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Abstract

In this paper we present a fast algorithm for two-dimensional interpolation of large
scattered data sets. It is based on the partition of unity method, which makes use of
compactly supported radial basis functions as local approximants. This interpolation
technique is characterized by the use of an efficiently implemented nearest neighbour
searching procedure, which exploits a suitable and optimal partition of the domain in
strips obtained in a completely automatic way. Analysis of computational complexity and
numerical results show efficiency and accuracy of the proposed algorithm, also considering

an application to Earth’s topography.
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1. Introduction.

In the last decades, efficient methods and algorithms using radial ba-
sis functions (RBFs) have gained popularity in various areas of scientific
computing such as multivariate interpolation, approximation theory, mesh-
free (or meshless) methods, neural networks, computer graphics, computer
aided geometric design (CAGD) and machine learning. In particular, the
need of having fast algorithms and powerful and flexible software is of great
interest mainly in applications, where the amount of data to be interpolated
is often very large, say many thousands or millions of data (see, e.g., [1—0]
for an overview).

In [7] a modified Shepard’s algorithm for bivariate interpolation of large
scattered data sets was proposed. The main novelty of the paper consisted in
constructing a partition of the domain in a suitable number of parallel strips
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and in the use of local neighbourhoods, in order to obtain an optimized
strip searching procedure to be applied in the nearest neighbour searching
technique. This process allowed us to achieve good efficiency. Moreover, this
algorithm was proposed in [8] for spherical interpolation (see [9] for further
details), and then extended in [10] to the more general Partition of Unity
Method [11].

Now, in this paper we present a partition of unity algorithm for bi-
variate interpolation, suitably modifying the efficient searching procedure
implemented in [10] for interpolation on the sphere to interpolation on a
plane domain. In particular, we here combine the partition of unity method
with compactly supported radial basis functions (CSRBF's) like Wendland’s
functions [6]. In fact, the use of a local approach along with Wendland’s
functions of arbitrary low smoothness, which are less ill-conditioned than
higher-order basis functions such as Gaussians and other RBFs of infinite
smoothness, give us good accuracy and stability. Furthermore, this approx-
imation technique and the related fast algorithm can successfully be used
in applications of two-dimensional interpolation processes.

The paper is organized as follows. In Section 2 we consider CSRBF in-
terpolation. Section 3 presents the partition of unity method using CSRBF's
as local approximants. In Section 4 the partition of unity algorithm is de-
scribed, whereas in Section 5 its computational complexity is analyzed. Sec-
tion 6 shows some numerical tests concerning effectiveness and accuracy of
the considered algorithm for both some test cases and an application to
Earth’s topography data.

2. CSRBF interpolation.

Let X, = {z;}}_; be a set of distinct nodes, arbitrarily distributed in
a domain Q C RN, N > 1, with an associated set F,, = {f;}I'.; of data
values. Thus, we define the classical interpolation problem.

Problem 2.1. Let X, = {z;}}_, denote a set of distinct data points on the
domain Q@ C RN, and let F,, = {fi}", denote the set of the correspond-
ing data values of an unknown function f : Q — R. Find a (continuous)
function s : Q@ = R, which satisfies the interpolation conditions

(1) 5($i):fi7 1=1,2,...,n.

Now, referring to CSRBF interpolation, we can express this problem as
follows.

Definition 2.1. Given aset X,, = {z;}}_; of distinct data points arbitrarily
distributed on © C RV, and the associated set F,, = {f; »_, of data values
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of a function f :  — R, a compactly supported radial basis function
interpolant s : {2 — R has the form

(2) s(z) = Z%‘Qﬁ(d(.ﬁb,%j)), z €,
j=1

where d(z, z;) = ||r—x,||2 is the Euclidean distance, ¢ : [0, 00) — Ris called
compactly supported radial basis function, and s satisfies the interpolation
conditions (1).

