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Abstract: We consider a linear boundary control system on a Hilbert space H
which is null controllable at some time T0 > 0. Parabolic and hyperbolic PDEs
provide several examples of such systems. To every initial state y0 ∈ H we asso-
ciate the minimal “energy” needed to transfer y0 to 0 in a time T ≥ T0 (“energy”
of a control being the square of its L2 norm). Clearly, it decreases with the con-
trol time T . We shall prove that, under suitable spectral properties of the linear
system operator, the minimal energy converges to 0 for T → +∞. This extends
to boundary control systems a property known for distributed systems (see [30]
where the notion of “null controllability with vanishing energy” is introduced).

The proofs for distributed systems depend on properties of the Riccati equation
which are not available in the general setting we study in this paper. For this
reason we shall base our proofs on the Linear Operator Inequality.

1. Introduction and preliminaries

The paper [30] introduced and studied the property of “null controllability with
vanishing energy”, shortly NCVE, for systems with distributed control action,
which is as follows: consider a semigroup control system (cf. [3, 5, 16, 17, 34, 35])

ẏ = Ay +Bu, y(0) = y0 ∈ H,
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which is null controllable in time T0 > 0 (hence also for every larger time T > T0).
This null controllable system is NCVE when for every y0 and ǫ > 0 there exist
a time T and a control u which steers the initial state y0 to zero in time T
and, furthermore, its L2(0, T ;U)-norm is less then ǫ. This concept has been
already applied in some specific situations (see [12, 13]) and partially extended
to the Banach space setting in [24]. Moreover, applications of NCVE property to
Ornstein-Uhlenbeck processes are given in [31].

The key result in [30], i.e., Theorem 1.1, shows that, under suitable properties
on the operator A recalled below, NCVE holds if and only if the system is null
controllable and furthermore the spectrum of A is contained in the closed half
plane {ℜe λ ≤ 0}.

The goal of this paper is to extend this result to a large class of boundary
control systems (see Hypothesis 1.1), which essentially includes all the classes of
systems whose null controllability has been studied up to now. Our main results
are Theorems 1.5 and 1.7. The proofs that we give are based on ideas different
from those in [30]. Moreover conditions imposed for the necessity part are weaker
from those used in [30, Theorem 1.1], in the case of distributed control systems.

Now we describe the notations and the class of systems we are studying.
The spaces in this paper are Hilbert, and are identified with their dual unless

explicitly stated. The notations are standard. For example, L(H,K) denotes the
Banach space of all bounded linear operators from H into K endowed with the
operator norm.

Let H be a Hilbert space with inner product 〈·, ·〉 and norm | · | and let A be a
generator of a C0-semigroup on H . Due to the fact that the spectrum of A has
a role in our arguments, we assume from the outset that H is a complex Hilbert
space.

Let A∗ be the Hilbert space adjoint of A. Its domain with the graph norm

|y|2 = 〈y, y〉+ 〈A∗y, A∗y〉
is a Hilbert space which is not identified with its dual. It is well known that
(domA∗)′ (the dual of the Hilbert space domA∗) is a Hilbert space and

(domA∗) ⊂ H = H ′ ⊂ (domA∗)′

(with continuous and dense injections). Moreover, A admits an extension A to
(domA∗)′, which generates a C0-semigroup etA on (domA∗)′ (cf. [16, Section 0.3],
[3, Chapter 3 ] and [34] and Appendix). The domain of such extension is equal
to H .

The norm in (domA∗)′ is denoted by | · |−1, and it is useful to recall that |y|−1

and |(ωI − A)−1y| are equivalent norms on (domA∗)′, for every ω ∈ ρ(A) =

ρ(A) = ρ(A∗) (here ρ indicates the resolvent set). In other words, (domA∗)′ is
the completion of H with respect to the norm |(ωI −A)−1 · |, for any ω ∈ ρ(A).

Let B ∈ L(U, (domA∗)′) and let us consider the control process on (domA∗)′

described by

ẏ = Ay +Bu, y(0) = y0 ∈ H . (1)

In fact, this equation makes sense in (domA∗)′, for every y0 ∈ (domA∗)′, but we
only consider initial conditions y0 ∈ H . It is known that the transformation

u(·) −→ (Lu)(t) where (Lu)(t) :=

∫ t

0

eA(t−s)Bu(s) ds (2)
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is continuous from L2(0, T ;U) into C([0, T ]; (domA∗)′), for every T > 0. The class
of systems we study is identified by pairs (A,B) with the following property:

Hypothesis 1.1. We have B ∈ L(U, (domA∗)′) and, for every T > 0, the
transformation (2) is linear and continuous from L2(0, T ;U) into L2(0, T ;H).

Clearly, the case of distributed controls, i.e., B ∈ L(U,H), fits Hypothesis 1.1
(in such case, the transformation (2) is linear and continuous from L2(0, T ;U) into
C([0, T ];H)). Examples of boundary control systems which satisfy our condition
are in Section 1.1.

From now on we consider ω ∈ ρ(A), which is fixed once and for all, and
introduce the operator

D = (ωI −A)−1B ∈ L(U,H) . (3)

By definition, the solution of system (1) is

yy0,u(t) = eAty0+

∫ t

0

eA(t−s)Bu(s) ds = eAty0+

∫ t

0

eA(t−s)(ωI−A)Du(s) ds . (4)

This is a continuous (domA∗)′-valued function and belongs to L2
loc(0,+∞;H)

thanks to Hypothesis 1.1. Integration by parts shows that:

Lemma 1.1. If u ∈ C1([0,+∞);U) then yy0,u belongs to C([0,+∞);H).

Now we give the definitions of null controllability and NCVE, adapted to our
system, by taking into account the fact that if u ∈ L2

loc(0,+∞;U) then the
integrals in (4) belong to L2

loc(0,+∞;H), and point-wise evaluation in general is
meaningless.

