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Summary: Nonetheless the central role of the Box-Jenkis Gaussian autoregressive mov-
ing average models for continuous time series, there is no such a leading technique for
count time series. In this paper we introduce a Bayesian nonparametric methodology
for producing coherent predictions of a count time series {X;} using the nonnegative
INteger-valued AutoRegressive process of the order 1 (INAR(1)) introduced by Al-Osh
and Alzaid (1987) and McKenzie (1988). INAR models evolve as a birth-and-death
process where the value at time ¢ can be modeled as the sum of the survivors from time
t — 1 and the outcome of an innovation process with a certain discrete distribution. Ob-
viously such components are not observable. Our predictions are based on estimates of
the p-step ahead predictive mass functions assuming a nonparametric prior distribution
for the innovation process. Precisely we model this distribution with a Dirichlet process
mixture of rounded Gaussians (Canale and Dunson, 2011). This class of prior has large
support on the space of probability mass functions and is able to generate almost any
count distribution including over/under-dispersion or multimodality. An efficient Gibbs
sampler is developed for posterior computation and the methodology is used to analyze
real data sets.

Keywords: INAR(1), Dirichlet process mixtures, Gibbs sampling algorithm.

1. Introduction

Recently, there has been a growing interest in studying nonnegative integer-valued
time series and, in particular, time series of counts. Examples are categorical time series,
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binary processes, birth-death models and counting series.

The most common approach to build an integer-valued autoregressive processes is
using a probabilistic operation called thinning. Using binomial thinning, Al-Osh and
Alzaid (1987) and McKenzie (1988) first introduced integer-valued autoregressive pro-
cesses (INAR). A recent review on integer-valued AR processes can be found in Silva et
al. (2005) and Jung and Tremayne (2011). While theoretical properties of INAR models
have been extensively studied in the literature, relatively few contributions discuss the
development of forecasting methods that are coherent, in the sense of producing only
integer forecasts of the count variable. Freeland and McCabe (2004), in the context
of INAR(1) process with Poisson innovations suggest some solutions that are somewhat
problem-specific. Thus, McCabe and Martin (2005) consider the Bayesian point of view
and present a methodology for producing coherent forecasts of low count time series that
is completely general. The predictive probability mass function, defined only over the
support of the discrete count variable, is a natural outcome of Bayes theorem.The results
are valid for any sample size and not only asymptotically, moreover the innovations can
be any arbitrary discrete distribution, within a specified finite set of distributions. In
particular, the authors focus on Poisson, binomial and negative binomial distributions.

In this paper, we consider INAR(1) models with flexible specifications of the error
term under a Bayesian nonparametric approach. The assumption of a nonparametric
prior with large support for the innovation distribution, bypasses the need to specify a
finite set of discrete distribution as in McCabe and Martin (2005). Our approach leads to
two main improvements: first we overcome the specification of the predictive probability
as a mixture of K predictive distributions, and second we do not rely on the usual strict
parametric models. Among the different proposal made in the Bayesian nonparametric
literature to model count distributions, we use that of Canale and Dunson (2011).

2. Model specification
To introduce the class of INAR model we first recall the thinning operator, ‘o’, de-

fined as follows.

Definition Let Y be a non negative integer-valued random variable, then for any
a€0,1]

Y
aoYzZXi
i=1

where X; is a sequence of iid count random variables, independent of Y, with common
mean o.

The INAR(1) process {Y;;t € Z} is defined by the recursion

Yi=aoYi1+e 1)
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where « € [0, 1], and ¢, is sequence of iid discrete random variables with finite first and
second moment. The components of the process {Y;} are the surviving elements of the
process Y;_1 during the period (¢ — 1, ¢], and the number of elements which entered the
system in the same interval, ;. Each element of Y;_; survives with probability o and
its survival has no effect on the survival of the other elements, nor on €¢; which is not
observed and cannot be derived from the Y process in the INAR(1) model. In the next
section we discuss a nonparametric prior for the distribution of the error term.

To define a nonparametric model for counts, Canale and Dunson (2011) proposed to
round an underlying variable having an unknown density given a Dirichlet process mix-
ture of Gaussians prior. Such rounded mixture of Gaussians (RMG) have been showed
to be highly flexible and having excellent performance in small samples while having
appealing asymptotic properties in terms of large support and strong posterior consis-
tency. Let the probability that the discrete error equals j, for j € N to be

o) =9l = | Ry @

J

with the thresholds chosen as ag = —oo and a; = j — 1 for j € {1,2,...} and
modelling the underlying f as the mixture model

s P) = / oy 7 )dP (7). P~ DP(yPy). 3)

Here, ¢(y; 1, 7~ 1) is a Gaussian density having mean p and precision 7 and DP(nPp)
corresponding to the Dirichlet process with P chosen to be Normal-Gamma and 7 >
0. Equations (2)—(3) induce a prior p ~ II over C, the space of the probability mass
functions on the non negative integers.

3. p-step ahead predictive probability mass function

Exploiting the birth-and-death process interpretation of the INAR(1) model, the dis-
tribution of Y; given y;—1, o and p is

min{ys,yt—1}

Pr(Yy =yt | y—1,,p) = Z Pr(By_y =s) x p(y: — s) “)
s=0

where p is a random probability measure obtained through (2)-(3) and Bf ~ Be(k, ).
The likelihood function given y = (y1, ..., yr) of « and the random discrete mea-
sure p turns out to be

T min{y:,yt—1}

L0]y) « H Z a®(1—a)¥ " *p(ys — s) (5)
t=2 s=0
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where 6 € © and © = R x C. The posterior distribution can be obtained as
m(0 |y) o< £(0 [ y)m(0) (6)

where 7(6) is the prior probability. Given the nonparametric prior p ~ II it is sufficient
to elicit a prior for a ~ 7, . In presence of prior information we can use a beta distribu-
tion with given mean corresponding to one’s prior belief about o. Being noninformative
one can assume a uniform prior distribution between zero and one. Assuming that o and
p are independent a priori, the prior 7(0) is 7(0) = II X 7.

The p-step ahead probability mass function is here defined as

Pr(Ves, = i1¥) = [ Pr(vie, = 1y.0)dx(0 |y) ™

where 7(6 | y) is the posterior distribution (6).
The following Gibbs sampler computes the quantity in (7) iterating the steps:

1. Data augmentation step given p and .

- Fort =2,...,T,simulate B; ~ Be(y;—1, )
- Fort = 2,...,7T, simulate ¢; ~ f where f is as in (2)—(3) under the con-
straints a,, — B, < €; < Gy, —B,+1

2. Update the parameters of the RMG as in Canale and Dunson (2011)
3. Update « from its conditional posterior distribution via Metropolis-Hastings step

4. After burn in, simulate Y, as in equation (4)
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