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ANTONIO CANALE

Statistical aspects of the scalar
extended skew-normal distribution

Summary - This paper presents some inferential results about the extended skew-
normal family in the scalar case. For this family many inferential aspects are still
unexplored. The expected information matrix is obtained and some of its properties
are discussed. Some simulation experiments and an application to real data are pre-
sented pointing out not infrequent estimation problems such as different estimates in
function of the starting values of the algorithmwhich leads to substantially equivalents
densities. All these issues underline a problem of near unidentifiability.

Key Words - Extended skew-normal distribution; Information matrix; Skew-normal
distribution.

1. Introduction

The skew-normal family (Azzalini, 1985) is a family of probability distri-
butions which includes the normal one as a special case. It retains much of the
mathematical tractability and some nice formal properties of the normal family.
In addition in the last years a strong stream of statistical literature has led to
several inferential results for this family of distributions both in the univariate
and in the multivariate case. In the scalar case, if a random variable X is
distributed as a skew-normal with location ξ , scale ω and shape α, written
X ∼ SN(ξ,ω,α), the density function of X is

fX (x) = 2

ω
φ

(
x − ξ

ω

)
%

(
α
x − ξ

ω

)
,

where φ(·) and %(·) are the density and the distribution function of a N (0, 1)
respectively, ξ ∈ R, ω ∈ R+ and α ∈ R.

By generalizing this model adding a fourth parameter τ , one can obtain
another family of probability distributions known as extended skew-normal. In
the univariate case this family of distributions is already presented in the seminal
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paper of Azzalini (1985) and it is studied subsequently in Arnold et al. (1993).
Extensions to the multivariate context are studied in Arnold and Beaver (2000)
and in Capitanio et al. (2003). A random variable Y is distributed as an
extended skew-normal with position ξ , scale ω, shape α and truncation τ ,
written Y ∼ ESN(ξ,ω,α, τ ) if its density function is

fY (y) = 1

ω
φ

(
y − ξ

ω

)
%

(
α0(τ ) + α

y − ξ

ω

)
/%(τ ), (1)

where α0(τ ) = τ
√

α2 + 1. The reason of the name for the fourth parameter
will be explained later. If τ = 0, we are back to the SN(ξ,ω,α) distribution.

In the next section, some properties of this distribution will be discussed.
In Section 3, the expression of the expected information matrix is presented
and some of its characteristics and similarities with those of the skew-normal
and of the normal are discussed. In Section 4, some of the characteristics of
the likelihood function are discussed, and the maximum likelihood estimates
for some simulated samples are obtained showing some numerical difficulties.
Finally, in Section 5, an application to the well known AIS dataset is discussed.

2. Properties of the density function

Variations of the first two parameters lead to position and scale changes
while the increase in absolute value of the α parameter increases the skewness
of the density. Opposite values of α lead to density function mirrored on the x
axis as in Property C of the work of Azzalini (19685). As τ increases on the
positive semi-axis, the skewness reduces and the density function tends to be
normal while as τ increases in absolute value, but on the negative semi-axis,
the density function still seems to lose its skewness showing a shift (to positive
values if α is positive, to negative values otherwise) proportional to the value
of τ . This kind of behaviour can be seen in Figure 1.

The reason of this and of the name truncation for the parameter τ rises
from one of the possible generation mechanisms of the density already presented
in the work of Arnold et al. (1993) as hidden truncation model. Consider the
random vector (V,Y )% distributed as a bivariate normal distribution with zero
mean vector and variance matrix with unit diagonal and correlation δ. Said

f̃V,Y (v, y) its density function, let us define

fV,Y (v, y) =






f̃V,Y (v, y)

1− %(−τ )
v ≥ −τ

0 otherwise
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Figure 1. Density function of an extended skew-normal distribution as τ increases (top row) and as τ
decreases (bottomrow). Thedashed line represents thedensityof a standardnormaldistribution.

the density function of the vector (V,Y )% with V truncated below −τ . Margin-
alizing out with respect to the truncated component, we obtainY∼ESN(0,1,α,τ ),

where α = δ/
√
1− δ2. This argument explains the behaviour of the density for
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changes in τ . In fact if τ → +∞, the truncation tends to −∞ and hence it
is negligible, with the marginal of Y being normal. Without loss of generality,
let ξ = 0 and ω = 1 to simplify notation, then

lim
τ→+∞

1

%(τ )
φ (y)% (α0(τ ) + α (y)) = φ(y). (2)

On the other side, if τ → −∞, the truncation is very strong ameaning that we
are observing the tail of the marginal.