Definition 1.2. We say that y0 ∈ H can be steered to the rest in time (at most)
T if there exists a control u ∈ L2

loc(0,+∞;U) whose support is contained in [0, T ]
and such that the support of the corresponding solution (4) is contained in [0, T ]
too.

System (1) is null controllable if every y0 ∈ H can be steered to the rest in a
suitable time Ty0 at most.

System (1) is null controllable in time (at most) T if every y0 ∈ H can be
steered to the rest in time at most T .

In connection with this definition see also Lemma 1.9. In particular, if u steers
y0 to the rest in time at most T , we have

∫ T

0

eA(t−s)Bu(s) ds = −eAty0, a.e. t > T,

and so the integral is represented by a continuous function for t > T .
Controllability in time T implies controllability at every larger time. The

control u need not be unique. Then, we define:

Definition 1.3. Let y0 ∈ H be an element which can be steered to the rest. We
say that this element is NCVE if for every ǫ > 0 there exists a control uǫ such
that

• it steers y0 to the rest in time at most Tǫ (here T = Tǫ and the support of
u is in [0, Tǫ]);

• the L2(0,+∞;U) norm of u is less then ǫ:
∫ +∞

0

|u(s)|2 ds =
∫ Tǫ

0

|u(s)|2 ds ≤ ǫ2 .
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If every element of H is NCVE, then we say that system (1) is NCVE.

As a variant to Definitions 1.2 and 1.3, we introduce also:

Definition 1.4. Let D be a subspace of H. If every initial condition y0 ∈ D can
be steered to the rest in time T then we say that the system is null controllable
on D in time T (note that we don’t require that the trajectory which joins y0 to
zero remains in the set D).

We say that the system is NCVE on D if for every y0 ∈ D and every ǫ > 0
there exists a control uǫ such that

• it steers y0 to the rest in time Tǫ (here T depends on ǫ, i.e., T = Tǫ);
• the L2(0,+∞;U) norm of u is less then ǫ:

∫ +∞

0

|u(s)|2 ds =
∫ Tǫ

0

|u(s)|2 ds ≤ ǫ2 .

1.1. Classes of systems which fit our framework. Essentially, controllability
has been studied for “parabolic” and “hyperbolic” type systems.

(i) Parabolic systems can be described, in a unified way, as follows.
The operator A generates a holomorphic semigroup and, following [16, Section

0.4 and Chapter 1], there exists ω ∈ ρ(A) = ρ(A) and γ ∈ [0, 1) such that

B ∈ L(U,
(

dom((ω − A∗)γ)
)′
). (5)

Note that (5) implies the estimate

‖etAB‖L(U,H) ≤
Meω1t

tγ
, t > 0. (6)

for some M > 0, ω1 ∈ R (see also Appendix; recall that
(

dom((ω − A∗)γ)
)′ ⊂

(domA∗)′ with continuous and dense injection).
Using (6), one can show that Hypothesis 1.1 holds in this case. Indeed, the

integral in (4) does not converge in the space H for every t but, using the Young
inequality for convolutions, it defines an H-valued locally square integrable func-
tion for every locally square integrable input u. Formula (4) defines the unique
solution of eq. (1) with values in H , which however does not have a pointwise
sense in general.

The singular inequality (6) holds for certain important class of interconnected
systems, as studied for example in [4, 18], even if they do not generate holomor-
phic semigroups.

(ii) Hyperbolic systems are further important examples of systems which fit our
framework, see [17, 21, 34]. In spite of the fact that this class lacks of a plain
unification, it turns out that in this case the following important property, first
proved for the wave equation with Dirichlet boundary control in [14, 15], holds:
the function y(t) is even continuous in time. See [34, p. 122] for an abstract
setting.

We listed earlier systems which fit our Hypothesis 1.1. However, null con-
trollability cannot be studied “in abstract”: it has to be studied separately in
concrete cases and these are too many to be cited here. So, we confine our-
selves to note that controllability for several hyperbolic type problems is studied
in [2, 19, 21, 22]; controllability for parabolic equations is studied in [23, 33, 36]
and references therein. Note that controllability for heat-type equations is of-
ten achieved using smooth controls, so that the resulting trajectory y(t) is even
continuous.
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An overview on controllability both of hyperbolic and parabolic type equations
is [37].

1.2. Key results and discussion. As we have already said, our point of de-
parture is paper [30] which proves the following result, in the case of distributed
controls, i.e., the case that imD ⊆ domA (recall that D is defined in (3)) so
that B ∈ L(U,H): under suitable assumptions on the spectral properties of the
operator A, NCVE is equivalent to null controllability at some time T > 0. An in-
teresting interpretation of this result is that NCVE does not depend on the control
operator provided that this operator is so chosen to guarantee null controllability
at a certain time T .

Now we state our main results, which we split in Theorems 1.5 and 1.7. We
don’t try to unify them, since they are proved using different ideas, see also
Remark 1.8.

We recall that an invariant subspace E for a C0-semigroup eAt on H is a closed
subspace of H such that

eAtx ∈ E, ∀x ∈ E , ∀t ≥ 0 .

It is possible to prove that the restriction of eAt is a C0-semigroup on E and that
A (E ∩ (domA)) ⊆ E (the restriction of A to E is the infinitesimal generator of
eAt on E).

Theorem 1.5. Assume Hypothesis 1.1 and suppose the existence of an invariant
subspace E for eAt, such that e−At generates a C0-group on E which is exponen-
tially stable (for t → +∞). Then, the system (1) is not NCVE.

A consequence is:

Corollary 1.6. Assume Hypothesis 1.1, If σ(A) has an isolated point with posi-
tive real part, then the system (1) is not NCVE.

In fact, [30] proves the existence of the subspace E in Theorem 1.5, under the
assumption of the corollary.

Now we come to the second theorem. We recall that x ∈ H is a generalized
eigenvector of A associated to the eigenvalue λ ∈ C if x ∈ ⋃

k≥1Ker[(λ−A)k] and
we recall the standard notation

s(A) = sup{ℜe λ , λ ∈ σ(A)}.
Now we introduce the following assumption, which slightly generalizes the one

in [30, (ii) Hypothesis 1.1].

