of [18] which prove the validity of the spatially homogeneous Boltzmann equation for
pure annihilation (i.e. whenever α = 1). We shall in particular prove the existence of special self-
similar profile for the associated equation. Before entering into details of our results, let us introduce
more precisely the model we aim to investigate.

1.1. The Boltzmann equation for ballistic annihilation

In a kinetic framework, the behavior of a system of hard spheres which annihilate with probability
α ∈ (0,1) or collide elastically with probability 1 − α can be described (in a spatially homogeneous
situation) by the so-called velocity distribution f (t, v) which represents the probability density of
particles with velocity v ∈R

d (d � 2) at time t � 0. The time-evolution of the one-particle distribution
function f (t, v), v ∈ R

d , t > 0 satisfies the following

∂t f (t, v) = (1 − α)Q( f , f )(t, v) − αQ−( f , f )(t, v) = B( f , f )(t, v) (1.1)

where Q is the quadratic Boltzmann collision operator defined by the bilinear symmetrized form

Q(g, f )(v) = 1

2

∫
d d−1

B(v − v∗,σ )
(

g′∗ f ′ + g′ f ′∗ − g∗ f − g f∗
)

dv∗ dσ ,
R ×S



V. Bagland, B. Lods / J. Differential Equations 254 (2013) 3023–3080 3025
where we have used the shorthands f = f (v), f ′ = f (v ′), g∗ = g(v∗) and g′∗ = g(v ′∗) with post-
collisional velocities v ′ and v ′∗ parametrized by

v ′ = v + v∗
2

+ |v − v∗|
2

σ , v ′∗ = v + v∗
2

− |v − v∗|
2

σ , σ ∈ S
d−1

and the collision kernel is given by

B(v − v∗,σ ) = Φ
(|v − v∗|

)
b(cos θ)

where cos θ = 〈 v−v∗|v−v∗| , σ 〉. Typically, for the model we have in mind, we shall deal with

Φ
(|v − v∗|

) = |v − v∗|
and constant b(·) corresponding to hard-spheres interactions which is the model usually considered
in the physics literature [15,19,28]. We shall also consider more general kernel, typically, we shall
assume that

Φ
(|v − v∗|

) = |v − v∗|γ , γ ∈ (0,1] (1.2)

and

‖b‖L1(Sd−1) := ∣∣Sd−2
∣∣ 1∫
−1

b(t)(1 − t)(d−3)/2 dt < ∞

where |Sd−2| is the area of (d−2)-dimensional unit sphere. Without loss of generality, we will assume
in all the paper that

‖b‖L1(Sd−1) = 1.

Notice that, for constant angular cross-section, this amounts to choose b(·) = 1/|Sd−1|. A very spe-
cial model is the one of so-called Maxwellian molecules which corresponds to γ = 0. The model
of Maxwellian molecules has been studied mathematically in [25,26] and we will discuss this very
special case in Appendix B.

The above collision operator Q( f , f ) splits as Q( f , f ) =Q+( f , f )−Q−( f , f ) where the gain part
Q+ is given by

Q+( f , f )(v) =
∫

Rd×Sd−1

B(v − v∗,σ ) f ′∗ f ′ dv∗ dσ

while the loss part Q− is defined as

Q−( f , f )(v) = f (v)L( f )(v), with L( f )(v) =
∫

Rd×Sd−1

B(v − v∗,σ ) f∗ dv∗ dσ .

One has

B( f , f ) := (1 − α)Q( f , f ) − αQ−( f , f ) = (1 − α)Q+( f , f ) −Q−( f , f ).
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Formally, if f (t, v) denotes a nonnegative solution to (1.1) then, no macroscopic quantities are con-
served. For instance, the number density

n(t) =
∫
Rd

f (t, v)dv

and the kinetic energy

E(t) =
∫
Rd

|v|2 f (t, v)dv

are continuously decreasing since, multiplying (1.1) by 1 or |v|2 and integrating with respect to v ,
one formally obtains

d

dt
n(t) = −α

∫
Rd

Q−( f , f )(t, v)dv � 0

while

d

dt
E(t) = −α

∫
Rd

|v|2Q−( f , f )(t, v)dv � 0.

It is clear therefore that (1.1) does not admit any nontrivial steady solution and, still formally,
f (t, v) → 0 as t → ∞.

1.2. Scaling solutions

Physicists expect that solutions to (1.1) should approach for large times a self-similar solution f H

to (1.1) of the form

f H (t, v) = λ(t)ψH
(
β(t)v

)
(1.3)

for some suitable scaled functions λ(t), β(t) � 0 with λ(0) = β(0) = 1 and some nonnegative function
ψH = ψH (ξ) such that

ψH 
≡ 0 and
∫
Rd

ψH (ξ)
(
1 + |ξ |2)dξ < ∞. (1.4)

The first step in the proof of the above statement is actually the existence of the profile ψH and this
is the aim of the present paper.

Using the scaling properties of the Boltzmann collision operators Q± , one checks easily that

B( f H , f H )(t, v) = λ2(t)β−(d+γ )(t)B(ψH ,ψH )
(
β(t)v

) ∀v ∈ R
d.

Then, f H (t, v) is a solution to (1.1) if and only if ψH (ξ) is a solution to the rescaled problem

λ̇(t)βd+γ (t)
2

ψH (ξ) + β̇(t)βd+γ −1(t)
ξ · ∇ξψH (ξ) = B(ψH ,ψH )(ξ)
λ (t) λ(t)
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where the dot symbol stands for the time derivative. Since ψH does not depend on time t , there exist
some constants A and B such that

A = λ̇(t)βd+γ (t)

λ2(t)
, B = β̇(t)βd+γ −1(t)

λ(t)
. (1.5)

Thereby, ψH is a solution to

AψH (ξ) + Bξ · ∇ξψH (ξ) = B(ψH ,ψH )(ξ). (1.6)

Actually, one sees easily that the coefficients A and B depend on the profile ψH . Indeed, integrating
first (1.6) with respect to ξ and then multiplying (1.6) by |ξ |2 and integrating again with respect to ξ

one sees that (1.4) implies that

A = −α

2

∫
Rd

(
d + 2∫

Rd ψH (ξ∗)dξ∗
− d|ξ |2∫

Rd ψH (ξ∗)|ξ∗|2 dξ∗

)
Q−(ψH ,ψH )(ξ)dξ

and

B = −α

2

∫
Rd

(
1∫

Rd ψH (ξ∗)dξ∗
− |ξ |2∫

Rd ψH (ξ∗)|ξ∗|2 dξ∗

)
Q−(ψH ,ψH )(ξ)dξ.

Let us note that A and B have no sign. However,

0 < dB − A = α∫
Rd ψH (ξ∗)dξ∗

∫
Rd

Q−(ψH ,ψH )(ξ)dξ,

and

0 < (d + 2)B − A = α∫
Rd ψH (ξ∗)|ξ∗|2 dξ∗

∫
Rd

|ξ |2Q−(ψH ,ψH )(ξ)dξ.

Solving (1.5), one obtains the expressions of β and λ. More precisely, since λ(0) = β(0) = 1,

⎧⎨
⎩β(t) = (

1 + (
(d + γ )B − A

)
t
) B

(d+γ )B−A ,

λ(t) = (
1 + (

(d + γ )B − A
)
t
) A

(d+γ )B−A , t � 0

where we notice that (d + γ )B − A > 0.
We now observe that, with no loss of generality, one may assume that

∫
Rd

ψH (ξ)dξ = 1 and
∫
Rd

ψH (ξ)|ξ |2 dξ = d

2
. (1.7)

Indeed, if ψH denotes a solution to (1.6) satisfying (1.7) then, for any β = (β1, β2) ∈ (0,∞)2, the
function ψH,β defined by
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ψH,β(ξ) = β1

(
dβ1

2β2

) d
2

ψH

(√
dβ1

2β2
ξ

)

is a solution to (1.6) with mass β1 and energy β2. Assuming (1.7) and introducing

nH (t) =
∫
Rd

f H (t, v)dv, E H (t) =
∫
Rd

|v|2 f H (t, v)dv,

one obtains ⎧⎪⎨
⎪⎩

nH (t) = (
1 + (

(d + γ )B − A
)
t
)− dB−A

(d+γ )B−A ,

E H (t) = d

2

(
1 + (

(d + γ )B − A
)
t
)− (d+2)B−A

(d+γ )B−A , t � 0.

(1.8)

The main objective of the present work is to prove the existence of a self-similar profile ψH satisfying
(1.6), (1.7). Notice that the existence of such a self-similar profile was taken for granted in several
works in the physics community [15,19,28] but no rigorous justification was available up to now.
Our work aims to fill this blank, giving in turn the first rigorous mathematical ground justifying the
analysis performed in [15,19,28].

1.3. Notations

Let us introduce the notations we shall use in the sequel. Throughout the paper we shall use the
notation 〈·〉 = √

1 + | · |2. We denote, for any η ∈ R, the Banach space

L1
η

(
R

d) =
{

f :Rd →R measurable; ‖ f ‖L1
η

:=
∫
Rd

∣∣ f (v)
∣∣〈v〉ηdv < +∞

}
.

More generally we define the weighted Lebesgue space L p
η(Rd) (p ∈ [1,+∞), η ∈R) by the norm

‖ f ‖L p
η

=
[ ∫
Rd

∣∣ f (v)
∣∣p〈v〉pη dv

]1/p

, 1 � p < ∞

while ‖ f ‖L∞
η

= ess-supv∈Rd | f (v)|〈v〉η for p = ∞.

1.4. Strategy and main results

To prove the existence of a steady state ψH , solution to (1.6), we shall use a dynamical approach
as in [4,5,12,13,20]. It then amounts to finding a steady state to the annihilation equation

∂tψ(t, ξ) + Aψ(t)ψ(t, ξ) + Bψ(t)ξ · ∇ξψ(t, ξ) = B(ψ,ψ)(t, ξ) (1.9)

supplemented with some nonnegative initial condition

ψ(0, ξ) = ψ0(ξ), (1.10)

where ψ0 satisfies
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∫
Rd

ψ0(ξ)dξ = 1,

∫
Rd

ψ0(ξ)|ξ |2 dξ = d

2
, (1.11)

while

Aψ(t) = −α

2

∫
Rd

(
d + 2 − 2|ξ |2)Q−(ψ,ψ)(t, ξ)dξ,

and

Bψ(t) = − α

2d

∫
Rd

(
d − 2|ξ |2)Q−(ψ,ψ)(t, ξ)dξ.

Notice that (1.9) has to be seen only as a somewhat artificial generalization of (1.6): we do not
claim that (1.9) can be derived from (1.1) nor that a solution ψ to (1.9) is associated to a self-similar
solution to (1.1). Again, the introduction of the new equation (1.9) is motivated only by the fact that
any steady state of (1.9) is a solution to (1.6).

We now describe the content of this paper. As explained above, the existence of the profile ψH
is obtained by finding a steady state to the annihilation equation (1.9). As in previous works [4,5,
12,13,20], the proof relies on the application of a suitable version of Tykhonov fixed point theorem
(we refer to [4, Appendix A] for a complete proof of it):

Theorem 1.1 (Dynamic proof of stationary states). Let Y be a Banach space and (St)t�0 be a continuous
semi-group on Y such that

(i) there exists Z a nonempty convex and weakly (sequentially) compact subset of Y which is invariant under
the action of St (that is St z ∈Z for any z ∈Z and t � 0);

(ii) St is weakly (sequentially) continuous on Z for any t > 0.

Then there exists z0 ∈Z which is stationary under the action of St (that is St z0 = z0 for any t � 0).

In a more explicit way, our strategy is therefore to identify a Banach space Y and a convex subset
Z ⊂ Y such that

(1) for any ψ0 ∈ Y there is a global solution ψ ∈ C([0,∞),Y) to (1.9) that satisfies (1.10);
(2) the solution ψ is unique in Y and if ψ0 ∈Z then ψ(t) ∈Z for any t > 0;
(3) the set Z is (weakly sequentially) compactly embedded into Y ;
(4) solutions to (1.9) have to be (weakly sequentially) stable, i.e. for any sequence (ψn)n ∈

C([0,∞),Y) of solutions to (1.9) with ψn(t) ∈ Z for any t > 0, then, there is a subsequence
(ψnk )k which converges weakly to some ψ ∈ C([0,∞),Y) such that ψ is a solution to (1.9).

According to the above program, a crucial step in the above strategy is therefore to investigate
the well-posedness of the Cauchy problem (1.9)–(1.10) and next section is devoted to this point. The
notion of solutions we consider here is as follows.

Definition 1.2. Given a nonnegative initial datum ψ0 satisfying (1.11) and given T > 0, a nonnegative
function ψ : [0, T ] ×R

d →R is said to be a solution to the annihilation equation (1.9) if

ψ ∈ C
([0, T ]; L1

2

(
R

d)) ∩ L1(0, T ; L1
2+γ

(
R

d))
and satisfies (1.9) in the weak form:
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∫
Rd

ψ(t, ξ)(ξ)dξ +
t∫

0

ds
[
Aψ(s) − dBψ(s)

] ∫
Rd

(ξ)ψ(s, ξ)dξ

=
t∫

0

dsBψ(s)

∫
Rd

ψ(s, ξ)ξ · ∇ξ(ξ)dξ +
∫
Rd

(ξ)ψ0(ξ)dξ

+
t∫

0

ds

∫
Rd

B(ψ,ψ)(s, ξ)(ξ)dξ (1.12)

for any  ∈ C1
c (Rd).

Notice that the assumption ψ ∈ L1(0, T ; L1
2+γ (Rd)) is needed in order to both the quantities Aψ(t)

and Bψ(t) to be well defined.
Let us point out the similarities and the differences between (1.9) and the well-known Boltzmann

equation. First, it follows from the definition of the coefficients Aψ and Bψ that the mass and the
energy of solutions to (1.9) are conserved. However, there is no reason for the momentum to be
preserved. Even if we assume that the initial datum has vanishing momentum we are unable to prove
that this propagates. It is also not clear whether there exists an entropy for (1.9). Let us note on the
other hand that since the coefficients Aψ and Bψ involve moments of order 2 +γ of ψ , a crucial step
will be to prove, via suitable a priori estimates, that high-order moments of solutions are uniformly
bounded, ensuring a good control of both Aψ and Bψ . At different stages of this paper, this lack of a
priori estimates and this necessary control of Aψ and Bψ complicate the analysis with respect to the
Boltzmann equation. It also leads us to formulate some assumptions, some of which we hope to be
able to get rid of in a future work. Let us now describe precisely what are the practical consequences
of the aforementioned differences. Since we are interested in the physically relevant model of hard-
spheres interactions, the cross section involved in the collision operator is unbounded. Consequently,
the existence of a solution to (1.9) is obtained by applying a fixed point argument to a truncated
equation and then passing to the limit. Such an approach is reminiscent from the well-posedness
theory of the Boltzmann equation [22] and relies on suitable a priori estimates and stability result. In
particular, such a stability result allows to prove in a unique step the above points (1) and (4) of the
above program. We thereby prove the following theorem in Section 2.

Theorem 1.3. Let δ > 0 and p > 1. Let ψ0 ∈ L1
2+δ(R

d) ∩ L p(Rd) be a nonnegative distribution function

satisfying (1.11). Then, there exists a unique nonnegative solution ψ ∈ C([0,∞); L1
2(R

d)) ∩ L1
loc((0,∞);

L1
2+γ +δ(R

d)) ∩ L∞
loc((0,∞); L1

2+δ(R
d)) to (1.9) such that ψ(0, ·) = ψ0 and

∫
Rd

ψ(t, ξ)dξ = 1,

∫
Rd

ψ(t, ξ)|ξ |2 dξ = d

2
∀t � 0.

Notice that, with respect to classical existence results on Boltzmann equation (see e.g. [22]), we
need here to impose an additional L p-integrability condition on the initial datum ψ0. Such an as-
sumption is needed in order to control the nonlinear drift term in (1.9) and especially to get bounds
on the moments of order 2 + γ arising in the definition of Aψ(t) and Bψ(t), these bounds need to be
uniform with respect to the truncation.

The previous result allows to identify the space Y = L1
2(R

d) in the above Theorem 1.1 and gives the
existence of a semi-group for (1.9) and the next step is to finding a subset Z which is left invariant
under the action of this semi-group. Since Y is an L1-space and Z has to be a weakly compact
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subset of Y , it is natural in view of Dunford–Pettis criterion to look for a subspace involving higher-
order moments of the solution ψ(t) together with additional integrability conditions. We are therefore
first lead to prove uniform in time moment estimates for the solution ψ(t). More precisely, the main
result of Section 3 is the following

Theorem 1.4. Let p > 1. Let ψ0 ∈ L1
2+γ (Rd)∩ L p(Rd) be a nonnegative distribution function satisfying (1.11).

Let then ψ ∈ C([0,∞); L1
2(R

d)) ∩ L1
loc((0,∞); L1

2+γ (Rd)) be the nonnegative solution to (1.9)–(1.10) con-
structed by Theorem 1.3. Then, there exists α0 ∈ (0,1] such that for 0 < α < α0 , the solution ψ satisfies

sup
t�0

∫
Rd

ψ(t, ξ)|ξ |2+γ dξ � max

{∫
Rd

ψ0(ξ)|ξ |2+γ dξ, M

}
,

for some explicit constant M depending only on α, γ , b(·) and d.

Remark 1.5. The parameter α0 appearing in the above theorem is fully explicit. In the particular case
of true hard spheres in dimension d = 3, i.e. for constant collision kernel b(·) = 1/4π and γ = 1, one
has α0 = 2

7 . We refer to Proposition 3.4 and Remark 3.5 for more details.

The proof of the above result relies on a careful study of the moment system associated to the
solution ψ(t) to (1.9)–(1.10). Since we are dealing with hard-spheres interactions, such a system is
not closed but a sharp version of Povzner-type inequalities allows to control higher-order moments in
terms of lower-order ones. Let us observe that the initial condition ψ0 belongs here to L1

2+γ (Rd), that
is we take δ = γ in Theorem 1.3. Indeed, since coefficients Aψ and Bψ involve moments of order
2 + γ , this is the minimal assumption to ensure a uniform in time propagation of moments. The
restriction on the parameter α ∈ (0,α0) arises naturally in the proof of the uniform in time bound of
the moment of order 2 + γ (see Proposition 3.4).

