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ABSTRACT  

Recent development of Next Generation Sequencing (NGS) techniques is changing the approach to search 

for mutations in human genetic diseases. We applied NGS to study an A-T patient in which one of the two 

expected mutations was not found after DHPLC, cDNA sequencing and MLPA screening. The 160 kb ATM 

genomic region was divided into 31 partially overlapping fragments of 4-6 kb and amplified by long-range 

PCR in the patient and mother, who carried the same mutation by segregation. We identified six intronic 

variants that were shared by the two genomes and not reported in the dbSNP(132) database. Among these, 

c.1236-405C>T located in IVS11 was predicted to be pathogenic because it affected splicing. This mutation 

creates a cryptic novel donor (5’) splice site (score 1.00) 405 bp upstream of the exon 12 acceptor (3’) splice 

site. cDNA analysis showed the inclusion of a 212 bp non-coding “pseudoexon” with a premature stop 

codon. We validated the functional effect of the splicing mutation using a minigene assay. Using antisense 

morpholino oligonucleotides (AMO), designed to mask the cryptic donor splice-site created by the c.1236-

405C>T mutation, we abrogated the aberrant splicing product to a wild-type ATM transcript, and in vitro 

reverted the functional ATM kinase impairment of the patients’ lymphoblasts. Resequencing is an effective 

strategy for identifying rare splicing mutations in patients for whom other mutation analyses have failed 

(DHPLC, MLPA, or cDNA sequencing). This is especially important because many of these patients will carry 

rare splicing variants that are amenable to antisense-based correction.  
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INTRODUCTION 

Ataxia-Telangiectasia (A-T) is a rare autosomal recessive neurodegenerative disorder (A-T; MIM# 

208900) characterized by progressive cerebellar degeneration, oculocutaneous telangiectasia, 

immunodeficiency, increased cancer risk, sensitivity to ionizing radiation and chromosomal instability 1. A-T 

is  caused by mutations in the ATM gene (MIM#607585) that encodes a 370 kDa ubiquitous protein. ATM is 

a serine/threonine kinase involved in cell cycle checkpoints, repair of double strand DNA breaks, response 

to oxidative stress, and apoptosis 2,3. More than six hundred unique ATM mutations have been identified 

worldwide (www.LOVD.nl/ATM). The majority lead to absence of ATM protein and loss of its kinase 

function. Conventional methods for mutation detection are based on PCR amplification of ATM exons, 

accompanied by MLPA to detect large genomic deletions or duplications 4,5. This multistep approach 

identified >95% of the mutations. The application of the next-generation DNA sequencing technology (NGS) 

is becoming an important tool to identify additional rare mutations. Here, we report the study of an A-T 

patient with a nonsense mutation in exon 45 and a novel pseudoexon-retaining deep-intronic mutation, 

detected by genomic resequencing. With the use of antisense morpholino oligonucleotides (AMO) targeted 

to the aberrant splice-site, we were able to restore normal ATM splicing and induce significant amounts of 

full-length functional ATM kinase.   

 

MATERIALS AND METHODS 

Samples and mutation detection 

 Samples from patient AT-34-TO and her parents were collected during a diagnostic evaluation by 

ATM molecular screening for suspected A-T. Total genomic DNA was extracted using the Qiamp DNA mini 

kit (Qiagen, Mannheim, Germany) from peripheral blood. A lymphoblastoid cell line was established from 

patient’s blood. Initial genetic analyses included Short Tandem Repeats (STR) and SNP haplotyping, to 

detect known Italian founder mutations, DHPLC, and MLPA 6. ATM cDNA amplification and sequencing was 

performed as described in 7. Western blot analysis of ATM protein was performed from nuclear protein 

extracts of patient’s lymphoblasts as described below. 

http://www.lovd.nl/ATM
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Reference sequence of the ATM  gene: NM_000051.3 

 