Hypothesis 1.2. There exist closed linear subspaces Hs, H1 of H such that:

• their direct sum is H, i.e., H = Hs ⊕H1;
• for every x ∈ Hs we have

lim
t→+∞

eAtx = 0

• the subspace H1 is invariant for the semigroup, hence also for (ωI−A)−1

(for every large enough ω ∈ R) and furthermore we assume that the set of
all generalized eigenvectors of A contained in H1 is linearly dense in H1.

We note that the assumption in [30] is slightly stronger in that [30] assumes that
Hs is an invariant subspace for the semigroup, and that the semigroup restricted
to Hs is exponentially stable.

We have:
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Theorem 1.7. Assume Hypotheses 1.1 and 1.2 and furthermore suppose that
s(A) ≤ 0. If system (1) is null controllable at some time T > 0, then it is
NCVE.

The ideas used in the proof of both Theorems 1.5 and 1.7 are different from
those used in the proofs of the corresponding results in [30]. In particular, the
proof of Theorem 1.7 relies on the Yakubovich theory of the regulator problem
with stability, and the corresponding Linear Operator Inequality, that can be
found in [20, 26, 27, 28].

Remark 1.8. Clearly, the spectral condition in Hypothesis 1.2 is satisfied by most
of the systems encountered in practice, when the “dominant part” of the spectrum
is a sequence of eigenvalues (in particular, if A has compact resolvent). Hence,
for all these systems, Theorems 1.5 and 1.7 can be combined to get a necessary
and sufficient condition for NCVE which depends only on the spectrum of A,
provided that null controllability holds. For example we can state:

Assume Hypothesis 1.1 and suppose that the operator A has compact resolvent.
Then null controllability and NCVE are equivalent properties if s(A) ≤ 0. When
s(A) > 0 the system is not NCVE.

We prefer to keep the theorems distinct, since the two proofs use different ideas.

We conclude this introduction with the following observation which extends
a property of null controllable systems proved by many people for distributed
controls (see [7, 32, 24]) and likely known also in the boundary case, in spite of
the fact that we cannot give a precise reference:

Lemma 1.9. Assume Hypothesis 1.1 and suppose that every y ∈ H can be steered
to rest in a time Ty. Then:

• there exists a time T0 such that system (1) can be steered to the rest in
time T0;

• there is a ball B(0, r) (centered at 0, radius r > 0) and a number N such
that every element of B(0, r) can be steered to the rest using a control
whose L2-norm is less then N .

Proof. The proof is the same as for distributed systems: we introduce the sets
ET,N of those elements y ∈ H which can be steered to the rest in time (at most)
T and using controls of norm at most N . These sets are closed, convex and
balanced. Furthermore, they grow both with T and with N .

Every y belongs to a suitable ET,N so that

H = ∪EN,N .

Baire Theorem implies the existence of N0 such that EN0,N0
has interior points.

The set EN0,N0
being convex and balanced, 0 is an interior point, i.e., any

point of a ball centered at zero can be steered to the rest in time T = N0 and
the L2-norm of the corresponding control is less then N0. So, every y ∈ H can
be steered to the rest in time T = N0 �

In conclusion, we see that null controllability and null controllability at a fixed
time T > 0 are equivalent concepts.

2. Proof of the main results

First we state three lemmas which have an independent interest. In the proof
of Theorem 1.5 we shall use the first two of them.
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Let y(t) solve equation (1). Then, x(t) = (ωI −A)−1y(t) solves the equation

ẋ = Ax+Du , x(0) = x0 = (ωI −A)−1y0 ∈ domA . (7)

Consequently, every control which steers y0 to zero, steers also x0 to zero, and
conversely. Therefore, we have:

Lemma 2.1. Assume Hypothesis 1.1. There exists T > 0 such that system (1)
is null controllable in time T if and only if system (7) is null controllable on
D = domA in the same time T ; system (1) is NCVE if and only if system (7) is
NCVE on D = domA.

From now on, D will always denote domA, i.e.,

D = domA .

The second preliminary result is the following lemma:

Lemma 2.2. Assume Hypothesis 1.1 and suppose that system (1) is null control-
lable in time T . Then there exists a number M such that for every y0 ∈ H there
exists a control uy0,T (t) which steers y0 to 0 in time T and such that:

∫ T

0

|uy0,T (t)|2 dt ≤ M |y0|2 .

Proof. We already noted that we can equivalently control system (7) to zero on
D, i.e., we can solve

− eAT (ωI −A)−1y0 =

∫ T

0

eA(T−s)Du(s) ds (8)

and by assumption this equation is solvable for every y0 ∈ H . We introduce the
operator ΛT : L2(0, T ;U) → H as

ΛTu =

∫ T

0

eA(T−s)Du(s) ds . (9)

So, null controllability at time T is equivalent to

im eAT (ωI −A)−1 ⊆ imΛT .

The operator ΛT is continuous,

ΛT ∈ L
(

L2(0, T ;U), H
)

.

Let us introduce the continuous operator QT = ΛTΛ
∗
T . Its kernel is closed and its

restriction to the orthogonal of the kernel is invertible with closed inverse. Let
us denote it as Q†

T so that the control which steers (ωI −A)−1y0 to zero in time
T and which has minimal L2(0, T ) norm is

uT,y0(t) = −Λ∗
TQ

†
T e

AT (ωI − A)−1y0 = −D∗eA
∗(T−t)Q†

T e
AT (ωI − A)−1y0 . (10)

The closed operator Q†
T e

AT (ωI−A)−1 being everywhere defined, it is continuous,
so that

‖uT,y0‖L2(0,T ;U) ≤ M |y0| , M = MT ,

as wanted. �

Remark 2.3. We note:

• The function ũT,y0(t), extended with 0 for t > T , produces a solution y(t)
to Eq. (1), which has support in [0, T ].