At the end of Section 3 we establish a lower bound for L(ψ) where L denotes the operator in the
definition of Q− , namely

∫
Rd

ψ(t, ξ∗)|ξ − ξ∗|γ dξ∗ �μα〈ξ〉γ ∀ξ ∈R
d, t � 0, (1.13)

for some positive constant μα > 0 depending on γ ,d,α, b(·) and on
∫
Rd ψ0(ξ)|ξ |γ dξ . Note that this

bound will be essential in Section 4 and that we need here to assume that ψ0 is an isotropic function.
Isotropy is indeed propagated by (1.9). For the Boltzmann equation, this assumption is useless since
such a bound may be obtained thanks to the entropy for elastic collisions (see [23, Proposition 2.3])
or thanks to the Jensen inequality and vanishing momentum for inelastic collisions and γ = 1 (see
[21, Eq. (2.7)]). This naturally leads us to Section 4 where we deal with propagation of higher-order
Lebesgue norms and where we obtain the following:

Theorem 1.6. Let ψ0 ∈ L1
2+γ (Rd) be a nonnegative distribution function satisfying (1.11). We assume further-

more that ψ0 is an isotropic function, that is

ψ0(ξ) = ψ0
(|ξ |) ∀ξ ∈R

d. (1.14)

Then, there is some explicit α ∈ (0,1] such that, for 0 < α < α there exists some explicit p�
α ∈ (1,∞] such

that, for any p ∈ (1, p�
α),

ψ0 ∈ Lp(
R

d) �⇒ sup
t�0

∥∥ψ(t)
∥∥

L p � max
{‖ψ0‖L p , C p(ψ0)

}
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for some explicit constant C p(ψ0) > 0 depending only on α, γ , b(·), p, the dimension d and
∫
Rd ψ0(ξ)|ξ |γ dξ .

Here above, ψ ∈ C([0,∞); L1
2(R

d)) ∩ L1
loc((0,∞); L1

2+γ (Rd)) is the nonnegative solution to (1.9)–(1.10) con-
structed by Theorem 1.3.

Remark 1.7. Just as in Theorem 1.4, the parameter α is explicit: for true hard spheres in dimension
d = 3 one has α = 1

4 . In this case, the parameter p�
α = 3α

5α−1 if 1/5 < α < α while p�
α = ∞ if α � 1/5.

See Remarks 3.11, 4.1 and 4.2 for details.

The proof of the above result comes from a careful study of the equation for higher-order Lebesgue
norms of the solution ψ(t) combined with the above bound (1.13) where we only consider isotropic
initial datum. Here again, one notices a restriction on the parameter α ∈ (0,α) for the conclusion to
hold. The fact that the constant C p(ψ0) depends on the initial datum ψ0 through (the inverse of) its
moment

∫
Rd ψ0(ξ)|ξ |γ dξ is no major restriction since we will be able to prove the propagation of

lower bound for such a moment along the solution to (1.9) (see Sections 3 and 4 for details).
Combining the three above results with Theorem 1.1 we obtain our main result, proven in Sec-

tion 5:

Theorem 1.8. Assume γ ∈ (0,1] and set α = min(α0,α). For any α ∈ (0,α) and any p ∈ (1, p�
α) there exists

a radially symmetric nonnegative ψH ∈ L1
2+γ (Rd) ∩ L p(Rd) satisfying (1.6) and (1.7).

The proof of the above result is rather straightforward in view of the previously obtained results.
Open problems and perspectives are addressed in Section 6. As previously mentioned, one of them

consists in showing that solutions to (1.1) approach for large times a self-similar solution f H to (1.1)
of the form (1.3). The first step was the existence of the profile ψH , which has been obtained in
Section 5. Besides one is also interested in the well-posedness of (1.1) and, following the same argu-
ments as in the proof of Theorem 1.3 the existence of a solution to (1.1) may be easily obtained. More
precisely, we have

Theorem 1.9. Let f0 ∈ L1
2+γ (Rd) be a nonnegative distribution function. Then, there exists a unique nonneg-

ative solution f ∈ C([0,∞); L1
2(R

d)) ∩ L1
loc((0,∞); L1

2+γ (Rd)) to (1.1) such that f (0, ·) = f0 and

∫
Rd

f (t, v)dv �
∫
Rd

f0(v)dv,

∫
Rd

f (t, v)|v|2 dv �
∫
Rd

f0(v)|v|2 dv ∀t � 0. (1.15)

We give the main lines for the proof of this theorem in Appendix A. Finally, the particular case of
Maxwellian molecules is discussed in Appendix B.

2. On the Cauchy problem

This section is devoted to the proof of Theorem 1.3. To this aim, we first consider a truncated
equation.

2.1. Truncated equation

In this section, we only assume that ψ0 ∈ W 1,∞(Rd) ∩ L1
2+δ(R

d) is a fixed nonnegative distribution
function that does not necessarily satisfy the above (1.11) and we truncate the collision kernel B.
Thereby, for n ∈N, we consider here the well-posedness of the following equation

∂tψ(t, ξ) + An
ψ(t)ψ(t, ξ) + Bn

ψ(t)ξ · ∇ψ(t, ξ) = B
n(ψ,ψ)(t, ξ), (2.1)

where the collision operator B
n(ψ,ψ) is given by
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B
n(ψ,ψ) = (1 − α)Qn+(ψ,ψ) −Qn−(ψ,ψ), (2.2)

where the collision operator Qn is defined as above with a collision kernel Bn given by

Bn(ξ − ξ∗,σ ) = Φn
(|ξ − ξ∗|

)
bn(cos θ)

with

Φn(r) = (
min{r,n})γ , γ ∈ (0,1]

and bn(x) = 1{|x|�1−1/n}b(x). Finally,

An
ψ(t) := −α

2

∫
Rd

(
d + 2∫

Rd ψ(0, ξ∗)dξ∗
− d|ξ |2∫

Rd ψ(0, ξ∗)|ξ∗|2 dξ∗

)
Qn−(ψ,ψ)(t, ξ)dξ

and

Bn
ψ(t) := −α

2

∫
Rd

(
1∫

Rd ψ(0, ξ∗)dξ∗
− |ξ |2∫

Rd ψ(0, ξ∗)|ξ∗|2 dξ∗

)
Qn−(ψ,ψ)(t, ξ)dξ.

We notice here that the definitions of An
ψ(t) and Bn

ψ(t) match the definitions of Aψ(t) and Bψ(t) given
in the introduction with Qn− replacing Q− when ψ0 is assumed to satisfy (1.11). The main result of
this section is the following well-posedness theorem:

Theorem 2.1. Let δ > 0. Let ψ0 ∈ W 1,∞(Rd) ∩ L1
2+δ(R

d) be a nonnegative distribution function. Then, for

any n � 1, there exists a nonnegative solution ψ ∈ C([0,∞); L1(Rd)) to the truncated problem (2.1) such that
ψ(0, ·) = ψ0 and

∫
Rd

ψ(t, ξ)dξ =
∫
Rd

ψ0(ξ)dξ,

∫
Rd

ψ(t, ξ)|ξ |2 dξ =
∫
Rd

ψ0(ξ)|ξ |2 dξ ∀t � 0.

The proof of this well-posedness result follows classical paths already employed for the classical
space homogeneous Boltzmann equation but is made much more technical because of the contribu-
tion of some nonlinear drift-term. Let T > 0 and

h ∈ C
([0, T ]; L1(

R
d)) ∩ L∞(

(0, T ); L1(
R

d, |ξ |2+δ dξ
))

be fixed. We consider the auxiliary equation:

⎧⎪⎨
⎪⎩

∂tψ(t, ξ) + An
h(t)ψ(t, ξ) + Bn

h(t)ξ · ∇ξψ(t, ξ) + Ln(h)(t, ξ)ψ(t, ξ)

= (1 − α)Qn+(h,h)(t, ξ),

ψ(0, ξ) = ψ0(ξ).

(2.3)

Here, An
h and Bn

h are defined as An
ψ and Bn

ψ with Qn−(h,h) replacing Qn−(ψ,ψ) and

Ln(h)(t, ξ) :=
∫

d d−1

Bn(ξ − ξ∗,σ )h(t, ξ∗)dξ∗ dσ = ‖bn‖L1(Sd−1)

∫
d

Φn
(|ξ − ξ∗|

)
h(t, ξ∗)dξ∗.
R ×S R
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We solve this equation using the characteristic method: notice that, by assumption on h, the mapping
t �→ Bn

h(t) is continuous on [0, T ] and, for any ξ ∈ R
d , the characteristic equation

d

dt
X(t; s, ξ) = Bn

h(t)X(t; s, ξ), X(s; s, ξ) = ξ, (2.4)

gets a unique global solution given by

Xh(t; s, ξ) = ξ exp

( t∫
s

Bn
h(τ )dτ

)
.

Then, the Cauchy problem (2.3) admits a unique solution given by

ψ(t, ξ) = ψ1(t, ξ) + ψ2(t, ξ) = ψ0
(

Xh(0; t, ξ)
)

exp

(
−

t∫
0

[
An

h(τ ) + Ln(h)
(
τ , Xh(τ ; t, ξ)

)]
dτ

)

+ (1 − α)

t∫
0

exp

(
−

t∫
s

[
An

h(τ ) + Ln(h)
(
τ , Xh(τ ; t, ξ)

)]
dτ

)
Qn+(h,h)

(
s, Xh(s; t, ξ)

)
ds.

(2.5)

For any T > 0 and any M1, M2, �, Cδ > 0 (to be fixed later on), we define H =HT ,M1,M2,�,Cδ as the
set of all nonnegative h ∈ C([0, T ]; L1(Rd)) such that

sup
t∈[0,T ]

∫
Rd

h(t, ξ)dξ � M1, sup
t∈[0,T ]

∫
Rd

h(t, ξ)|ξ |2 dξ � M2,

and

sup
t∈[0,T ]

∫
Rd

h(t, ξ)|ξ |2+δ dξ � Cδ, sup
t∈[0,T ]

∥∥h(t)
∥∥

W 1,∞ � �.

Define then the mapping

T : H → C
([0, T ]; L1(

R
d))

which, to any h ∈H, associates the solution ψ = T (h) to (2.3) given by (2.5). We look for parameters
T , M1, M2, Cδ and � that ensure T to map H into itself. To do so, we shall use the following lemma
whose proof is omitted and relies only on the very simple estimate:

Qn−(h,h)(t, ξ) = h(t, ξ)Ln(h)(t, ξ) �
(
nγ M1‖bn‖L1(Sd−1)

)
h(t, ξ) ∀t ∈ [0, T ]

valid for any h ∈H.
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Lemma 2.2. Define, for any n ∈N and any M1 > 0,

μn = μn(M1) = α

‖ψ0‖L1
nγ M1‖bn‖L1(Sd−1) and νn = νn(M1) = αnγ M1‖bn‖L1(Sd−1)∫

Rd ψ0(ξ)|ξ |2 dξ
.

For any fixed h ∈H and any (t, ξ) ∈ [0, T ] ×R
d the following hold

(i) 0 � dBn
h(t) − An

h(t) = α
‖ψ0‖L1

∫
Rd Qn−(h,h)(t, ξ)dξ �μn M1 .

(ii) −μn
2 M1 � Bn

h(t) � νn
2 M2 .

(iii) −μn(d+2)
2 M1 � An

h(t).
(iv) 0 � (d + 2)Bn

h(t) − An
h(t) = α∫

Rd ψ0(ξ)|ξ |2 dξ

∫
Rd |ξ |2Qn−(h,h)(t, ξ)dξ � νn M2 .

Control of the density. By a simple change of variables, one checks easily that the solution ψ(t, ξ)

given by (2.5) fulfills

∫
Rd

ψ(t, ξ)dξ =
∫
Rd

ψ0(ξ)exp

( t∫
0

[
dBn

h(τ ) − An
h(τ ) − Ln(h)

(
τ , Xh(τ ;0, ξ)

)]
dτ

)
dξ

+ (1 − α)

t∫
0

ds

∫
Rd

exp

( t∫
s

[
dBn

h(τ ) − An
h(τ ) − Ln(h)

(
τ , Xh(τ , s, ξ)

)]
dτ

)

×Qn+(h,h)(s, ξ)dξ.

It comes then from the above Lemma 2.2 that

∫
Rd

ψ(t, ξ)dξ � ‖ψ0‖L1 exp(tμn M1) + (1 − α)

t∫
0

exp
(
(t − s)μn M1

)∫
Rd

Qn+(h,h)(s, ξ)dξ ds,

� ‖ψ0‖L1 exp(tμn M1) + 1 − α

α
μn M1‖ψ0‖L1

t∫
0

exp
(
(t − s)μn M1

)
ds,

from which we deduce that

sup
t∈[0,T ]

∫
Rd

ψ(t, ξ)dξ � ‖ψ0‖L1

(
exp(Tμn M1) + 1 − α

α

(
exp(Tμn M1) − 1

)) ∀h ∈ H. (2.6)

Control of the moments. We now focus on the control of moments of order r with r � 2 to the solution
ψ given by (2.5). Arguing as above,

∫
Rd

ψ(t, ξ)|ξ |r dξ =
∫
Rd

ψ0(ξ)|ξ |r exp

( t∫
0

[
(r + d)Bn

h(τ ) − An
h(τ ) − Ln(h)

(
τ , Xh(τ ,0, ξ)

)]
dτ

)
dξ

+ (1 − α)

t∫
0

ds

∫
Rd

exp

( t∫
s

[
(r + d)Bn

h(τ ) − An
h(τ ) − Ln(h)

(
τ , Xh(τ , s, ξ)

)]
dτ

)

×Qn+(h,h)(s, ξ)|ξ |r dξ.
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Using again Lemma 2.2, we get

∫
Rd

ψ(t, ξ)|ξ |r dξ � exp

(
t

(
μn M1 + νnr

2
M2

))∫
Rd

ψ0(ξ)|ξ |r dξ

+ (1 − α)

t∫
0

exp

(
(t − s)

(
μn M1 + νnr

2
M2

))∫
Rd

Qn+(h,h)(s, ξ)|ξ |r dξ ds.

Now, the change of variables (ξ, ξ∗) → (ξ ′, ξ ′∗) together with the fact that |ξ ′| � |ξ | + |ξ∗|, yields

∫
Rd

Qn+(h,h)(s, ξ)|ξ |r dξ �
∫

Rd×Rd

∫
Sd−1

Bn(ξ − ξ∗,σ )h(s, ξ)h(s, ξ∗)
∣∣ξ ′∣∣r

dσ dξ dξ∗

� 2r−1nγ ‖bn‖L1(Sd−1)

∫
Rd×Rd

h(s, ξ)h(s, ξ∗)
(|ξ |r + |ξ∗|r

)
dξ dξ∗

� 2rnγ ‖bn‖L1(Sd−1)M1

∫
Rd

h(s, ξ)|ξ |r dξ.

Hence,

∫
Rd

ψ(t, ξ)|ξ |r dξ � exp

(
t

(
μn M1 + νnr

2
M2

))∫
Rd

ψ0(ξ)|ξ |r dξ

+ (1 − α)2r μn

α
‖ψ0‖L1

t∫
0

exp

(
(t − s)

(
μn M1 + νnr

2
M2

))∫
Rd

h(s, ξ)|ξ |r dξ ds.

In particular, choosing successively r = 2 and r = 2 + δ one gets that

sup
t∈[0,T ]

∫
Rd

ψ(t, ξ)|ξ |2 dξ � exp
(
T (μn M1 + νn M2)

)∫
Rd

ψ0(ξ)|ξ |2 dξ

+ 4‖ψ0‖L1
1 − α

α

μn M2

μn M1 + νn M2

(
exp

(
T (μn M1 + νn M2)

) − 1
)

(2.7)

and

sup
t∈[0,T ]

∫
Rd

ψ(t, ξ)|ξ |2+δ dξ

� exp

(
T

(
μn M1 + 2 + δ

2
νn M2

))∫
Rd

ψ0(ξ)|ξ |2+δ dξ

+ ‖ψ0‖L1
1 − α

α

Cδ22+δμn

μn M1 + 2+δ
2 νn M2

(
exp

(
T

(
μn M1 + 2 + δ

2
νn M2

))
− 1

)
(2.8)

for any h ∈H.
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Control of the W 1,∞ norm. Our assumption on the collision kernel of the operator Qn allows us to
apply [23, Theorem 2.1] with k = η = 0 and sin2(θb/2) = 1/(2n) to get directly

∥∥Qn+(h,h)
∥∥

L∞ � 2n1+γ ‖bn‖L1(Sd−1)‖h‖L1‖h‖L∞ .

Then, the change of variable σ → −σ yields

∇Qn+(h,h) = Qn+(∇h,h) +Qn+(h,∇h) = 2Qn+(h,∇h)

and, applying again [23, Theorem 2.1]:

∥∥∇Qn+(h,h)
∥∥

L∞ � 2
∥∥Qn+(h,∇h)

∥∥
L∞ � 4n1+γ ‖bn‖L1(Sd−1)‖h‖L1‖∇h‖L∞ .

Consequently

∥∥Qn+(h,h)
∥∥

W 1,∞ � 4n1+γ ‖bn‖L1(Sd−1)‖h‖L1‖h‖W 1,∞ .

In the same way, since d
dr Φn(r) � γnγ −1 � 1, one checks easily that

∥∥Ln(h)(t, ·)∥∥W 1,∞ � 2nγ ‖bn‖L1(Sd−1)

∥∥h(t)
∥∥

L1 � 2
μn

α
‖ψ0‖L1 ∀t ∈ [0, T ], h ∈ H.

Recall now the expression of the solution ψ = ψ1 + ψ2 given in (2.5). It is easy to see that, for any
t ∈ [0, T ]

∥∥ψ1(t)
∥∥

W 1,∞ � exp

(
−

t∫
0

An
h(τ )dτ

)
‖ψ0‖L∞ + exp

(
−

t∫
0

(
An

h(τ ) + Bn
h(τ )

)
dτ

)
‖∇ξψ0‖L∞

+ ‖ψ0‖L∞ exp

(
−

t∫
0

An
h(τ )dτ

) t∫
0

exp

(
−

t∫
τ

Bn
h(s)ds

)∥∥∇ξ Ln(h)(τ , ·)∥∥L∞ dτ

so that, using again Lemma 2.2:

∥∥ψ1(t)
∥∥

W 1,∞ � exp

(
μn(d + 3)

2
M1t

)
‖ψ0‖W 1,∞

+ 2

α
μn‖ψ0‖L1‖ψ0‖L∞ exp

(
μn(d + 2)

2
M1t

) t∫
0

exp

(
μn

2
M1(t − τ )

)
dτ

i.e.

∥∥ψ1(t)
∥∥

W 1,∞ � max

(
1,

4‖ψ0‖L1

αM1

)
exp

(
μn(d + 3)

2
M1t

)
‖ψ0‖W 1,∞ ∀t ∈ [0, T ].

In the same way,
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∥∥ψ2(t)
∥∥

W 1,∞ � (1 − α)max

(
1,

4‖ψ0‖L1

αM1

) t∫
0

exp

(
μn(d + 3)

2
M1(t − s)

)∥∥Qn+(h,h)(s)
∥∥

W 1,∞ ds

� (1 − α)max

(
1,

4‖ψ0‖L1

αM1

)
8n1+γ ‖bn‖L1(Sd−1)�

μn(d + 3)

[
exp

(
μn(d + 3)

2
M1t

)
− 1

]
.

Consequently,

sup
t∈[0,T ]

∥∥ψ(t)
∥∥

W 1,∞ � max

(
1,

4‖ψ0‖L1

αM1

)
exp

(
μn(d + 3)

2
M1T

)
‖ψ0‖W 1,∞

+ max

(
1,

4‖ψ0‖L1

αM1

)
1 − α

α

8n�‖ψ0‖L1

M1(d + 3)

[
exp

(
μn(d + 3)

2
M1T

)
− 1

]
.

