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Abstract 

 
The present note suggests a theoretic and practical decision rule for auctioneers to set out 
prices in online auctions in presence of Buy-It-Now options. The minimum starting bid 
and the Buy-It-Now price are calculated as an intuitive function of seller’s evaluation of 
the final price stochastic distribution and of seller’s attitude toward the price variability. 
Specifically, the presence of personalized parameters permits to incorporate the seller 
pessimism in stating the starting minimum bid and the seller optimism in fixing the 
Buy-It-Now price. The pricing rule is based on the Extended Gini premium principle, a 
well-known premium principle in non-life insurance literature that has been recently 
proposed in different areas of finance and portfolio risk management. In addition to give 
closed-end formulae for the starting minimum bid and Buy-It-Now price, we provide 
numerical tables for a number of common distributions for the ending price at different 
levels of seller’s risk-aversion and gain-propensity. Discussion on the spread between the 
starting minimum bid and Buy-It-Now price is also carried out. 
 
Keywords: Online auctions; Starting minimum bids; Buy-it-Now prices; Pricing 
rules; Extended Gini premium principle; Pessimism and Optimism indices; 
Bidding spreads 
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1 Introduction 
 
Due to the enormous success of online auctions, in recent years the study on 
bidding process is become an important area of academic research and a debated 
question among business practitioners, we refer to Krishna (2010) for an extensive 
analysis. 
 
A very popular type of auction includes the possibility of a buyout or Buy-it-Now 
(BIN) option, that  allows  a  bidder  to end  the  auction  immediately  
by purchasing the auctioned object at a buyout price set by the seller. eBay 
introduced this option since the 2000s and now it has been adopted by almost all 
of eBay’s U.S. auctions. A number of empirical and behavioral studies carried out 
in the literature (see Wan et al., 2003 and Hardesty and Suter, 2013) have made 
evidence that the presence of a BIN option facilitates the successful matching 
between the counter-parties, fasters the auction closing (see Wang et al., 2008) 
and increases the expected revenue (see Jung and Kim, 2004). 
 
The purpose of the current research is suggest a theoretically well-ground decision 
rule for the seller bid pricing based on the Extended Gini premium principle, a 
common method  in non-life insurance premium theory (see Denneberg, 1990) 
that in recent years has been proposed in different areas of finance, as in asset 
pricing (see Shalit and Yitzhaki, 2009, 2010) and in portfolio risk management 
(see Shalit, 2010 and Cardin et al., 2012, 2013). 
 
Our results show that the main components in the determination of auctioneer’s 
minimum starting bid and the BIN price are: (1) the seller ex-ante evaluation of 
the stochastic distribution of the final price and (2) the seller “pessimism” in 
pricing the minimum starting bid and “optimism” in pricing the BIN price.  
The paper focuses on two research lines.  
The first concerns the setup of general closed-end formulae for pricing bids. Then 
to test the formulae’s sensitivity to the parameters, empirical explorations using a 
number of common distributions at different levels of attitude to variability are 
carried out. Results are collected in numerical tables. 
At second, we focus on the spread between the buyout  option  and  the  
starting  minimum  bid. Such price spread is a relevant component in auctions, 
because may drive the buyers to exercise or not the BIN option. In fact, evidence 
shows that the larger the spread, the more likely the buyer would choose to bid 
instead of buying at the buyout price (see Wan et al., 2003). Our results confirm 
what intuition seems to suggest: the price spread increases as the pessimism in 
setting the minimum starting bid and the optimism in fixing the payout price 
increase. But that is not the sole driver, in fact the price spread is also influenced 
by the stochastic distribution of the ending price, and specifically by its skewness.  
Finally, we prove that no general recursive calculation price formulae exist for 
high levels of seller’s pessimism/optimism. 
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Findings from this study represent an initial step toward building a generalized 
theory of making pricing in Internet auction and further empirical investigations 
are needed, but we postpone them to future research. 
 
The remainder of this paper is organized as follows. Section 2 introduces the risk 
and the gain premia according to the language of the insurance theory. In Section 
3 closed-formulae and tables for a number of common distributions are given. In 
Section 4 the price spreads among the different bids are calculated. Section 5 
concludes the paper. An Appendix collects the proofs. 
 
