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Torino, via Carlo Alberto 10, Italy

E-mail: claudiamaria.chanu@unito.it

‡ Formerly at Dipartimento di Matematica, Università di Torino,
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1 Introduction

Given a natural Hamiltonian L with n degrees of freedom, satisfying some additional geometric
conditions, it is shown in [1] how to generate a n+ 1 degrees of freedom Hamiltonian H, called
the extension of L and depending on an integer parameter m ∈ N\{0}, such that H admits two
new independent first integrals: H itself and a polynomial in the momenta of degree m. This
implies that, if L is superintegrable with 2n−1 independent first integrals, then all the extended
Hamiltonians H also are superintegrable for any m with the maximal number of 2n+ 1 = 2(n+
1)−1 first integrals, one of them of arbitrary degree m whose expression is explicitly computed by
means of a simple iterative process. The extension procedure, summarized in Section 2, is applied
to the superintegrable systems on E2 (Section 3) and S2 (Section 5) as listed in [5]. These are
all the superintegrable systems on S2 and E2 admitting two independent first integrals of degree
two in the momenta other than the Hamiltonian. It is found that a great part of them admits
superintegrable extensions and for some of them the extensions are explicitly determined. In
Section 4 the possible natural Hamiltonians admitting an extension are determined on En and the
superintegrable systems of Calogero and Wolfes are considered as examples in E3. In Section 6
the extension procedure is applied to a class of Hamiltonians on constant curvature manifolds to
which some generalizations of the Tremblay–Turbiner–Winternitz (TTW) system belong [10].
These generalizations of the TTW systems are superintegrable for rational values of certain
parameters, for which they admit polynomial first integrals of degree greater than two [7, 8].
The cases allowing the extensions are determined and the TTW systems are among them,

?This paper is a contribution to the Special Issue “Superintegrability, Exact Solvability, and Special Functions”.
The full collection is available at http://www.emis.de/journals/SIGMA/SESSF2012.html
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obtaining in this way their superintegrable extensions. Other superintegrable generalizations in
higher dimensions of the TTW system are obtained in [6].

2 Extensions of superintegrable systems

We resume in the following statement the main results proved in [1].

Theorem 1. Let Q be a n-dimensional (pseudo-)Riemannian manifold with metric tensor g.
The natural Hamiltonian L = 1

2g
ijpipj + V (qi) on M = T ∗Q with canonical coordinates (pi, q

i)
admits an extension

H =
1

2
p2u + α(u)L+ f(u) (1)

with a first integral F = Um(G) where

U = pu + γ(u)XL,

XL is the Hamiltonian vector field of L and G(qi), if and only if the following conditions hold:

i) the functions G and V satisfy

H(G) +mcgG = 0, m ∈ N \ {0}, c ∈ R, (2)

∇V · ∇G− 2m(cV + L0)G = 0, L0 ∈ R, (3)

where H(G)ij = ∇i∇jG is the Hessian tensor of G.

ii) for c = 0 the extended Hamiltonian H is

H =
1

2
p2u +mA(L+ V0) +mL0A

2(u+ u0)
2, (4)

for c 6= 0 the extended Hamiltonian H is

H =
1

2
p2u +

m(cL+ L0)

S2
κ(cu+ u0)

+W0, (5)

with κ, u0, V0, W0, A ∈ R, A 6= 0 and

Sκ(x) =



sin
√
κx√
κ

, κ > 0,

x, κ = 0,

sinh
√
|κ|x√
|κ|

, κ < 0.

Dynamically, extended Hamiltonians (1) can be written as

1

2
p2u −

m

S2
κ(cu+ u0)

η − h = 0, cL+ L0 + η = 0, if c 6= 0,

and

1

2
p2u +mL0A

2u2 − η − h = 0, mA(L+ V0) + η = 0, if c = 0,
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with H = h, and where constant η can be understood either as a separation constant, between
the elements of H depending on (u, pu) and those depending on (qi, pi), or as a coupling constant
merging together the Hamiltonian L on T ∗Q and the Hamiltonian

1

2
p2u −

m

S2
κ(cu+ u0)

, c 6= 0, or
1

2
p2u +mL0A

2u2, c = 0,

depending on (u, pu), to build the extended Hamiltonian H. Several examples are given in [1].