(2.9)

Now, from (2.6), (2.7), (2.8) and (2.9), one sees that, choosing for instance M1 = 4‖ψ0‖L1 ,

M2 = 4
∫
Rd

ψ0(ξ)|ξ |2 dξ, Cδ = 4
∫
Rd

ψ0(ξ)|ξ |2+δ dξ, � = 4

α
‖ψ0‖W 1,∞

and

T = 2

μn M1
min

{
log 2

(4 + δ)
,

1

(4 + δ)
log

(
1 + α(4 + δ)

(1 − α)22+δ

)
,

1

2
log

(
1 + αM1

2(1 − α)

)
,

log 2

d + 3
,
| log(1 − α)|

4
,

1

d + 3
log

(
1 + α2(d + 3)

4n(1 − α)

)}
,

we get that ψ ∈ H, i.e. with the above choice of the parameters M1, M2, Cδ, �, T , one has T (H) ⊂ H
(notice that with this choice, μn M1 = νn M2). Moreover, one can prove the following:

Proposition 2.3. The mapping T : H → C([0, T ]; L1
2(R

d)) is continuous for the topology induced by
C([0, T ]; L1

2(R
d)). More precisely, there exists a constant C > 0 such that, for any h1,h2 ∈H,

sup
t∈[0,T ]

∥∥T (h1)(t) − T (h2)(t)
∥∥

L1
2
� C sup

t∈[0,T ]
∥∥h1(t) − h2(t)

∥∥
L1

2
. (2.10)

Moreover, T (H) is a relatively compact subset of C([0, T ]; L1
2(R

d)).

In the proof of the above Proposition, we shall use the following result which is very classical:

Lemma 2.4. Let h1,h2 ∈ C([0, T ]; L1
2(R

d)). Then,

∥∥Ln(h1)(t, ·) − Ln(h2)(t, ·)
∥∥

L∞ � ‖bn‖L1(Sd−1)‖Φn‖L∞
∥∥h1(t) − h2(t)

∥∥
L1 ∀t > 0.

Consequently, the following hold for any t > 0:
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∣∣Bn
h1

(t) − Bn
h2

(t)
∣∣ � α‖bn‖L1(Sd−1)‖Φn‖L∞

2

(∥∥h1(t)
∥∥

L1
2
+ ∥∥h2(t)

∥∥
L1

2

)

× ∥∥h1(t) − h2(t)
∥∥

L1
2

(
1∫

Rd ψ0(ξ)|ξ |2dξ
+ 1

‖ψ0‖L1

)
,

and

∣∣An
h1

(t) − An
h2

(t)
∣∣� α‖bn‖L1(Sd−1)‖Φn‖L∞

2

(∥∥h1(t)
∥∥

L1
2
+ ∥∥h2(t)

∥∥
L1

2

)

× ∥∥h1(t) − h2(t)
∥∥

L1
2

(
d∫

Rd ψ0(ξ)|ξ |2dξ
+ d + 2

‖ψ0‖L1

)
.

Proof of Proposition 2.3. Given h1,h2 ∈H, we set ψ1 = T (h1) and ψ2 = T (h2). Define also

h = h1 − h2 and ψ = ψ1 − ψ2.

The difference function ψ(t, ξ) is a solution to the following problem

∂tψ(t, ξ) + An
h2

(t)ψ(t, ξ) + Bn
h2

(t)ξ · ∇ξψ(t, ξ) + Ln(h2)(t, ξ)ψ(t, ξ)

= [
Ln(h2)(t, ξ) − Ln(h1)(t, ξ)

]
ψ1(t, ξ) + [

An
h2

(t) − An
h1

(t)
]
ψ1(t, ξ)

+ [
Bn

h2
(t) − Bn

h1
(t)

](
ξ · ∇ξψ1(t, ξ)

)
+ (1 − α)

(
Qn+(h1,h1) −Qn+(h2,h2)

)
.

We multiply this equation by sign(ψ(t, ξ))〈ξ〉2 and integrate over R
d . It is easy to see that

∫
Rd

[
ξ · ∇ξψ(t, ξ)

]
sign

(
ψ(t, ξ)

)〈ξ〉2 dξ = −
∫
Rd

∣∣ψ(t, ξ)
∣∣ divξ

(
ξ〈ξ〉2)dξ

= −d

∫
Rd

∣∣ψ(t, ξ)
∣∣〈ξ〉2dξ − 2

∫
Rd

∣∣ψ(t, ξ)
∣∣|ξ |2 dξ

= −(d + 2)
∥∥ψ(t)

∥∥
L1

2
+ 2

∥∥ψ(t)
∥∥

L1

from which we get

d

dt

∥∥ψ(t)
∥∥

L1
2
+ (

An
h2

(t) − (d + 2)Bn
h2

(t)
)∥∥ψ(t)

∥∥
L1

2

+ 2Bn
h2

(t)
∥∥ψ(t)

∥∥
L1 +

∫
Rd

Ln(h2)(t, ξ)
∣∣ψ(t, ξ)

∣∣〈ξ〉2 dξ � I1 + I2 + I3 + I4

where
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I1 :=
∫
Rd

∣∣Ln(h2)(t, ξ) − Ln(h1)(t, ξ)
∣∣∣∣ψ1(t, ξ)

∣∣〈ξ〉2 dξ,

I2 := ∣∣An
h2

(t) − An
h1

(t)
∣∣∥∥ψ1(t)

∥∥
L1

2
,

I3 := ∣∣Bn
h2

(t) − Bn
h1

(t)
∣∣∣∣∣∣

∫
Rd

(
ξ · ∇ξψ1(t, ξ)

)
sign

(
ψ(t, ξ)

)〈ξ〉2 dξ

∣∣∣∣
while

I4 := (1 − α)

∫
Rd

∣∣Qn+(h1,h1)(t, ξ) −Qn+(h2,h2)(t, ξ)
∣∣〈ξ〉2 dξ.

According to Lemma 2.4, one has

I1 � ‖bn‖L1(Sd−1)‖Φn‖L∞
∥∥h1(t) − h2(t)

∥∥
L1

∥∥ψ1(t)
∥∥

L1
2
� nγ ‖bn‖L1(Sd−1)(M1 + M2)

∥∥h(t)
∥∥

L1 .

In the same way

I2 �
αnγ ‖bn‖L1(Sd−1)

2

(
d + 2

‖ψ0‖L1
+ d∫

Rd ψ0(ξ)|ξ |2 dξ

)(∥∥h1(t)
∥∥

L1
2
+ ∥∥h2(t)

∥∥
L1

2

)∥∥h(t)
∥∥

L1
2

∥∥ψ1(t)
∥∥

L1
2

�
(

(d + 2)μn

M1
+ dνn

M2

)
(M1 + M2)

2
∥∥h(t)

∥∥
L1

2
.

Now, it is easy to see that

∣∣∣∣
∫
Rd

(
ξ · ∇ξψ1(t, ξ)

)
sign

(
ψ(t, ξ)

)〈ξ〉2 dξ

∣∣∣∣ �
∣∣∣∣
∫
Rd

ψ1(t, ξ)divξ

(
ξ〈ξ〉2)dξ

∣∣∣∣
� (d + 2)

∥∥ψ1(t)
∥∥

L1
2
+ 2

∥∥ψ1(t)
∥∥

L1 � (d + 4)
∥∥ψ1(t)

∥∥
L1

2
.

Consequently, using again Lemma 2.4, one gets

I3 �
αnγ ‖bn‖L1(Sd−1)(d + 4)

2

(
1

‖ψ0‖L1
+ 1∫

Rd ψ0(ξ)|ξ |2 dξ

)

× (∥∥h1(t)
∥∥

L1
2
+ ∥∥h2(t)

∥∥
L1

2

)∥∥h(t)
∥∥

L1
2

∥∥ψ1(t)
∥∥

L1
2

� (d + 4)

(
μn

M1
+ νn

M2

)
(M1 + M2)

2
∥∥h(t)

∥∥
L1

2
.

Now, it is easy to see that

I4 = (1 − α)
∥∥Qn+(h1,h1) −Qn+(h2,h2)

∥∥
L1

2

= (1 − α)
∥∥Qn+(h1 − h2,h1) +Qn+(h2,h1 − h2)

∥∥
L1
2
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� nγ ‖bn‖L1(Sd−1)

(∥∥h1(t)
∥∥

L1
2
+ ∥∥h2(t)

∥∥
L1

2

)∥∥h(t)
∥∥

L1
2

� 2nγ ‖bn‖L1(Sd−1)(M1 + M2)
∥∥h(t)

∥∥
L1

2
.

Summarizing the above estimates, there exists a positive constant Cn > 0 such that

d

dt

∥∥ψ(t)
∥∥

L1
2
+ (

An
h2

(t) − (d + 2)Bn
h2

(t)
)∥∥ψ(t)

∥∥
L1

2

+ 2Bn
h2

(t)
∥∥ψ(t)

∥∥
L1 +

∫
Rd

Ln(h2)(t, ξ)
∣∣ψ(t, ξ)

∣∣〈ξ〉2 dξ � Cn
∥∥h(t)

∥∥
L1

2
∀t ∈ [0, T ].

Now, using Lemma 2.2, we get that

d

dt

∥∥ψ(t)
∥∥

L1
2
− (μn M1 + νn M2)

∥∥ψ(t)
∥∥

L1
2
� Cn

∥∥h(t)
∥∥

L1
2
.

This finally yields the estimate

sup
t∈[0,T ]

∥∥ψ1(t) − ψ2(t)
∥∥

L1
2
� Cn T exp

(
T (μn M1 + νn M2)

)
sup

t∈[0,T ]
∥∥h1(t) − h2(t)

∥∥
L1

2

since ψ1(0) = ψ2(0) = ψ0. Let us now prove the compactness of T (H). Recall that, according to
Riesz–Fréchet–Kolmogorov Theorem, the embedding

L1
2+δ

(
R

d) ∩ W 1,∞(
R

d) ⊂ L1
2

(
R

d)
is compact. Moreover, L1

2(R
d) is continuously embedded into (Hm(Rd))′ for m > d/2. On the other

hand,

T (H) is a bounded subset of L∞(
(0, T ); L1

2+δ

(
R

d) ∩ W 1,∞(
R

d))
and, setting ∂tT (H) = {∂tψ; ψ = T (h), h ∈H}, one has

∂tT (H) is a bounded subset of Lr((0, T ); (Hm(
R

d))′)
,

with r > 1. As a consequence, one can apply [27, Corollary 4] to conclude that T (H) is a relatively
compact subset of C([0, T ]; L1

2(R
d)). �

We are in position to conclude the proof of Theorem 2.1.

Proof of Theorem 2.1. The proof is split into two parts: the first one consists in proving the well-
posedness of the Cauchy problem (2.1) on the time interval [0, T ] (where T > 0 has been defined
hereabove) through Schauder fixed point theorem. The second part consists in extending this solution
to a global solution.

Local existence: Since H is a closed bounded (nonempty) subset of C([0, T ]; L1
2(R

d)) and since T
is a continuous and compact application from H to H, Schauder fixed point theorem ensures the
existence of some fixed point ψ1 of T , i.e. there exists ψ1 ∈ C([0, T ]; L1

2(R
d)) ∩ L∞((0, T ); L1

2+δ(R
d) ∩

W 1,∞(Rd)) solution to (2.1).
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Global existence: Integrating the equation (2.1) over R
d , we get

d

dt

∫
Rd

ψ1(t, ξ)dξ = α

‖ψ0‖L1

( ∫
Rd

Qn−
(
ψ1,ψ1)(t, ξ)dξ

)( ∫
Rd

ψ1(t, ξ)dξ − ‖ψ0‖L1

)
.

Since
∫
Rd ψ1(0, ξ)dξ = ‖ψ0‖L1 , we see that the density of ψ1 is conserved:

∫
Rd

ψ1(t, ξ)dξ =
∫
Rd

ψ0(ξ)dξ ∀t ∈ [0, T ].

In the same way, multiplying (2.1) by |ξ |2 and integrating over R
d yields

d

dt

∫
Rd

ψ1(t, ξ)|ξ |2 dξ = α

( ∫
Rd

|ξ |2Qn−
(
ψ1,ψ1)(t, ξ)dξ

)(∫
Rd ψ1(t, ξ)|ξ |2 dξ∫
Rd ψ0(ξ)|ξ |2 dξ

− 1

)
.

Since
∫
Rd ψ1(0, ξ)|ξ |2 dξ = ∫

Rd ψ0(ξ)|ξ |2 dξ , the energy of ψ1(t, ξ) is conserved:

∫
Rd

ψ1(t, ξ)|ξ |2 dξ =
∫
Rd

ψ0(ξ)|ξ |2 dξ ∀t ∈ [0, T ].

Thus, ψ1(T , .) has the same mass and energy as ψ0. Since the time T only depends on these values,
by a standard continuation argument, we construct a global solution ψ to (2.1). Uniqueness clearly
follows from (2.10). �
2.2. Uniform estimates

In order to prove Theorem 1.3, we now need to get rid of the bound in W 1,∞(Rd) for the initial
condition and to pass to the limit as n → +∞.

Let δ > 0 and p > 1. Let ψ0 ∈ L1
2+δ(R

d) ∩ L p(Rd) be a nonnegative distribution function satisfy-

ing (1.11). There exists a sequence of nonnegative functions (ψn
0 )n∈N in W 1,∞(Rd) ∩ L1

2+δ(R
d) that

converges to ψ0 in L1
2(R

d) and that satisfies, for any n ∈ N,

∥∥ψn
0

∥∥
L1 � ‖ψ0‖L1 and

∥∥ψn
0

∥∥
L p � ‖ψ0‖L p .

Moreover, if ψ0 ∈ L1
s (R

d) with s > 2 then one may also assume that

∫
Rd

ψn
0 (ξ)|ξ |s dξ � 2s−1‖ψ0‖L1 + 2s−1

∫
Rd

ψ0(ξ)|ξ |s dξ. (2.11)

We infer from the above properties of (ψn
0 )n∈N and from (1.11) that there exists some N0 ∈ N such

that for n � N0,

1

2
�

∫
d

ψn
0 (ξ)dξ � 1 and

d

4
�

∫
d

ψn
0 (ξ)|ξ |2 dξ � d. (2.12)
R R
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For each n ∈ N, we denote by ψn the solution to (2.1) with initial condition ψn
0 . Our purpose is to

show that (ψn)n∈N is a Cauchy sequence in C([0, T ]; L1
2(R

d)) for any T > 0. However, this requires
uniform estimates on ψn . So, we now tackle this question and show uniform bounds for moments
of ψn . The underlying difficulty comes from the two terms An

ψn
and Bn

ψn
which already involve mo-

ments of order 2 + γ and thereby prevent us from performing direct estimates. In all the sequel, we
shall simply set

An(t) = An
ψn

(t), Bn(t) = Bn
ψn

(t), n ∈N, t � 0.

We begin with proving that both An and Bn are bounded in L1
loc(0,∞). Here again we first need to

show uniform L p-estimates, which is the aim of the following lemma.

Lemma 2.5. There exist some integer N1 � N0 and some constant C > 0 depending only on α, p, d and γ
such that, for all n � N1 ,

∥∥ψn(t)
∥∥

L p � eCt‖ψ0‖L p , t � 0. (2.13)

Proof. For n ∈ N∗ , we multiply (2.1) by pψn(t, ξ)p−1 and integrate over R
d . An integration by parts

then leads to

d

dt

∥∥ψn(t)
∥∥p

L p = (
dBn(t) − pAn(t)

)∥∥ψn(t)
∥∥p

L p

+ (1 − α)p

∫
Rd

Qn+(ψn,ψn)(t, ξ)ψn(t, ξ)p−1 dξ

− p

∫
Rd

Qn−(ψn,ψn)(t, ξ)ψn(t, ξ)p−1 dξ. (2.14)

First, since p > 1, we have, for n � N0,

dBn(t) − pAn(t) = α

2

∫
Rd

(
d(p − 1) + 2p

‖ψn
0 ‖L1

− d(p − 1)|ξ |2∫
Rd ψn

0 (ξ∗)|ξ∗|2 dξ∗

)
Qn−(ψn,ψn)(t, ξ)dξ

� α
(
d(p − 1) + 2p

)∫
Rd

Qn−(ψn,ψn)(t, ξ)dξ. (2.15)

But, since γ ∈ (0,1],

Φn
(|ξ − ξ∗|

)
� |ξ − ξ∗|γ � |ξ |γ + |ξ∗|γ . (2.16)

Consequently,

∫
Rd

Qn−(ψn,ψn)(t, ξ)dξ � 2‖bn‖L1(Sd−1)

∫
Rd

|ξ |γ ψn(t, ξ)dξ � 2‖b‖L1(Sd−1)(1 + d). (2.17)

Thereby, we obtain a bound for the first term in the right-hand side of (2.14). We now need to
estimate the two remaining integrals. We first notice that, due to the symmetry, we can reduce the
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domain of integration with respect to σ to those σ that satisfy 〈ξ − ξ∗, σ 〉� 0, which corresponds to
θ ∈ [0,π/2]. This amounts to taking bn(x) = 1{0�x�1−1/n}b(x) in the collision operator Q where

b(x) = b(x) + b(−x).

Then, for some fixed θ0 ∈ [arccos(1 − 1/n),π/2], we split bn as bn = bn,c + bn,r where

bn,c(x) = 1{0�x�cos θ0}b(x) and bn,r(x) = 1{cos θ0�x�1−1/n}b(x).

It is important to point out that bn,c and consequently the norm ‖bn,c‖L1(Sd−1) do not depend on n
but only on θ0. This splitting leads to the corresponding decomposition of the collision operators:

Qn+ = Qn,c
+ +Qn,r

+ and Qn− = Qn,c
− +Qn,r

− . (2.18)

We first consider Qn,r
+ and Qn,r

− . We have

∫
Rd

Qn,r
− (ψn,ψn)(t, ξ)ψn(t, ξ)p−1 dξ � 0. (2.19)

Then, for the integral involving Qn,r
+ , the change of variables (ξ, ξ∗) → (ξ ′, ξ ′∗) yields

∫
Rd

Qn,r
+ (ψn,ψn)(t, ξ)ψn(t, ξ)p−1 dξ

=
∫
Rd

∫
Rd

∫
Sd−1

ψn(t, ξ)ψn(t, ξ∗)ψn
(
t, ξ ′)p−1

bn,r(cos θ)Φn
(|ξ − ξ∗|

)
dσ dξ dξ∗.

Now, we have

ψn(t, ξ)ψn
(
t, ξ ′)p−1 � 1

p
ψn(t, ξ)p + p − 1

p
ψn

(
t, ξ ′)p

,

and (see [1, Section 3, Proof of Lemma 1] or [11, Eq. (2.7)])

∫
Rd

∫
Sd−1

ψn
(
t, ξ ′)p

1{cos θ0�cos θ�1−1/n}b(cos θ)Φn
(|ξ − ξ∗|

)
dσ dξ

= ∣∣Sd−2
∣∣ ∫
Rd

θ0∫
arccos(1−1/n)

ψn(t, ξ)pΦn

( |ξ − ξ∗|
cos(θ/2)

)
sind−2(θ)

cosd(θ/2)
b(cos θ)dθ dξ.