With regard to existence and uniqueness of the interpolation problem,
we recall that the solution exists and is unique in the interpolation space

(3) Ty = span{¢(d(-, x1)), ..., ¢(d(-,zn))}
if and only if the corresponding interpolation matrix A € R™*", that is

is nonsingular. In fact, it is known that a sufficient condition to have non-
singularity is that the corresponding matrix is positive definite. Thus, if A is
a positive definite matrix, then all its eigenvalues are positive and A is non-
singular (see, e.g., [3]). Note that here we do not add any polynomial term
to the radial basis function as in general one can do in RBF interpolation.

Definition 2.2. Let &, = {z;}!'; be a set of n distinct data points on
Q C RY. A continuous function ¢ : [0,00) — R is called positive definite of
order n on €, if

(5) D) aiaie(d(xi,z;)) > 0,

i=1 j=1

for any a = [a1,az,...,a,)T € R™. The function ¢ is called strictly positive
definite of order n if the quadratic form (5) is zero only for a = 0. If ¢ is
strictly positive definite for any n, then it is called strictly positive definite.

Then, if ¢ is strictly positive definite, the interpolant (2) is unique,
since the corresponding interpolation matrix (4) is positive definite and
hence nonsingular.

An example of strictly positive definite CSRBFs is given by Wendland’s
functions (see [0]). Some of the most commonly used functions for N = 2
(that are also strictly positive definite and radial on R, N < 3) are here
listed along with their degree of smoothness

o1(r)=(1- cr)gk (4der 4+ 1), (Wendland’s C? function)

(6) $2(r) = (1 —cr)} (35021“2 + 18cr + 3), (Wendland’s C* function)
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where (-)1 denotes the truncated power function, ¢ € R™ is a shape param-
eter, and r = ||z — x;||2. These functions are nonnegative for r € [0,1/¢],
and are zero for r > 1/c.

3. Partition of unity method.

The partition of unity method was suggested in [12,13] in the mid 1990s
in the context of meshfree Galerkin methods for the solution of partial
differential equations (PDEs), even if now it is also an effective method for
fast computation in the field of approximation theory (see, e.g, [1,3,6,11]).

The basic idea of the partition of unity method is to start with a par-
tition of the open and bounded domain © C RY into d cells (subdomains)
1; such that Q C U;lzl 1; with some mild overlap among the cells. At
first, we choose a partition of unity, i.e. a family of compactly supported,
non-negative, continuous functions W; with supp(W;) C ; such that

(7) ZW](@’) =1, x € Q.

Then, for each cell €2; we consider a compactly supported radial basis func-
tion R; as local approximant and form the global approximant given by

(8) I(z) = ZRj(x)Wj(x), z €.

Note that if the local approximants satisfy the interpolation conditions at
data point z;, i.e.

(9) Rj(z;) = (=),

then the global approximant also interpolates at this node, i.e.

(10) Z(zi) = f(zi), fori=1,2,...,n.

In order to be able to formulate error bounds we need some technical
conditions. Then, we require the partition of unity functions W; to be k-
stable, i.e. each W; € C¥RY), j = 1,2,...,d, and for every multi-index
a € Nj* with |a| < k there exists a constant C, > 0 such that

(11) 1D Wil () < Ca/o),

where §; = diam(;).
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In accordance with the statements in [11] we require some additional
regularity assumptions on the covering {2; }?:1.

Definition 3.1. Suppose that Q C R¥ is bounded and &, = {x;}/_; C Q
are given. An open and bounded covering {Qj};l:l is called regular for
(Q, X,) if the following properties are satisfied:

(a) for each x € €, the number of cells Q; with « € €; is bounded by
a global constant K;

(b) each cell €; satisfies an interior cone condition (see, e.g., [0]);

(c) the local fill distances hyx; o, are uniformly bounded by the global
fill distance hy, o, where X; = A, N Q;.

Therefore, after defining the space C¥(RM) of all functions f € C*
whose derivatives of order || = k satisfy D f(x) = O(||z||}) for ||x|]2 — 0,
we consider the following convergence result (see, e.g., [3,0] and references
therein).