Under the hypotheses of Theorem 1, recalling that Cκ(x) = d
dxSκ(x), the polynomials in the

momenta

UmG =


(
pu +

Cκ(cu+ u0)

Sκ(cu+ u0)
XL

)m
G, c 6= 0,

(pu −A(u+ u0)XL)mG, c = 0,

are first integrals of H of degree m. For example,

UG = Gpu + γ(u)XL(G) = Gpu + γ(u){L,G},

where { , } are the Poisson brackets. Another way to calculate UmG is to apply the formula [2]

UmG = PmG+DmXLG,

with

Pm =

[m/2]∑
k=0

(
m
2k

)
γ2kpm−2ku (−2m(cL+ L0))

k,

Dm =

[m/2]−1∑
k=0

(
m

2k + 1

)
γ2k+1pm−2k−1u (−2m(cL+ L0))

k, m > 1,

where [·] denotes the integer part, D1 = γ and

γ(u) =


Cκ(cu+ u0)

Sκ(cu+ u0)
, c 6= 0,

−A(u+ u0), c = 0.
(6)

Remark 1. For c = 0, if L0 = 0 then pu is a first integral of the extended Hamiltonian and
the extended potential is merely mAV , with m and A constants. Therefore the extension is
trivial. Otherwise, a harmonic oscillator term in the variable u, attractive or repulsive, is added
to the potential mAV . In the case c 6= 0, we remark that, in the extended Hamiltonian (5), the
potential V is multiplied by a non-constant factor depending on u.

Remark 2. The expression (6) of γ(u) is determined in [1] as the general solution of the
differential equation

γ′ + c(γ2 + κ) = 0, (7)

for real values of γ, u, c and κ. However, the general solution of equation (7) in the complex
case can be considered too. Its expression is the same as (6) if we extend functions Sκ and Cκ
to complex values of x and κ by using the standard exponential expressions of trigonometric
functions. After this generalization, the extension procedure characterized by Theorem 1 can
be applied also to the complex case.
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In [1] it is proved that, if n > 1, then (2) admits a complete solution G depending on
a maximal number of parameters (ai), with i = 0, . . . , n, iff the sectional curvature of Q is
constant and equal to mc. Once such a solution G is known, an extension of L is possible iff the
compatibility condition (3) on V is satisfied. A sharper result on constant curvature manifolds
is the following

Proposition 1. On a manifold with constant curvature K the only eigenvalues mc for the
Hessian equation (2) are either zero or the curvature K. Moreover, if K 6= 0 and mc = 0 then
the only solutions of (2) are G = const.

Proof. The equation (2), written in components, becomes

∇i∇jG+mcgijG = ∂ijG− Γkij∂kG+mcgijG = 0.

and the integrability conditions that each solution G(qi) must satisfy are given by (see [1] for
details)

Rkhijzk = mc(gjhzi − gihzj), ∀h, ∀ i 6= j,

where zk = ∂kG/G and Rkhij = ∂iΓ
k
jl − ∂jΓkil + ΓhjlΓ

k
ih − ΓhilΓ

k
jh is the Riemann tensor of the

metric. For a constant curvature manifold we have Rhlij = K(gjlghi − gilghj) and the above
conditions become

(K −mc)(gjhzi − gihzj) = 0, ∀h, ∀ i 6= j.

By choosing orthogonal coordinates, we see that, since i 6= j, the equations are identically
satisfied for h 6= i, j. Otherwise, they reduce to (K −mc)gjjzi = 0. Hence, for mc 6= K, the
only possibility is zi = 0 for all i (that is, G is a constant). For mc 6= K and mc 6= 0, by (2) we
get G = 0, thus mc is not an eigenvalue. �

In [1] it is shown that the first integral Um(G) is functionally independent from H, L and
all its possible first integrals Li in T ∗Q. It is straightforward to see that L and Li are first
integrals of H, therefore, if L is a superintegrable Hamiltonian with 2n− 1 first integrals, inclu-
ding L, then H is superintegrable too with 2n− 1 + 2 = 2(n+ 1)− 1 first integrals including H
itself. It follows that the extension procedure applied to a superintegrable Hamiltonian L, under
the hypothesis of Theorem 1, always produces a new superintegrable Hamiltonian H. Given
a superintegrable system of Hamiltonian L = 1

2g
ijpipj + V (qi) with a configuration manifold Q

of constant curvature K, its extension to another superintegrable system of Hamiltonian H,
when possible, can be obtained by applying the following algorithm (see also [1]):

1. Solve equation (2) on the manifold Q, with c = K/m, to compute the general form of the
function G(qi, a0, . . . , an).