Then, thanks to the inequalities

Φn
(|ξ − ξ∗|

)
� Φn

(|ξ |) + |ξ∗|γ and Φn

( |ξ − ξ∗|
λ

)
� λ−γ Φn

(|ξ − ξ∗|
) ∀0 < λ < 1, (2.20)

we get
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∫
Rd

Qn,r
+ (ψn,ψn)(t, ξ)ψn(t, ξ)p−1 dξ

�
∣∣Sd−2

∣∣ θ0∫
arccos(1−1/n)

b(cos θ)
(
1 + (

cos(θ/2)
)−d−γ )

sind−2(θ)dθ

×
( ∫

Rd

ψn(t, ξ)pΦn
(|ξ |) dξ + (1 + d)

∥∥ψn(t)
∥∥p

L p

)
. (2.21)

Let us now consider Qn,c
+ and Qn,c

− . We proceed as in the proof of [11, Proposition 2.4]. Since

Φn
(|ξ − ξ∗|

)
�Φn

(|ξ |) − |ξ∗|γ , (2.22)

we deduce that

∫
Rd

Qn,c
− (ψn,ψn)(t, ξ)ψn(t, ξ)p−1 dξ

� 1

2
‖bn,c‖1

∫
Rd

ψn(t, ξ)pΦn
(|ξ |) dξ − ‖bn,c‖1(1 + d)

∥∥ψn(t)
∥∥p

L p . (2.23)

On the other hand,

∫
Rd

Qn,c
+ (ψn,ψn)(t, ξ)ψn(t, ξ)p−1 dξ = J1 + J2, (2.24)

where

J1 =
∫
R2d

∫
Sd−1

ψn
(
t, ξ ′)ψn

(
t, ξ ′∗

)
1{|ξ ′|�r}ψn(t, ξ)p−1bn,c(cos θ)Φn

(|ξ − ξ∗|
)

dσ dξ dξ∗,

J2 =
∫
R2d

∫
Sd−1

ψn
(
t, ξ ′)ψn

(
t, ξ ′∗

)
1{|ξ ′|�r}ψn(t, ξ)p−1bn,c(cos θ)Φn

(|ξ − ξ∗|
)

dσ dξ dξ∗,

with r > 0. Performing the same calculations as in the proof of [11, Proposition 2.4] and using the
same notations, we prove easily (using again (2.20)) that the following hold for any μ1 > 0 and any
μ2 > 0:

J1 �
(
cos(π/4)

)−d−γ
(

1 − 1

p

)
μ−1

1 ‖bn,c‖L1(Sd−1)

( ∫
Rd

ψn(t, ξ)pΦn
(|ξ |) dξ + (1 + d)

∥∥ψn(t)
∥∥p

L p

)

+ 1

p
μ

p−1
1 ‖bn,c‖L1(Sd−1)

(
1 + rγ + d

)∥∥ψn(t)
∥∥p

L p (2.25)

and
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J2 �
(
sin(θ0/2)

)−d−γ
(

1 − 1

p

)
μ−1

2 ‖bn,c‖L1(Sd−1)

(
d

r2

∫
Rd

ψn(t, ξ)pΦn
(|ξ |)dξ + d

r2−γ

∥∥ψn(t)
∥∥p

L p

)

+ μ
p−1
2

p
‖bn,c‖L1(Sd−1)

(∫
Rd

ψn(t, ξ)pΦn
(|ξ |) dξ + (1 + d)

∥∥ψn(t)
∥∥p

L p

)
. (2.26)

It remains now to choose the parameters θ0, μ1, μ2 and r so that all the terms involving∫
Rd ψn(t, ξ)pΦn(|ξ |)dξ that appear in the gain term can be absorbed by the one appearing in the

estimate of the loss term. Precisely, we first choose θ0 small enough such that

∣∣Sd−2
∣∣ θ0∫

0

b(cos θ)
(
1 + (

cos(θ/2)
)−d−γ )

sind−2(θ)dθ � a‖bn,c‖L1(Sd−1)

for some a > 0 to be determined later (recall that ‖bn,c‖L1(Sd−1) only depends on θ0). Then, we choose
μ1 big enough and μ2 small enough such that

(p − 1)
(
cos(π/4)

)−d−γ
μ−1

1 � ap and μ
p−1
2 � ap.

Finally, we choose r big enough such that

(p − 1)
(
sin(θ0/2)

)−d−γ
μ−1

2
d

r2
� ap.

Let N1 ∈ N∗ be such that N1 � max{ 1
1−cos θ0

, N0}. Gathering (2.15), (2.17), (2.18), (2.19), (2.21), (2.23),
(2.24), (2.25) and (2.26) we conclude that, for n � N1,

d

dt

∥∥ψn(t)
∥∥p

L p �
8(1 − α)ap − p

2
‖bn,c‖L1(Sd−1)

∫
Rd

ψn(t, ξ)pΦn
(|ξ |)dξ + C

∥∥ψn(t)
∥∥p

L p

for some positive constant C that only depends on α, b(·), p, d, μ1, r and γ . Taking then a = 1
16(1−α)

we get

d

dt

∥∥ψn(t)
∥∥p

L p + p

4
‖bn,c‖L1(Sd−1)

∫
Rd

ψn(t, ξ)pΦn
(|ξ |)dξ � C

∥∥ψn(t)
∥∥p

L p .

Recalling again that ‖bn,c‖L1(Sd−1) does not depend on n, the Gronwall Lemma and the inequality
‖ψn

0 ‖Lp � ‖ψ0‖Lp then imply that (2.13) holds. �
We now deduce from these L p-estimates the following lemma, which implies that An and Bn are

uniformly bounded in L1
loc(0,∞).

Lemma 2.6. Let T > 0. There exists some constant C depending only on α, d, γ , p, T and ‖ψ0‖Lp such that,
for n � N1 ,

T∫
0

∫
Rd

ψn(t, ξ)|ξ |2Φn
(|ξ |) dξ dt � C . (2.27)
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Proof. Let n � N1. For s ∈ (0,2), we multiply (2.1) by |ξ |s and integrate over R
d . Integrations by parts

then lead to

dY n
s

dt
(t) = α

2
Y n

s (t)

∫
Rd

(
2 − s

‖ψn
0 ‖L1

+ s|ξ |2∫
Rd ψn

0 (ξ∗)|ξ∗|2 dξ∗

)
Qn−(ψn,ψn)(t, ξ)dξ

+ 1 − α

2

∫
Rd

∫
Rd

ψn(t, ξ)ψn(t, ξ∗)Φn
(|ξ − ξ∗|

)
K n

s (ξ, ξ∗)dξ dξ∗

− α

∫
Rd

Qn−(ψn,ψn)(t, ξ)|ξ |s dξ, (2.28)

where we set Y n
s (t) = ∫

Rd ψn(t, ξ)|ξ |s dξ and

K n
s (ξ, ξ∗) =

∫
Sd−1

1{| cos θ |�1−1/n}b(cos θ)
(∣∣ξ ′∣∣s + ∣∣ξ ′∗

∣∣s − |ξ |s − |ξ∗|s)dσ .

By [22, Lemma 2.2 (ii)], one can write K n
s (ξ, ξ∗) = Gn

s (ξ, ξ∗) − Hn
s (ξ, ξ∗) with

Hn
s (ξ, ξ∗) � 0 and

∣∣Gn
s (ξ, ξ∗)

∣∣ � c1|ξ |s/2|ξ∗|s/2,

for some constant c1 depending only on b(·), s and d. Integrating the previous inequality between 0
and T , we get

Y n
s (0) + αs

2
∫
Rd ψn

0 (ξ∗)|ξ∗|2 dξ∗

T∫
0

( ∫
Rd

|ξ |2Qn−(ψn,ψn)(τ , ξ)dξ

)
Y n

s (τ )dτ

� Y n
s (T ) + ‖bn‖L1(Sd−1)

T∫
0

∫
Rd

∫
Rd

Φn
(|ξ − ξ∗|

)|ξ |sψn(τ , ξ)ψn(τ , ξ∗)dξ dξ∗ dτ

+ c1

2

T∫
0

∫
Rd

∫
Rd

Φn
(|ξ − ξ∗|

)|ξ |s/2|ξ∗|s/2ψn(τ , ξ)ψn(τ , ξ∗)dξ dξ∗ dτ ,

since s < 2 and 0 < α < 1. We then deduce from (2.12), (2.16) and (2.22) that

αs

2d

T∫
0

( ∫
Rd

Φn
(|ξ |)|ξ |2ψn(τ , ξ)dξ

)
Y n

s (τ )dτ

� s

2

T∫
0

Y n
γ (τ )Y n

s (τ )dτ + Y n
s (T ) + ‖bn‖L1(Sd−1)

T∫
0

(
Y n

s+γ (τ ) + Y n
s (τ )Y n

γ (τ )
)

dτ

+ c1

T∫
Y n

s/2+γ (τ )Y n
s/2(τ )dτ .
0
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Taking s = 2 − γ and using that for any ν ∈ (0,2), Y n
ν(τ ) � Y n

0 (τ ) + Y n
2 (τ ) � 1 + d we get

T∫
0

( ∫
Rd

Φn
(|ξ |)|ξ |2ψn(τ , ξ)dξ

)
Y n

2−γ (τ )dτ � C,

for some constant C depending only on b(·), α, d, γ and T . Now, for R > 0 and p > 1,

Y n
2−γ (τ ) � R2−γ

(
1

2
−

∫
|ξ |�R

ψn(τ , ξ)dξ

)
,

and, by the Hölder inequality,

∫
|ξ |�R

ψn(τ , ξ)dξ �
( |Sd−1|Rd

d

)p/(p−1)∥∥ψn(τ )
∥∥

L p �
( |Sd−1|Rd

d

)p/(p−1)

eC T ‖ψ0‖L p .

Thus, (2.27) follows for R small enough. �
We are now in a position to prove that moments of ψn remain bounded uniformly in n � N1.

Lemma 2.7. Let T > 0 and s > 2. Assume that ‖ψ0‖L1
s
< ∞. Then, there exists some constant C depending

only on b(·), α, d, γ , p, s, T , ‖ψ0‖Lp and ‖ψ0‖L1
s

such that, for n � N1 ,

sup
t∈[0,T ]

∫
Rd

ψn(t, ξ)|ξ |s dξ � C and

T∫
0

∫
Rd

ψn(t, ξ)Φn
(|ξ |)|ξ |s dξ dt � C . (2.29)

Proof. Let s > 2 and n � N1. Our proof follows the same lines as the proof of [22, Lemma 4.2]. We
use here the same notations as in the proof of Lemma 2.6. As previously, (2.28) holds. Now, by [17,
Lemma 11], we have

K n
s (ξ, ξ∗)� c1

(|ξ |s−γ |ξ∗| + |ξ ||ξ∗|s−γ
) − c2(n)|ξ |s,

for some constant c1 depending only on s and d and

c2(n) = 2−s s − 2

2

∣∣Sd−2
∣∣ π∫

0

1{| cos θ |�1−1/n}
(
min{cos θ,1 − cos θ})s

b(cos θ)dθ.

Thus, by (2.12), (2.16), (2.20), (2.22) and the above estimate, (2.28) yields

d

dt
Y n

s (t) � 2s

d
‖bn‖L1(Sd−1)Y n

s (t)

( ∫
Rd

|ξ |2Φn
(|ξ |)ψn(t, ξ)dξ

)
+ s

2
‖bn‖L1(Sd−1)Y n

s (t)Y n
γ (t)

+ c1

∫
d

∫
d

ψn(t, ξ)ψn(t, ξ∗)
(|ξ |γ + |ξ∗|γ

)|ξ |s−γ |ξ∗|dξ dξ∗

R R
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− (1 − α)c2(n)

2

∫
Rd

∫
Rd

ψn(t, ξ)ψn(t, ξ∗)
(
Φn

(|ξ |) − |ξ∗|γ
)|ξ |s dξ dξ∗.

Consequently,

d

dt
Y n

s (t) + (1 − α)c2(n)

2

∫
Rd

ψn(t, ξ)Φn
(|ξ |)|ξ |s dξ

� 2s

d
‖bn‖L1(Sd−1)Y n

s (t)

(∫
Rd

|ξ |2Φn
(|ξ |)ψn(t, ξ)dξ

)
+ s‖bn‖L1(Sd−1) + c2(n)

2
Y n

s (t)Y n
γ (t)

+ c1
(
Y n

s (t)Y n
1 (t) + Y n

s−γ (t)Y n
1+γ (t)

)
,

but, for each n � 2,

0 < c2(2) � c2(n) � c∞
2 := 2−s s − 2

2

∣∣Sd−2
∣∣ π∫

0

(
min{cos θ,1 − cos θ})s

b(cos θ)dθ.

Hence, since Y n
s−γ (t) � Y n

s (t) + 1, setting

hn(t) = 2s

d
‖bn‖L1(Sd−1)

∫
Rd

|ξ |2Φn
(|ξ |)ψn(t, ξ)dξ + (s‖bn‖L1(Sd−1) + c∞

2 + 4c1)(1 + d)

2

we obtain

d

dt
Y n

s (t) + (1 − α)c2(2)

2

∫
Rd

ψn(t, ξ)Φn
(|ξ |)|ξ |s dξ � hn(t)Y n

s (t) + c1(d + 1).

Then, (2.29) follows easily from the Gronwall Lemma, (2.11) and Lemma 2.6. �
Let us now prove that the sequence of solutions (ψn)n is a Cauchy sequence in some suitable

space. Precisely, we state the following:

Proposition 2.8. For any T > 0, the sequence (ψn)n is a Cauchy sequence in C([0, T ]; L1
2(R

d)).

Proof. Let T > 0 be fixed and m � n � N1. For simplicity, we set

ϕ(t, ξ) = ψm(t, ξ) − ψn(t, ξ) and h(t, ξ) = sign
(
ϕ(t, ξ)

)〈ξ〉2,

for any (t, ξ) ∈ (0, T ) ×R
d . Then, it is easy to check that ϕ(t, ξ) satisfies

∂tϕ(t, ξ) + Am(t)ϕ(t, ξ) + Bm(t)ξ · ∇ϕ(t, ξ)

= (1 − α)
[
Qm(ψm,ψm)(t, ξ) −Qn(ψn,ψn)(t, ξ)

] − α
[
Qm−(ψm,ψm)(t, ξ) −Qn−(ψn,ψn)(t, ξ)

]
+ [

An(t) − Am(t)
]
ψn(t, ξ) + [

Bn(t) − Bm(t)
]
ξ · ∇ψn(t, ξ).
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Multiplying this identity by h(t, ξ) and integrating over R
d , we get

d

dt

∥∥ϕ(t)
∥∥

L1
2
+ Am(t)

∥∥ϕ(t)
∥∥

L1
2
+ Bm(t)

∫
Rd

(
ξ · ∇ϕ(t, ξ)

)
h(t, ξ)dξ = Im,n(t)

where Im,n(t) = I1
m,n(t) + I2

m,n(t) + I3
m,n(t) with

I1
m,n(t) = [

An(t) − Am(t)
] ∫
Rd

ψn(t, ξ)h(t, ξ)dξ + [
Bn(t) − Bm(t)

]∫
Rd

(
ξ · ∇ψn(t, ξ)

)
h(t, ξ)dξ,

I2
m,n(t) = −α

∫
Rd

[
Qm−(ψm,ψm)(t, ξ) −Qn−(ψn,ψn)(t, ξ)

]
h(t, ξ)dξ,

and

I3
m,n(t) = (1 − α)

∫
Rd

[
Qm(ψm,ψm)(t, ξ) −Qn(ψn,ψn)(t, ξ)

]
h(t, ξ)dξ.

Define

M1
k (t) =

∫
Rd

Qk−(ψk,ψk)(t, ξ)dξ, M2
k (t) =

∫
Rd

|ξ |2Qk−(ψk,ψk)(t, ξ)dξ, k ∈N.

Using the fact that

∫
Rd

(
ξ · ∇ϕ(t, ξ)

)
h(t, ξ)dξ = −d

∫
Rd

∣∣ϕ(t, ξ)
∣∣ dξ − (d + 2)

∫
Rd

∣∣ϕ(t, ξ)
∣∣|ξ |2 dξ

and, since

Am(t) − dBm(t) = − α

‖ψm
0 ‖L1

M1
m(t),

Am(t) − (d + 2)Bm(t) = − α∫
Rd ψm

0 (ξ)|ξ |2 dξ
M2

m(t),

we get

d

dt

∥∥ϕ(t)
∥∥

L1
2
− α

‖ψm
0 ‖L1

M1
m(t)

∥∥ϕ(t)
∥∥

L1

− α∫
Rd ψm

0 (ξ)|ξ |2 dξ
M2

m(t)

∫
Rd

∣∣ϕ(t, ξ)
∣∣|ξ |2 dξ = Im,n(t). (2.30)
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We estimate all the terms of Im,n(t) separately. We follow the method of proof of [22, Theorem 4.1].
We begin with I2

m,n(t). Setting Qn−(g, g) = gLn(g) with

Ln(g)(ξ) = ‖bn‖L1(Sd−1)

∫
Rd

Φn
(|ξ − ξ∗|

)
g(ξ∗)dξ∗,

we get

Qn−(ψn,ψn) −Qm−(ψm,ψm) = −ϕLn(ψn) − ψm Ln(ϕ) + ψm
(
Ln(ψm) − Lm(ψm)

)
.

Therefore,

I2
m,n(t)� −α

∫
Rd

∣∣ϕ(t, ξ)
∣∣Ln(ψn)(t, ξ)〈ξ〉2 dξ + α

∫
Rd

〈ξ〉2ψm(t, ξ)Ln
(|ϕ|)(t, ξ)dξ

+ α

∫
Rd

〈ξ〉2ψm(t, ξ)
∣∣Lm(ψm)(t, ξ) − Ln(ψm)(t, ξ)

∣∣ dξ. (2.31)

One keeps the first right-hand side term as it is and denotes respectively by I2,1
m,n(t) and I2,2

m,n(t) the
second and the third ones. One has

I2,1
m,n(t) = α‖bn‖L1(Sd−1)

∫
Rd

∫
Rd

〈ξ〉2ψm(t, ξ)
∣∣ϕ(t, ξ∗)

∣∣Φn
(|ξ − ξ∗|

)
dξ∗ dξ.

Since ‖bn‖L1(Sd−1) � ‖b‖L1(Sd−1) and since

Φn
(|ξ − ξ∗|

)
� Φn

(|ξ |) + 〈ξ∗〉γ ,

one gets the estimate

I2,1
m,n(t)� α‖b‖L1(Sd−1)

(∥∥ϕ(t)
∥∥

L1

∫
Rd

Φn
(|ξ |)ψm(t, ξ)〈ξ〉2 dξ + ∥∥ψm(t)

∥∥
L1

2

∥∥ϕ(t)
∥∥

L1
γ

)
.