Theorem 3.1. Let Q C RY be open and bounded and suppose that X, =
{2}, C Q. Let ¢ € CF¥RYN) be strictly conditionally positive definite
function of order m. Let {Qj}?zl be a regular covering for (2, X,) and let
{Wj}?zl be k-stable for {Qj};l:y Then the error between f € Ny(Q), where
Ny is the native space of ¢, and its partition of unity interpolant (8) can
be bounded by

(12) 1D f(z) — DZ(2)| < OB 71 £l 0

for all x € Q and all |a] < k/2.

Note that the partition of unity preserves the local approximation order
for the global fit. Hence, we can efficiently compute large CSRBF inter-
polants by solving small CSRBF interpolation problems and then combine
them together with the global partition of unity {VVj}?:l. This approach
enables us to decompose a large problem into many small problems, ensur-
ing that the accuracy obtained for the local fits is carried over to the global
fit.

4. Partition of unity algorithm.

In this section we present the partition of unity algorithm for bivariate
interpolation of scattered data lying on the domain 2 = [0,1] x [0,1] C
R?. This technique is based on the partition of € in a suitable number of
strips, the construction of a number of d cells €); such that € C U;-lzl Q;
with some mild overlap among the cells, and then the employment of an
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optimized strip searching procedure. Finally, the partition of unity method
is combined with CSRBFs.

For simplicity, we subdivide the description of the algorithm in three
parts, namely distribution, localization and evaluation phases. We remark
that only one strip structure is used for both localization and evaluation
phases.

4.1. Distribution phase.

Let us now consider a set X, = {(z;, y;)}_, of data points, a set F,, =
{fi}, of data values, a set Cy = {(Z;, %)}, cell points, and a set & =
{(Zs,7i) };_; of evaluation points.

Initially, the set A, of nodes is ordered with respect to a common direc-
tion (e.g. the y-axis), by applying a quicksort, procedure. Then, for each
cell point (Z;,9;), i = 1,2,...,d, a local circular cell is constructed, whose
half-size (the radius) depends on the cell number d, that is

2

13 Ocell = A/ =-

( ) cell d

This value is suitably chosen, supposing to have a uniform node distribution
and assuming that the ratio n/d ~ 4.

After the number of strips to be considered is found taking

14 - [&izj ’

the strips are numbered from 1 to ¢. Such a choice follows directly from the
side length of the domain €2, that here is 1, and the cell radius dc¢j;.
Now, the following three structures are considered:

e a suitable family of ¢ strips of equal width dstrip = dcerr (With possi-
ble exception of one of them) on the unit square and parallel to the
xr-axis is constructed;

e the set X}, of nodes is partitioned by the strip structure into g subsets
Xy, whose elements are (g1, Yk1), (Th2, Uk2), - > (Thng» Ykny, ), k =
1,2,...,q.

e the set Cy of cell points is partitioned by the strip structure
into ¢ subsets Cq4,, whose elements are (Zyi1,Yr1), (ZTk2,Uk2), - - -

(Zhdy> Ukdy)s B =1,2,...,q.

4.2. Localization phase.

In order to identify the strips to be examined in the searching procedure,
we consider two steps as follows:
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(i) Since Ostrip = Oceni, the ratio between these quantities is denoted by
i* = Oceit /Ostrip = 1. So the number j* = 2i* 41 of strips to be examined
for each node is 3.

(ii) For eachstrip k, k =1,2,...,q, astrip searching procedure is considered,
examining the nodes from the strip k — ¢* to the strip k 4 i*. Note that
if k—4i* <1lork+i" > qit will be assign k —¢* =1 and k4 ¢* = q.

After defining the strips to be examined, a strip searching procedure is
applied for each cell point of Cy,, k = 1,2,...,q, to determine all nodes
belonging to a cell. The number of nodes of the cell centered at (Z;,¥;) is

counted and stored in m;, 1 =1,2,...,d.
Thus, a local interpolant R;, j = 1,2,...,d, is constructed for each cell
point.

4.3. Ewvaluation phase.

The set & of evaluation points is ordered with respect to a common
direction (e.g. the y-axis), by applying a quicksort, procedure. Then, the
set & is partitioned into g subsets &,,, k = 1,2, ..., ¢, so that the evaluation
points of £, belong to the k-th strip.

