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Abstract 

An increasing body of evidence suggests the involvement of hydrogen sulfide (H2S) in different 

physiological and pathological processes. Similarly to the other gasotransmitters nitric oxide (NO) and 

carbon monoxide (CO), this bioactive compound is rapidly diffusible through the biological membranes and 

acts in a paracrine fashion. Despite the large amount of biological actions observed in vitro and in vivo upon 

stimulation with H2S donors, as well as by interfering with its synthesis, the molecular targets and 

mechanisms through which it exerts its intracellular effects are only partially known. A number of proteins 

are covalently modified by H2S through sulfhydration of specific cysteine residues. However, only in few 

cases their identity has been discovered and the functional role of this post-translational modification needs to 

be investigated in more detail. Great attention has been devoted to potassium channels, particularly KATP, as 

they are considered key mediators of H2S-induced effects, and their sulfhydration has been clearly 

demonstrated. Recently, different authors reported the ability of H2S to interfere with calcium homeostasis in 

neurons, cardiomyocytes and endothelial cells. Since calcium signaling is involved in all cell processes, these 

observations attracted increasing attention from basic biology and medicine. Although some effects of H2S on 

calcium signals can be ascribed to KATP modulation, there is growing consensus about the existence of other 

targets for the gasotransmitter. Some of them are Ca2+-permeable channels. In this review we discuss the 

state of the art in this specific field, providing an updated report of H2S interaction with Ca2+ channels and its 

functional outcomes. 

 

 



Introduction 

Hydrogen sulfide (H2S) is a colorless, flammable gas with a characteristic smell of rotten eggs that has 

long been regarded as a toxic environmental pollutant with minimal, if any, physiological significance [1]. It 

is, however, now evident that H2S may be endogenously synthesized in mammalian tissues from L-cysteine 

by three pyridoxal-50-phosphate (PLP)-dependent enzymes, namely cystathionine β-synthase (CBS), 

cystathionine γ-lyase (CSE), and cysteine aminotransferase (CAT) [2]. The latter, in turn, acts in concert with 

the zinc-dependent enzyme, 3-mercaptopyruvate sulfurtransferase (3-MST), to release H2S from L-cysteine 

and keto acids (e.g., α-ketoglutarate) [1, 3, 4]. The distribution of H2S-generating enzymes may be tissue 

specific, whereas CBS is highly expressed in the hippocampus and in the cerebellum within the central 

nervous system (CNS), and CSE is far more abundant in vascular smooth muscle cells (VSMCs) and 

endothelial cells (ECs) [1, 3, 5]. Nevertheless, recent studies have detected CSE in microglial cells, spinal cord 

and cerebellar granule neurons [6]. An additional source of H2S is provided by bound sulfur, an intracellular 

reservoir of sulfur, as reported in rodent neurons and astrocytes in the presence of physiologic levels of 

endogenous reducing substances, i.e. glutathione and cysteine [1]. Interconversion of sulfur-containing amino 

acids and metabolites is carried out by cysteine CAT, cysteine dioxygenase (CDO), and cysteine lyase (CL) 

[1]. The assessment of the physiological concentration of free H2S has engendered a remarkable controversy. 

It has long been thought that H2S levels in biological tissues and plasma ranged from 50 µM up to 160 µM 

[7, 8]. However, recent studies have disclosed that H2S is rapidly catabolized such that 1) whole tissue 

concentrations of the free gasotransmitter fall within the low nanomolar range and 2) H2S may be 

undetectable in peripheral blood [1, 9, 10]. In order to reconcile this evidence with the notion that H2S 

impacts on cellular activities in vitro at concentrations that are orders of magnitude larger (100 µM), it has 

been hypothesized that the equilibrium between H2S production and consumption results in an intracellular 

microenvironment with enough H2S to induce a local signalling cascade without affecting systemic levels of 

the gas [9, 11].  