Therefore, there exists C > 0 (independent of n and m) such that

I2,1
m,n(t) � C

(
1 +

∫
Rd

Φm
(|ξ |)ψm(t, ξ)〈ξ〉2 dξ

)∥∥ϕ(t)
∥∥

L1
2

∀t ∈ [0, T ], ∀m � n � 1. (2.32)

We estimate now I2,2
m,n(t). To do so, we follow exactly the proof of [22, Theorem 4.1]. Notice first that

∣∣Lm(ψm)(t, ξ) − Ln(ψm)(t, ξ)
∣∣ � ‖bm − bn‖L1(Sd−1)

∫
Rd

Φm
(|ξ − ξ∗|

)
ψm(t, ξ∗)dξ∗

+ ‖bn‖L1(Sd−1)

∫
d

(
Φm

(|ξ − ξ∗|
) − Φn

(|ξ − ξ∗|
))

ψm(t, ξ∗)dξ∗.

R
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Since ‖bn‖L1(Sd−1) � ‖b‖L1(Sd−1) , one argues as above and gets that

I2,2
m,n(t)� ‖bm − bn‖L1(Sd−1)

(∥∥ψm(t)
∥∥

L1

∫
Rd

Φm
(|ξ |)ψm(t, ξ)〈ξ〉2 dξ + ∥∥ψm(t)

∥∥
L1

2

∥∥ψm(t)
∥∥

L1
γ

)

+ α‖b‖L1(Sd−1)

∫
Rd

∫
Rd

(
Φm

(|ξ − ξ∗|
) − Φn

(|ξ − ξ∗|
))

ψm(t, ξ)ψm(t, ξ∗)〈ξ〉2 dξ dξ∗.

Now, since Φm(r) − Φn(r) = 0 if r � n, one gets that

I2,2
m,n(t) � ‖bm − bn‖L1(Sd−1)

(∫
Rd

Φm
(|ξ |)ψm(t, ξ)〈ξ〉2 dξ + ∥∥ψm(t)

∥∥
L1

2

∥∥ψm(t)
∥∥

L1
γ

)

+ α‖b‖L1(Sd−1)

∫
|ξ−ξ∗|�n

(
Φm

(|ξ − ξ∗|
) − Φn

(|ξ − ξ∗|
))

ψm(t, ξ)ψm(t, ξ∗)〈ξ〉2 dξ dξ∗,

and one estimates this last term exactly as in [22, Proof of Theorem 4.1, p. 489]. Precisely, since
{|ξ − ξ∗| � n} ⊂ {|ξ | � n/2} ∪ {|ξ∗| � n/2} and since

(
Φm

(|ξ − ξ∗|
) − Φn

(|ξ − ξ∗|
))

� Φm
(|ξ − ξ∗|

)
� Φm

(|ξ |) + |ξ∗|γ ,

we get

∫
|ξ−ξ∗|�n

(
Φm

(|ξ − ξ∗|
) − Φn

(|ξ − ξ∗|
))

ψm(t, ξ)ψm(t, ξ∗)〈ξ〉2 dξ dξ∗

�
∫

{|ξ |�n/2}∪{|ξ∗|�n/2}
Φm

(|ξ |)ψm(t, ξ)ψm(t, ξ∗)〈ξ〉2 dξ dξ∗

+
∫

{|ξ |�n/2}∪{|ξ∗|�n/2}
ψm(t, ξ)ψm(t, ξ∗)〈ξ〉2|ξ∗|γ dξ dξ∗

�
(

2

n

)δ(∫
Rd

Φm
(|ξ |)ψm(t, ξ)〈ξ〉2+δ dξ +

∫
Rd

ψm(t, ξ∗)〈ξ∗〉δ dξ∗
∫
Rd

Φm
(|ξ |)ψm(t, ξ)〈ξ〉2 dξ

)

+
(

2

n

)δ∥∥ψm(t)
∥∥

L1
2

(∫
Rd

ψm(t, ξ)〈ξ〉2+δ dξ +
∫
Rd

ψm(t, ξ∗)〈ξ∗〉γ +δ dξ∗
)

.

We set

Hm(t) = 1 +
∫
Rd

Φm
(|ξ |)ψm(t, ξ)〈ξ〉2+δ dξ, t ∈ [0, T ].

Recall that, according to Lemma 2.7, Hm is uniformly bounded in L1(0, T ). Now, one sees that there
is a positive constant CT > 0 such that
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I2,2
m,n(t) � CT Hm(t)

(
‖bm − bn‖L1(Sd−1) + 1

nδ

)
∀t ∈ [0, T ], ∀m � n � N1. (2.33)

Gathering (2.31), (2.32) and (2.33), we finally get that

I2
m,n(t)� CT Hm(t)

(∥∥ϕ(t)
∥∥

L1
2
+ ‖bm − bn‖L1(Sd−1) + 1

nδ

)
− α

∫
Rd

∣∣ϕ(t, ξ)
∣∣Ln(ψn)(t, ξ)〈ξ〉2 dξ.

(2.34)

Let us consider now I1
m,n(t). As above, one uses the fact that

∫
Rd

(
ξ · ∇ψn(t, ξ)

)
h(t, ξ)dξ = −d

∫
Rd

sign
(
ϕ(t, ξ)

)
ψn(t, ξ)dξ

− (d + 2)

∫
Rd

sign
(
ϕ(t, ξ)

)
ψn(t, ξ)|ξ |2 dξ.

Therefore,

I1
m,n(t) = − α

‖ψn
0 ‖L1

[
M1

n(t) − M1
m(t)

] ∫
Rd

sign
(
ϕ(t, ξ)

)
ψn(t, ξ)dξ

− αM1
m(t)

[
1

‖ψn
0 ‖L1

− 1

‖ψm
0 ‖L1

]∫
Rd

sign
(
ϕ(t, ξ)

)
ψn(t, ξ)dξ

− α∫
Rd ψn

0 (ξ)|ξ |2 dξ

[
M2

n(t) − M2
m(t)

] ∫
Rd

sign
(
ϕ(t, ξ)

)
ψn(t, ξ)|ξ |2 dξ

− αM2
m(t)

[
1∫

Rd ψn
0 (ξ)|ξ |2 dξ

− 1∫
Rd ψm

0 (ξ)|ξ |2 dξ

] ∫
Rd

sign
(
ϕ(t, ξ)

)
ψn(t, ξ)|ξ |2 dξ.

First, we observe that, from the definitions of M1
m(t) and M2

m(t) together with (2.17) and (2.20),
we have∣∣∣∣M1

m(t)

∫
Rd

sign
(
ϕ(t, ξ)

)
ψn(t, ξ)dξ

∣∣∣∣ � 2‖bm‖L1(Sd−1)

∥∥ψn(t)
∥∥

L1

∥∥ψm(t)
∥∥2

L1
2
� 2‖b‖L1(Sd−1)(1 + d)2,

and ∣∣∣∣M2
m(t)

∫
Rd

sign
(
ϕ(t, ξ)

)
ψn(t, ξ)|ξ |2 dξ

∣∣∣∣ � ‖bm‖L1(Sd−1)(1 + d)3 Hm(t).

On the one hand, we have

∣∣∣∣
∫

d

sign
(
ϕ(t, ξ)

)
ψn(t, ξ)dξ

∣∣∣∣ � ∥∥ψn(t)
∥∥

L1 = ∥∥ψn
0

∥∥
L1 ,
R
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and, on the other hand, with the above notations, one gets that

[
M1

n(t) − M1
m(t)

] = −
∫
Rd

ϕ(t, ξ)Ln(ψn)(t, ξ)dξ −
∫
Rd

ψm(t, ξ)Ln(ϕ)(t, ξ)dξ

+
∫
Rd

ψm(t, ξ)
(
Ln(ψm)(t, ξ) − Lm(ψm)(t, ξ)

)
dξ.

We estimate the two latter terms as we did for I2,1
m,n(t) and I2,2

m,n(t) and we obtain the existence of a
constant CT > 0 (independent of m and n) for which the following upper bound holds:

− α

‖ψn
0 ‖L1

[
M1

n(t) − M1
m(t)

]∫
Rd

sign
(
ϕ(t, ξ)

)
ψn(t, ξ)dξ

� CT

(∥∥ϕ(t)
∥∥

L1
2
+ ‖bm − bn‖L1(Sd−1) + Hm(t)

nδ

)
+ α

∫
Rd

∣∣ϕ(t, ξ)
∣∣Ln(ψn)(t, ξ)dξ.

In the same way,

− α∫
Rd ψn

0 (ξ)|ξ |2 dξ

[
M2

n(t) − M2
m(t)

]∫
Rd

sign
(
ϕ(t, ξ)

)
ψn(t, ξ)|ξ |2 dξ

� α

∫
Rd

∣∣ϕ(t, ξ)
∣∣Ln(ψn)(t, ξ)|ξ |2 dξ + α

∫
Rd

ψm(t, ξ)Ln
(|ϕ|)(t, ξ)|ξ |2 dξ

+ α

∫
Rd

ψm(t, ξ)
∣∣Ln(ψm)(t, ξ) − Lm(ψm)(t, ξ)

∣∣|ξ |2 dξ.

Therefore, we obtain, arguing again as in the estimates of I2,1
m,n(t) and I2,2

m,n(t) that

− α∫
Rd ψn

0 (ξ)|ξ |2 dξ

[
M2

n(t) − M2
m(t)

] ∫
Rd

sign
(
ϕ(t, ξ)

)
ψn(t, ξ)|ξ |2 dξ

� CT Hm(t)

(∥∥ϕ(t)
∥∥

L1
2
+ ‖bm − bn‖L1(Sd−1) + 1

nδ

)
+ α

∫
Rd

∣∣ϕ(t, ξ)
∣∣Ln(ψn)(t, ξ)dξ

for some positive constant CT depending on T but not on n,m. Summing up all these terms, this
yields the existence of a positive constant CT > 0 (different from the previous ones but still indepen-
dent of m,n) such that, ∀m � n

I1
m,n(t)� CT Hm(t)

(∥∥ϕ(t)
∥∥

L1
2
+ ‖bm − bn‖L1(Sd−1) + 1

nδ
+

∣∣∣∣ 1

‖ψn
0 ‖L1

− 1

‖ψm
0 ‖L1

∣∣∣∣
+

∣∣∣∣ 1∫
Rd ψn

0 (ξ)|ξ |2 dξ
− 1∫

Rd ψm
0 (ξ)|ξ |2 dξ

∣∣∣∣
)

+ α

∫
d

∣∣ϕ(t, ξ)
∣∣Ln(ψn)(t, ξ)〈ξ〉2 dξ. (2.35)
R
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Gathering (2.34) and (2.35), we finally obtain the existence of some positive constant CT , independent
of m � n � 1 such that ∀m � n � N1, ∀t ∈ [0, T ],

I1
m,n(t) + I2

m,n(t) � CT Hm(t)

(∥∥ϕ(t)
∥∥

L1
2
+ ‖bm − bn‖L1(Sd−1) + 1

nδ
+

∣∣∣∣ 1

‖ψn
0 ‖L1

− 1

‖ψm
0 ‖L1

∣∣∣∣
+

∣∣∣∣ 1∫
Rd ψn

0 (ξ)|ξ |2 dξ
− 1∫

Rd ψm
0 (ξ)|ξ |2 dξ

∣∣∣∣
)

.

The term I3
m,n(t) is estimated exactly in the same way (reproducing exactly the arguments of [22,

Theorem 4.1] and the above ones). Therefore, turning back to (2.30), we finally obtain an estimate of
the type

d

dt

∥∥ϕ(t)
∥∥

L1
2
� CT Hm(t)

(∥∥ϕ(t)
∥∥

L1
2
+ ‖bm − bn‖L1(Sd−1) + 1

nδ
+

∣∣∣∣ 1

‖ψn
0 ‖L1

− 1

‖ψm
0 ‖L1

∣∣∣∣
+

∣∣∣∣ 1∫
Rd ψn

0 (ξ)|ξ |2 dξ
− 1∫

Rd ψm
0 (ξ)|ξ |2 dξ

∣∣∣∣
)

for every t ∈ [0, T ] and m � n � N1. Again, since supm

∫ T
0 Hm(t)dt < ∞ according to Lemma 2.7, we

deduce from Gronwall’s Lemma that there is some positive constant C1(T ) such that

sup
t∈(0,T )

∥∥ψm(t) − ψn(t)
∥∥

L1
2
� C1(T )

(
‖bm − bn‖L1(Sd−1) + 1

nδ
+

∣∣∣∣ 1

‖ψn
0 ‖L1

− 1

‖ψm
0 ‖L1

∣∣∣∣
+

∣∣∣∣ 1∫
Rd ψn

0 (ξ)|ξ |2 dξ
− 1∫

Rd ψm
0 (ξ)|ξ |2 dξ

∣∣∣∣
)

for m � n � N1, which yields the result. �
2.3. Well-posedness for the rescaled equation

We are now in position to prove that the rescaled equation (1.9) is well-posed. Before this, we
notice that the same arguments of those used in the previous Proposition apply to the rescaled (non-
truncated) Boltzmann equation. Precisely, one has the following stability result:

Proposition 2.9. Let T > 0 and let ψ,ϕ ∈ C([0, T ]; L1
2)∩ L∞(0, T ; L1

2+δ)∩ L1(0, T ; L1
2+γ +δ) be two solutions

to (1.9) with initial data ψ0,ϕ0 satisfying (1.11). Then, there exists CT > 0 such that

∥∥ψ(t) − ϕ(t)
∥∥

L1
2
� ‖ψ0 − ϕ0‖L1

2
exp(CT ) ∀t ∈ [0, T ].

Proof. The proof follows exactly from the same argument of the previous Proposition 2.8. Precisely,
since ϕ,ψ ∈ L1(0, T ; L1

2+γ +δ), one has

T∫
0

max
(∣∣Aψ(t)

∣∣, ∣∣Aϕ(t)
∣∣, ∣∣Bψ(t)

∣∣, ∣∣Bϕ(t)
∣∣)dt � CT < ∞.

Then, setting F (t, ξ) = ψ(t, ξ) − ϕ(t, ξ), multiplying by H(t, ξ) = sign(F (t, ξ))〈ξ〉2 the equation satis-
fied by F and integrating over R

d , we get
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d

dt

∥∥F (t)
∥∥

L1
2
� λ(t)

∥∥F (t)
∥∥

L1
2
+ I1

ψ,ϕ(t) + I2
ψ,ϕ(t) + I3

ψ,ϕ(t)

where λ ∈ L1(0, T ),

I1
ψ,ϕ(t) = (

Aϕ(t) − Aψ(t)
)∫
Rd

ϕ(t, ξ)H(t, ξ)dξ

+ (
Bϕ(t) − Bψ(t)

)∫
Rd

(
ξ · ∇ϕ(t, ξ)

)
H(t, ξ)dξ,

while

I2
ψ,ϕ(t) = −α

∫
Rd

(
Q−(ψ,ψ) −Q−(ϕ,ϕ)

)
H(t, ξ)dξ

and

I3
ψ,ϕ(t) = (1 − α)

∫
Rd

(
Q(ψ,ψ) −Q(ϕ,ϕ)

)
H(t, ξ)dξ.

One obtains, as in Proposition 2.8 that

I1
ψ,ϕ(t) = α

[
M1

ψ(t) − M1
ϕ(t)

]∫
Rd

ϕ sign(F )dξ + 2α

d

[
M2

ψ(t) − M2
ϕ(t)

] ∫
Rd

ϕ sign(F )|ξ |2 dξ

where

M1
ψ(t) − M1

ϕ(t) =
∫
Rd

(
Q−(ψ,ψ)(t, ξ) −Q−(ϕ,ϕ)(t, ξ)

)
dξ

=
∫
Rd

(
F (t, ξ)L(ψ)(t, ξ) + ϕ(t, ξ)L(F )(t, ξ)

)
dξ,

and

M2
ψ(t) − M2

ϕ(t) =
∫
Rd

(
Q−(ψ,ψ)(t, ξ) −Q−(ϕ,ϕ)(t, ξ)

)|ξ |2 dξ

=
∫
Rd

(
F (t, ξ)L(ψ)(t, ξ) + ϕL(F )(t, ξ)

)|ξ |2 dξ.

Using the fact that

∫
d

ψ(t, ξ)|ξ |2 dξ =
∫

d

ϕ(t, ξ)|ξ |2 dξ = d

2

R R
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one deduces as in the proof of Proposition 2.8 that there exists some positive constant cγ > 0 such
that

I1
ψ,ϕ(t) � α

∫
Rd

∣∣F (t, ξ)
∣∣L(ψ)(t, ξ)〈ξ〉2 dξ + cγ max

(∥∥ψ(t)
∥∥

L1
2+γ

,
∥∥ϕ(t)

∥∥
L1

2+γ

)∥∥F (t)
∥∥

L1
2
.

In the same way,

I2
ψ,ϕ(t) �−α

∫
Rd

∣∣F (t, ξ)
∣∣L(ψ)(t, ξ)〈ξ〉2 dξ + cγ

∥∥ϕ(t)
∥∥

L1
2+γ

∥∥F (t)
∥∥

L1
2
.

Finally, using that

I3
ψ,ϕ(t)� cγ max

(∥∥ψ(t)
∥∥

L1
2+γ

,
∥∥ϕ(t)

∥∥
L1

2+γ

)∥∥F (t)
∥∥

L1
2

we get that there exists some function Λ ∈ L1(0, T ) such that

d

dt

∥∥F (t)
∥∥

L1
2
� Λ(t)

∥∥F (t)
∥∥

L1
2

∀t ∈ [0, T ]

which gives the result. �
The existence of a solution to (1.9) comes now from Proposition 2.8. Indeed, let us denote ψ =

ψ(t, ξ) ∈ C([0, T ]; L1
2(R

d)) the limit of the Cauchy sequence (ψn)n∈N . First, one notices that, according
to Lemma 2.7 and Fatou’s Lemma,

sup
t∈[0,T ]

∫
Rd

ψ(t, ξ)|ξ |2+δ dξ � C and

T∫
0

dt

∫
Rd

ψ(t, ξ)|ξ |2+γ +δ dξ � C,

which proves that

ψ ∈ L∞(
0, T ; L1

2+δ

(
R

d)) ∩ L1(0, T ; L1
2+γ +δ

(
R

d)).
The above estimates, together with Lemma 2.7, the convergences of (ψn

0 )n∈N and (ψn)n∈N enable us to
pass to the limit in (2.1). We finally get that ψ is indeed a solution to the annihilation equation (1.9)
in the sense of Definition 1.2 and, by Proposition 2.9, such a solution is unique.

3. Moment estimates

We now prove uniform in time estimates of higher-order moments of the solution to (1.9) yielding
to a proof of Theorem 1.4. We fix a nonnegative initial distribution ψ0 satisfying (1.11) and such that

ψ0 ∈ L1
2+γ

(
R

d) ∩ Lp(
R

d)
for some p > 1. Let then ψ ∈ C([0,∞); L1

2(R
d)) ∩ L1

loc((0,∞); L1
2+γ (Rd)) be the nonnegative solu-

tion to (1.9)–(1.10) constructed by Theorem 1.3. We define, for any k � 0, the following moment of
order 2k:
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Mk(t) =
∫
Rd

ψ(t, ξ)|ξ |2k dξ, k � 0.