Resequencing of the ATM genomic region  

The entire 160 kb ATM genomic region was divided in 31 partially overlapping fragments of 4-6 kb 

and amplified by long-range PCR in the patient and her mother (see supplementary table 1, and fig. 1). PCR 

was performed in a total volume of 50 l with a final concentration of 200 nM of each primer, 400 M of 

dNTPs, 1x enzyme buffer and 2.5 units of LA polymerase (Takara Bio Inc., Otsu, Shiga 520-2193, Japan), 

under the following cycling parameters: 1 min at 94°C followed by 30 cycles of 10 sec at 94°C, and 1 min / 

kb at the annealing temperature (see supplementary table 1), final extension 72°C 10 min. Amplicons were 

run on a TBE-agarose 0.6% gel and UV visualized after ethidium bromide staining to verify product quality, 

and quantified twice using a Qubit fluorimeter (Life Technologies, Carlsbad, California, USA ). A total of 20 

g of a pool containing equimolar amounts of each amplified fragment, was resuspended in RNAse free 

water at a concentration of 200 ng/ml and delivered to the Base Clear custom sequencing service (Leiden, 

The Netherlands). Briefly PCR amplified DNA was fragmented by sonication, gel purified, ligated to 

adaptors, and sequenced after bridge amplification using an Illumina Genome Analyzer IIX as paired-end 50 

bp reads. Sequencing data were filtered for low quality reads, exported as FASTAQ files and aligned against 

the ATM reference sequence (Ref Seq NG_009830.1) using the CLCbio “Map reads to reference” software. 

The average coverage depth was 300X. All sequence variants shared between the patient and mother were 

further searched in the dbSNPs 132. Splice site score analysis was performed using Splice Site Prediction 

software (http://www.fruitfly.org/seq_tools/splice.html) 8. 

  

cDNA mutation analysis and c.1236-405 C>T mutation screening 

Total RNA was extracted using the RNeasy Plus Mini Kit (Qiagen), and retrotranscribed using the 

Transcriptor First Strand cDNA Synthesis kit (Roche Diagnostics, Mannheim, Germany) according to the 

manufacturer’s instructions. To analyze the pseudoexon inclusion we designed a  specific RT-PCR exploiting 



6 
 

primers located in exons 11 (c11F: 5’-tcccttgcaaaaggaagaaa) and 12 (c12R: 5’-ttttgtgagctttctaggtttgacc) of the 

ATM gene (Reference sequence: U82828.1). PCR conditions were 0.3 M of each primer, 0.8 mM dNTPs and 

0.5 units of KAPA fast polymerase (KAPA Biosystems) in the following cycling conditions: 2 min at 95°C, 

followed by 29 cycles 15 sec at 95°C, 15 sec at 56°C and 45 sec at 72°C; final extension of 1min at 72°C. 

 

Minigene construction 

A minigene assay was set up to test the effect of the ATM c.1236-405 C>T (IVS11) on splicing. We 

amplified a 593 bp genomic fragment from AT34TO using primers designed with a restriction site (Eco RI-

forward, 5’-ttgaacacctgttatgggctaa; Bam HI-reverse -5’-tggctagctgggtaagctgt). PCR products were cloned 

into a pGEM-T Easy Vector (Promega, Madison, WI, USA) and transformed in DH5α bacterial cells following 

manufacturer’s recommendations (RBC Bioscience, Chung Ho City, Taiwan). Plasmids containing the wild-

type or the variant sequence were extracted using the PureYield plasmid system (Promega) and sequence 

checked. After preparative double-digestion with Eco RI and Bam HI restriction endonucleases, inserts were 

gel-purified and sub-cloned into a pSPL3 exon trapping vector (Life sciences-Invitrogen). pSPL3 plasmids 

containing the wild-type (pSPL3_C) or the variant (pSPL3_T) sequence were extracted using PureYield™ 

Plasmid Midiprep System (Promega), and transfected into HEK293 cells using the TurboFect kit 

(Fermentas). After 24 h, total RNA was extracted and retrotranscribed with the Cells-To-CT kit (Ambion). 