A number of signal transduction pathways may be recruited by H2S to finely tune cardiovascular and 

CNS functions. For instance, H2S relaxes VSMCs and contributes to the regulation of blood pressure by 

activating ATP-sensitive K+ channels (KATP); it promotes angiogenesis and vascular remodelling via 



phosphatidylinositol 3-kinase (PI3-K)/Akt/survivin axis in ECs and by augmenting the phosphorylation of 

extracellular signal-related kinase (ERK) and p38 in VSMCs; moreover, it downregulates a number of pro-

inflammatory genes involved in the cardiac ischemic/reperfusion injury by preventing the nuclear 

translocation of the nuclear factor-κB (NF-κB); it also stimulates long term synaptic potentiation by 

enhancing the activity of NMDA receptors upon the activation of the cAMP/protein kinase A cascade [1, 3, 

5-8, 11].  

When considering the impact exerted by intracellular Ca2+ concentrations (Cai) dynamics on cell 

physiology, it is not surprising that a growing number of studies are attempting to elucidate the involvement 

of Ca2+-permeable channels in H2S-related signalling. The present review aims at providing an updated and 

concise description of the interaction of H2S with different types of plasmalemmal Ca2+ channels and the 

associated functional outcomes. 

 

S-sulfhydration is a regulatory mechanism for ion channels 

 Gasotransmitters, such as nitric oxide (NO), carbon monoxide (CO) and H2S, selectively interact with 

different types of ion channels [1, 3, 5, 12-16]. Carbon monoxide modulates (positively or negatively) large-

conductance calcium-activated K+ (BKCa), voltage-activated K+ (KV2.1) and L-type Ca2+ channels, ligand-

gated P2X2 and P2X4 receptors, tandem P domain K+ channels (TREK1) and the epithelial Na+ channel 

(ENaC). The detailed mechanisms underlying these effects are not clear. Carbon monoxide activates soluble 

guanylyl cyclase (sGC), leading to the release of cGMP, but it can also directly modify target proteins such as 

KCa α-subunit through interaction with aspartate and histidine residues [17, 18]. Nitric oxide covalently 

modifies free sulfhydryl (–SH) of cysteine residues via protein S-nitrosylation. Among ion channels, KCa, 

ultrarapid delayed rectifier K+ current (KV1.5), KATP, delayed rectifier K+, L-type Ca2+ channels, and 

Transient Receptor Potential (TRP) channels are (positively or negatively) modulated by S-nitrosylation [19, 

20].  

H2S donors can also modify cysteine residues of different proteins through S-sulfhydration [1, 5]. 

The –SH from sulfhydryl donor is transferred to free cysteine sulfhydryl and forms covalent persulfide (–



SSH). Sulfhydration can be detected by a modified biotin-switch assay used for nitrosylation as well as by 

mass spectrometry [5]. A number of H2S-releasing drugs have been utilized to mimic the endogenous effects 

of H2S under experimental conditions [1, 2]. The most popular H2S donor is sodium hydrosulfide (NaHS), 

which presents a fast releasing rate in aqueous solution and liberates one third of H2S compared to the 

concentration of the salt [8].  

 Several proteins are sulfhydrated including actin, tubulin, and glyceraldehyde-3-phosphate 

dehydrogenase (GAPDH), strengthening the idea that this signaling pathways is biologically relevant 

[5]. Accordingly, a recent report showed that H2S-linked sulfhydration of NF-kB p65 subunit at 

cysteine-38 mediates its anti-apoptotic action in macrophages and liver cells [21].  

In the vascular tissue, hydrogen sulfide is considered an endothelium-derived hyperpolarizing factor 

(EDHF) that is released by ECs and affects K+ channels including intermediate calcium-dependent K+ 

(IKCa), small calcium-dependent K+ (SKCa) and KATP in VSMCs [13]. In VSMCs of rat mesenteric arteries 

H2S sulfhydrates Kir 6.1 subunit of KATP in cysteine-43, both constitutively and during cholinergic simulation 

[13]. Previous observations by Jiang and co-workers showed that H2S directly interacts with cysteine-6 and 

cysteine-26 residues of the extracellular NH2 terminal of rat vascular sulfonylurea receptor (rvSUR1) subunit 

of rvKir6.1 KATP channels [13, 22]. This study, however, did not assess whether H2S formed persulfides with 

the exposed free cysteine residues or disassembled the related disulfide bonds [12].  