Analytically, using the de l’Hospital theorem, we obtain

lim
τ→−∞

1

%(τ )
φ(y)%(α0(τ ) + αy) = lim

τ→−∞

1√
1− δ2

φ

(
y + δτ√
1− δ2

)
, (3)

where

δ = α√
α2 + 1

. (4)

As τ → −∞ the density tends to be N (−δτ ,1 − δ2) and hence the limit
distribution when |τ | → ∞ is normal. Practically we can achieve very non-
skewed densities also for finite values of τ .

Define the ζ0(·) function and its derivatives as

ζ0(x) = log(%(x)),

ζm(x) = dm

dxm
ζ0(x) (m = 1, 2, . . . )

(5)

and consider the third standardized cumulant, given by

γ1 = δ3ζ3(τ )
[
1+ δ2ζ2(τ )

]3/2 .

The third standardized cumulant was already introduced in Capitanio et al.

(2003) for the multivariate extended skew-normal. In the multivariate case it
coincides with the index of multivariate skewness of Mardia (1970). Fixed τ
the γ1 index is monotone with respect to α, as in the skew-normal distribution,
while it is not the case if we let τ vary and we fixed α. A plot of the γ1
index in function of τ for some α is given in Figure 2. The skewness is close
to zero for τ > 3 (γ1 < 0.036 for α = 15 and τ = 3) and it reduces also
for decreasing τ . The value of τ for which γ1 is approximately zero heavily
depends on α. The maximum value of γ1 is about 1.995.
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Figure 2. Skewness index γ1 in function of τ for some α.

Some peculiar shapes of the density function can be obtained for some com-
binations of the parameters α and τ . In particular there are cases in which
the shape of the density shows an evident sharp drop on one tail as those of
Figure 3. This behaviour can be seen for |α| > 7 and τ greater than 0 and less
than 3. Clearly these indications are merely qualitative, because there is not a
pointwise threshold for which the sharp drop shape is evident or not. We can
add that the greater is the absolute value of α, the more evident is the sharp
drop of the tail.
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Figure 3. Sharp drop on the shape of the density function of an extended skew-normal. The densities are
ESN(0, 1, 30, 1.5) (a) and ESN(0, 1, 30, 2.5) (b).
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We want to conclude this section pointing out that there is not an analytic
expression for the cumulative distribution function of the scalar extended skew-
normal. However an expression for P(Y > 0) is obtained in the following
lemma.

Lemma 1. Let Y ∼ ESN(0, 1,α, τ ) and T (h, a) the function studied by Owen
(1956). Then

P(Y > 0) = 1

2
+ T (τ,α)

%(τ )
. (6)

Proof. Let us obtain first the result P(Y < 0).

P(Y < 0) =
∫ 0

−∞
%(τ )−1φ(y)%(τ

√
α2 + 1+ αy) dy

= %(τ )−1
∫ 0

−∞

∫ +∞

−τ

1

2π
√
1− δ2

exp

{

−
(
t2 − 2δyt + y2

)

2(1− δ2)

}

dt dy,

using well known results about the transformation of correlated bivariate normal
variates to uncorrelated ones, we can arrive at

P(Y < 0) = %(τ )−1
∫ +∞

−τ

∫ −αu

−∞
φ(u)φ(v) dv du,

= 1

2
− T (τ,α)

%(τ )

that gives equation (6).

In Gupta and Pillai (1965) an equivalent expression for Lemma 1 is given.
The results in their Lemma 2 gives an expression for the integral on the positive
real line of the normal cdf of a linear combination of a normal random variable
multiplied for its density. With suitable notation changes and normalizing
constant this can be seen as the probability of obtaining a positive draw from
an extended skew normal distribution.