8 LOI, NCVE AND BOUNDARY CONTROLS

• We can work with any initial time τ instead of the initial time 0. If the
system is null controllable in time at most T , then any “initial condition”
assigned at time τ can be steered to rest on a time interval still of duration
T , i.e., at the time T + τ and the previous Lemma 2.2 still holds, with the
constant M depending solely on the length of the controllability time, i.e.,
the same constant MT can be used for every initial time τ .

In the proof of Theorem 1.7 we will use use the following result which makes
sense since when the control is of class C1 then the function yy0,u(t) in (4) is
continuous.

Lemma 2.4. Assume Hypothesis 1.1 and suppose that system (1) is null control-
lable in time T . Then, for any y0 ∈ H and for any ǫ > 0 there exists a control
uǫ ∈ C1 and a time tǫ (depending also on y0) such that the support of uǫ is in
[0, tǫ] and

|yy0,uǫ(tǫ)| < ǫ. (11)

Proof. By null controllability, we know that for every, large enough, T > 0, there
exists a control u ∈ L2 with support in [0, T ] such that yy0,u(t) has support
in [0, T ] too. Hence, the class (Lu)(t) ∈ L2(0,+∞), defined in (2), contains a
function z(t) which for t > T satisfies

z(t) = −eAty0 . (12)

In particular, z(t) is continuous for t > T .
This suggests that we search for tǫ > T . Let us consider (12), for example, on

(T, 2T ). The mapping u(·) 7→ (Lu)(·) belongs to L(L2(0, τ ;U), L2(0, τ ;H)), for
any τ > 0 (see Hypothesis 1.1). Therefore there exists a sequence of C1 controls
(un), with support in [0, 2T ], such that

∫ 2T

0

|z(t)− zn(t)|2dt → 0, as n → ∞ .

Here, zn(t) is the continuous function given by yy0,un(t)− eAty0 (cf. Lemma 1.1).
So (possibly passing to a subsequence, still denoted (un)), we have |z(t)−zn(t)| →
0, as n → ∞, a.e. on (T, 2T ). Using (12), it follows that there exists tǫ ∈ (T, 2T )
and a control un0

, with support in [0, 2T ] such that (see (12))
∣

∣eAtǫy0 + zn(tǫ)
∣

∣ =
∣

∣

(

eAtǫy0 + z(tǫ)
)

−
(

eAtǫy0 + zn(tǫ)
)
∣

∣ < ǫ.

This is the assertion with uǫ = un0
. �

We can now prove the first theorem.

2.1. Proof of Theorem 1.5, i.e. if NCVE holds then the invariant subspace
E does not exist. The proof in [30] relays on a precise study of the quadratic
regulator problem and the associated Riccati equation. Here we follow a different
route: we prove that the existence of the subspace E implies that system (1) is
not NCVE.

Let y0 6= 0 be any point of E. If it cannot be steered to 0 then system (1)
is not null controllable, hence even not NCVE. So, suppose that there exists a
control u which steers y0 to zero in time T . Then we have, for every t > T ,

eAty0 = −
∫ t

0

eA(t−s)Bu(s) ds .
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Then we have also

eAT (ωI −A)−1y0 = −
∫ T

0

eA(T−s)Du(s) ds .

Let now PE be the orthogonal projection of H onto E. Then we have

eAT (ωI − A)−1y0 = −
∫ T

0

eA(T−s)PEDu(s) ds−
∫ T

0

eA(T−s)(I − PE)Du(s) ds .

The left hand side belongs to E so that the last integral is zero and we have

eAT (ωI − A)−1y0 = −
∫ T

0

eA(T−s)PEDu(s) ds

hence also

(ωI −A)−1y0 = −
∫ T

0

e−AsPEDu(s) ds

since A generates a group on E. Note that this equality in particular implies
that PED 6= 0 since the left hand side is not zero.

We assumed that e−At is exponentially stable on E, i.e., we assumed the exis-
tence of M > 1 and γ > 0 such that

∣

∣e−Asy0
∣

∣ ≤ Me−γs|y0| ∀s > 0 and y0 ∈ E .

So, using Schwarz inequality we see that:

∣

∣(ωI − A)−1y0
∣

∣ ≤ M‖PED‖L(U,H)√
2γ

‖u‖L2(0,T ;U) .

This is an estimate from below for the L2(0, T )-norm of any control which steers
y0 to the rest, and this estimate does not depend on T . Hence, the system is not
NCVE, as we wished to prove. �

2.2. Proof of Theorem 1.7, i.e., null controllability and s(A) ≤ 0 implies
NCVE . We introduce a new notation. Since we need to consider solutions of
equation (1) with initial time τ , possibly different from 0, we introduce

y(t; τ, y0, u)

to denote the solution of the problem

y′ = Ay +Bu t > τ , y(τ) = y0 .

Furthermore, when τ = 0, we shall write y(t; y0, u) instead of y(t; 0, y0, u). Com-
paring with (4), we have

y(t; y0, u) = yy0,u(t) .

We first give a different formulation of the problem under study. To this purpose
we introduce the following functionals I(y0) and Z(y0):

I(y0) = inf
u∈U(y0)

J(y0; u) , J(y0; u) =

∫ +∞

0

|u(s)|2 ds (13)

U(y0) =
{

u ∈ L2(0,+∞;U) : y(·; y0, u) ∈ L2(0,+∞;H)
}

and

Z(y0) = inf
t>T

(

inf
{

∫ t

0

|u(s)|2ds
}

)

, (14)
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where, for each t > T , the infimum in parenthesis is computed on those controls
u which steers y0 to the rest in time at most t (i.e., the supports of u and yy0,u

have to be contained in [0, t]).
Using Lemma 2.2, we can prove:

Theorem 2.5. Assume Hypothesis 1.1. Let system (1) be null controllable in
time T . Then we have

I(y0) = Z(y0) .

Proof. It is clear that I(y0) ≤ Z(y0) for every y0 ∈ H . We prove the converse
inequality.