In addition to K+ channels, also voltage-dependent Na+ channels (Nav) can be regulated by H2S. Native 

(from jejunum smooth muscle) and recombinant (Nav1.5) Nav currents are increased by NaHS with an 

associated positive shift in steady-state activation and inactivation kinetics. Although the high (mM) 

concentrations of NaHS employed in this study suggest caution about their physiological significance, this 

effect could extend beyond the jejunum, since Nav1.5 is expressed in other tissues. In the heart, it gives rise to 

the upstroke of the cardiac action potential [23], whilst in Human Umbilical Vascular Endothelial Cells 

(HUVECs) Nav regulates angiogenic calcium signals [24]. 

 

S-sulfhydration of calcium channels 



Calcium VOCs 

Voltage-activated Ca2+ channels (Cav) are expressed at high density in excitable cells, but are also detectable 

in some non-excitable tissues. They are typically classified as high voltage-activated (HVA) and low voltage-

activated (LVA) channels, based on their electrophysiological features. HVA channels include L-, N-, P/Q-, 

and R-type, while LVA channels conduct T-type calcium currents [25]. Cav are mostly abundant in neurons, 

cardiac conduction system and smooth muscles.  

H2S modulates cardiovascular homeostasis and exerts cardioprotective effects in different models of in vitro, ex vivo and in 

vivo ischemia/reperfusion [11, 16, 26-33]. Indeed, whole patch clamp experiments in rat cardiomyocytes revealed that 

NaHS negatively modulates L-type Ca2+ channels composed by the CaV1.2 subunits [12, 30, 34]. More specifically, 

NaHS (up to 1 mM) causes a dose-dependent reduction in the Ca2+ current peak. This effect is only partial: the current 

density diminishes by 50% at 1 mM NaHS [34]. The mechanism could involve a direct modification of Cav free 

sulfhydryl groups [34]. 

The H2S donor also affects the recovery from depolarization-induced inactivation, without altering the steady state 

activation and inactivation curves. Accordingly, the shortening of single cardiomyocytes and contraction of isolated rat 

papillary muscles are depressed. Electric field-induced Cai transients in single cardiomyocytes are also reduced by 100 

µM NaHS [12, 30]. Consistently, H2S exerts a negative inotropic effect in isolated perfused rat and papillary muscles 

when NaHS is administrated at concentrations ranging from 1 µM up to 1 mM [35, 36]. More recently, it has been 

reported its negative chronotropic action in human atrial fibers by blocking L-type Ca2+ channels and an enhancement 

in the repolarization phase by opening KATP channels (50-200 µM NaHS)  [37]. Interestingly, according to a recent 

study, H2S can reverse the negative inotropic effect induced by NO by causing an increase in the peak amplitude of the 

electrically stimulated Cai transients [33]. These apparently discrepant data may be reconciled when considering that, 

under such conditions, the modulation of the Cai toolkit responsible for the positive inotropic effect is not accomplished 

by H2S, but by a new thiol-sensitive endogenous modulator deriving from the interaction between the two 

gasotransmitters [33]. Interestingly, in this report, H2S was provided by NaHS at low micromolar doses (10 µM). 

The negative effect of H2S on Ca2+ influx is not limited to the cardiovascular system. Similarly to rat 

cardiomyocytes, 100 µM NaHS suppresses voltage-gated Ca2+ currents in INS-1E cells (rat insulinoma cell 

line) and native pancreatic beta-cells: these currents are sensitive to both nifedipine and Bay K-8664, a 

pharmacological profile consistent with L-type Ca2+ channels [12].  