3. Likelihood function and expected information matrix

3.1. The expected information matrix

Let Y ∼ ESN(ξ,ω,α, τ ). Denoting with θ = (ξ,ω,α, τ ) the vector of the
parameters, given an observation y of Y , the log-likelihood function is

,(θ) = −ζ0(τ ) − 1

2
log(ω2) − 1

2

(
y − ξ

ω

)2
+ ζ0

(
α0 + α

y − ξ

ω

)
. (7)
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Let z = (y − ξ)/ω, the score function is

∂,

∂θ
=





1

ω
[z − αζ1(α0 + αz)]

1

ω

[
z2 − αzζ1(α0 + αz) − 1

]

ζ1(α0 + αz)

(
τα√

α2 + 1
+ z

)

ζ1(α0 + αz)
√

α2 + 1− ζ1(τ )





,

while the second partial derivatives of the log-likelihood (7) are

∂2,

∂ξ 2
= 1

ω2

(
α2ζ2(α0 + αz) − 1

)
,

∂2,

∂ξ∂ω
= 1

ω2

(
−2z + αζ1(α0 + αz) + α2zζ2(α0 + αz)

)
,

∂2,

∂ξ∂α
= − 1

ω

(
τα2 + αz

√
1+ α2√

α2 + 1
ζ2(α0 + αz) + ζ1(α0 + αz)

)

,

∂2,

∂ξ∂τ
= −α

√
α2 + 1

ω
ζ2(α0 + αz),

∂2,

∂ω2
= 1

ω2

(
−3z2 + 2αzζ1(α0 + αz) + (αz)2ζ2(α0 + αz) + 1

)
,

∂2,

∂ω∂α
= − z

ω

((
τα2√
α2 + 1

+ αz

)

ζ2(α0 + αz) + ζ1(α0 + αz)

)

,

∂2,

∂ω∂τ
= −αz

√
α2 + 1

ω
ζ2(α0 + αz),

∂2,

∂α2
=

(
τα√

α2 + 1
+ z

)2
ζ2(α0 + αz) + τ

(α2 + 1)3/2
ζ1(α0 + αz),

∂2,

∂α∂τ
= (ατ + z

√
α2 + 1)ζ2(α0 + αz) + α√

α2 + 1
ζ1(α0 + αz),

∂2,

∂τ 2
= (α2 + 1)ζ2(α0 + αz) − ζ2(τ ).

To compute the elements of the expected information matrix, it is useful to
introduce the following lemma.

Lemma 2. Let Z ∼ ESN(0, 1,α, τ ), ζ1(x) the first derivative of the function
defined in expression (5), α0 = τ

√
α2 + 1 and g(x) = ατ +

√
α2 + 1x, then:

E[ f (Z)ζ1(α0 + αZ)] = ζ1(τ )√
α2 + 1

E[ f (g−1(U))]
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where U ∼ N (0, 1) and f (·) is a function from R in R such that the involved

integrals exist.

Proof.

E[ f (Z)ζ1(α0 + αZ)] =
∫

R
f (z)

φ(α0 + αz)

%(α0 + αz)

1

%(τ )
φ(z)% (α0 + αz) dz

= 1

%(τ )

∫

R
f (z)φ(z)φ(α0 + αz)dz

= 1

%(τ )

∫

R
f (z)

1

2π
exp

{
−1
2

(
z2 + (α0 + αz)2

)}
dz

= 1

%(τ )

∫

R
f (z)

1

2π
exp

{
−1
2

(
ατ +

√
α2 + 1z

)2}

× exp

{

−τ 2

2

}

dz

= φ(τ )

%(τ )

∫

R
f (z)

1√
2π

exp

{
−1
2

(
ατ +

√
α2 + 1z

)2}
dz

= ζ1(τ )√
α2 + 1

E[ f (g−1(U))].