Using (1.9), one easily gets that Mk(t) satisfies the following identity

d

dt
Mk(t) = −(

Aψ(t) − (d + 2k)Bψ(t)
)
Mk(t) +

∫
Rd

B(ψ,ψ)(t, ξ)|ξ |2k dξ, t > 0.

Let us define

aψ(t) =
∫
Rd

Q−(ψ,ψ)(t, ξ)dξ and bψ(t) =
∫
Rd

Q−(ψ,ψ)(t, ξ)|ξ |2 dξ

so that

Aψ(t) = −α

2
(d + 2)aψ(t) + αbψ(t) and Bψ(t) = −α

2
aψ(t) + α

d
bψ(t).

Then, Mk(t) satisfies

d

dt
Mk(t) + α(k − 1)aψ(t)Mk(t) = 2αk

d
bψ(t)Mk(t) +

∫
Rd

B(ψ,ψ)(t, ξ)|ξ |2k dξ. (3.1)

In order to estimate in a precise way the last integral involving B(ψ,ψ), we shall resort to Povzner’s
estimates as derived in [8].

3.1. Povzner-type inequalities

For any convex function Φ : R→ R, one has

∫
Rd

B(ψ,ψ)(t, ξ)Φ
(|ξ |2)dξ =

∫
R2d

ψ(t, ξ)ψ(t, ξ∗)|ξ − ξ∗|γWΦ(ξ, ξ∗)dξ dξ∗ (3.2)

where

WΦ(ξ, ξ∗) = 1

2

∫
Sd−1

[
(1 − α)Φ

(∣∣ξ ′∣∣2) + (1 − α)Φ
(∣∣ξ ′∗

∣∣2) − Φ
(|ξ |2) − Φ

(|ξ∗|2
)]

b(cos θ)dσ . (3.3)

Clearly

WΦ(ξ, ξ∗) = (1 − α)GΦ(ξ, ξ∗) − 1

2

(
Φ

(|ξ |2) + Φ
(|ξ∗|2

))
with

GΦ(ξ, ξ∗) = 1

2

∫
d−1

[
Φ

(∣∣ξ ′∣∣2) + Φ
(∣∣ξ ′∗

∣∣2)]
b(cos θ)dσ
S
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where we recall that we assumed ‖b‖L1(Sd−1) = 1. The following lemma allows to estimate GΦ(ξ, ξ∗)
for any convex function Φ .

Lemma 3.1. Let Φ : R→R be convex. Then,

GΦ(ξ, ξ∗)�
1

2

∫
Sd−1

[
Φ

(
E

1 + Û · σ
2

)
+ Φ

(
E

1 − Û · σ
2

)]
b(û · σ)dσ (3.4)

where E = |ξ |2 + |ξ∗|2 .

Proof. We give a very short proof of the lemma, referring to [8] for the general strategy. For any fixed
ξ, ξ∗ , set

U = ξ + ξ∗
2

, u = ξ − ξ∗, E = |ξ |2 + |ξ∗|2, Û = U/|U |, û = u/|u|.

Then, cos θ = û · σ and

∣∣ξ ′∣∣2 = E
1 + λÛ · σ

2
while

∣∣ξ ′∗
∣∣2 = E

1 − λÛ · σ
2

where λ = 2 |u||U |
E � 1. Since Φ is convex, one can prove as in [8] that, for any fixed x, y > 0, the

mapping t �→ Φ(x + ty) + Φ(x − ty) is nondecreasing and, because λ� 1, we have

Φ
(∣∣ξ ′∣∣2) + Φ

(∣∣ξ ′∗
∣∣2) = Φ

(
E

1 + λÛ · σ
2

)
+ Φ

(
E

1 − λÛ · σ
2

)

� Φ

(
E

1 + Û · σ
2

)
+ Φ

(
E

1 − Û · σ
2

)
.

Since b(·) is nonnegative, this gives (3.4) after integration. �
With the special choice Φ(x) = xk , k � 1, one has the following estimate

Lemma 3.2. For any k � 1, one has∫
Rd

B(ψ,ψ)(t, ξ)|ξ |2k dξ � −(
1 − βk(α)

)
Mk+ γ

2
(t) + Sk(t)

with

Sk(t) = βk(α)

[ k+1
2 ]∑

j=1

(
k
j

)(
M j+ γ

2
(t)Mk− j(t) + M j(t)Mk− j+ γ

2
(t)

) + (
1 − βk(α)

)
Mk(t)M γ

2
(t)

where [ k+1
2 ] denote the integer part of k+1

2 , βk(α) = (1 − α)k and

k =
∫

Sd−1

[(
1 + Û · σ

2

)k

+
(

1 − Û · σ
2

)k]
b(cos θ)dσ . (3.5)
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Proof. One applies the above estimate (3.4) with the convex function Φ(x) = xk to get

GΦ(ξ, ξ∗)�
1

2
k Ek

where E = |ξ |2 + |ξ∗|2. One gets therefore

WΦ(ξ, ξ∗)� −1

2

(
1 − βk(α)

)(|ξ |2k + |ξ∗|2k) + 1

2
βk(α)

[(|ξ |2 + |ξ∗|2
)k − |ξ |2k − |ξ∗|2k]

where (1 − βk(α)) > 0. Consequently,

∫
Rd

B(ψ,ψ)(t, ξ)|ξ |2k dξ

� −(
1 − βk(α)

) ∫
Rd

ψ(t, ξ)|ξ |2k dξ

∫
Rd

ψ(t, ξ∗)|ξ − ξ∗|γ dξ∗

+ βk(α)

2

∫
R2d

ψ(t, ξ)ψ(t, ξ∗)|ξ − ξ∗|γ
[(|ξ |2 + |ξ∗|2

)k − |ξ |2k − |ξ∗|2k] dξ dξ∗. (3.6)

One then applies [8, Lemma 2] with x = |ξ |2 and y = |ξ∗|2 and uses the estimate

|ξ − ξ∗|γ � |ξ |γ + |ξ∗|γ

to get

∫
Rd

B(ψ,ψ)(t, ξ)|ξ |2k dξ �−(
1 − βk(α)

) ∫
Rd

ψ(t, ξ)|ξ |2k dξ

∫
Rd

ψ(t, ξ∗)|ξ − ξ∗|γ dξ∗

+ βk(α)

[ k+1
2 ]∑

j=1

(
k
j

)(
M j+γ /2(t)Mk− j(t) + M j(t)Mk− j+γ /2(t)

)
.

To estimate the nonpositive term, one notices that

|ξ − ξ∗|γ � |ξ |γ − |ξ∗|γ

and gets

∫
Rd

ψ(t, ξ)|ξ |2k dξ

∫
Rd

ψ(t, ξ∗)|ξ − ξ∗|γ dξ∗ � Mk+ γ
2
(t) − Mk(t)M γ

2
(t).

This clearly yields the conclusion. �
Remark 3.3. It is easy to check that 1 = ‖b‖L1(Sd−1) = 1 and that the mapping k > 1 �→ k � 0 is
strictly decreasing.
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3.2. Uniform estimates

Thanks to the above lemma, we can derive uniform in time estimates of Mk(t) for k = 1 + γ
2 .

Precisely, one has the following:

Proposition 3.4. Let

α0 =
1 − 1+ γ

2

1 + γ
2 − 1+ γ

2

∈ (0,1]

where k is defined by (3.5) for any k � 1. Then, if 0 < α < α0 , there exists a constant M depending only on
α, γ , b(·) and d such that the unique solution ψ(t) to (1.9) satisfies

sup
t�0

M1+ γ
2
(t)� max

{
M1+ γ

2
(0), M

}
.

Proof. Let us fix k > 1. Since aψ(t) � 0, one gets from (3.1):

d

dt
Mk(t)�

2αk

d
bψ(t)Mk(t) +

∫
Rd

B(ψ,ψ)(t, ξ)|ξ |2k dξ.

Now, we recall that

bψ(t) =
∫

Rd×Rd

|ξ − ξ∗|γ ψ(t, ξ)ψ(t, ξ∗)|ξ |2 dξ dξ∗

so that, since |ξ − ξ∗|γ � |ξ |γ + |ξ∗|γ , one has

bψ(t)� M1+ γ
2
(t) + M γ

2
(t)M1(t) � M1+ γ

2
(t) + d

2

(
1 + d

2

)

where we recall that M1(t) = M1(0) = d
2 for any t � 0. We get therefore

d

dt
Mk(t)�

2αk

d
M1+ γ

2
(t)Mk(t) + αk

(
1 + d

2

)
Mk(t) +

∫
Rd

B(ψ,ψ)(t, ξ)|ξ |2k dξ.

Now, one estimates the last integral thanks to Lemma 3.2 and get

d

dt
Mk(t) + (

1 − βk(α)
)
Mk+ γ

2
(t)� Sk(t) + 2αk

d
M1+ γ

2
(t)Mk(t) + αk

(
1 + d

2

)
Mk(t). (3.7)

Using now Hölder’s inequality, one has, for k � 1 + γ
2 ,

Mk+ γ
2
(t)�

(
2

d

) γ
2k−2 (

Mk(t)
) 2k+γ −2

2k−2 and M1+ γ
2
(t) �

(
2

d

)−1+ γ
2k−2 (

Mk(t)
) γ

2k−2

where we used again that M1(t) = d
2 for any t � 0. With these estimates, (3.7) becomes



3062 V. Bagland, B. Lods / J. Differential Equations 254 (2013) 3023–3080
d

dt
Mk(t) + cα,k,d

(
2

d

) γ
2k−2 (

Mk(t)
)1+ γ

2k−2 � Sk(t) + αk

(
1 + d

2

)
Mk(t), (3.8)

with

cα,k,d = 1 − βk(α) − αk = 1 − k + α(k − k).

Notice that

cα,k,d > 0 ⇐⇒ 0 < α <
1 − k

k − k
. (3.9)

Taking now k = 1 + γ
2 in the above inequality (3.8) and using the explicit expression of S1+ γ

2
(t) we

find

d

dt
M1+ γ

2
(t) + cα,1+ γ

2 ,d

(
2

d

)
M1+ γ

2
(t)2

� β1+ γ
2
(α)

(
1 + γ

2
1

)(
M1+ γ

2
(t)M γ

2
(t) + M1(t)Mγ (t)

)

+ (
1 − β1+ γ

2
(α)

)
M1+ γ

2
(t)M γ

2
(t) + α

(
1 + γ

2

)(
1 + d

2

)
M1+ γ

2
(t).

Since γ � 1 and M1(t) = d
2 for any t � 0, it is clear that M γ

2
(t) and Mγ (t) are uniformly bounded by

1 + d
2 so that there are two positive constants C0, C1 > 0 depending only on α, γ , b(·) and d such

that

d

dt
M1+ γ

2
(t) + cα,1+ γ

2 ,d

(
2

d

)
M1+ γ

2
(t)2 � C0M1+ γ

2
(t) + C1 ∀t � 0.

Therefore, using (3.9) and some comparison principle, we get the conclusion. �
Remark 3.5. The parameter α0 depends only on γ ,d and the collision kernel b(·). In particular, in
dimension d = 3, for constant collision kernel b(·) = 1

4π (recall that ‖b‖L1(Sd−1) = 1) and with γ = 1,

one has  3
2

= 4
5 and α0 = 2

7 .

Notice that the above result allows actually to deal with higher-order moments:

Corollary 3.6. With the notations of the above theorem, if 0 < α < α0 then the unique solution ψ(t) to (1.9)
satisfies for any k � 1 + γ

2

Mk(0) < ∞ �⇒ sup
t�0

Mk(t) < ∞. (3.10)

Proof. The strategy follows classical arguments already used in [8], the crucial point being that, for
k � 1 + γ

2 , the first term in the expression of Sk(t):
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Sk(t) = βk(α)

[ k+1
2 ]∑

j=1

(
k
j

)(
M j+ γ

2
(t)Mk− j(t) + M j(t)Mk− j+ γ

2
(t)

)

+ (
1 − βk(α)

)
Mk(t)M γ

2
(t)

involves only moments of order less than max{k − 1 + γ
2 , [ k+1

2 ] + γ
2 } � max{k − 1

2 , [ k+1
2 ] + γ

2 } since
γ � 1.

First observe that mass is conserved and thus, using classical interpolation, it suffices to prove the
result for any k � 1 + γ

2 such that 2k ∈ N. We proceed by induction. Since γ ∈ (0,1], the first step
consists in checking that the result holds for k = 3/2. We shall come back to this point later on. Let
k > 3/2 such that 2k ∈ N. Let us assume that for any j satisfying 2 j ∈ N and 1 � j � k − 1/2, there
exists K j > 0 such that M j(t)� K j for any t � 0. Note that for such a k, then max{k − 1

2 , [ k+1
2 ]+ γ

2 } =
k − 1

2 . Consequently, the induction hypothesis together with the fact that M γ
2
(t) is uniformly bounded

imply that

Sk(t)� Ck + Ak Mk(t)

with Ak = (1 − βk(α))(1 + d
2 ) and

Ck = βk(α)

[ k+1
2 ]∑

j=1

(
k
j

)
(K j+ γ

2
Kk− j + K j Kk− j+ γ

2
).

Then, from (3.7):

d

dt
Mk(t) + (

1 − βk(α)
)
Mk+ γ

2
(t)� Ck +

(
Ak + αk

(
1 + d

2

))
Mk(t) + 2αk

d
M1+ γ

2
(t)Mk(t).

Now, from Theorem 3.4, as soon as α ∈ (0,α0), supt�0 M1+ γ
2
(t) < ∞ and the above identity becomes

d

dt
Mk(t) + (

1 − βk(α)
)
Mk+ γ

2
(t)� Ck + Bk Mk(t)

for some explicit constant Bk > 0. From Jensen’s inequality, one has

Mk+ γ
2
(t)�

(
Mk(t)

)1+ γ
2k

from which the above differential inequality yields the conclusion.
It only remains to check that (3.10) holds for k = 3/2. If γ = 1, it directly follows from Theo-

rem 3.4. Otherwise, we have max{k − 1
2 , [ k+1

2 ] + γ
2 } = max{1, [ 5

4 ] + γ
2 } = 1 + γ

2 and we deduce from
Theorem 3.4 and usual interpolations that

S3/2(t) � C3/2 + A3/2M3/2(t),

for some constants C3/2 > 0 and A3/2 > 0, which leads, following the same lines as above, to the
desired result. �
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3.3. Lower bounds

We shall now use Lemma 3.1 to derive suitable lower bounds for the moments of ψ(t, ξ):

Lemma 3.7. For any γ ∈ (0,1], there exists α� ∈ (0,1) such that, for any α ∈ (0,α�) the solution ψ(t, ξ)

to (1.9) satisfies ∫
Rd

ψ(t, ξ∗)|ξ∗|γ dξ∗ � Cα

∫
Rd

ψ0(ξ∗)|ξ∗|γ dξ∗, (3.11)

for some explicit constant Cα > 0 depending only on α,γ ,d and b(·). Moreover, one has the following propa-
gation of lower bounds

(i) Assume that γ = 1 and, given 0 < α < α� , let 0 < κ(α) �
√

β 1
2
(α)−1

β 1
2
(α)+1

d
2 . If M 1

2
(0) � κ(α) then

M 1
2
(t) � κ(α) for any t � 0.

(ii) Assume that γ ∈ (0,1) and let j0 ∈ N be such that k0 = j0γ
2 < 1 and k0 + γ

2 � 1. Given 0 < α < α� let
(κ j(α)) j=1,..., j0 be some positive constants such that

κ j0(α) �
(β j0γ

2
(α) − 1

β j0γ
2

(α) + 1

) j0
1+ j0

(
d

2

) j0γ
2

and κ j(α) �
(β jγ

2
(α) − 1

β jγ
2

(α) + 1
κ j+1(α)

) j
1+ j

,

for j = 1, . . . , j0 . If the initial datum ψ0 is such that M jγ
2

(0) � κ j(α) for any j = 1, . . . , j0 then

inft�0 M jγ
2

(t) � κ j(α) for any j = 1, . . . , j0 .

Proof. We first prove (3.11). We estimate the moment Mk(t) for k < 1 applying the above Lemma 3.1
to the convex function Φ(x) = −xk . We obtain easily that

−
∫
Rd

B(ψ,ψ)(t, ξ)|ξ |2k dξ � −βk(α)

2

∫
R2d

ψ(t, ξ)ψ(t, ξ∗)|ξ − ξ∗|γ
(|ξ |2 + |ξ∗|2

)k
dξ dξ∗

+ 1

2

∫
R2d

ψ(t, ξ)ψ(t, ξ∗)|ξ − ξ∗|γ
(|ξ |2k + |ξ∗|2k)dξ dξ∗

where, as in Lemma 3.2, βk(α) = (1 − α)k with k given by

k =
∫

Sd−1

[(
1 + Û · σ

2

)k

+
(

1 − Û · σ
2

)k]
b(cos θ)dσ ∀0 < k < 1.

Using the fact that k − 1 < 0, aψ(t) � 0 and bψ(t) � 0, we deduce from (3.1) that

d

dt
Mk(t) �

1

2

∫
R2d

ψ(t, ξ)ψ(t, ξ∗)Jk(ξ, ξ∗)dξ dξ∗

where

Jk(ξ, ξ∗) = βk(α)|ξ − ξ∗|γ
(|ξ |2 + |ξ∗|2

)k − |ξ − ξ∗|γ
(|ξ |2k + |ξ∗|2k).
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Since γ ∈ (0,1], one has ||ξ |γ − |ξ∗|γ | � |ξ − ξ∗|γ � |ξ |γ + |ξ∗|γ while

(|ξ |2 + |ξ∗|2
)k �

∣∣|ξ |2k − |ξ∗|2k
∣∣ ∀k ∈ (0,1).

As a consequence,

Jk(ξ, ξ∗) � βk(α)
(|ξ |γ − |ξ∗|γ

)(|ξ |2k − |ξ∗|2k) − (|ξ |γ + |ξ∗|γ
)(|ξ |2k + |ξ∗|2k)

= (
βk(α) − 1

)(|ξ |γ +2k + |ξ∗|γ +2k) − (
βk(α) + 1

)(|ξ |γ |ξ∗|2k + |ξ∗|γ |ξ |2k),
yielding the following inequality, for any 0 < k < 1:

d

dt
Mk(t) �

(
βk(α) − 1

)
Mk+ γ

2
(t) − (

βk(α) + 1
)
M γ

2
(t)Mk(t). (3.12)

We are now in position to resume the argument of [14, Lemma 2] to get (3.11). We recall here the
main steps in order to explicit the parameter α� (and, for γ = 1, the constant Cα ). Assume first that
γ = 1, using then (3.12) with k = 1

2 , we get

d

dt
M 1

2
(t) �

(
β 1

2
(α) − 1

)
M1(t) − (

β 1
2
(α) + 1

)
M 1

2
(t)2.