On the other hand the effects of NaHS on neurons, that can express both CaV1.2 and CaV1.3 

subtypes, seem to be opposite [38]. In cultured rat cerebellar granule neurons (CGN), NaHS (50-300 µM) 

induces cell death as well as Cai signals sensitive to nifedipine and nimodipine, L-type Ca2+ channel blockers 

[12]. However, no electrophysiological recordings were conducted and a direct activation of L-type Ca2+ 

channels by NaHS remains to be demonstrated yet. Moreover, there is no evidence about the molecular 

nature (i.e. CaV1.2 or CaV1.3) of L-type channels in these cells. Taken together, these evidences suggest that 

L-type Ca2+ channels are inhibited by H2S in the myocardium, whereas they are enhanced by the same H2S 

doses in the CNS. Future investigations will unveil whether this feature depends on the different molecular 

make-up of L-type channels, i.e. CaV1.2 in ventricular cardiomyocytes vs. CaV1.3 in the cerebellum, or on 

their associated subunits. Alternatively, an intermediate sensor coupled to the channel complex, whose 

nature varies between the heart and the CNS, might mediate the regulation of L-type Ca2+ channels by H2S. 

NaHS increases Cai also in astrocytes, hippocampal slices and microglia, through currents sensitive to Ca2+ 

channel inhibitors (La3+ and Gd3+) and in a concentration range (100-500 µM) similar to that affecting 

VOCs [12, 39]. It appears that H2S-triggered Cai waves are due to influx through Ca2+ channels on plasma 

membrane and, to a lesser extent, to the release from intracellular Ca2+ stores [12, 39]. In contrast, a recent 

report showed that NaHS-induced Cai increase in isolated rat colonic crypts was not dependent on 

extracellular Ca2+, but was affected by blockade of either ryanodine receptors (RyRs) or sarco/endoplasmic	
  

reticulum	
  Ca2+-­‐ATPase (SERCA) [40]. 

 T-type Ca2+ channels are encoded by the three members of the CaV3 subfamily and display different 

biophysical and pharmacological features as compared to L-type Ca2+ channels: activation at lower 

membrane potentials, faster inactivation, slower deactivation, smaller permeability to Ba2+, insensitivity to 

dihydropyridines and block by ZnCl2 [41]. T-type Ca2+ currents are involved in a great number of 

physiological processes, such as neuronal firing, hormone secretion, smooth muscle contraction, myoblast 

fusion, and fertilization [41]. Moreover, they play critical roles in mediating either somatic or visceral 

nociceptive information. Similarly to capsaicin, NaHS, injected intracolonically at 0.5-5 nM per mouse,  

triggers visceral nociceptive responses in vivo, which are completely abolished by mibefradil, an unspecific T-

type channel blocker, and insensitive to verapamil and to the KATP channel blocker glibenclamide [12]. 



Therefore, H2S may function as a novel nociceptive messenger through the activation of peripheral T-type 

Ca2+ channels, particularly during inflammatory processes. However, since mibefradil is not selective for T-

type channels, this conclusion should be confirmed by future investigations [42].  

Furthermore, both intraplantar (1 nM/paw) and intratechal (0.01-0.1 nM/animal) administration of NaHS 

caused a prompt hyperalgesia in rats, an effect that was abolished by mibefradil, ZnCl2, or antisense 

oligodeoxynucleotides (ODNs) selectively targeting rat CaV3.2 [43-45]. The finding that DL-

propargylglycine (PPG) and β-cyanoalanine, two CSE inhibitors, abolish the L-cysteine-induced hyperalgesia 

and attenuate the lipopolysaccharid-induced hyperalgesia, an effect reversed by NaHS, supports these 

observations [43, 44]. Moreover, mibefradil suppressed the phosphorylation of ERK induced by the infusion 

of NaHS, a pronociceptive stimulus in the pancreatic duct, albeit at higher concentrations than those 

reported above (500 nM/rat) [46]. Finally, the neuropathic allodynia/hyperalgesia induced in rats by 

damaging the right L5 spinal nerve [47] or by systemic injection of paclitaxel [48], an anticancer drug, was 

strongly attenuated by either mibefradil or CSE inhibitors, or by antisense ODNs against rat CaV3.2. In 

addition, CaV3.2 was significantly up-regulated in the ipsilateral L4, L5, and L6 dorsal root ganglia of rats 

subjected to spinal nerve injury, but not treated with paclitaxel [48]. A redox modulation of CaV3.2 has been 

proposed, since NaHS increases the amplitude of T-type Ca2+ currents in a neuroblastoma cell line without 

affecting their kinetics. This effect was reversed by the oxidizing agent, 5,5′dithio-bis(2-nitrobenzoic acid) 