A strip searching procedure is applied for each evaluation point of &, ,
k=1,2,...,q, in order to find all those belonging to a cell of center (z;, ¥;)
and radius d.e;. The number of cells containing the i-th evaluation point is
counted and stored in r;, 1 =1,2,...,s.

Thus, a local approximant R;(x,y) and a weight function Wj(z,y),
j = 1,2,...,d, is found for each evaluation point. Finally, applying the
global fit (8), the surface can be approximated at any evaluation point
(x,y) € &s.

5. Complexity analysis.

The partition of unity algorithm involves the use of the standard sort-
ing routine quicksort, which requires on average a complexity O(mlogm),
where m is the number of nodes to be sorted. Specifically, we have a distri-
bution phase consisting of building the data structure, in which the com-
putational cost has order O(nlogn) for the sorting of all n nodes and
O(slog s) for the sorting of all s evaluation points. Moreover, in order to
compute the local CSRBF interpolants, we have to solve d linear systems
of small dimensions, thus requiring a computational cost of order O(m?),

i =1,2,...,d, for each cell, where m; is the number of nodes in the i-th cell.
Finally, for the k-th evaluation point of £ we also need a cost of ri - O(my),
1=1,2,...,d, k =1,2,...,s, where r; is the number of cells containing

the k-th evaluation point.
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6. Numerical experiments.
6.1. Results on test cases.

In this subsection we report some tests to verify performance and effec-
tiveness of the partition of unity algorithm on scattered data sets. The code
is implemented in C language, while numerical results are carried out on a
Intel Core 2 Duo Computer (2.1 GHz). In the experiments we consider three
sets of scattered data points consisting of n = (2¥ + 1)2, k = 6,7, 8, Hal-
ton nodes [14]. The partition of unity algorithm is run considering d = 47,
Jj = 5,6,7, cell points and s = 33 x 33 evaluation (grid) points, which
are contained in the unit square @ = [0,1] x [0,1]. Here, for the global
interpolant (8) we use Shepard’s weight.

The performance of the algorithm is verified taking the data values by
the following two test functions (see, e.g., [7])

filz,y) = %ycos4 4 (x2 +y-1)],

fa(x,y) = 2 cos(10x) sin(10y) + sin(10xy).

Since we are interested in analyzing effectiveness of the proposed algo-
rithm, in Table 1 we report CPU times (in seconds) obtained by running
the partition of unity algorithm.

Table 1. CPU times (in sec-
onds) obtained by running the
partition of unity algorithm.

n d CPU times
4225 1024 0.359
16641 4096 1.250

66049 16384 6.453

Then, to test accuracy of the local algorithm, in Tables 2 and 3 we report
the root mean square errors (RMSEs) computed on the two considered
test functions. Error computation is achieved by considering CSRBF's ¢4
and ¢, taking a good value of the shape parameter, i.e., ¢ = 1. In fact,
in Figures 1 and 2 we analyze the behaviour of the RMSEs by varying
the shape parameters ¢ of ¢; and ¢2 in the interval [0.1,2] for the test
function f1; similar results were also obtained for fs. From this analysis
we observe that Wendland’s functions C? and C* are stable for any value
of ¢, enabling us a sort of “free choice” of the related shape parameter.
This property makes Wendland’s functions suited for application, where it
is usually easier to have instability problems.
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Figure 1. RMSEs obtained by varying the shape parameter of ¢ for fi.
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Figure 2. RMSEs obtained by varying the shape parameter of ¢o for fi.

Table 2. RMSEs obtained by CSRBFs with ¢ =1
for f1.

n 4225 16641 66049
¢1  3.2439E -4 14893E -4 4.0539E —5
¢2 3.3841E -4 1.7614E -4 4.1192E -5

Finally, we compare accuracy and efficiency of the partition of unity
algorithm with the modified Shepard’s algorithm presented in [7]. Both
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Table 3. RMSEs obtained by CSRBF's with ¢ = 1
for fo.
n 4225 16641 66049
¢1 1.7701E—-3 4.4138E—-4 1.1060E — 4
¢2 1.0402E —3 2.8310E —4 4.4449E — 5

algorithms are based on the partition of the domain in strips and the use
of a strip-based searching procedure in the process of node localization.
Numerical tests reported in Table 4 show comparable results in accuracy
and higher efficiency of the partition of unity algorithm then the modified
Shepard’s algorithm, the latter being run taking ny = 16 and nyy = 13 as
localization parameters (see [7]). See e.g. also [2] for a comparison with the
proposed algorithm.