The presence of the pseudoexon was verified by cDNA  amplification using vector primers (5’-

tctgagtcacctggacaacc; 5’-atctcagtggtatttgtgagc). 

 

Correction of ATM  pre-mRNA splicing by Antisense Morpholino Oligonucleotide (AMO) 

The 25-mer AMO, GGGCATGGTGGCACATACCTGGAAT (mutation underlined) was designed to target the 

aberrant donor splice site activated by the c.1236-405 C>T mutation. The AMO was synthesized and 

purified by Gene Tools (LLC, Philomath, OR).  Treatment of LCLs with AMO was performed as previously 

http://www.promega.com/products/dna-and-rna-purification/plasmid-purification/pureyield-plasmid-miniprep-system/
http://www.promega.com/products/dna-and-rna-purification/plasmid-purification/pureyield-plasmid-miniprep-system/
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described by (Du et al 2007). Briefly, 5·105 LCLs cells were resuspended in 0.5 ml 5% FBS/RPMI 1640 

medium and AMO was added directly to the medium at the concentration indicated. Endo-Porter (Gene 

Tools) was added to the medium to help intracellular corporation of the AMO. A Vivo-AMO (Gene Tools), 

identical in sequence to the AMO, but bound to a proprietary cell-penetrating peptide, was also used at 

two different concentrations to enhance cellular delivery. After 48 hours incubation, cells were collected 

and rinsed in PBS. Total RNA was extracted and cDNA retrotrascribed as described above. For RT PCR 

primers c11F and c12R were used to amplify both the full length and the mutant transcripts.  

 

Western Blot analysis and ATM kinase activity 

For analysis of AMO-induced ATM protein levels, LCLs were treated with various concentrations of Vivo-

AMO for 4 days  and nuclear extracts were prepared for each sample  according to NE-PER protocol (Pierce, 

Rockford, IL). Nuclear protein lysates (20 µg), were separated on a 4-12% precast SDS polyacrilammide gel 

(Biorad, Hercules,CA) and electrotransferred onto nitrocellulose membrane. Membranes were blocked with 

5% milk-TBS-0.1% Tween20 and incubated overnight at 4°C with anti-ATM antibody (ab17995, Abcam 

Cambridge, UK) at 1:5,000 dilution.  

To test ATM kinase activity, patient lymphoblastoid cells, treated or untreated with vivo-AMO, were 

irradiated with 10-Gy gamma irradiation to induce DNA damage (Radgil, Gilardoni Instruments, Italy) and 

incubated at 37°C for 30 min before protein extraction. SMC1 phosphorylation was verified using an anti- 

SMC-Phospho Ser966 (ab1276 Abcam,Cambridge, UK) at 1:2,000 dilution. Images were acquired and 

quantified using a Chemidoc apparatus and ImageLab software (BioRad).  

 

RESULTS 

Clinical description  

Clinical diagnosis of AT34TO was based on the presence of progressive cerebellar ataxia, oculocutaneous 
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telangiectasias, immunodeficiency, and increased serum alpha fetoprotein, and <3-5% ATM protein on 

Western blot (Fig. 1A). AT34TO was of special interest. Initial presentation of ataxia was at 7 yr. The patient 

walked with minimal assistance until 14 yr. She has no history of pulmonary or bronchial infections. A 

previous genetic screening by DHPLC analysis allowed us to identify a mutation, c.6326 G>A in exon 45 that 

created a stop codon at amino acid 2109 [p.(Trp2109Ter)], of paternal origin (Fig.1B). This result suggested 

that the small amount of ATM protein present in the patient might reflect the influence of the unidentified 

maternal mutation. We suspected a deep intronic mutation, but cDNA analysis failed to identify anomalous 

band shifts. 