(DTNB), and mimicked by the reducing compound, dithiothreitol (DTT) [44]. It should be pointed out that 

the elevation in the density of T-type Ca2+ currents was observed at 0.5-1.5 mM NaHS, i.e. at a 

concentration considerably higher than that reported to affect L-type VOCs (see above). The enhancement 

of T-type Ca2+ current by the exogenous application of H2S, in turn, induces neuronal differentiation, as 

revealed by neurite outgrowth and functional expression of high voltage-activated Ca2+ currents, including L-

, P/Q-, and N-type channels [49]. Once again, these effects arose when NaHS was administrated at 1.5-13.5 

mM. Interestingly, earlier reports demonstrated that L-cysteine selectively potentiates recombinant CaV3.2-

dependent, but not CaV3.1- and CaV3.3-, currents [50]. A mechanistic link between H2S and the onset of the 

Cai waves might be provided by the protein-kinase A (PKA)\cAMP pathway. Accordingly, H-89, a rather 

selective PKA blocker, hinders NaHS-evoked Cai signals in both neurons and microglial cells [51, 52]. 

Moreover, PKA-dependent phosphorylation may increase the Ca2+ permeability of T-type channels, NMDA 



receptors, and RyRs (see Discussion in [51]).  

 

Transient receptor potential (TRP) channels 

 TRP channels can be activated by a variety of stimuli, including Ca2+ stores depletion, shear stress, 

pulsatile stretch, receptor activation, changes in temperature and osmolarity, and intracellular second 

messengers [53]. Their versatility enables TRP channels to control cellular functions as diverse as 

proliferation, differentiation, gene expression, migration, cytoskeleton remodelling, apoptosis, transmitter 

release, and NO synthesis [54]. It has now been widely established that TRP channels may also be 

modulated by covalent posttranscriptional modifications. For instance, TRP channels are S-nitrosylated at 

cysteine-553 and cysteine-558, located next to the channel pore [19]. Furthermore, TRPA1 is sensitive to 

thiol-reactive electrophiles that bind to cysteine residues located in the NH2-terminus of the channel [55]. In 

addition, H2S and its donors trigger TRPV1 opening that mediates chloride secretion in colon, gut motility, 

acute pancreatitis, airway constriction, and bladder contractility [12, 56-61]. Serosal application of NaHS 

(0.2-2.5 mM) and L-cysteine stimulates luminal chloride secretion by guinea pig, rat and human colon [12, 

40, 58]. This effect is blocked by tetrodotoxin (TTX), by desensitization of afferent nerves with capsaicin, or 

by TRPV1 antagonist capsazepine [58]. This suggests that H2S-stimulated mucosal secretion is dependent on 

TTX-sensitive Na+ channels and/or TRPV1 channels of sensory nerve endings. Recent works showed that 

TRPV1-mediated Ca2+ entry enhances substance P release from afferent nerves, which, in turn, excite 

cholinergic secremotor neurons by activating neurokin-1, -2, or -3 (NK1-3) receptors [62, 63].  It should, 

however, be noted that NaHS-induced chloride secretion in rat distal colon is inhibited by glibenclamide and 

tetrapentylammonium, suggesting the involvement of different types of K+ channels, including KATP and KCa. 

H2S donors mimick the effect of capsaicin,  leading to the release of calcitonin gene-related peptide (CGRP) 

and substance P from the sensory nerves in the guinea pig airways [12, 57]. More specifically, 50 mM NaHS 

causes in vivo bronchoconstriction and microvascular leakage in a capsazepine-sensitive manner, contributing 

to the irritant action of H2S on the respiratory system. NaHS triggers a dose-dependent contraction of 

isolated bronchial and tracheal rings in vitro (IC50 about 1.3 mM): this effect is abolished by sensory nerve 

desensitization with high concentration of capsaicin, by TRPV1 antagonists (ruthenium red, capsazepine and 



SB366791), as well as by a mixture of NK1 (substance P receptor) and NK2 receptor (CGRP receptor) 

antagonists [12]. Interestingly, intraperitoneal injection of NaHS (1-10 mg/kg) to healthy mice induced 

substantial lung inflammatory reactions. These effects were abolished by a specific NK1 receptor antagonist, 

but not by NK2 receptor antagonists. In addition, the inflammatory effect of H2S was abolished by 

capsazepine and was not observed in mice lacking substance P and neurokinin-A due to the knockout of their 

common precursor gene, preprotachykinin-A [57].  