 
 
2 Minimum starting bids and BIN prices 
 
 
We consider a standard auction including a permanent Buy-It-Now option.  The 
first choice that the seller has to face is about the most appropriate stochastic 
distribution for the ending price. Informed evaluations can be drawn from data on 
transaction history of similar auctioned items at disposal on the leader auction 
databases (see for example that of eBay).   
 
Denoted by X the random positive random variable of the ending price, we 
assume the following setup: 
 
•  the starting  minimum  bid be given by  the expected value ( )E X of the 

ending price minus a “risk premium”, depending on the level of the 
auctioneer “pessimism” toward the final  auction outcome;  

 
•  the Buy-It-Now be given by the expected value ( )E X of the ending price 

plus a “gain premium”, depending on the level of the auctioneer “optimism” 
toward the final  auction outcome. 

 
The terms “risk premium” and “gain premium” are standard terminology used in 
Insurance Theory and intuitively grasp the rational seller’s decision process in 
formulating these ex-ante prices. 
 
As mentioned in the Introduction, we propose the Extended Gini (EG) premium 
principle for the bid pricing. Just to make the paper self-contained we recall some 
definitions.  
In the literature there are different definitions of EG but they all coincide in the 
case X  is a continuous variable. To avoid technical adjustments we assume that 
X be a continuous variable, if a relaxed assumption is desired some technical 
adjustments are needed (see Yitzhaki and Schechtman, 2005).   
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Definition 2.1 Let  X be a continuous random variable. The Extended Gini of X 
of order k is defined as: 
 

( ) ( ) ( ){ }1min ,..., ,k kEG X E X E X X= −   
 

where k is a positive integer number and 1, ,..., kX X X  are identical independent 
distributed (i.i.d.) random variables.  
 
 
Note that if k=2 the ( )2EG X coincides with the Gini index, the most familiar 
measure of income inequality used in social welfare context (see Gini, 1912). 
 
Analogously, we can define the EG of -X. 
 
Definition 2.2 Let X be the continuous random variable. The Extended Gini of –X 
of order k is defined as: 
 

( ) ( ){ } ( )1max ,...,k kEG X E X X E X− = −   
 

where k is a positive integer number and 1, ,..., kX X X  are i.i.d. random variables.  
 
In financial and insurance context the value ( )kEG X  is called the risk-premium 

and ( )kEG X the gain-premium of X of order k, respectively  (for applications of 
risk/gain premium in portfolio selection see Cardin et al., 2013; for those in 
optimal asset allocation involving hedge funds see Sherman Cheung et al., 2008) . 
 
Definitions of the starting minimum bid and the BIN price follow now. 
 
Definition 2.3 Let X be the continuous random variable presenting the final price 
of the auctioned item. The ex-ante bidding prices are: 
 

- The starting  minimum  bid: 
( ) ( ) ( ) ( ){ }1min ,...,k k kSTART X E X EG X E X X= − =  

 
- The BIN price: ( ) ( ) ( ) ( ){ }1max ,...,k k kBIN X E X EG X E X X= + − =  

 
with k a positive integer number and 1, ,..., kX X X  i.i.d. random variables.  
 
An interpretation of the parameter k follows spontaneously. Let the seller image 
there exist k independent bidders that share the same views on the distribution of  
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the ending price X , who independently bid 1, ,..., kX X X .  Then, the seller 
chooses just the expected value of the minimum of 1, ,..., kX X X  as the minimum 
starting bid; and the expected value of the maximum of 1, ,..., kX X X  as the BIN 
price. Clearly, the higher the parameter k, the lower the  minimum starting bid 
and the higher BIN price. 
 
Accordingly to the behavioral economic studies, the parameter k  can be 
interpreted as the index of pessimism in eliciting the minimum starting bid and, 
conversely, as the index of optimism in stating the BIN price (see  Chateauneuf 
et al., 2005). Clearly, the auctioneer may display levels of pessimism and 
optimism which differ each other, so it would be necessary in some contexts to 
use different indices BINk   and  STARTk   instead of k . 
 