2. Solve equation (3) with the given V for some of the parameters (ai) in G. This is a crucial
step, because if no solution is found, except for the trivial one G = 0, then the extension
is not possible.

3. Determine the extension via Theorem 1.

4. Compute Um(G) to obtain the additional first integral.

In the following sections we analyze several examples of extensions of superintegrable systems.
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3 Superintegrable extensions of E2 systems

Since the curvature of E2 is zero, equation (2) admits, by Proposition 1, solutions G 6= 0 only for
mc = 0. Thus, we are in the case c = 0 of Theorem 1 and the extended Hamiltonian H is in the
form (4). In [1] the complete solution G of (2) is computed, in standard Cartesian coordinates
of E2, as

G = a0 + a1x+ a2y. (8)

Equation (3) becomes here

∂xV ∂xG+ ∂yV ∂yG = 2mL0G,

whose general solution is

V = mL0

[(
x+ x0

)2
+
(
y + y0

)2]
+ F (a2x− a1y), (9)

with the constraint a0 = a1x
0 + a2y

0, where x0, y0 ∈ R or C and F is any regular function of
the argument. The extension, after the non restrictive assumptions V0 = u0 = 0 and A = m−1,
becomes

H =
1

2
p2u + L+

L0

m
u2 =

1

2

(
p2u + p2x + p2y

)
+ V +

L0

m
u2.

In [5] the list of all superintegrable potentials in E2 with three independent quadratic in the
momenta first integrals is given, up to isometries and reflections. In that article E2 is assumed
to be a two-dimensional complex manifold. According to Remark 2 we apply in this case the
same procedure developed for the real case and allow all functions, variables and parameters
(except for m ∈ N) to take indifferently real or complex values, in this one and all the following
sections. By setting z = x + iy, z̄ = x − iy (remark that, despite the notation, if x and y are
complex coordinates, then z and z̄ are not complex conjugate one of the other), the list is

E1 V =
α1

x2
+
α2

y2
+ α3

(
x2 + y2

)
,

E2 V = α1x+
α2

y2
+ α3

(
4x2 + y2

)
,

E3 V = α3

(
x2 + y2

)
,

E4 V = α1(x+ iy),

E5 V = α1x,

E6 V =
α1

x2
,

E7 V =
α1z̄√
z̄2 − k2

+
α2z√

z̄2 − k2(z̄ +
√
z̄2 − k2)2

+ α3zz̄,

E8 V =
α1z

z̄3
+
α2

z̄2
+ α3zz̄,

E9 V =
α1√
z̄

+ α2x+ α3
x+ z̄√

z̄
,

E10 V = α1z̄ + α2

(
z − 3

2
z̄2
)

+ α3

(
zz̄ − 1

2
z̄3
)
,

E11 V = α1z +
α2z√
z̄

+
α3√
z̄
,

E12 V =
α1z̄√
z̄2 + k2

,
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E13 V =
α1√
z̄
,

E14 V =
α1

z̄2
,

E15 V = h(z̄), for any function h,

E16 V =
1√

x2 + y2

(
α1 +

α2

x+
√
x2 + y2

+
α3

x−
√
x2 + y2

)
,

E17 V =
α1√
zz̄

+
α2

z2
+

α3

z
√
zz̄
,

E18 V =
α1√
x2 + y2

,

E19 V =
α1z̄√
z̄2 − 4

+
α2√

z(z̄ + 2)
+

α3√
z(z̄ − 2)