Since M1(t) = M1(0) = d/2 for any t � 0, we see that, if β 1
2
(α) − 1 > 0 then

M 1
2
(t)� min

(
M 1

2
(0),

√√√√β 1
2
(α) − 1

β 1
2
(α) + 1

M1(0)

)
∀t � 0. (3.13)

Since moreover M1(0) � M 1
2
(0)2 we obtain

M 1
2
(t)� Cα M 1

2
(0) ∀0 < α < α� :=

 1
2

− 1

 1
2

where Cα =
√

β 1
2
(α)−1

β 1
2
(α)+1 (notice that 0 < α < α� ⇐⇒ β 1

2
(α) > 1). In other words, for any 0 < α < α� ,

∫
Rd

|ξ |ψ(t, ξ)dξ � Cα

∫
Rd

|ξ |ψ0(ξ)dξ ∀t � 0.

For γ < 1, one argues by induction as in [14, Lemma 2] iterating the above argument with k = jγ
2 for

j = 1, . . . , j0 where j0 ∈ N is such that k0 = j0γ
2 < 1 and k0 + γ

2 � 1. Then, from (3.12) with k = k0,
we get

d

dt
Mk0(t) �

(
βk0(α) − 1

)
Mk0+ γ

2
(t) − (

βk0(α) + 1
)
M γ

2
(t)Mk0(t).

A simple use of Jensen’s inequality shows that
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d

dt
Mk0(t)�

(
βk0(α) − 1

)(d

2

)k0+ γ
2

− (
βk0(α) + 1

)
Mk0(t)

1+ γ
2k0

from which we deduce, as above, that

Mk0(t)�
(

βk0(α) − 1

βk0(α) + 1

) 1
1+ γ

2k0 Mk0(0) ∀t � 0

if βk0 (α) > 1. Now, one can repeat the argument exactly with k1 = k0 − γ
2 , k2 = k1 − γ

2 and so
on. Notice that, if βk0 (α) > 1, then βk(α) > 1 for any k � k0. In particular, we get (3.11) for any

0 < α <
k0 −1
k0

=: α� .

Let us now prove the second part of the lemma, regarding the propagation of lower bounds. The
proof in the case γ = 1 is a direct consequence of (3.13). For 0 < γ < 1, the proof uses arguments

similar to those used in the proof of (3.11). Precisely, since M γ
2
(t) � M jγ

2
(t)

1
j according to Jensen’s

inequality, one deduces from Eq. (3.12) that

d

dt
M jγ

2
(t)�

(
β jγ

2
(α) − 1

)
M ( j+1)γ

2
(t) − (

β jγ
2

(α) + 1
)
M jγ

2
(t)

1+ j
j , for any j = 1, . . . , j0.

According to Jensen’s inequality one also has

M ( j0+1)γ
2

(t)� M1(t)
( j0+1)γ

2 =
(

d

2

) ( j0+1)γ
2

∀t � 0

and, by a simple decreasing induction argument, one checks that if M jγ
2

(0) � κ j(α) holds for any

j = 1, . . . , j0, then inft�0 M jγ
2

(t) � κ j(α) will hold for any j = 1, . . . , j0. �
Remark 3.8. With the notations of Lemma 3.7, we define the set Cγ (α) (0 < α < α�) as follows:

(i) If γ = 1 then C1(α) is the set of nonnegative ψ(ξ) such that
∫
Rd ψ(ξ)|ξ |dξ � κ(α).

(ii) If γ ∈ (0,1) let j0 ∈ N be such that k0 = j0γ
2 < 1 and k0 + γ

2 � 1. Then, Cγ (α) is defined as the
set of nonnegative ψ(ξ) such that

∫
Rd ψ(ξ)|ξ | jγ dξ � κ j(α) for any j = 1, . . . , j0.

The second part of Lemma 3.7 can be reformulated as follows: given γ ∈ (0,1] and 0 < α < α� , if the
initial datum ψ0 ∈ Cγ (α) then the associated solution ψ(t) to (1.9) is such that ψ(t) ∈ Cγ (α) for any
t � 0.

The above lower bounds have several important consequences when dealing with isotropic func-
tions. Precisely, one has the following result, already stated in [17, Lemma 10] in dimension d = 3:

Lemma 3.9. Assume that f (ξ) = f (|ξ |) � 0 is an isotropic integrable function and let k(r) � 0 be a nonde-
creasing mapping on [0,∞). Then, for any ξ ∈ R

d,

∫
Rd

f (ξ∗)k
(|ξ − ξ∗|

)
dξ∗ �

1

2

∫
Rd

f (ξ∗)k
(√|ξ |2 + |ξ∗|2

)
dξ∗.
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Proof. We give an elementary proof of this result. Using spherical coordinates, with ξ∗ = ω and
ξ = rσ , r, > 0, ω,σ ∈ S

d−1, one has

∫
Rd

f (ξ∗)k
(|ξ − ξ∗|

)
dξ∗ =

∞∫
0

f ()d−1 d

∫
Sd−1

k
(√

2 + r2 − 2rσ · ω )
dω

�
∞∫

0

f ()d−1 d

∫
S

d−1−

k
(√

2 + r2 − 2rσ · ω )
dω

where S
d−1− = {ω ∈ S

d−1;σ · ω < 0}. Then, for any ω ∈ S
d−1− , since k(·) is nondecreasing,

k
(√

2 + r2 − 2rσ · ω )
� k

(√
2 + r2

)
and

∫
Rd

f (ξ∗)k
(|ξ − ξ∗|

)
dξ∗ �

∞∫
0

f ()d−1k
(√

2 + r2
)

d

∫
S

d−1−

dω

which, turning back to the original variables yields the conclusion, the factor 1
2 coming from the

integration over the half-sphere S
d−1− . �

Thanks to the above lemma, one can complement Lemma 3.7 for isotropic solutions. We first recall
that, if ψ0(ξ) = ψ0(|ξ |) is an isotropic function, then the solution ψ to (1.9) with initial condition ψ0
is isotropic for any t � 0. Indeed, for any rotation matrix R ∈ S O (d), defining ψ̃ by ψ̃(t, ξ) = ψ(t, R ·ξ)

for any (t, ξ) ∈ (0,∞) ×R
d , we have

Q−(ψ̃, ψ̃)(t, ξ) = Q−(ψ,ψ)(t, R · ξ), Q+(ψ̃, ψ̃)(t, ξ) = Q+(ψ,ψ)(t, R · ξ),

for any (t, ξ) ∈ (0,∞) × R
d . Consequently, one checks easily that ψ̃ is a solution to (1.9) with initial

condition ψ0. By uniqueness, we deduce that ψ̃ = ψ . Thus, ψ is an isotropic function. This leads to

Lemma 3.10. Assume that ψ0(ξ) = ψ0(|ξ |) is a nonnegative isotropic initial datum satisfying (1.11). For any
γ ∈ (0,1], there exists α� ∈ (0,1) such that, for any α ∈ (0,α�) the solution ψ(t, ξ) to (1.9) satisfies

∫
Rd

ψ(t, ξ∗)|ξ − ξ∗|γ dξ∗ �μα〈ξ〉γ ∀ξ ∈R
d, t � 0

for some positive constant μα > 0 depending on b(·), γ ,d,α and on the initial datum ψ0 .

Proof. Applying Lemma 3.9 with the function k(x) = xγ we get that

∫
d

ψ(t, ξ∗)|ξ − ξ∗|γ dξ∗ �
1

2

∫
d

ψ(t, ξ∗)
(|ξ |2 + |ξ∗|2

) γ
2 dξ∗.
R R
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Moreover, for any γ ∈ (0,1], there exists cγ > 0 such that (|ξ |2 + |ξ∗|2) γ
2 � cγ (|ξ |γ + |ξ∗|γ ) for any

ξ, ξ∗ ∈ R
d . Then,

∫
Rd

ψ(t, ξ∗)|ξ − ξ∗|γ dξ∗ �
cγ

2

(
|ξ |γ +

∫
Rd

ψ(t, ξ∗)|ξ∗|γ dξ∗
)

.

Now, according to Lemma 3.7, whenever α ∈ (0,α�) there exists Cα such that

∫
Rd

ψ(t, ξ∗)|ξ∗|γ dξ∗ � Cα

∫
Rd

ψ0(ξ∗)|ξ∗|γ dξ∗, t � 0.

Consequently,

∫
Rd

ψ(t, ξ∗)|ξ − ξ∗|γ dξ∗ �
cγ

2
min

{
1,Cα

∫
Rd

ψ0(ξ∗)|ξ∗|γ dξ∗
}(

1 + |ξ |γ ) ∀ξ ∈R
d, t � 0.

Now, since there exists κγ > 0 such that (1 + |ξ |γ ) � κγ (1 + |ξ |2) γ
2 for any ξ ∈ R

d , we finally obtain
the conclusion with μα = cγ κγ

2 min(1,Cα

∫
Rd ψ0(ξ∗)|ξ∗|γ dξ∗). �

Remark 3.11. The parameter α� is exactly the one of Lemma 3.7. Precisely,

α� = k0 − 1

k0

where k0 = j0γ
2 < 1 with j0 ∈N such that k0 < 1 and k0 + γ

2 � 1. In particular, for γ = 1, k0 = 1
2 and,

in dimension d = 3 and hard-spheres interactions b(·) = 1
4π , one sees that α� = 1

4 .

4. L p-estimates

We are now interested in uniform in time propagation of L p-norms for the solution to (1.9) and we
prove Theorem 1.6. As in the previous section, we fix a nonnegative initial distribution ψ0 satisfying
(1.11) and such that

ψ0 ∈ L1
2+γ

(
R

d) ∩ Lp(
R

d)
for some fixed p > 1 and we let then ψ ∈ C([0,∞); L1

2(R
d)) ∩ L1

loc((0,∞); L1
2+γ (Rd)) be the nonneg-

ative solution to (1.9) with ψ(0, ·) = ψ0 constructed by Theorem 1.3. We assume in this section that ψ0
is an isotropic function, that is (1.14) holds. For a given p > 1, multiplying (1.9) by pψ(t, ξ)p−1 and
integrating over R

d , we get

d

dt

∥∥ψ(t)
∥∥p

L p + (
pAψ(t) − dBψ(t)

)∥∥ψ(t)
∥∥p

L p

= p(1 − α)

∫
Rd

Q+(ψ,ψ)(t, ξ)ψ(t, ξ)p−1 dξ − p

∫
Rd

Q−(ψ,ψ)(t, ξ)ψ(t, ξ)p−1 dξ

=: (1 − α)pGp
(
ψ(t)

) − pLp
(
ψ(t)

)
(4.1)
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where we set

Gp
(
ψ(t)

) =
∫
Rd

Q+(ψ,ψ)(t, ξ)ψ(t, ξ)p−1 dξ,

and

Lp
(
ψ(t)

) =
∫
Rd

Q−(ψ,ψ)(t, ξ)ψ(t, ξ)p−1 dξ.

The estimates for Gp(ψ(t)) are well-known [23,2] and, for ε > 0, there exists some (explicit) θ ∈ (0,1)

and Cε > 0 such that

Gp
(
ψ(t)

)
� Cε

∥∥ψ(t)
∥∥1+pθ

L1

∥∥ψ(t)
∥∥p−pθ

L p + ε
∥∥ψ(t)

∥∥
L1

2

∥∥ψ(t)
∥∥p

L p
γ
p

,

i.e.

Gp
(
ψ(t)

)
� Cε

∥∥ψ(t)
∥∥p−pθ

L p + ε

(
1 + d

2

)∥∥ψ(t)
∥∥p

L p
γ
p

. (4.2)

Now, all the strategy consists in finding conditions on α and p > 1 ensuring that

−(
pAψ(t) − dBψ(t)

)∥∥ψ(t)
∥∥p

L p − pLp
(
ψ(t)

)
can absorb the leading order term ε(1 − α)p(1 + d

2 )‖ψ(t)‖p
Lp

γ
p

. One has

(
pAψ(t) − dBψ(t)

) = −α

2

(
d(p − 1) + 2p

)
aψ(t) + α(p − 1)bψ(t)

and, since bψ(t) � 0, it is enough to estimate

Kp := α

2

(
d(p − 1) + 2p

)
aψ(t)

∥∥ψ(t)
∥∥p

L p − pLp
(
ψ(t)

)
.

Compounding ‖ψ(t)‖p
Lp and aψ(t) into a unique integral, we get

aψ(t)
∥∥ψ(t)

∥∥p
L p =

∫
R3d

|ξ − ξ∗|γ ψ(t, ξ)ψ(t, ξ∗)ψ(t, z)p dz dξ dξ∗.

One has |ξ − ξ∗|γ � |z − ξ |γ + |z − ξ∗|γ so that

aψ(t)
∥∥ψ(t)

∥∥p
L p �

∫
R3d

|z − ξ |γ ψ(t, ξ)ψ(t, ξ∗)ψ(t, z)p dz dξ dξ∗

+
∫
3d

|z − ξ∗|γ ψ(t, ξ)ψ(t, ξ∗)ψ(t, z)p dz dξ dξ∗

R
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i.e.

aψ(t)
∥∥ψ(t)

∥∥p
L p � 2

∫
R2d

|z − ξ |γ ψ(t, ξ)ψ(t, z)p dz dξ = 2Lp
(
ψ(t)

)
.

One sees then that Kp �−ηpLp(ψ(t)) with ηp = p − 2αp − αd(p − 1) and

ηp > 0 ⇐⇒ p(αd + 2α − 1) < αd.

One can distinguish between two cases:

(i) if α � 1
d+2 then one has ηp � αd > 0 for any p > 1;

(ii) if α > 1
d+2 then ηp > 0 if and only if p < p�

α where p�
α = αd

αd+2α−1 . Notice that p�
α > 1 if and only

if 0 < α < 1
2 .

In other words, for any α < 1
2 , there exists p�

α > 1 such that

Kp �−ηpLp
(
ψ(t)

)
with ηp > 0 ∀p ∈ (

1, p�
α

)
. (4.3)

Putting together (4.1), (4.2) and (4.3) we get, for α < 1
2 and p ∈ (1, p�

α):

d

dt

∥∥ψ(t)
∥∥p

L p � Cε(1 − α)p
∥∥ψ(t)

∥∥p−pθ

L p + ε(1 − α)p

(
1 + d

2

)∥∥ψ(t)
∥∥p

L p
γ
p

− ηpLp
(
ψ(t)

)
.

It remains now to compare Lp(ψ(t)) to ‖ψ(t)‖p
Lp

γ
p

. This is the only point where we shall invoke our

assumption (1.14). Precisely, from (1.14) and Lemma 3.10, if α ∈ (0,α�) there exists μα > 0 depending
on ψ0 such that

∫
Rd

|ξ − ξ∗|γ ψ(t, ξ∗)dξ∗ �μα〈ξ〉γ ∀t � 0, ∀ξ ∈R
d.

Therefore,

Lp
(
ψ(t)

)
�μα

∫
Rd

ψ(t, ξ)p〈ξ〉γ dξ = μα

∥∥ψ(t)
∥∥p

L p
γ
p

. (4.4)

Then, for any fixed 0 < α < min( 1
2 ,α�) and fixed p ∈ (1, p�

α), one can choose ε > 0 such that

ε(1 − α)p(1 + d
2 ) = ηpμα

2 to get the following

d

dt

∥∥ψ(t)
∥∥p

L p � K
∥∥ψ(t)

∥∥p−pθ

L p − ηpμα

2

∥∥ψ(t)
∥∥p

L p
γ
p

,

for some positive constant K > 0. This implies clearly that

sup
t�0

∥∥ψ(t)
∥∥

L p � max

{
‖ψ0‖L p ,

(
2K

ηpμα

) 1
pθ

}
.
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This proves Theorem 1.6 with C p(ψ0) = ( 2K
ηpμα

)
1

pθ . Notice that, as announced, C p(ψ0) depends on the

initial datum ψ0 only through μα and so only through the moment M γ
2
(0).

Remark 4.1. One sees from the above proof that α = min( 1
2 ,α�) where α� is the parameter of

Lemma 3.10 (see also Remark 3.11).

Remark 4.2. The constant C p(ψ0) depends on the initial datum ψ0 only through the inverse of the
moment M γ

2
(0) = ∫

Rd ψ0(ξ)|ξ |γ dξ . In particular, with the notations of Lemma 3.7 and Remark 3.8,

one sees that, given γ ∈ (0,1] and 0 < α < α then for any p ∈ (1, p�
α),

sup
t�0

∥∥ψ(t)
∥∥

L p < max
{‖ψ0‖L p , C p

}

for some constant C p > 0 depending only on α, γ , b(·) and the dimension d provided ψ0 ∈ Cγ (α)

satisfies the assumption of Theorem 1.6.

5. Existence of self-similar profile

We now proceed to the proof of the main result of this paper, that is the proof of Theorem 1.8.
As already announced, the existence of a stationary solution to (1.9) relies on the application of The-
orem 1.1 to the evolution semi-group (St)t�0 governing (1.9). We set α = min(α0,α). Let us now
fix α < α and let p ∈ (1, p�

α) be fixed. For any nonnegative ψ0 ∈ L1
2+γ (Rd) ∩ L p(Rd) let ψ(t) = Stψ0

denote the unique solution to (1.9) with initial state ψ(0) = ψ0 constructed by Theorem 1.3. The con-
tinuity properties of the semi-group are proved by the study of the Cauchy problem in Section 2.
On the Banach space Y = L1

2(R
d), thanks to the uniform bounds on the L1

2+γ (Rd) and L p(Rd) norms
provided by Proposition 3.4 and Theorem 1.6 respectively combined with the propagation of lower
bounds for M γ

2
(t) (see Lemma 3.7, Remarks 3.8 and 4.2) the nonempty convex subset

Z =
{

0 �ψ ∈ Y, ψ(ξ) = ψ
(|ξ |) ∀ξ ∈R

d,

∫
Rd

ψ(ξ)dξ = 1,

∫
Rd

ψ(ξ)|ξ |2 dξ = d

2

‖ψ‖L1
2+γ

� Mγ , ‖ψ‖L p � Mp and
∫
Rd

ψ(ξ)|ξ | jγ dξ � K j, j = 1, . . . , j0

}

is stable by the semi-group provided Mγ , M p are big enough and K1, . . . , K j0 are small enough where

we recall that j0 is the largest integer such that j0γ
2 < 1 and ( j0+1)γ

2 � 1 (in particular, for true hard
spheres, γ = j0 = 1). This set is weakly compact in Y by Dunford–Pettis Theorem, and the continuity
of St for all t � 0 on Z follows from Proposition 2.9. Then, Theorem 1.1 shows that, for any α < α,
there exists a nonnegative stationary solution to (1.9) in L1

2+γ (Rd)∩ L p(Rd) with unit mass and energy

equal to d
2 .

Remark 5.1. Notice that, unfortunately, we are able to construct only radially symmetric solutions
to (1.6). Clearly, this relies on the restriction (1.14) for the control of L p norms. At first sight, it may
seem possible to construct solutions to (1.6) with zero bulk velocity but it is not known whether this
property is preserved by the semi-group (St)t�0. Since the property of being radially symmetric is
preserved by (St)t�0, we have to restrict our choice to that class of self-similar solutions.