 

Identification of a deep intronic mutation 

Resequencing of the entire 160 kb ATM genomic region allowed the identification of 24 intronic nucleotide 

variants shared in heterozygosis between the proband and her mother. Among the six unreported in the 

dbSNPs (ver. 132) , c.1236-405C>T (coverage 670X) was the only one predicted to be pathogenic because it 

affected splicing (BDGP, www.fruitfly.org/seq)(Fig. 1C). c.1236-405 C>T, located in intron 11, was predicted 

to activate a donor (5’) splice site (scheme in fig. 1D). cDNA analysis with primers c11F and c12R (Fig.1D) 

showed a normal band of 260 bp and a larger mutated molecular band of 472 bp (Fig. 1E). Direct 

sequencing showed the 472 bp band included a 212 bp pseudoexon derived from intron 11 (see scheme in 

fig.1D).  

 

Minigene assay 

A minigene construct was prepared by cloning 593 bp of genomic DNA centered on the genomic change 

c.1236-405C>T, and a wild-type sequence control, into the pSPL3 vector (Fig. 1F). These showed the post-

transfection spliced products of wild type pATM-WT, 282 bp, corresponding to the normal spliced product 

(exon b1/exon b2); pATM-IVS11-405C>T containing the mutated allele showed the 282 bp band and a 

larger band of 494 bp. The latter sequence analysis contained the 212 bp pseudoexon. Additional bands 

(asterisks) likely indicate heteroduplexes or alternative splicing products.  

http://www.fruitfly.org/seq
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Correction of ATM Pre-mRNA splicing mutation using AMO  

We designed an antisense morpholino oligonucleotide (AMO) to mask the 5’cryptic donor splice-site 

created by the c.1236-405C>T mutation and restore the normal wild type splicing (Fig. 2A). 

Patient LCLs were treated with 0, 20, 40, 50 µM concentrations of neutral AMO for 48 h; total RNA was 

isolated and RT-PCR was performed using the strategy in figure 1D. The wild type and mutant band ratio is 

50% in untreated cells. At the highest 50 µM concentration, neutral-AMO treatment showed a ~26% 

increase of the wild type 260 bp band, corresponding to normal splicing, vs. the 472 bp mutant (Fig. 2B). To 

enhance the delivery and efficiency of the AMO, we also designed a structurally modified Vivo-AMO that 

dramatically improved the induction of wild-type transcript. We showed that at 1 µM concentration, the 

wild type band intensity was increased by 50%, whereas at 2 µM, the mutant band had almost disappeared, 

suggesting a complete abrogation of the aberrant splicing (Fig. 2C). To determine the effect of Vivo-AMO on 

the protein level, we performed a Western blot on nuclear extracts of LCLs after 4 days exposure. A 

significant amount of functional ATM protein was induced even at the lower dose of 1 µM and reached a 

maximum of 50% of WT levels at 2 µM (Fig. 2D). After 84 hours treatment, we noticed a mild Vivo-AMO 

toxicity at 2 µM working concentration (data not shown). Cells viability was reduced to 87% and 68% in 

cells treated with 1µM and 2µM Vivo-AMO, respectively. 

 

Restoration of ATM kinase activity in AMO-treated cells 

To assess the enzymatic activity of the AMO-induced ATM protein, we irradiated at 10 Gy patient’s LCLs, 

after 84 hours treatment with and without Vivo-AMO, and measured the phosphorylation of the ATM 

substrate SMC1 at Ser-966. As showed in Figure 2E, no IR-induced phosphorylation was observed in 

untreated AT34TO cells, whereas phosphorylation of  LCLs treated with both 1 µM and 2 µM Vivo-AMO was 

comparable with WT levels.  

  

DISCUSSION 
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According to “The Human Gene Mutation Database” (http://www.hgmd.org/), ~10% of reported 

mutations in disease-associated genes are splicing mutations. Although most of them affect consensus 

sites, deep intronic mutations are increasingly being reported in human diseases, as we have recently 

shown in Megalencephalic leukoencephalopathy 9. Such mutations are easily missed because they are not 

targeted by standard genetic screening and are not detected by the more recent whole-exome sequencing 

technique. Next Generation Sequencing (NGS) of the entire genomic region of a gene is a plausible next 

alternative for identifying rare mutations whenever DHPLC, MLPA and cDNA sequencing are unrevealing. 