Let us fix any y0 ∈ H . Null controllability implies that I(y0) < +∞ for every
y0 so that for every ǫ > 0 there exist a control uǫ ∈ U(y0) and a time S0 such
that for every S > S0 we have

∫ S

0

|uǫ(t)|2 dt ≤ I(y0) + ǫ .

Note that we are computing an infimum, not a minimum; so we can assume u of
class C1, so that the function yy0,uǫ is continuous. Since, in addition, it is square
integrable, we have

lim inf
t→+∞

yy0,uǫ(t) = 0.

Fix an arbitrary σ > 0 and a time Sσ > S0 such that

|yy0,uǫ(Sσ)| = |y(Sσ, y0, uǫ)| < σ .

Null controllability holds also on [Sσ, Sσ + T ] and Lemma 2.2 can be applied on
this interval (see also Remark 2.3). Hence, there exists a control ũ with support in
[Sσ, Sσ+T ] which steers to the rest in time T the “initial condition” y(Sσ; y0, uǫ),
assigned at the initial time Sσ. Lemma 2.2 shows that the norm of this control
is less then Mσ.

Now we apply in sequence the controls uǫ, on [0, Sσ] and then the control ũ.
This controls steers y0 to zero in time at most Sσ + T and its norm is less then
I(y0) + ǫ+M2σ2. Hence we have

Z(y0) ≤ I(y0) + ǫ+M2σ2 .

The required inequality follows since ǫ > 0 and σ > 0 are arbitrary. �

This theorem shows:

Corollary 2.6. Assume Hypothesis 1.1 and suppose that system (1) is null con-
trollable in time T . Then System (1) is NCVE if and only if I(y0) = 0, for every
y0 ∈ H.

So, our goal now is the proof that, under the assumptions of Theorem 1.7, we
have I(y0) = 0.

It is not difficult to prove that I(λy0) = |λ|2I(y0), λ ∈ C, y0 ∈ H . An obvious
consequence is

{

I(x) = I(−x) and I(0) = 0 ,
|α| = |β| implies I(αx) = I(βx), α, β ∈ C, x ∈ H.

(15)

First, we give a representation of I(y0).
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Lemma 2.7. Assume Hypothesis 1.1 and suppose that system (1) is null con-
trollable in time T . Then there exists an operator P defined on H such that

I(y0) = 〈y0, P y0〉 .
The operator P has the following properties:

a) 〈Px, ξ〉 = 〈x, Pξ〉 ∀x , ξ ∈ H;
b) P (x+ ξ) = Px+ Pξ ∀x , ξ ∈ H;
c) the equality P (qx) = qPx holds for all x ∈ H and every complex number

q with rational real and imaginary parts.
d) 〈y0, P y0〉 ≥ 0 for all y0 ∈ H.

Proof. The proof uses [9, Sect. 9.2] (adapted to complex Hilbert spaces) and it is
an adaptation of the proof of [6, Theorem 5].

Recall that U(y0) is not empty since system (1) is null controllable. So, null
controllability implies that I(y0) is finite for every y0 ∈ H .

Let us fix x0 and ξ0 in D =domA and controls u ∈ U(x0) and v ∈ U(ξ0) Then
we have

y(t; x0 ± ξ0, u± v) = y(t; x0, u)± y(t; ξ0, v)

and J satisfies the parallelogram identity

J(x0 + ξ0; u+ v) + J(x0 − ξ0; u− v) = 2 [J(x0; u) + J(ξ0; v)] .

We must prove that I(x) satisfies the parallelogram identity too. This part of the
proof is the same as that in [6, Theorem 5] and it is reported for completeness.

We fix x and ξ and ǫ > 0 and we choose ux and uξ, corresponding to the initial
conditions x and ξ, such that

J(x; ux) < I(x) + ǫ/2 , J(ξ; uξ) < I(ξ) + ǫ/2.

Then

J(x+ ξ; ux + uξ) + J(x− ξ; ux − uξ)

= 2J(x; ux) + 2J(ξ; uξ) < 2 [I(x) + I(ξ)] + 2ǫ.

This proves the inequality

I(x+ ξ) + I(x− ξ) ≤ 2 [I(x) + I(ξ)] . (16)

We prove that the inequality cannot be strict; i.e., we prove that if ǫ satisfy

I(x+ ξ) + I(x− ξ) ≤ 2 [I(x) + I(ξ)]− ǫ (17)

then ǫ = 0.
If (17) holds then we can find ũ and ṽ, corresponding to the initial states x+ ξ

and x− ξ, such that

J(x+ ξ; ũ) + J(x− ξ; ṽ) ≤ 2 [I(x) + I(ξ)]− ǫ/2 .

For the initial conditions x, ξ we apply, respectively, controls

u0 =
ũ+ ṽ

2
, v0 =

ũ− ṽ

2
.

Then

2 [J(x; u0) + J(ξ; v0)] = J(x+ξ; u0+v0)+J(x−ξ; u0−v0) ≤ 2 [I(x) + I(ξ)]−ǫ/2 .

We have also

I(x) + I(ξ) ≤ J(x; u0) + J(ξ; v0) ≤ [I(x) + I(ξ)]− ǫ/4 . (18)

This shows ǫ = 0 so that parallelogram identity holds.
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The operator P is now constructed by polarization (compare with [10]),

〈x, Pξ〉 = I

(

1

2
(x+ ξ)

)

− I

(

1

2
(x− ξ)

)

+ i

[

I

(

1

2
(x+ iξ)

)

− I

(

1

2
(x− iξ)

)]

.

(19)
The property I(x) = 〈x, Px〉 is a routine computation, using (15).