,

E20 V =
1√

x2 + y2

(
α1 + α2

√
x+

√
x2 + y2 + α3

√
x−

√
x2 + y2

)
,

with (αi), k ∈ C. The equation of compatibility (3) is equivalent to a linear homogeneous
expression in (ai) with coefficients linear but not homogeneous in αi. This expression vanishes
only for some suitable choices of the parameters ai and αi, depending on the extension parame-
ters m, L0. The solution (9) of (3) shows that a non null function G of the form (8) satisfying (3)
exists only for the following potentials

V G particular cases of

i mL0

(
x2 + y2

)
a1x+ a2y E1, E3, E7, E8

ii
α1

x2
+mL0

(
x2 + y2

)
a2y E1

iii
α2

y2
+mL0

(
x2 + y2

)
a1x E1

iv α1x+mL0

(
4x2 + y2

)
a2y E2

v α1x+
α2

y2
+
mL0

4

(
4x2 + y2

)
a1

(
α1

2mL0
+ x

)
E2

vi
α1z̄√
z̄2 − k2

+mL0

(
x2 + y2

)
a1z̄ E7

vii
α2

z̄2
+mL0

(
x2 + y2

)
a1z̄ E8

viii α1z̄ + α2

(
z − 3

2
z̄2
)

+mL0

(
zz̄ − z̄3

2

)
a1

(
α2

mL0
+ z̄

)
E10

The potentials admitting G(ai) depending on several ai allow the existence of different first
integrals of the form UmG(ai). However, since the system is already superintegrable by including
a single UmG(ai), all the other first integrals obtained in this way functionally depend on the
known ones.

Because L0 6= 0, a necessary condition for the extensibility is the presence of a harmonic term
in the potential V .

Extensions of the harmonic oscillators

As an example, we analyze into details the extensions of the isotropic harmonic oscillator (a par-
ticular case of E1, E3, E7, E8)

Vi = α3

(
x2 + y2

)
,
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and of the anisotropic one (a particular case of E2)

Va = α3

(
4x2 + y2

)
. (10)

In both cases we assume α3 6= 0 to avoid a trivial potential.
The only possible extension for Vi is

H =
1

2

(
p2u + p2x + p2y

)
+ α3

(
x2 + y2

)
+
L0

m
u2

=
1

2

(
p2u + p2x + p2y

)
+ α3

(
x2 + y2 +

u2

m2

)
, (11)

with the constraint α3 − mL0 = 0 due to (3) that sets the potential in the tabulated form.
The Hamiltonian (11) represents an anisotropic oscillator in E3 and shows explicitly its super-
integrability being m an integer. Recalling that U = pu − m−1uXL, and by setting XLG =
a1px + a2py = P , we obtain as an example the expression of U4G

U4G = Gp4u − up3uP −
3

4
a3Gu

2p2u +
a3
8
u3puP +

a23
64
Gu4.

The anisotropic oscillator (10) admits, instead, two extensions, corresponding to the two
different functions G and two different relations between α3 and L0 (items (iv) and (v) of the
table with α1 = α2 = 0). In order to analyze this case in full generality, an iterated procedure
of extension can be applied. By starting from the one-dimensional oscillator

H1 =
1

2
p21 + ωx21,

we build a first extension

H2 =
1

2
p22 +H1 +

ω

m2
1

x22 =
1

2

(
p21 + p22

)
+ ωx21 +

ω

m2
1

x22,

where we use x2 = u and, because of (3), we have G1 = a1x1 and L0 = ω/m1. The resulting
potential is an anisotropic oscillator and our procedure produces the third first integral of
degree m1 in the momenta Um1G1 = (p2 − m−11 XH1)m1G1. The potential of H2 coincides
with Va for m1 = 2 and ω = 4α3 (this is the unique case with a third quadratic first integral).

A further step is the research of an extension of H2

H3 =
1

2

(
p21 + p22 + p23

)
+ ωx21 +

ω

m2
1

x22 +
L0

m2
x23,

where the value of L0 has to be determined. In this case, since the general G2 is (8), condition (3)
becomes

a1ωx1 + a2
ω

m2
1

x2 = m2L0(a0 + a1x1 + a2x2).

Hence, we get a0 = 0, and

a1 (ω −m2L0) = 0, a2

(
ω

m2
1

−m2L0

)
= 0.