Deep-intronic mutations are particularly interesting from a therapeutic point of view. In case of a deep 

intronic mutation, the wild-type downstream splice sites remain unchanged, and thus can be utilized to 

force the cell to skip the pseudoexon. Such achievement may be obtained using antisense oligonucleotides 

(AONs) that, targeting the donor or acceptor site of the pre-mRNA, cause the skipping of the relevant 

pseudoexon. The rescue of splicing defects has been demonstrated both in vitro and in vivo, and clinical 

trials are already in phase II, as shown by Duchenne muscular dystrophy studies 10,11. This strategy has 

already found a proof of principle in the ATM gene where approximately half of unique mutations are 

splicing mutations 12,13. In particular, some of these mutations have been demonstrated to occur in deep 

intronic regions that are associated with the retention of intronic sequences in the mRNAs and AONs have 

been already been designed to successfully abrogate these ATM mutations 5,14. 

In the current study, we studied a new deep intronic mutation detected in an A-T patient using a NGS 

strategy to resequence the entire 160 kb ATM genomic region, after standard mutation detection 

techniques (DHPLC, MLPA and cDNA sequencing), failed to identify the second mutation. Our strategy to 

sequence the proband and the transmitting parent, in our case the mother, was very successful. The single 

nucleotide change (c.1236-405C>T) was novel and had not been reported in the dbSNP. It was predicted to 

be pathogenic for splicing within intron 11. The mutation created a new cryptic 5’ss with a strength of 1.00 

and activated a cryptic 3’ss site 212 bp upstream with a strength of 0.96. 
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cDNA analysis failed to identify the pseudoexon inclusion, likely due to an unbalanced amplification of the 

normal vs. mutated larger fragment, also related to the effect of nonsense mediated decay, considering 

that the pseudoexon contains multiple premature stop codons 15. Using a minigene construct we 

demonstrated that mutation c.1236-405C>T alters a donor splice site because it causes the inclusion of the 

pseudoexon only in the transcript from the plasmid carrying the mutation. Indeed, a residual amount of 

normal splice product is present even in the presence of the mutation, suggesting that it behaves as a leaky 

mutation. This is in agreement with a residual amount of ATM protein seen in patient’s Western blot and 

slow progression of neurological symptoms.  

To restore normal ATM splicing at the pre-mRNA level, we targeted a specific AMO to the aberrant splice 

site mutation. The efficiency of ATM correction was 26% with 50 µM neutral-AMO and varied from 50% to 

almost 95% with Vivo-AMO, depending on the concentrations used (1 and 2 µM). For restoration of ATM 

protein level, we reached 50% at 84 hours after 2 µM Vivo-AMO exposure. The restored ATM protein was 

functional for kinase activity, as assessed by phosphorylation of SMC1 after IR exposure, even at the lower 

dose of Vivo-AMO.  

Published data estimate that a subset of A-T patients with functional ATM protein levels around 5-20%  has 

a milder phenotype, with later onset and slower progression of neurological symptoms 16. Considering that 

obligate ATM heterozygotes have 40-50% of normal ATM protein levels and do not show any sign of 

disease 17, we have hypothesized that even a minimal rescue of functional ATM protein levels could provide 

therapeutic benefit in A-T patients. It remains undetermined, however, whether A-T patients can recover 

from long standing cerebellar damage. This question might be resolved by clinical trials of AON that would 

treat A-T patients of various ages and clinical severity. 