We prove property a). Using (15) we see that the right hand side of (19) is
equal to:

I

(

1

2
(ξ + x)

)

− I

(

1

2
(ξ − x)

)

+ iI

(

1

2
(iξ + x)

)

− iI

(

1

2
(iξ − x)

)

= I

(

1

2
(ξ + x)

)

− I

(

1

2
(ξ − x)

)

+ iI

(

1

2
(ξ − ix)

)

− iI

(

1

2
(ξ + ix)

)

= 〈ξ, Px〉 = 〈Px, ξ〉 .
In order to see property b) it is sufficient to prove additivity of the real part. In
fact, using 4I(y0) = I(2y0), we check that

ℜe (4〈y, P (ξ + x)〉) = ℜe (〈2y, P2(ξ + x)〉) = I(x+ ξ + y)− I(x+ ξ − y) (20)

= 4ℜe (〈y, P ξ〉+ 〈y, Px〉) = I(ξ + y)− I(ξ − y) + I(x+ y)− I(x− y) . (21)

Using the parallelogram identity for I(x), i.e., (16) with = instead of ≤, and
associating the terms of equal signs, we see that the right hand side of (21) is
equal to

1

2
[I(x+ ξ + 2y) + I(ξ − x)]− 1

2
[I(x+ ξ − 2y) + I(ξ − x)]

=
1

2
[I(x+ ξ + 2y)− I(x+ ξ − 2y)]

=
1

2
{−I(x+ ξ) + 2 [I(x+ ξ + y) + I(y)] + I(x+ ξ)− 2 [I(x+ ξ − y) + I(y)]}

= I(x+ ξ + y)− I(x+ ξ − y)

as wanted.
Property c) for q real rational is consequence of b), as in [9, Sect. 9.2]. When

q = i equality follows since a) easily shows

〈x, P (iξ)〉 = −i〈x, Pξ〉 = 〈x, iP ξ〉 i.e., P (iξ) = iP ξ .

Hence, property c) holds also for iq with real rational q and then it holds for
every complex number with rational real and imaginary parts.

Property d) is obvious. �

Now we prove:

Lemma 2.8. Assume Hypothesis 1.1 and suppose that system (1) is null con-
trollable. Then, there exists a number M such that

I(y) ≤ M |y|2, y ∈ H.

Proof. It is sufficient to prove that I(y) is bounded in a ball since I(λy0) =
|λ|2I(y0), λ ∈ C, y0 ∈ H . This is known, see the second statement in Lemma 1.9.

�

For the moment, we can’t say that the operator P is linear, i.e., that P (qx) =
qPx for every real q. This will be proved below, as a consequence of this version
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of Schwarz inequality, which can be proved using solely the properties stated in
Lemmas 2.7 and 2.8:

Lemma 2.9. Assume Hypothesis 1.1 and suppose that system (1) is null con-
trollable. Then, we have

|〈Py, x〉| = |〈y, Px〉| ≤ M |y||x|, x, y ∈ H. (22)

Proof. The inequality is obvious if 〈Py, x〉 = 0. Otherwise, we note the following
equality, which holds for every complex number λ which has rational real and
imaginary parts:

0 ≤ 〈Px, x〉+ 2ℜe (λ〈Py, x〉) + |λ|2〈Py, y〉 .
This inequality is extended to every real λ by continuity. The usual choice λ =
− (〈Px, x〉) /(〈Py, x〉) gives

|〈Py, x〉| ≤
√

〈Px, x〉〈Py, y〉 =
√

I(x)I(y) ≤ M |x||y| .
�

Finally we can prove:

Theorem 2.10. Assume Hypothesis 1.1 and suppose that system (1) is null con-
trollable. Then the operator P defined in Lemma 2.7 is linear and continuous on
H. Hence, it is selfadjoint and non-negative.

Proof. We first prove that for every real q0 and every ξ ∈ H we have

P (q0ξ) = q0Pξ .

Let qn → q0 be a sequence of rational numbers. Then we have (Lemma 2.9 is
used in the second line)

limP (qnξ) = lim qnPξ = q0Pξ ,

|P (qnξ)− P (q0ξ)| = |P (qn − q0)ξ| = sup
|y|=1

〈y, P (qn − q0)ξ〉 ≤ M |qn − q0| |ξ|.

So, q0Pξ = lim qnPξ = limP (qnξ) = P (q0ξ). This gives linearity of the operator
P which, from Lemma 2.7 is everywhere defined and symmetric. Continuity
follows immediately from (22). �

Combining Corollary 2.6 and Lemma 2.7 we get:

Corollary 2.11. Assume Hypothesis 1.1 and suppose that system (1) is null
controllable. Then System (1) is NCVE if and only if P = 0.

So, our goal now is to show that if the system (1) is null controllable and
s(A) ≤ 0 , then P = 0.

An obvious but important observation is the following one: the time 0 as
initial time has no special role and we can repeat the previous arguments, for
every initial time τ ≥ 0 and y0 ∈ H . Hence we can define Pτ : H → H such that

〈y0, Pτy0〉 = inf

∫ +∞

τ

|u(s)|2 ds, (23)

where the infimum is computed on the set

U(y0, τ) = {u ∈ L2(τ,+∞) : y(t; τ, y0, u) ∈ L2(τ,+∞)} .
We have a family Pτ of linear operators, and P0 = P is the operator defined
above. The observation is:



14 LOI, NCVE AND BOUNDARY CONTROLS

Lemma 2.12. Assume Hypothesis 1.1 and suppose that system (1) is null con-
trollable. Then the operator Pτ does not depend on τ :

Pτ = P0 = P .

Proof. Computing infima, we can assume that the inputs u are smooth.
We observe the following equality, which holds for t > τ :

y(t; τ, y0, u) = y(t− τ ; 0, y0, v) , v(t) = u(t+ τ),

and both v(t) and y(t; 0, y0, v), t ≥ 0, are square integrable on (0,+∞) if u(t)
and y(t; τ, y0, u) are square integrable on (τ,+∞). Hence, the infimum of the
functional in (23) is 〈y0, Pτy0〉 = 〈y0, P y0〉, i.e., Pτ = P . �

Now we write

〈y0, P y0〉 ≤
∫ +∞

0

|u(s)|2 ds =
∫ τ

0

|u(s)|2 ds+
∫ +∞

τ

|u(s)|2 ds .