Some useful results obtained using Lemma 2 are

E[ζ1(α0 + αZ)] = ζ1(τ )√
α2 + 1

,

E[Zζ1(α0 + αZ)] = −ατ
ζ1(τ )

α2 + 1
,

E[Z2ζ1(α0 + αZ)] = (1+ α2τ 2)
ζ1(τ )

(α2 + 1)3/2
,

E[Z3ζ1(α0 + αZ)] = −(3ατ + α3τ 3)
ζ1(τ )

(α2 + 1)2
,

E[(α0 + αZ)ζ1(α0 + αZ)] = τζ1(τ )

α2 + 1
,

E[ζ2(α0 + αZ)] = − τζ1(τ )

α2 + 1
− E[ζ1(α0 + αZ)2],

where the last expression is obtained exploits the formula

ζ2(x) = −ζ1(x) [x + ζ1(x)] .
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Lengthy algebra leads to the expressions for each of the elements Ii j of the
expected information matrix. They are

I11 = 1

ω2

(
1+ δ2τζ1(τ ) + α2a0

)
,

I12 = 1

ω2

[

ζ1(τ )δ

(
1+ 2α2 − (α2 + 1)δ2τ 2

α2 + 1

)

+ α2a1

]

,

I13 = 1

ω

(
ζ1(τ )

(1+ α2)3/2
− ταδa0 − αa1

)
,

I14 = − 1
ω

(
δτζ1(τ ) + α

√
α2 + 1a0

)
,

I22 = 1

ω2

(
2+ α2a2 + δ4τ (τ 2 − 3)ζ1(τ )

)
,

I23 = 1

ω

(−2ατζ1(τ )

(1+ α2)2
− ταδa1 − αa2

)
,

I24 = α
√

α2 + 1

ω

(
αζ1(τ )(τ 2 − 1)

(1+ α2)3/2
− a1

)

,

I33 = (τδ)2a0 + 2τδa1 + a2,

I34 = ατa0 +
√

α2 + 1 a1,

I44 = (α2 + 1)a0 − ζ1(τ )2,

where δ is given by expression (4) and the quantity ak , with k = 0, 1, 2, are
redefined similarly to the analogous for the skew-normal distribution as

ak(α, τ ) = E
[
Zk

(
ζ1(τ

√
α2 + 1+ αZ)

)2]
. (8)

The aks depend on both parameters α and τ , and need to be evaluated numer-
ically.

3.2. Some properties of the expected information matrix

It is easy to check that the information matrix in Subsection 3.1 when
τ = 0 is exactly that of Azzalini (1985) for the parameter (ξ,ω,α). Moreover
the analogies with the skew-normal information matrix do not refer only to the
case τ = 0.

Another common characteristic is that the information matrix tends to be
singular as α → 0 for all values of τ . Moreover the information matrix tends
to be singular also for τ → ±∞ with the determinant being very small even
for finite values of τ (e.g. τ > 2 or τ < −3). In Figure 4 the contour level
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Figure 4. Contour levels of the value of the determinant of the expected information matrix (a) and its
log transformation (b) in function of (α, τ ).

plot of the determinant of the expected information matrix is reported as a
function of α and τ .

Another peculiar feature of the expected information matrix is that the
elements of the upper left 2×2 block of the matrix are, for τ → ±∞, exactly
those of the expected information matrix of a normal distribution.
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4. Maximum likelihood estimation

4.1. Behaviour of the likelihood function

As for the skew-normal distribution, the profile log-likelihood for the α
parameter of the extended skew-normal distribution presents a stationary point
in α = 0. This characteristic is clearly visible in all samples and for any
sample size as illustrated in Figure 5, where the relative profile log-likelihood
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Figure 5. Relative profile log-likelihood for α in simulated samples with n = 500 from ESN(0, 1, 2, 1)
(a), ESN(0, 1, 15, 2) (b), ESN(0, 1, 2,−1) (c), ESN(0, 1, 15,−2) (d).
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for four samples of size 500 is plotted. The presence of a stationary point at
α = 0 can be easily proved solving the likelihood equations

∂,

∂θ
= 0,

because for α = 0, the fourth likelihood equation is

∂,

∂τ
= ζ1(τ ) − ζ1(τ ) = 0

that is verified for all τ .
Let us analyze now the profile log-likelihood for the fourth parameter τ .