TRPV1 mediates neurogenic inflammation in pancreatitis, and the effect is blocked by pretreatment with 

TRPV1 antagonist capsazepine or NK1 receptor antagonist CP96, 345 [12, 59]. Notably, an increase in 

plasma H2S levels is induced in caerulein-induced pancreatitis and the therapeutic administration of PAG 

attenuates the pancreatic inflammation and partially reverses the associated lung injury [56]. Similarly, 

TRPV1 underpinned the H2S-dependent neurogenic inflammation in polymicrobial sepsis by increasing 

substance P production and activating the ERK/NF-kB pathway [64, 65]. In these experiments, NaHS was 

orally administrated at 10 mg/kg. Conversely, H2S may prevent ethanol-induced gastric lesions in mice by 

stimulating TRPV1 channels on the capsaicin-sensitive primary afferent neurons that innervate the gastric 

mucosa [66]. Indeed, pretreating the animals with capsazepine reversed the gastroprotective action of either 

L-cysteine or NaHS (75-300 µM/Kg) [66]. 

In contrast to its vasorelaxant effect, NaHS (30 µM-3 mM) triggers contraction of the detrusor muscle in the 

rat urinary bladder [60, 61]. As in previously described cases, a direct effect of H2S on the muscle seems 

unlikely: it is abolished by the combination of NK1 and NK2 receptor-selective antagonists as well as by 

high-capsaicin pretreatment, which could desensitize capsaicin-sensitive primary afferent neurons. The 

response to NaHS is not dependent on Nav channels since it is mostly resistant to TTX. H2S could stimulate 

capsaicin-sensitive primary afferent nerve terminals and the following release of tachykinins, leading to the 

contractile response. Furthermore, ruthenium red (RR), an unspecific blocker of TRPV1 channels, but not 

TRPV1 selective antagonist capsazepine, reduces the H2S-induced contractile response. This opens the 

possibility that other RR-sensitive channels, such as TRPV1-6 and TRPA1, could be involved. TRPA1 is 

expressed on capsaicin-sensitive primary sensory neurons where it mediates pain, protective reflexes, and 

local release of peripheral neurotransmitters [67-69]. This channel is involved in noxious cold- and mechano-



sensations and its activators (allyl isothiocyanate, cinnamaldehyde, allicin, and acrolein) interact with cysteine 

residues of the protein. In female Sprague-Dawley rat bladder, TRPA1 is located in unmyelinated sensory 

nerve fibres where it colocalizes with TRPV1 channels [70]. Interestingly, TRPA1-expressing nerve fibres 

are also detected around blood vessels in the suburothelial region and muscular layer of the bladder [69, 71]. 

TRPA1 stimulation enhances detrusor activity. After disruption of the urothelial barrier with protamine 

sulfate, 1 mM NaHS increases maximal bladder pressure, reduces voided and infused volumes, and voiding 

interval [12, 70]. Recent work extended these observations to the human lower urinary tract, where TRPA1 

channels are expressed in the terminal afferents of the urothelium and in basal urothelial cells [72]. After 

precontraction with phenylephrine, both TRPA1 agonists and NaHS are able to trigger relaxation of 

urethral strip preparations [72]. NaHS (IC50≈1.2 mM) evokes Cai increase in CHO cells expressing mouse or 

human TRPA1 [70]. Accordingly, in rat Dorsal Root Ganglia (DRG) neurons, NaHS-induced Cai signals 

were abolished by removal of extracellular Ca2+ and by selective blockade of TRPA1 channels with HC-

030031 [73]. Similar to the finding obtained on urethral strip preparations, the IC50 of the Cai response to 

NaHS in DRG neurons was about 1.4 mM. Furthermore, NaHS evoked an HC-030031-sensitive inward 

current in rat DRG neurons clamped at a holding potential of -80 mV. The current-to-voltage relationship of 

NaHS-induced current reversed at 0 mV and showed a slight outward rectification at positive potentials: 

both features are consistent with the biophysical properties of TRPA1 channels [73, 74]. Notably, NaHS-

induced inward current was prevented by the reducing agent of disulfide bonds DTT, suggesting that H2S 

carries out a covalent modifications of the cysteine residues located at the NH2-terminus of TRPA1 [73].  