We choose a control u which is smooth on [0, τ ] so that y(·; y0, u) is continuous
and we keep the restriction of u to [0, τ ] fixed. Then we compute the infimum of
the integral on [τ,+∞). We get

〈y0, P y0〉 ≤
∫ τ

0

|u(s)|2 ds+ 〈y(τ ; y0, u), Pτy(τ ; y0, u)〉 .

Using the fact that Pτ = P is independent of τ , we see that the following in-
equality holds for every control u ∈ C1 (cf. Lemma 1.1), every y0 ∈ H and
t ≥ 0:

(LOI) 〈Py(t; y0, u), y(t; y0, u)〉 − 〈Py0, y0〉+
∫ t

0

|u(s)|2 ds ≥ 0 . (24)

This inequality is known as Linear Operator Inequality in integral form (LOI)
or dissipation inequality in integral form. For special classes of boundary control
systems, it has been studied in [26, 27, 28], see also [6].

Now we have all the preliminaries we need to prove Theorem 1.7. Recall that
we are assuming that s(A) ≤ 0 and that system (1) is null controllable in time
T . Thanks to Corollary 2.11 in order to prove that system (1) is NCVE we need
to show that

Py0 = 0, y0 ∈ H.

We decompose H = Hs ⊕ H1 according to Hypothesis 1.2 and show that P
restricted respectively to Hs and H1 is identically zero.

If y0 ∈ Hs, then by (LOI) with u = 0 we get

〈PeAty0, e
Aty0〉 ≥ 〈Py0, y0〉.

By assumption, when y0 ∈ Hs we have

lim
t→+∞

eAty0 = 0 .

Hence, letting t → +∞, we find 〈Py0, y0〉 = 0 and so Py0 = 0.
In order to prove that P is zero on H1, it is enough to verify that Pz = 0 on

every generalized eigenvector z of A which belongs to H1.
Indeed the subspace generated by all generalized eigenvectors of A which belong

to H1 is dense in this space and, moreover, P is continuous on H1.
Let us first prove that Pz0 = 0 for any eigenvector z0 associated to an eigenvalue

λ.
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We choose y0 = z0. Let u be smooth. LOI asserts that
(

e2(ℜe λ)t − 1
)

〈Pz0, z0〉+ 2ℜe eλt〈P (Lu)(t), z0〉

+

{
∫ t

0

|u(s)|2 ds+ 〈P (Lu)(t), (Lu)(t)〉
}

≥ 0 ∀t ≥ 0 (25)

(Lu is defined in (2); note that since u is smooth we know that Lu is continuous).
Now if ℜe λ < 0 we insert u = 0 in (25) and get

(

e2(ℜe λ)t − 1
)

〈Pz0, z0〉 ≥ 0.

Letting t → +∞, we infer Pz0 = 0.
Let now ℜe λ = 0. In this case (25) becomes, for any t ≥ 0, for any u ∈ C1

and for any y0 = z0 where z0 is an eigenvector associated to λ,

2ℜe eλt〈P (Lu)(t), z0〉+
{
∫ t

0

|u(s)|2 ds+ 〈P (Lu)(t), (Lu)(t)〉
}

≥ 0 .

Let us fix any t > 0 and u ∈ C1. Since we have a linear affine expression of z0,
replacing z0 by µz0, µ ∈ R, we see that the previous inequality implies that

〈P (Lu)(t), z0〉 = 0, (26)

for every t ≥ 0 and u ∈ C1.
We fix now ǫ > 0 and choose a smooth control uǫ from Lemma 2.4 (depending

on y0 = z0 and ǫ). Writing (26) with u = uǫ, we obtain with t = tǫ (see (11))

0 = 〈z0, P (Luǫ)(tǫ)〉.
Recall that y(t, y0, u) = eAty0 + (Lu)(t) = eλty0 + (Lu)(t). It follows that

|〈Pz0, y(tǫ, z0, uǫ)〉| = |〈Pz0, e
λtǫz0〉| = 〈Pz0, z0〉,

since ℜe λ = 0. On the other hand, (11) implies that

|〈Pz0, y(tǫ, z0, uǫ)〉| ≤ ǫ|Pz0|.
We have found that, for any ǫ > 0, 〈Pz0, z0〉 ≤ ǫ|Pz0|. We deduce that Pz0 = 0.

Let us show now that Pz = 0, when z is any generalized eigenvector in H1

associated to a fixed eigenvalue λ.
The proof is done by recurrence, taking into account that, starting from an

eigenvector z0 associated to λ, the generalized eigenvectors are recursively defined
by

Azi = λzi + zi−1 , i ≥ 1 . (27)

It follows that

eAtzi = eλtzi + qi(t) , qi(t) = eλt
i

∑

k=1

αkzi−kt
k (28)

(αk are rational numbers). We already know that the assertion holds for all
eigenvectors, i.e., for all zk, when k = 0; so we assume that Pzk = 0 when
0 ≤ k < i and prove that

Pzi = 0. (29)
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Note that the induction hypothesis implies Pqi(t) = 0 so that (LOI) with initial
condition y0 = zi takes the form

0 ≤ 〈P
[

eλtzi + qi(t) + (Lu)(t)
]

,
[

eλtzi + qi(t) + (Lu)(t)
]

〉 − 〈Pzi, zi〉

+

∫ t

0

|u(s)|2 ds

= 〈P
[

eλtzi + (Lu)(t)
]

,
[

eλtzi + (Lu)(t)
]

〉 − 〈Pzi, zi〉+
∫ t

0

|u(s)|2 ds.

Now, we argue as before. If ℜe λ < 0, then inserting the control u = 0 and letting
t → +∞, we get Pzi = 0.

If ℜe λ = 0, the terms 〈Pzi, zi〉 and 〈Peλtzi, e
λtzi〉 cancel out and we find

2ℜe eλt〈P (Lu)(t), zi〉+
{
∫ t

0

|u(s)|2 ds+ 〈P (Lu)(t), (Lu)(t)〉
}

≥ 0 .