Chemically modified (Vivo) AMOs strongly enhance cell-delivery and efficiency. However, working 

concentrations of Vivo-AMO (2 µM) are toxic for cells. Therefore, future applications will require new AON 

derivatives (e.g., 2’-O-Methyl-Phosphorotioate).  
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Overall, we consider that NGS resequencing is feasible and affordable for clinical purposes. We calculate a 

total cost of 1,500 euro for NGS reagents, and this cost will most likely decrease in the near future.  
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Title and legends to figures 

 

Figure 1.  Mutation detection and cDNA analysis of the deep intronic mutation. 

(A) Western blot analysis of ATM protein showed reduced levels in AT34TO compared to healthy controls. 

(B) DHPLC / sequencing allowed the identification of a paternal mutation in exon 45 (c.6462G>A, 

p.(Trp2109Ter)). (C) Resequencing of the entire ATM genomic region allowed the maternal mutation 

c.1236-405C>T to be located in intron 11. (D) Schematic representation of intron 11 and flanking exons 

where the deep intronic mutation c.1236-405C>T is located. This mutation creates a cryptic donor (5’) 

splice-site in intron 11 and results in the inclusion of a pseudoexon of 212 bp in mRNA. (E) cDNA 

amplification with primers c11F and c12R showed the wild type band of 260 bp and an extra band of 472 bp 

containing the pseudoexon. (F) A minigene construct was constructed by subcloning 593 bp of intron 11 

into pSPL3 vector. RT-PCR using internal primers of the vector showed only one band of 282 bp in wild type 

(pATM-WT) corresponding to the synthetic exons b1- b2 of pSPL3; the plasmid containg the mutation 

(pATM-c.1236-405C>T) gave a normal 282 bp band and an upper band of 494 bp corresponding to the 

insertion of the 212 bp pseudoexon presented in the mutated clone only. Asterisks indicate bands probably 

due to minor alternative splice-sites products. MW1: 100 bp ladder plus (MBI-Fermentas); MW2: 

pUC19/MspI (MBI-Fermentas). CTRL: normal control. 

  

Figure 2.  Correction of splicing mutation using AMO 

(A) Schematic representation of the AMO strategy and location of the 5’blocking AMO. (B,C) Patient’s LCLs 

were treated for 48 hours with a maximum of 50µM neutral-AMO and with 1 and 2 uM of vivo-AMO that 

dramatically improved ATM splicing correction efficiency of pre-mRNA. (D, E) Immunoblots demonstrate 

restoration of ATM protein levels and its kinase activity after AMO. Cells were exposed to 1 and 2 µM vivo-

AMO for 84 hours before nuclear lysates were isolated for Western blots. AMO treated cells were 

harvested 30 min after irradiation damage (10 Gy) to activate ATM kinase. Nuclear lysates were isolated to 
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analyze SMC1-S966 phosphorylation. Nuclar extracts from normal cells were used as controls. Beta-actin 

was used as loading controls. MW1: 100bp ladder plus (MBI-Fermentas). CTRL: normal control. 
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Supplementary table 1. 

 Primers and PCR conditions for the ATM genomic sequence (from 5’UTR to 3’UTR) 

 