Remark 5.2. In the special case of hard-spheres interactions in dimension d = 3, i.e. whenever
B(ξ − ξ∗, σ ) = |ξ−ξ∗|

4π , one has according to Remarks 3.5, 3.11 and 4.1 that α0 = 2
7 , α = 1

4 . Therefore,

α = 1
4 and p�

α > 2.
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6. Conclusion and perspectives

We derived in the present paper the existence of a self-similar profile ψH associated to the prob-
abilistic ballistic annihilation equation (1.1). Such a self-similar profile is actually the steady state of
the rescaled equation (1.9) and the existence of such a steady state was taken for granted in various
papers in the physics literature [15,19,28]. Our paper thus provides a rigorous justification of some of
the starting point of the analysis of [15,19,28]. The self-similar profile ψH we constructed is isotropic,
i.e.

ψH (ξ) = ψH
(|ξ |), ξ ∈ R

d

and the existence is proven only in a given (explicit) range of the probability parameter α. Namely,
we proved the existence of ψH only whenever the probability parameter α lies in some interval (0,α)

with some explicit α > 0. Even if the parameter α > 0 is certainly not optimal, this restriction arises
naturally from our method of proof; in particular, it seems difficult to prove uniform in time estimates
of the higher-order moments for all range of parameters α ∈ (0,1). However, our restriction on the
initial datum (isotropy, L p-integrability) and on the probability parameter α leaves several questions
open. Let us list a few of them that can be seen as possible perspectives for future works.

6.1. Uniqueness

A first natural question that should be addressed is of course the uniqueness of the self-similar
profile ψH . Clearly, since our existence result is based upon a compactness argument (via Tykhonov
fixed point Theorem 1.1) it does not provide any clue for uniqueness. We believe that, as it is the
case for the Boltzmann equation with inelastic hard spheres [21,6], a perturbation argument is likely
to be adapted here. Such an approach consists in taking profit of the knowledge of the stationary
solution in the “pure collisional limit” α = 0 (for which the steady state is clearly a uniquely deter-
mined Maxwellian distribution) and to prove quantitative estimates of the convergence of stationary
solution as the parameter α goes to 0. It is likely that such a uniqueness result would require a good
knowledge of some quantitative a posteriori estimates for the self-similar profile ψH .

6.2. A posteriori estimates for ψH

Typically, we may wonder what are the thickness of the tail of ψH ; more precisely, one should try
to find explicit r > 0, a > 0 – possibly independent of the parameter α – such that

∫
Rd

ψH (ξ)exp
(
a|ξ |r)dξ < ∞.

Besides such integral upper bound, one also may wonder if good L∞-bounds can be derived for ψH
(at least in the limit α → 0), i.e. is it possible to derive universal explicit functions M(ξ) and M(ξ)

such that

M(ξ) � ψH (ξ) � M(ξ) ∀ξ ∈R
d and any α ∈ (0,α).

6.3. Intermediate asymptotics

A fundamental problem, related to the original probability annihilation equation (1.1), is to under-
stand the role of the self-similar profile ψH (if unique). Indeed, we know that solutions to (1.1) are
vanishing as t → ∞

lim f (t, v) = 0

t→∞
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and physicists expect that the self-similar profile should play the role of an intermediate asymptotic in
the following sense. One expects to find suitable explicit scaling functions a(·),b(·) a rescaled density
ψ = ψ(τ , ξ) and a rescaled time τ (t) which are such that, if f is a solution to (1.1) in the form

f (t, v) = a(t)ψ
(
τ (t),b(t)v

)
then the rescaled density ψ is such that

ψ(τ , ξ) → ψH (ξ) as τ → ∞.

The convergence, in rescaled variables, to a unique self-similar profile is a well-known feature of
kinetic equation exhibiting a lack of collisional invariants. In particular, for granular flows described
by inelastic hard spheres, such a self-similar profile (known as the homogeneous cooling state) is
known to attract all the solutions to the associated Boltzmann equation yielding a proof of the so-
called Ernst–Brito conjecture (see [21] for a proof and a complete discussion on this topic).

A related question is also the exact decay of the macroscopic quantities associated to solutions
f (t, v) to (1.1): it has already been observed that the number density

n(t) =
∫
Rd

f (t, v)dv

and the kinetic energy

E(t) =
∫
Rd

f (t, v)|v|2 dv

are continuously decreasing if α ∈ (0,1) and converge to zero as t → ∞. To determine the precise
rate of convergence to zero for such quantities is a physically relevant problem. Notice that for the
particular solution f H (t, v) (constructed in (1.3) through the self-similar profile) the density nH (t)
and energy E H (t) satisfy

nH (t)E H (t) � Ct−2 as t → ∞
for some C > 0 in the case of true hard spheres (i.e. whenever γ = 1) as can easily be deduced
from (1.8). One may wonder if such a decay is universal, i.e. does any solution f (t, v) to (1.1) is such
that n(t)E(t) behaves as t−2 for large times? Partial answers, based upon heuristic and dimensional
arguments, are provided by physicists [24] and it would be interesting to provide a rigorous justifica-
tion of these results. Exploiting again the analogy with the Boltzmann description of granular flows,
expliciting the decay rate of the number density and the kinetic energy would be the analogue of the
so-called Haff’s law for inelastic hard spheres (see [20,3]).

6.4. Improvement of our result: the special role of entropy

Besides the above cited fundamental questions, we may also discuss some possible improvements
of the results we obtained in the present paper. First, one may try to extend the range of parameters
α for which our result holds. Notice that, since we strongly believe that the self-similar profile ψH
is unique in some peculiar regime (at least whenever α � 0), getting rid of the isotropic assumption
on ψH is not particularly relevant. However, in both Theorems 1.3 and 1.8, the hypothesis of L p-
integrability does not have a clear physical meaning. It would be interesting to investigate if such an
assumption can be relaxed: for instance, it would be more satisfactory to prove the well-posedness
result Theorem 1.3 under the sole assumption that the initial datum is of finite entropy. Unfortunately,
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we did not succeed in proving that the flow solution associated to (1.9) propagates suitable bounds
of the entropy functional.

Appendix A. Well-posedness for the Boltzmann equation with ballistic annihilation

In this appendix, we only give the main lines of the proof of Theorem 1.9. Indeed, the proof of
Theorem 1.9 may be easily adapted from that of Theorem 1.3.

Let us denote by f0 a nonnegative distribution function from W 1,∞(Rd) ∩ L1
2+γ (Rd). Let n ∈ N.

We consider first the well-posedness of the following truncated equation

∂t f (t, v) = B
n( f , f )(t, v) (A.1)

where the collision operator B
n( f , f ) is given by (2.2). Let T > 0 and

h ∈ C
([0, T ]; L1(

R
d)) ∩ L∞(

(0, T ); L1(
R

d, |v|2+γ dv
))

be fixed. We introduce the auxiliary equation:

{
∂t f (t, v) + Ln(h)(t, v) f (t, v) = (1 − α)Qn+(h,h)(t, v),

f (0, v) = f0(v).
(A.2)

Here, as in Section 2,

Ln(h)(t, v) :=
∫

Rd×Sd−1

Bn(v − v∗,σ )h(t, v∗)dv∗ dσ = ‖bn‖L1(Sd−1)

∫
Rd

Φn
(|v − v∗|

)
h(t, v∗)dv∗.

The Cauchy problem (A.2) admits a unique solution given by

f (t, v) = f0(v)exp

(
−

t∫
0

Ln(h)(τ , v)dτ

)

+ (1 − α)

t∫
0

exp

(
−

t∫
s

Ln(h)(τ , v)dτ

)
Qn+(h,h)(s, v)ds. (A.3)

For any T > 0 and any M1, M2, �, Cγ > 0 (to be fixed later on), we define H = HT ,M1,M2,�,Cγ as

the set of all nonnegative h ∈ C([0, T ]; L1(Rd)) such that

sup
t∈[0,T ]

∫
Rd

h(t, v)dv � M1, sup
t∈[0,T ]

∫
Rd

h(t, v)|v|2 dv � M2,

and

sup
t∈[0,T ]

∫
Rd

h(t, v)|v|2+γ dv � Cγ , sup
t∈[0,T ]

∥∥h(t)
∥∥

W 1,∞ � �.
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Define then the mapping

T : H → C
([0, T ]; L1(

R
d))

which, to any h ∈H, associates the solution f = T (h) to (A.2) given by (A.3). We look for parameters
T , M1, M2, Cγ and � that ensures T to map H into itself.

Control of the density. One checks easily that the solution f (t, v) given by (A.3) fulfills

sup
t∈[0,T ]

∫
Rd

f (t, v)dv � ‖ f0‖L1 + (1 − α)nγ ‖bn‖L1(Sd−1)M2
1 T ∀h ∈ H. (A.4)

Control of the moments. Arguing as above and as in Section 2, we get

sup
t∈[0,T ]

∫
Rd

f (t, v)|v|2 dv �
∫
Rd

f0(v)|v|2 dv + 4(1 − α)nγ ‖bn‖L1(Sd−1)M1M2T , (A.5)

sup
t∈[0,T ]

∫
Rd

f (t, v)|v|2+γ dv �
∫
Rd

f0(v)|v|2+γ dv + 22+γ (1 − α)nγ ‖bn‖L1(Sd−1)M1Cγ T , (A.6)

for any h ∈H.

Control of the W 1,∞ norm. Here again as in Section 2, we obtain,

sup
t∈[0,T ]

∥∥ f (t)
∥∥

W 1,∞ � ‖ f0‖W 1,∞
(
1 + 2nγ ‖bn‖L1(Sd−1)M1T

)
+ 2(1 − α)n1+γ ‖bn‖L1(Sd−1)M1�T

(
2 + nγ ‖bn‖L1(Sd−1)M1T

)
. (A.7)

Now, from (A.4)–(A.7), one sees that, choosing for instance M1 = 2‖ f0‖L1 ,

M2 = 2
∫
Rd

f0(v)|v|2 dξ, Cγ = 2
∫
Rd

f0(ξ)|ξ |2+γ dξ, � = 4‖ f0‖W 1,∞

and

T = 1

16‖bn‖L1(Sd−1)M1n1+γ
min

{
1,21−γ n

}
,

we get that f ∈H, i.e. with the above choice of the parameters M1, M2, Cγ , �, T , one has T (H) ⊂H.
Moreover, one can perform the same calculations as in the proof of Proposition 2.3 and one ob-
tains that (2.10) holds and that T (H) is a relatively compact subset of C([0, T ], L1

2(R
d)). Thus, the

Schauder fixed point theorem ensures the existence of some fixed point f 1 of T , i.e. there exists
f 1 ∈ C([0, T ]; L1

2(R
d)) ∩ L∞((0, T ); L1

2+γ (Rd) ∩ W 1,∞(Rd)) solution to (A.1). Integrating equation (A.1)

against 1 and |v|2 over R
d , we get

d

dt

∫
d

f 1(t, v)dv � 0 and
d

dt

∫
d

f 1(t, v)|v|2 dv � 0.
R R
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Consequently, f 1 satisfies (1.15) and ‖ f 1(T , .)‖L1 � ‖ f0‖L1 . Since the time T only depends on the
inverse of ‖ f0‖L1 , by a standard continuation argument, we construct a global solution f to (A.1).
Uniqueness clearly follows from (2.10).

In order to prove Theorem 1.9, we now need to get rid of the bound in W 1,∞(Rd) for the initial
condition and to pass to the limit as n → +∞. Let f0 ∈ L1

2+γ (Rd) be a nonnegative distribution

function. There exists a sequence of nonnegative functions ( f n
0 )n∈N in W 1,∞(Rd) ∩ L1

2+γ (Rd) that

converges to f0 in L1
2(R

d) and that satisfies, for any n ∈N,

∥∥ f n
0

∥∥
L1 � ‖ f0‖L1 and

∫
Rd

f n
0 (v)|v|2+γ dv � 21+γ ‖ f0‖L1 + 21+γ

∫
Rd

f0(v)|v|2+γ dv. (A.8)

We infer from the above properties of ( f n
0 )n∈N that there exists some N0 ∈N such that for n � N0,

1

2
‖ f0‖L1 �

∫
Rd

f n
0 (v)dv � ‖ f0‖L1 (A.9)

and

1

2

∫
Rd

f0(v)|v|2 dv �
∫
Rd

f n
0 (v)|v|2 dv � 2

∫
Rd

f0(v)|v|2 dv. (A.10)

For each n ∈ N, we denote by fn the solution to (A.1) with initial condition f n
0 . Our purpose is to

show that ( fn)n∈N is a Cauchy sequence in C([0, T ]; L1
2(R

d)) for any T > 0. However, this requires
uniform estimates on fn . So, we now show uniform bounds for moments of fn .

Lemma A.1. Let T > 0 and s > 2. Assume that ‖ f0‖L1
s
< ∞. Then, there exists some constant C depending

only on α, d, γ , s, T , b(·) and ‖ f0‖L1
s

such that, for n � N0 ,

sup
t∈[0,T ]

∫
Rd

fn(t, v)|v|s dv � C and

T∫
0

∥∥ fn(t)
∥∥

L1

∫
Rd

fn(t, v)Φn
(|v|)|v|s dv dt � C . (A.11)

Proof. Let s > 2 and n � N0. Our proof follows the same lines as the proof of Lemma 2.7. As previ-
ously, we have

dY n
s

dt
(t) = 1 − α

2

∫
Rd

∫
Rd

fn(t, v) fn(t, v∗)Φn
(|v − v∗|

)
K n

s (v, v∗)dv dv∗

− α

∫
Rd

Qn−( fn, fn)(t, v)|v|s dv,

where Y n
s (t) = ∫

Rd fn(t, v)|v|s dv . Now, arguing as in the proof of Lemma 2.7, we obtain

d

dt
Y n

s (t) + (1 − α)c2(n)

2

∥∥ fn(t)
∥∥

L1

∫
Rd

fn(t, v)Φn
(|v|)|v|s dv

� c2(n)
Y n

s (t)Y n
γ (t) + c1

(
Y n

s (t)Y n
1(t) + Y n

s−γ (t)Y n
1+γ (t)

)
.

2
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Finally,

d

dt
Y n

s (t) + (1 − α)c2(2)

2

∥∥ fn(t)
∥∥

L1

∫
Rd

fn(t, v)Φn
(|v|)|v|s dv � C3Y n

s (t) + 2c1‖ f0‖L1
2
,

where C3 = (c∞
2 + 4c1)‖ f0‖L1

2
. Then, (A.11) follows easily from the Gronwall Lemma and (A.8). �

Observe that the second inequality of (2.29) has to be modified in that case. Since the mass of
the solution is decreasing, we do not recover, as previously, that moments of order 2 + γ are inte-
grable. This is the reason why we assume here that the initial condition lies in L1

2+γ (Rd). Thanks
to Lemma A.1, it then follows that moments of order 2 + γ are uniformly bounded. We are thus in
a position to prove that ( fn)n∈N is a Cauchy sequence in C([0, T ]; L1

2(R
d)) for any T > 0. We omit

the proof since it follows exactly the same lines as the proof of Proposition 2.8. Then denoting by
f ∈ C([0, T ]; L1

2(R
d)) the limit of the sequence ( fn)n∈N , it is easy to check that f is a weak solution

to (1.1). Performing the same calculations as in the proof of Proposition 2.9, we prove the uniqueness
of such a solution.

Appendix B. The case of Maxwellian molecules kernel

We discuss in this appendix the particular case of Maxwellian molecules. Notice that the Boltz-
mann equation for ballistic annihilation associated to Maxwellian molecules has been already studied
in the mid-80’s [26,25], and was referred to as Boltzmann equation with removal. Consider as above, the
equation

∂t f (t, v) = (1 − α)Q( f , f )(t, v) − αQ−( f , f )(t, v) = B( f , f )(t, v), f (0, v) = f0(v) (B.1)

where Q is the quadratic Boltzmann collision operator associated to the Maxwellian collision kernel

B(v − v∗,σ ) = b(cos θ).

For any solution f (t, v) to (B.1), we denote

n(t) =
∫
Rd

f (t, v)dv, n(t)u(t) =
∫
Rd

v f (t, v)dv,

and

Θ(t) = 1

dn(t)

∫
Rd

∣∣v − u(t)
∣∣2

f (t, v)dv.

Since, for Maxwellian molecules

Q−( f , f )(t, v) = ‖b‖L1(Sd−1) f (t, v)

∫
Rd

f (t, v∗)dv∗ = ‖b‖L1(Sd−1)n(t) f (t, v)

one sees easily that the evolution of the density n(t) is given by

d
n(t) = −μn2(t) ∀t � 0, (B.2)
dt
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with μ = α‖b‖L1(Sd−1) . Thus

n(t) = n0

μn0t + 1
∀t � 0. (B.3)

In the same way,

d

dt

(
n(t)u(t)

) = −μn2(t)u(t) and
d

dt

(
n(t)Θ(t)

) = −μn2(t)Θ(t) (B.4)

from which we deduce that

u(t) = u(0) and Θ(t) = Θ(0) ∀t � 0.

One sees therefore that, for the special case of Maxwellian molecules, the evolution of the moments
of f (t, v) are explicit. Another striking property, very peculiar to Maxwellian molecules, has been
noticed in [25]: if one defines

s(t) = 1 − α

n0

t∫
0

n(τ )dτ = 1 − α

μn0
log(1 + μn0t), t � 0,

then, the change of unknown

f (t, v) = n(t)

n0
g
(
s(t), v

)
, t � 0 (B.5)

shows that, f (t, v) is a solution to (B.1) if and only if g(s, v) is a solution to the classical Boltzmann
equation

∂s g(s, v) = Q(g, g)(s, v) (s > 0) with g(0, v) = f0(v). (B.6)

Moreover, one has

∫
Rd

g(s, v)dv = n0 =
∫
Rd

g(0, v)dv,

∫
Rd

vg(s, v)dv = n0u(0)

and ∫
Rd

∣∣v − u(0)
∣∣2

g(s, v)dv = dn0Θ(0) ∀s � 0.

In other words, the ballistic annihilation equation (B.1) is equivalent to the classical Boltzmann
equation with Maxwellian molecules interactions. The mathematical theory of Eq. (B.6) is by now
completely understood (see e.g. [29]) and it is well known that (under suitable conditions on the
initial distribution f0) the solution g(s, v) to (B.6) converges (in suitable L1-norm) as s → ∞ to the
Maxwellian distribution

M(v) = n0

(2πΘ(0))d/2
exp

(
−|v − u(0)|2

2Θ(0)

)
, v ∈R

d
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with an explicit rate (we do not wish to explicit the minimal assumption on f0 nor the precise con-
vergence result and rather refer the reader to [29] for details). Turning back to the original variable,
this proves that

f (t, v) − n(t)

n0
M(v) → 0 as t → ∞.

The long-time behavior of the solution to (B.1) is therefore completely described by the evolution of
the density n(t) given by (B.3) and the moments of the initial datum f0 (through the Maxwellian M).
This gives a complete picture of the asymptotic behavior of (B.1) and answers the problem stated in
Section 6.3 for the special case of Maxwellian molecules.
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