If a1 = 0, we need a2 6= 0 and

L0 =
ω

m2
1m2

, G2 = a2x2.
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If a1 6= 0 and a2 = 0, then we have

L0 =
ω

m2
, G2 = a1x1.

Finally, if both a1 6= 0 and a2 6= 0 the two conditions are satisfied iff m2
1 = 1 (i.e., H2 is the

Hamiltonian of an isotropic oscillator) and

L0 =
ω

m2
, G2 = a1x1 + a2x2.

In the first two cases, H3 represents an anisotropic harmonic oscillator, which is superintegrable
because m1, m2 are integers, but they have different functions G2 and consequently different
first integrals Um2G2 = (p3 −m−12 XH2)m2G2. If we set m1 = 2, m2 = m and ω = 4α3 in order
to restrict ourselves to the potential (10), we obtain two possible extensions: if a1 = 0 we have
the relation α3 −mL0 = 0 that gives the first form in the table. If, otherwise, a2 = 0 we have
the relation 4α3 −mL0 = 0 that gives the second one.

The extension procedure can be iterated indefinitely obtaining at the n-th step an n-dimen-
sional anisotropic oscillator with a complete set of first integrals (Um1G1, U

m2G2, . . . , U
mn−1Gn)

of degree (m1,m2, . . . ,mn−1), that, together with the n Hamiltonians (H1, H2, . . . ,Hn) make
the system superintegrable. We remark that the systems obtained in this way are characterized
by the fact that the frequencies are all integer multiples of one of them. See [4, 9] for additional
details on superintegrability of anisotropic oscillators.

4 Superintegrable extensions of En

It is straightforward to generalize to En the procedure previously applied to E2. Let us consider
in En with Cartesian coordinates the Hamiltonian

L =
1

2

(
p21 + p22 + · · ·+ p2n

)
+ V (x1, x2, . . . , xn).

The general solution of (2) and (3) are

G = a0 + a1x1 + a2x2 + · · ·+ anxn

V = mL0

[(
x1 + x01

)2
+ · · ·+

(
xn + x0n

)2]
+ F (a1x2 − a2x1, . . . , a1xn − anx1), (12)

with the constraint a0 =
n∑
i=1

aix
0
i , where x0i ∈ R or C, F is any regular function of the arguments

and L0 6= 0. The corresponding extension is

H =
1

2
p2u +mA(L+ V0) +mL0A

2(u+ u0)
2.

We remark that, as well as in dimension 2, the presence of a harmonic term in V is a necessary
condition for the extensibility.

Extensions of the three-body Calogero and Wolfes systems

We consider the particular case of n = 3. If a2 = a3 = a1 and F (X1, X2) in (12) is

F = k
(
X−21 +X−22 + (X1 −X2)

−2) ,
with k ∈ R, then

F = k

(
1

(x− y)2
+

1

(x− z)2
+

1

(y − z)2

)
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coincides with the celebrated Calogero potential, which is a well known superintegrable system
(see for example [3] and references therein). If, with the same choice for the ai,

F = k
(
(X1 +X2)

−2 + (2X1 −X2)
−2 + (2X2 −X1)

−2) ,
then F coincides with the Wolfes potential, a three-body superintegrable interaction whose
dynamic equivalence with the Calogero potential is discussed in [3]. If L0 6= 0, then the first
integrals of the extended Hamiltonian for m = 2, 3 and F in the Calogero form are respectively

U2G = Gp2u − 2AupuP − 4A2L0Gu
2,

U3G = Gp3u − 3Aup2uP − 18A2L0Gu
2pu + 6A3L0u

3P,

where G = (x01 + x02 + x03 + x1 + x2 + x3) and P = XL(G) = p1 + p2 + p3 is the conserved linear
momentum.

5 Superintegrable extensions of S2

In [1] the complete solution G of (2) for mc = 1 (the constant curvature of a sphere of radius 1)
is computed in standard spherical coordinates as

G = a0 cos θ + (a1 sinφ+ a2 cosφ) sin θ. (13)

Equation (3) becomes

∂θV ∂θG+
1

sin2 θ
∂φV ∂φG = 2V G.