It easy to check that ( )kEG X   and  ( )kEG X−   assume non-negative values 
and, in general, 

( ) ( )k kEG X EG X≠ − . 
A spontaneous question that may arise is under which conditions the risk and the 
gain premia coincide. That happens if k = 2 and/or the distribution of X is 
symmetric (see Yitzhaki and Schechtman, 2005). 
 
 
 
3. Closed-end formulae for bid prices for common distributions 
 
 
The bidding prices admit closed-end formulae for many familiar distributions 
used in risk management modeling. They appear in the literature as special cases 
of more complicated expressions for moments of order statistics.  In Table 1 we 
collect a number of special cases (for further details and proofs see Cardin et al., 
2012, 2013). In the following, for simplicity of notation, we skip the 
under-symbol of BINk   and  STARTk   instead of k. To compute the proper bid it 
is sufficient to substitute the proper values of  BINk   and  STARTk  in the 
formulae.  
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Table 1. The minimum starting bid ( )kSTART X  and the BIN price ( )kBIN X . 
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4 Spread between the minimum starting bid and the 
Buy-It-Now price  
 
 
Due to the non-negativeness of kEG  the following inequality holds  
 

( ) ( ) ( )k kSTART X E X BIN X≤ ≤  
 
Identity holds if and only if 1BIN STARTk k= = , i.e. the auctioneer is risk and gain 
neutral so the minimum starting bid and the buyout price are both equal to the 
expected value of the ending price.  Let now set the formal definition of the price 
spread. 
 
 
Definition 4.1 Let a seller with level of pessimism STARTk  in fixing the minimum 
starting bid and that of optimism BINk   in fixing the BIN price . The width of the 
price spread of X is given by 
 

( ) ( )
BIN STARTk kd BIN X START X= −  . 

 
A general result can be stated. Since EGs increase as the parameters k  increase,  
the more the seller is pessimistic in stating the starting price and optimistic in 
stating the buyout, the larger the price spread.  
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In order to highlight the effects of the levels k on the price-spread, we assume  

 BIN STARTk k k= =  and call 

( ) ( ) ( )k k kd X BIN X START X= −  
 
the price spread of order k . A list of properties follows: 
 
1) Simple calculations lead to  ( ) ( )k k kd EG X EG X= + − . If X  is 

symmetrical and/or  2k = , it becomes  ( )2k kd EG X= . 

2) kd   is an increasing function of  k . Since  ( )kBIN X  and ( )kSTART X   
are, respectively, a decreasing and an increasing functions of k , the higher k  
the higher the price spread. 

3) Although a recursive formula exists for  3k = , they do not for kd  and  
4k ≥ .  That is shown in the following Theorems 4.2 and 4.3. 

 
 
Theorem 4.2 For any final price X , we have 

3 2
3
2

d d= . 

 
Corollary For any non-negative random variables X  with symmetric 
distribution around    

 
3

3 22( ) ( )EG X EG X=   and  3 23 ( )d EG X= . 
 
 

But, the above recursive relation cannot be extended to higher   as shown in the 
following. 
 
Theorem 4.3  There is no recursive relation between  4d  and kd  for  

1,2,3k =   that holds for all positive random variables. 
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Table 2. Price spreads for some distributions of the final price. 
 
 
 
The values kd  can be easily computed for a number of common distributions 

using the formulae in Section 3., see Table 2. As expected, the price spread 
increases as the pessimism/optimism parameter k  increases. 
 
Since no recursive formulae exist for price spreads when  START BINk k k= = , it 
seems very unlikely they may exist for START BINk k≠ . Nevertheless, in such case 
the magnitude of the width of the price spread can be calculated by Definition 2.3 
substituting to  ( )kBIN X  and  ( )kSTART X   the values calculated with the 
proper values of STARTk  and BINk . 
 