TRP channels may mediate the proangiogenic calcium influx triggered by H2S in endothelial cells 

(ECs) [75-78]. In a recent paper, we investigated the effects of H2S on microvascular ECs obtained from 

human breast carcinoma (B-TECs) [79]. Ca2+ imaging and patch-clamp experiments revealed that acute 

perfusion with NaHS activates Cai increases, as well as K+ and non-selective cationic currents. Stimulation 

with NaHS in the same concentration range (1 nM–200 μM) evoked Cai signals also in ‘normal’ human 

microvascular ECs (HMVECs), but the amplitude was significantly lower. Conversely, doses lower than 10 

µM NaHS did not evoke any detectable elevation in Cai in the excised endothelium of rat aorta [79]. 

Moreover, NaHS failed to promote either migration or proliferation on HMVECs, while B-TEC migration 

was enhanced at low-micromolar NaHS concentrations (1–10 μM). Remarkably, pretreatment with the 



CSE-inhibitor PAG drastically reduced migration and Cai signals induced by Vascular Endothelial Growth 

Factor (VEGF) in B-TECs. These data suggest that H2S plays a role in proangiogenic signaling of tumor-

derived but not normal human ECs. Furthermore, its ability to interfere with B-TEC responsiveness to 

VEGF suggests that it could be an interesting target for antiangiogenic strategies in tumor treatment.  

Although the identity of proangiogenic calcium channels regulated by H2S in endothelial cells is still 

unknown, good candidates could be calcium-permeable channels involved in VEGF-dependent signaling. 

Different reports point to the ability of VEGF to activate TRPC1, TRPC3 and TRPC6 channels in human 

EC lines [80-86]. In addition, Orai1 and Stim1, components of the so-called CRAC channels, seem to 

contribute to VEGF-mediated Cai signaling in ECs [87-90]. The pattern of endothelial VEGF-activated 

channels could actually vary among different tissues, especially between small capillaries and large vessels. 

Remarkably, tumor-derived ECs express several members of TRP channels [91]. TRPV4 is overexpressed 

and functional in B-TECs, where it mediates arachidonic acid-dependent calcium entry and enhances 

migration [92]. Future investigations will unveil the potential role of this protein (and/or other TRP-related 

or unrelated channels) as a molecular target for the H2S-induced Ca2+ entry and its vascular effects. 

 

Conclusion and perspectives 

The investigation of cellular and molecular mechanisms underlying physiological and pathological roles of 

hydrogen sulfide is living an exciting phase that recalls the history of nitric oxide, another gasotransmitter of established 

and widespread biological relevance. However, despite the growing number of reports, the state of the art is still far 

from being exhaustive. In particular, the relationship between calcium- and H2S-dependent cell signaling has been 

clearly demonstrated in many cell types, including neurons, cardiomyocytes, endothelial cells, and is associated to 

relevant biological processes such as cardiac contraction, angiogenesis, inflammation and sensory transduction. As noted 

above, the most striking feature of this relationship is H2S ability of either inhibiting or activating Ca2+ entry depending 

on the molecular nature of the Ca2+ entry pathway. Future investigation will have to address the following issues: 1) does 

H2S modulate CaV1.3-dependent L-type Ca2+ channels? 2) Are CaV1.2, CaV1.3, CaV3.2 directly S-sulfydrated and, if 

so, does this covalent modification differently modulate CaV1.2 (inhibited) vs. CaV1.3 and CaV3.2 (activated) gating? 3) Is 

there any role for CaV-associated subunits in the modulation of voltage-gated Ca2+ influx by H2S? 4) Do TRPV1 and 

TRPA1 proteins undergo any direct covalent modification by H2S or do they sense its levels via an intracellular sensor?  