Therefore, c = 1
m 6= 0 and, by Theorem 1, the extension of L is

1

2
p2u +

1

S2
κ( 1
mu)

(
1

2

(
p2θ +

1

sin2 θ
p2φ

)
+ V

)
,

where we assume without restrictions the constants u0, L0 and W0 all zero, and where κ ∈ R.
Since |κ| can be multiplied by a positive constant simply by rescaling u, we can assume, if κ 6= 0,
|κ| = m2 so that the extensions become

H+
m =

1

2
p2u +

m2

sin2 u

(
1

2

(
p2θ +

1

sin2 θ
p2φ

)
+ V

)
, κ > 0,

H0
m =

1

2
p2u +

m2

u2

(
1

2

(
p2θ +

1

sin2 θ
p2φ

)
+ V

)
, κ = 0,

H−m =
1

2
p2u +

m2

sinh2 u

(
1

2

(
p2θ +

1

sin2 θ
p2φ

)
+ V

)
, κ < 0.

For κ ∈ C, the explicit form of the extension follows from Remark 2.
We remark that the numerical factor m2 can be absorbed into L by a rescaling of the coordi-

nates (θ, φ). Whenever V depends on (θ, φ) only through trigonometric functions, the rescaling
enlights the existence of discrete (polyhedral) symmetries of L on S2 of order depending on m.

The superintegrable potentials on S2 with first integrals all quadratic in the momenta are
determined in [5], where the sphere is intended, as E2 previously, as a complex manifold. The
nine different superintegrable potentials, up to symmetries in O(3,C) including reflections,
are, in Cartesian three-dimensional coordinates (x, y, z) with x = sin θ cosφ, y = sin θ sinφ,
z = cos θ [5],

S1 V =
α1

w̄2
+
α2z

w̄3
+
α3

(
1− 4z2

)
w̄4

,
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S2 V =
α1

z2
+
α2

w̄2
+
α3w

w̄3
,

S3 V =
α1

z2
,

S4 V =
α1

w̄2
+

α2z√
x2 + y2

+
α3

w̄
√
x2 + y2

,

S5 V =
α1

w̄2
,

S6 V =
α1z√
x2 + y2

,

S7 V =
α1x√
y2 + z2

+
α2y

z2
√
y2 + z2

+
α3

z2
,

S8 V =
α1x√
y2 + z2

+
α2(w − z)√
w(z − iy)

+
α3(w + z)√
w(z + iy)

,

S9 V =
α1

x2
+
α2

y2
+
α3

z2
,

where w = x+ iy, w̄ = x− iy, α1, α2, α3 ∈ C. We remark that in (x, y, z) we have

G = a2x+ a1y + a0z,

with a0, a1, a2 ∈ C.
By putting the previous expressions for V and G given by (13) into (3), we get a linear

homogeneous function in (ai) whose components are linear homogeneous in (α1, α2, α3). The
non-trivial solutions (with V and G both not constant) of the equation are

V G particular cases of

i
α2

w̄2
+
α3w

w̄3
a0z S2

ii
α1

w̄2
+

α2

w̄
√
x2 + y2

a0z S4

iii
α1

w̄2
a0z S1, S2, S4, S5

iv
α1

z2
+

α2y

z2
√
y2 + z2

a2x S7

v
α1

z2
a2x+ a1y S2, S3, S7, S9

vi
α1

x2
+
α2

y2
a0z S9

The only cases without superintegrable extensions for any combination of parameters are S6
and S8, that are strictly related. The extensible cases of S9 are all equivalent to (v) or (vi) up
to permutation of the coordinates. Case (v) can be considered a subcase of (iv), but it is listed
apart because the corresponding expression of G is different.