For 2k >  and asymmetrical distributions, the risk-premium ( )kEG X  and the 

gain-premium ( )kEG X−  may impact differently on the price spread d . An 

intuitive idea if ( ) ( )k kEG X EG X> −  or vice versa, can be drawn as we think on 
the original meaning of EGs as measures of income inequality. The larger the 
number of incomes below the average income, the higher the index of income 
inequality and ( ) ( )k kEG X EG X> − . Let note that the left tail of X coincides 
with the right tail of X− . We can conclude that the more the probability mass is 
on the left-tail of X (such as the right-skewed exponential and Pareto 
distributions), the higher ( )kEG X  than ( )kEG X− . For a negatively-skewed 
asset the result is reversed. That is confirmed by the results in Table 3. 

 
Price spread kd  

 
Mean 

 
2k =  

 
3k =  

 
4k =  

Uniform ( )2θ =  1 0.67 1 1.20 

Normal 
( )21, 1σ =  

1 1.12 1.70 2 

Skew-Normal 
( )20, ,1ω π=  

1 1.40   

Pareto 
( )2, 0.5cα = =  

1 0.67 1 1.26 

Weibull 

( )2, 2m λ π= =  
1 0.58 0.88 1.07 

Exponential 
( )1λ =  

1 1 1.50 1.83 
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Table 3. The risk premium and the gain premium. 
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5 Conclusion 
 
Our paper contributes to give a theoretical framework to sellers’ rule for setting 
proper pricing of minimum starting bids and Buy-It-Now prices. Through the 
Extended Gini premium principle it is possible to elicitate the price bids taking 
into account the seller evaluation on the ending price distribution and the level of 
the seller pessimism and optimism in calculating the minimum starting bid and 
Buy-It-Now price, respectively. 
Numerical explorations have been carried out and results are collected in 
numerical Tables.  
We left to future research the experimental applications of the pricing 
methodology proposed.  
 
 
Appendix 
 
Proof of Theorem 4.2 
 

( ) ( )3 3 3 1 2 3 1 2 3(max( , , )) (min( , , ))d BIN X START X E X X X E X X X= − = −  

3 3

0
1 ( ) [1 ( )]F x F x dx

∞
= − − −∫ 2

0
3 ( ) ( )F x F x dx

∞
= −∫ . 

 
On the other hand we have 

2
1 2 0

(min( , )) 1 ( ) [1 ( )]E X X F x F x dxμ
∞

− = − − −∫ 2

0
( ) ( )F x F X dx

∞
= −∫ . 

So,  
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( ) ( )2 2 2 1 2 1 2(max( , ) (min( , ))d BIN X START X E X X E X X= − = −  

2 2

0
1 ( ) [1 ( )]F x F x dx

∞
= − − −∫  2

0
2 ( ) ( )F x F x dx

∞
= −∫ . 

 
Proof of Corollary  
 
Due to symmetry, ( ) ( )1

2( )k k kEG X BIN X START X= −⎡ ⎤⎣ ⎦   for all  k .  Then 

( ) ( ) ( ) ( )
[ ]

31 1
3 3 3 2 22 2 2

3 31
2 22 2 2

( )

2 ( ) ( )

EG X BIN X START X BIN X START X

EG X EG X

= − = − =⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦
= =

  

Due to the symmetry, 3 3 22 ( ) 3 ( )d EG X EG X= = .  
 
Proof of Theorem 4.3 
 
Since 1 0d =   and  ( )3 23 / 2d d= , if such a recursive relation exists, then we 

can write  ( )4 3d f d=   for all random variables X. If X is uniform on [0,1], then  

3 3 / 4 1/ 4 1/ 2d = − = . If X is exponential with  1/ 3μ = , then  

3 (1/ 3)(1 1/ 2 1/ 3 1/ 4 1/ 3) 1/ 2d = + + + − =  as well. So if the recursive relation 
holds in general, then  ( )4 1/ 2d f=   in both cases. But, if X is uniform on [0,1]. 
then  4 4 / 5 1/ 5 3 / 5 0.60d = − = =    whereas if X is exponential with  

1/ 3μ =  , then ( )( )4 1 3 1 1 2 1 3 1 4 1 4 11 18 0 61 0 60d . .= + + + − = = ≠ . 
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