Amplimer  Primers (Forward/Reverse) Ta Betaine 

Fragment 1  

5’-cagtcaggtaacaggaaattttaggcac 62°C  

 5’-gtttgctttaacctgagtcttgttccttat   

Fragment 2  

5’-gctctttcaggggtcctaattaagtgt 62°C  

 5’-gagctgataagtaggaggttatcagagcta   

Fragment 3  

5’-gagagctactcagtggaatcaaggcatag 60°C 1.5 M 

 5’-gtaagtagaggcccacactttaagacagac   

Fragment 4  

5’-gttactgcttctcccttctgagagtatatcaa 60°C 1.5 M 

 5’-ggtgttagaccaaaaatgatcccaagt   

Fragment 5  

5’-gacttagaactaattttgctttccaaggta 62°C  

 5’-cgctttagttaagttagacaggtaggaaga   

Fragment 6  

5’-gcttcttcctacctgtctaacttaactaaagcg 63°C  

 5’-gtcttgaggaagatagtaagagctgctaag   

Fragment 7  

5’-atcttagcagctcttactatcttcctcaagac 62°C  

 5’-cttttccccagaagtcacttacacttaaac   

Fragment 8  

5’-cgcttcaacaatagattttagcatacg 62°C  

 5’-ccctatttctccttcctaacagtttaccaa   

Fragment 9  

5’-cttactttcttgaagtgaacaccacca 62°C  

 5’-agtgtcccaggaataaaagagtcatct   

Fragment 10  

5’-gtctctaatgcaatgtgcaggagaaagtat 63°C  

 5’-taaagtgttacccaaagagggtgtagg   

Fragment 11  

5’-actttatttatttagcagtgcatggtatt 62°C  

 5’-aggagcatgctgtagtcaaaatttacc   

Fragment 12  

5’-gtactgtagttttcatacttacacatgaaccttg 62°C  

 5’-aaataaccagataaggacaaggccaat   

Fragment 13  

5’-tttttccctcctaccatctt 60°C 1.5 M 

 5’-cagatggcagtagaatgtcttaca   
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Fragment 14  

5’-tagcacagaaagacatattggaag 60°C  

 5’-cacaatgggtcaaatcatagcaa   

 

Fragment 15  

5’-gatgcttcaaaaacatcaaagctgaaaatcat 62°C  

 5’-gatttaaaaatgggaccttgttcagtag   

Fragment 16  

5-tagttaacaatacttagcaagtcccctcacca 58°C  

 5’-gctcctcctaagccactttttatatctttc   

Fragment 17  

5’-tgatatcaaacccaaatctaaattctgtta 62°C  

 5’-gaactaagtctgtgacaatgaaaccaagag   

Fragment 18  

5’-attgtagggtttgcagtggaagaaatc 60°C  

 5’-gcacagagaataagtaatagaagaccctgtc   

Fragment 19  

5’-agatgttttaggctcttgtcagtatcagag 62°C  

 5’-aattctatcgtatctgcaccacagtaccta   

Fragment 20  

5’-cttgtgtgcatttgtattagctattctgtg 62°C  

 5’-ccaacaacactatgatcaagaaatctacac   

Fragment 21  

5’-atctacagaagtataggggagccagatagt 62°C  

 5’-gcttacacatctcttccacttcttttactc   

Fragment 22  

5’-cactgttgcttgttagtattattagatcagtagc 62°C  

 5’-acagtgagctgatattcactaagcaggt   

Fragment 23  

5’-ggaagaggaaatgaatgagagaactaaa 63°C  

 5’-gtttttaagtcccagggcagttttagtaa   

Fragment 24  

5-acgttactttcttgctgtgttactctctgt 61°C 1.5 M 

 5’-tagttccaggtagtcaatgtatgctcttgt   

Fragment 25  

5’-acttgttctaccatctattgacctgacttc 61°C 1.5 M 

 5’-ggaaccacctggagttacagattaaatac   

Fragment 26  

5’-cagttaattcctctcctaactggacaaact 63°C  

 5’-atgtctatcaccaagtccaagtatgtaacc   

Fragment 27  

5’-ggttatgcacatcatttaagtaggctaaa 61°C  

 5’-tatctctggtgagtctaaaaggaactgtct   
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Fragment 28  

5’-gtggatctcacagacagtgacaaagat 63°C  

 5’-taagatttctgaggccctaaaagaactacc   

Fragment 29  

5’-aaagagtcaaagcagcttaacatattcttt 58°C  

 5’-taagagaagaaaagaaatgaatccaagaga   

Fragment 30  

5’atctacctaatcttccctccgtaaatctgt 60°C  

 5’-ctggatgcaacaactagcaagaattag   

Fragment 31  

5’-gactataaatttcttggtttgacttctggag 60°C  

 5’-gtagaattggtatcatttcatagatggcact   

 

 

 