Extensions of S9

As an example of the extension procedure, we develop the computations of extensions and
first integrals for the case S9. For the subcase (v) we have V = α3

cos2 θ
, with G = (a1 sinφ +

a2 cosφ) sin θ. For m = 3 we have for the Hamiltonian H+
3 the first integral

U3G = B sin θp3u − 27Bctan3u cos θp3θ − 27C
ctan3u

sin3 θ
p3φ +B cos θctanu p2upθ



Superintegrable Extensions of Superintegrable Systems 11

+ 9C
ctanu

sin θ
p2upφ − 27Bctan2u sin θpup

2
θ − 27B

ctan2u

sin θ
pup

2
φ − 27C

ctan3u

sin θ
p2θpφ

− 27B
ctan3u cos θ

sin2 θ
p2φpθ − 54α3

(
B

ctan2u sin θ

cos θ
pu +B

ctan3u

cos θ
pθ + C

ctan3u

sin θ cos2 θ
pφ

)
,

where B = a1 sinφ+ a2 cosφ, C = a1 cosφ− a2 sinφ = dB
dφ .

The second of the subcases of S9 admitting a superintegrable extension is (vi)

V =
1

sin2 θ

(
α1

sin2 φ
+

α2

cos2 φ

)
,

with G = cos θ. For m = 2 we have for the Hamiltonian H0
2 the first integral

U2G = cos θp2u − 4
sin θ

u
pθpu − 4

cos θ

u2
p2θ − 4

cos θ

u2 sin2 θ
− 8

cos θ

u2
V.

6 Extensions of TTW-type systems

Let us consider the Hamiltonian

L =
1

2
p21 +

ζ

S2
χ(x1)

(
1

2
p22 + F (x2)

)
, χ, ζ ∈ R or C.

For ζ = 1, χ real and

F (x2) =
α1

cos2 λx2
+

α2

sin2 λx2
,

L is a generalization to constant curvature manifolds of the Tremblay–Turbiner–Winternitz
system (see [7, 8]). We consider the possible extensions of L in dimension three given by
Theorem 1. Since the sectional curvature of the metric of L is χ, for mc = χ the general
complete solution G of (2) is

G = a0Cχ(x1) + (a1Sζ(x2) + a2Cζ(x2))Sχ(x1),

and the extended Hamiltonian has the form

H =
1

2
p2u +

χ

S2
κ

( χ
mu
)L,

where we assume for simplicity L0 = u0 = W0 = 0. Equation (3) becomes then

F ′ (a1Cζ(x2)− a2ζSζ(x2)) = 2ζF (a1Sζ(x2) + a2Cζ(x2)) . (14)

If a1 = a2 = 0, then the equation (14) is satisfied for all F , including the TTW potential
with any value of λ. In particular, if λ is rational then L is superintegrable together with its
extensions.

Otherwise, if a1 or a2 are different from zero then the solutions F of the equation (14) can
be obtained after observing that

ζ (a1Sζ(x2) + a2Cζ(x2)) = − d

dx2
(a1Cζ(x2)− a2ζSζ(x2)) .

Hence,

F =
1

(a1Cζ(x2)− a2ζSζ(x2))2
.
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By differentiating the relation a1Sζ(x2)+a2Cζ(x2) = ASζ(x2+ξ), valid for suitable constants A
and ξ, we have

F =
1

A2C2
ζ (x2 + ξ)

,

a result analogous to the one obtained in [1] for the extension of one-dimensional systems.
Indeed, when ζ ∈ N \ {0} then L is in the form of an extension of a one-dimensional system.
This is another example of iterative extension.

7 Conclusions and future directions

We have shown how the procedure of extension proposed in [1] can be used to produce new
superintegrable systems starting from the already known ones, together with their first integrals.
This procedure allows to extend a number of remarkable systems, including TTW and three-
particle Calogero systems. Moreover, in some cases the procedure can be performed iteratively,
thus constructing a family of superintegrable systems in higher dimensions.

Unfortunately not all the superintegrable systems can be extended through our method, but
this drawback is balanced by the simplicity and compactness of the algorithm that produces the
constants of motion. Further studies are in progress to find a more general form of extension
compatible with a larger number of potentials and to analyze iterative extension in other cases.
New results about the application to nonconstant curvature manifolds of Theorem 1 have been
obtained. The problem of applying the extension procedure to quantum systems is not yet
solved: the first integrals described by Theorem 1 cannot be straightforwardly associated with
symmetry operators. However, for the quadratic first integrals of type U2(G) a first quantiza-
tion procedure has been considered, quite unsuccessfully, in [2] and then a second one has been
studied, leading in suitable cases to symmetry operators. All these progresses will be presented
in future publications.
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