Table 4. Comparison of RMSEs and CPU times (in seconds) obtained by apply-
ing the partition of unity algorithm and the modified Shepard’s algorithm in [7]
with ¢ = 0.7 for f;.

Partition of unity algorithm | Modified Shepard’s algorithm
n RMSE tsec RMSE tsec
¢1 | 3.4642E — 4 0.36 3.3540E — 4 1.31
4225 ¢2 | 3.1528E — 4 0.36 5.8690E — 4 1.31
¢1 | 1.5651E — 4 1.25 1.3801E — 4 3.02
16641 | ¢2 | 1.7078E — 4 1.25 2.7634E — 4 3.02
¢1 | 4.2711E -5 6.45 3.0298E — 5 10.31
66049 | ¢2 | 4.0663E — 5 6.45 6.3643E — 5 10.52

6.2. Application to Earth’s topography.

In this subsection we consider an application to Earth’s topography [15].
The case concerns the use of topography data by MATLAB, which is avail-
able from the National Geophysical Data Center, NOAA US Department
of Commerce under data announcement 88-MGG-02.

The data set is stored in a MAT file, called topo.mat, while the variable
topo contains the altitude data for the Earth. A representation on the
plane of this data is given in Figure 3. Specifically, in this case we have
64800 topography data, and among them we randomly select 64700 nodes
for the interpolation process, only reserving the remaining 100 points for
the cross-validation. It is used to evaluate the approximation results, and
the performance of partition of unity algorithm, comparing the predicted

10
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values with the original ones. In order to have a reliable result on the error,
it is more appropriate to use relative (or normalized) errors, such as the
Relative Root Mean Square Errors (RRMSEs).

100 —

4000

2000

—2000

4000

-6000

_ 1 1 1 1 1 1 |
-50 0 50 100 150 200 250 300 350 400

Figure 3. Earth’s topography.

Thus, in Table 5 we report the RRMSEs obtained by varying the shape
parameter, taking ¢ = 0.5, 1.0, 1.5, 2.0. These results point out the goodness
of our approach, also in applications where one has to deal with real data.

Table 5. RRMSEs obtained by using the partition of unity algo-
rithm on Earth’s topography data.

c 0.5 1.0 1.5 2.0
¢1  4.3685E —3 4.3672E -3 4.3658E —3 4.3643E — 3
¢2 6.0764E —3 6.0468E —3 6.0502E —3 6.0543E — 3

7. Conclusions and future work.

In this paper we present a local algorithm for scattered data interpo-
lation in a two-dimensional domain. It is based on the partition of unity
method and can efficiently be used also when the amount of data to be in-
terpolated is quite large. In particular, this efficient implementation of the
partition of unity method is carried out by applying an optimized nearest
neighbour searching procedure. Then, an application to Earth’s topogra-
phy shows as our approach might also be employed successfully in various
situations of real life.

11
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As research and future work we expect to refine the proposed algorithm
considering a double structure of crossed strips, which should allow us to
produce a remarkable reduction of the computational cost thanks to the
use of an effective cell-based searching procedure. Moreover, an interesting
approach could be to develop an adaptive algorithm which allows us to
suitably increase the sizes of the cells when it turns out to be necessary: for
example, if the node distribution is not uniform or when the number of data
points falling in any cell is not sufficient to obtain a good approximation
result. Finally, if one wanted to use radial basis functions such as Gaussians,
multiquadrics, inverse multiquadrics etc., which are basically more accurate
than Wendland’s functions but usually very ill-conditioned, application of
preconditioning techniques (see, e.g., [16]) might be of sure interest.
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