We calculated the profile log-likelihood only for the range −6 < τ < 3 because
values outside this range can lead to numerical instability of the optimization
routines. In addition τ > 3 leads the skewness of the distribution to become
tiny (i.e. γ1 < 0.037) and, on the other side, τ < −6 leads to a location change
of the curve showed in Section 2. The role of τ outside this range is confused
with the one of α (regulate skewness) and of ξ (change location).

The plots in Figure 6 show that when the real value of τ is small in
absolute value and positive (i.e. between 0 and 3), determining particular
extended skew normal shapes of the density such as the sharp drop tail, the
likelihood function is able to detect the right region of the parameter space, as in
plots (a) and (b). On the other side, when the τ parameter is high and positive
(i.e. > 3) determining moderate skewed and symmetrical densities or when it
is negative but with a high values of α determining highly skewed densities
without the particular sharp drop shape, the profile log-likelihood behaves bad.
See plot (c) and (d) for moderate skewness (γ1 = 0.39) and for non-skewness
(γ1 = 0.002) and plot (e) for high skewness (γ1 = 1.45) in the densities.
Moreover, from the values along the vertical axis of plots (c) and (d) it is clear
that the profile log-likelihood is quite flat for a wide region of the parameter
space, despite the graphical impression while in plot (e) the likelihood has its
maximum around 0.5 with the real value of τ being in a lower likelihood value
region.

4.2. Numerical evaluation of the maximum likelihood estimates

We tried to estimate the parameters of the distribution via numerical maxi-
mization of the likelihood function from some simulated samples. We used both
quasi-Newton and simulating annealing algorithms with the full log-likelihood
or the profile log-likelihood for α or τ as objective functions. The study shows
that both the maximization algorithms hardly reach the global maximum and,
changing the starting values, they converge to local maxima. This can be seen
in Table 1-3, in which we report the results for the quasi-Newton max-
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Figure 6. Relative profile log-likelihood for τ in simulated sampleswithn = 500 from(a)ESN(0, 1, 2, 1),
(b) ESN(0, 1, 15, 2), (c) ESN(0, 1, 2,−1), (d) ESN(0, 1, 5, 4) and (e) ESN(0, 1, 15,−2).

imization of the log-likelihood from three simulated samples of size 500 from an
ESN(0, 1, 15, 2), ESN(0, 1, 1, 0) and ESN(0, 1, 15,−2). These three choices
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represent a typical sharp drop shape of the extended skew-normal, a gen-
uine skew-normal and a highly skewed distribution (γ1 = 1.45) respective-
ly.

Consider for example row 3 of Table 1 in which the maximization algorithm
is initialized with the real value of the parameters. The algorithm does not move
the final estimates from the starting values even though the obtained values are
not the maximum likelihood estimates, in particular for the α parameter as
we can see comparing line 3 with line 1, 2 or 5 of the same table which
report similar parameter values with the likelihood function being equal up
to the third decimal and higher than that of line 3. The estimated density
functions are plotted in Figure 7 (a) where it is evident that they are essentially
equivalent and nearly overlappable. Consider now Table 2. The estimates are
very different among each other and also very far from the real values of the
parameters. In line 5 for example we can find a very high estimate for the
location and a negative, high in absolute value, estimate for τ . As shown in
Section 2, indeed, high in absolute value and negative τ shifts the density. Here
the likelihood adjusts the estimates of the other parameters leading a density
equivalent to those obtained using the parameters of the other rows, plotted
in Figure 7 (b). Rows 1 and 2 of Table 3 were initialized at the same way
but for the τ parameter with the algorithm converging to different parameter
estimates. The difference among the estimated densities reported in Figure 7
(c) is now more perceptible but always small.

Table 1: Maximum likelihood estimation for some starting values and objective functions.
(Sample of size 500 from ESN(0, 1, 15, 2)).