It should be, finally, pointed out that the concentration of NaHS required to modulate/activate Ca2+-

permeable channels is extremely variable. For instance, low- to mid-micromolar doses of NaHS regulate L-type VOCs, 

whereas T-type and TRPA1 channels are stimulated by low millimolar doses of the donor. Such variability is more 

evident in vascular endothelium, where the threshold for the onset of the Cai signal may vary from the low nanomolar 

range observed in B-TECs and HMVECs to the low micromolar range reported in RAECs. When considering that 

approximately one third of the salt concentration is released in form of H2S in acqueous solution, it turns out that the 

effective concentration of H2S may vary from 0.1 nM up to around 400 µM depending on the target channel. As 

mentioned above, a number of studies have been devoted to ascertain the concentration of endogenous H2S in 

biological tissues. A recent paper proposed the existence of at least three discrete H2S pools in various biological 

specimens: a free H2S reservoir, which is in the low nanomolar range, an acid-labile and a bound sulfane-H2S pools, 

which are in the low micromolar range. This finding introduces the notion of a reversible sulfide sink into and from 

which H2S can be deposited or liberated to exert biologic functions [93]. The possibility that H2S may reach 

intracellular levels high enough to activate local signaling pathways should also be taken in account. Nevertheless, the 

H2S levels necessary to induce detectable changes in the activity of either T-type VOCs or TRPA1 channels have never 

been measured, a feature that should be addressed by future investigations. 

Although this review mainly focused on L- , T-type Ca2+ channels and TRP channels, it is worth of noting that 

preliminary data hint at additional Ca2+-permeable channels as novel targets of H2S. For instance, H2S has been shown 

to regulate SOCE in both human ECs enzymatically dissociated from saphenous vein and rat aortic endothelium [94, 

95]. Furthermore, H2S may affect intracellular Ca2+ mobilization by either inhibiting InsP3Rs or exciting RyrRs [40, 

94]. These findings gain particular relevance when considering that Orai1, the plasmalemmal pore-forming subunit of 

SOCE, InsP3Rs and RyRs are all prone to covalent modifications, such as phosphorylations and nytrosilations. 

Consistently, future studies will be needed to elucidate the possible co-regulations of ion channels by H2S and NO: 

similarly to other proteins, some calcium channels contain cysteine residues potentially target for both the gaseous 

mediators through nytrosilation and sulfhydration.  

The interplay between H2S and calcium signaling is made even more intricate by the fact 

that CSE activity can be Ca2+-calmodulin-dependent, as shown in bovine aortic endothelial cells 

(BAECs) [96]. The possibility that H2S undergoes an auto-regolatory control by either activating (via 

CaV3.2, TRPA1 or TRPV1) or inhibiting (via CaV1.2) Ca2+ entry will deserve future investigations. 

This feature would add another piece to the growing list of analogies between NO and H2S, 



whereas NO, which is produced by the Ca2+/CaM-dependent endothelial NO synthase, may 

inhibit SOCE, the main source for eNOS activation, in vascular endothelium [97]. 
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FIGURE LEGENDS 

 

Figure 1. Modulation of plasmalemmal Ca2+ channels by hydrogen sulfide. Hydrogen sulfide (H2S) regulates 
the gating of a number of Ca2+-permeable channels, including 1) L-type VOCs formed by either CaV1.2 or 
CaV1.3 subunits, 2)  T-type VOCs composed by CaV2.3 subunits; 3) Transient Receptor Potential Ankyrin 1 
(TRPA1); and 4) Transient Receptor Potential Vanilloid 1 (TRPV1). As more extensively described in the 
test, H2S inhibits L-type VOCs in cardiac myocytes, whereas it activates them in neurons. Similarly, H2S 
stimulates T-type VOCs, TRPA1 and TRPV1 both in vitro and in vivo. The identity of putative proangiogenic 
calcium-permeable channels (TRPs?), possibly modulated by H2S, is unknown. 

 

Table 1. Tissue distribution and functional roles of the Ca2+-permeable channels sensitive to hydrogen sulfide. 

	
  