Obj. fun. Initialization ξ̂ ω̂ α̂ τ̂ log L

1 ,(θ) moments (τ = 0) 0.012 0.994 8.800 1.914 −205.244
2 ,(θ) moments (τ = 2) 0.012 0.995 8.800 1.914 −205.244
3 ,(θ) (0,1,15,2) 0.022 0.987 15.000 1.995 −205.406
4 ,P(α) moments 0.007 0.995 5.000 1.870 −205.820
5 ,P(τ ) moments 0.012 0.995 8.696 1.913 −205.244

Table 2: Maximum likelihood estimation for some starting values and objective functions.
(Sample of size 500 from ESN(0, 1, 1, 0)).

Obj. fun. Initialization ξ̂ ω̂ α̂ τ̂ log L

1 ,(θ) moments (τ = 0) 4.075 1.278 −1.414 −3.087 −129.727
2 ,(θ) (0,1,1,0) 0.558 0.787 0.008 −0.304 −129.913
3 ,(θ) (0,1,0,0) 0.558 0.787 0.010 −0.086 −129.913
4 ,P(α) moments 8.972 1.712 −2.088 −5.265 −129.712
5 ,P(τ ) moments 23.743 2.604 −3.367 −9.180 −129.706
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Table 3: Maximum likelihood estimation for some starting values and objective functions.
(Sample of size 500 from ESN(0, 1, 15,−2)).

Obj. fun. Initialization ξ̂ ω̂ α̂ τ̂ log L

1 ,(θ) moments (τ = −1.5) −1.128 1.141 15.461 −2.758 409.544
2 ,(θ) moments (τ = −2) 0.788 0.806 11.164 −1.515 410.167
3 ,(θ) (0,1,15,-2) 0.793 0.805 11.150 −1.511 410.167
4 ,P(α) moments 1.738 0.543 5.000 −0.522 401.141

5 ,P(τ ) moments 0.750 0.814 11.304 −1.546 410.165
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Figure 7. Density functions with the parameters of Table 1, Table 2, Table 3 and Table 4 obtained fitting
the ESNto the AIS dataset.

5. Application to real data

We fitted the extended skew-normal model to the well known AIS (Aus-
tralian Institute of Sport) dataset. The dataset refers to a number of biomedical
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measurements on 202 Australian athletes, of which we used only the body
mass index (bmi).

As in the simulated samples, different starting values of the maximization
algorithm lead to different parameter estimates. Table 4 reports the maximum
likelihood estimates assuming a skew-normal model (row 1) and the results
of the maximization of the log-likelihood and profile log-likelihood for τ as-
suming an extended skew normal model (rows 2-5). The obtained estimates
are extremely different from those obtained assuming a skew-normal model
and among each other even if the correspond to an extremely similar value of
the log-likelihood. Figure 7 (d) shows the non parametric density estimation
using the kernel method and the six densities obtained with the parameters of
Table 4. All the five vector of parameters obtained maximizing the extended
skew-normal model yield to equivalent densities.

Table 4: Maximum likelihood estimation for some starting values and objective functions. (AIS
bmi data).

Obj. fun. Initialization ξ̂ ω̂ α̂ τ̂ log L

1 ,SN(θ) moments 19.97 4.13 2.31 - -
2 ,(θ) moments (τ = 0) -40.04 12.00 6.36 -5.13 -301.54
3 ,(θ) moments (τ = −1) -47.05 12.57 6.67 -5.46 -301.51
4 ,(θ) moments (τ = −5) -166.78 20.21 10.71 -9.32 -301.40
5 ,P(τ ) moments -15.64 9.57 5.00 -3.88 -301.67

6. Discussion

An expression for the Fisher information matrix of the extended skew-
normal in the scalar case has been obtained and studied. In particular we have
seen that the matrix can be singular when τ grows in absolute value and for
α = 0.

In the simulation study and in the application on AIS data, some char-
acteristic of this distribution have been analyzed stressing a problem of near
unidentifiability of the model in the scalar case. Numerical algorithms, in fact,
hardly reach the global maximum and different values of the parameters lead
to almost equivalent densities.
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