Repeating the argument before (26) we get first 〈P (Lu)(t), zi〉 = 0, for any t ≥ 0,
and any smooth control u. Using again Lemma 2.4 we deduce that Pzi = 0.

So, we proved P = 0 on H , as we wanted. �

Remark 2.13. We stress that in the proof of Theorem 1.7 we really need to
assume null controllability of the system (and not simply to assume the property
stated in Lemma 2.4 (see (11)). Indeed null controllability is crucial to prove
Theorem 2.5: it is used both to see that I(y0) is finite and in the definition of
Z(y0).

Appendix A. The basic setting for boundary control

Here we present known facts about boundary control which are explained in [34,
Sections 2.9 and 2.10]. Useful references are [8, Chapter 2], [3, Chapter 3] and [16,
Chapter 1]. However, it seems to us that detailed arguments are not completely
presented in standard control references and so we write this appendix for the
reader’s convenience.

A warning is needed: terms and some settings change in different books. For
example [11] uses the same term, adjoint, for Banach space and Hilbert space
adjoints, while it is convenient for us to use different terms. More important, the
dual spaces and the Banach space adjoints are defined in terms either of linear
forms or sesquilinear forms. The use of sesquilinear forms as in [11, 34] is the
most convenient for us.

We must introduce few notations. As before, 〈·, ·〉 will be used to denote the
inner product in Hilbert spaces (if needed, the spaces are specified with an index;
no index is present for the inner product in H).

If V is a complex Banach space (possibly Hilbert), V ′ denotes its topological
dual (the Banach space of the continuous linear functionals defined on V ). Thus,
if ω ∈ V ′ we can compute ω(v) for every v ∈ V . We shall use the notation

V ′(ω, v)V

in order to denote the sesquilinear pairing of V and V ′, i.e., V ′(ω, v)V is antilinear
in ω and linear in v.

To give an example, we note that the concrete spaces encountered in control
theory are complexification of spaces of real functions; i.e., if VR is a linear space
over R, the elements of the corresponding complexified space V have the form

v = f + ig , f , g ∈ VR .
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The space V is a linear space on C and it is simple to construct sesquilinear forms
on V , using elements of V ′: let ω a complex valued linear functional on V , i.e.
ω ∈ V ′. The associated sesquilinear form is

V ′(ω, v)V =V ′ (ω, f + ig)V = ω(f − ig) .

We shall use both the Hilbert space adjoint and the dual of an operator in the
sense of Banach spaces. The Hilbert space adjoint is defined for densely defined
operators A by

〈Ax, y〉 = 〈x,A∗y〉 ∀x ∈ domA , ∀y ∈ domA∗

(this equality implicitly defines domA∗ as the set of those y ∈ H such that
x → 〈Ax, y〉 is continuous).

This implies in particular that

ρ(A∗) = ρ(A) .

The operator A∗ is closed and if A is (densely defined) closed then A∗ has dense
domain too.

The Banach space dual of an operator A : domA ⊂ V → W (here V and W
are Banach spaces) will be denoted A′. It is a linear operator from W ′ to V ′. It
is (uniquely) defined for densely defined operators A and

domA′ = {ω ∈ W ′ : v 7→ W ′(ω,Av)W is continuous. }.
By definition,

V ′(A′ω, v)V = W ′(ω,Av)W .

Sesquilinearity of the pairing implies that

ρ(A′) = ρ(A)

(see [11, pg. 184]). Hence, the conjugate of multiplication by λ is multiplication
by λ̄ (if instead the conjugate is defined in terms of bilinear forms then the
resolvent is not changed). Moreover, A′ has dense domain if A has dense domain
and it is closed, provided that V is reflexive, in particular if it is a Hilbert space.

If W = V and if A is the infinitesimal generator of a C0 semigroup on V then it
might be that A′ is not a generator on V ′. It happens that A′ is the infinitesimal
generator of a C0-semigroup on V ′ if V is reflexive, in particular if it is a Hilbert
space. In this case eA

′t =
(

eAt
)′
. As for the Hilbert space adjoint A∗, it generates

eA
∗t (see [29, Section 1.10]).
With these notations and preliminary information, we can now give the details

of the setting used in the analysis of boundary control systems.

A.1. The operators A and A = (A∗)
′

. Let A be the generator of a strongly
continuous semigroup eAt on a complex Hilbert space H with inner product 〈·, ·〉
and norm | · |.

We shall identify its topological dual H ′ with H using the Riesz isomorphism,
which we denote R: H → H ′, defined as:

(Rv)(h) = H′(Rv, h)H = 〈h, v〉.
In practice, R is not explicitly written, hidden behind the equality H = H ′ but
in this appendix the distinction is needed for clarity.

Using the Riesz map R: H 7→ H ′ and the definition of A′, we see that domA′ =
R (domA∗). In fact

H′(Rh,Ak)H = 〈Ak, h〉



18 LOI, NCVE AND BOUNDARY CONTROLS

and the right hand side is a continuous function of k if and only if the same holds
for the left side.

For every h ∈ domA∗ and every k ∈ domA we have:

H′ (A′Rh, k)H = H′

(

R
(

R−1A′Rh
)

, k
)

H
= 〈k, R−1A′Rh〉 .

The definition of A′ is

H′ (A′Rh, k)H = H′ (Rh,Ak)H = 〈k, A∗h〉 .

Hence (see [8, Sect. II.7]) we have

A∗ = R−1A′R . (30)

The same relation holds for the semigroups

eA
∗t = R−1eA

′tR .

In the sequel we denote by V the Hilbert space domA∗, with inner product
〈h, v〉∗ = 〈h, v〉 +〈A∗h,A∗v〉, h, v ∈ domA∗. We have

domA∗ = V ⊂ H
R≃ H ′ ⊂ V ′ (31)

with dense and continuous injections.
Let j be the injection of V into H , j v = v ∈ H , for v ∈ V . Then, the definition

of j ′ : H ′ → V ′ is

〈j v, h〉 = H′(Rh, j v)H = V ′(j ′Rh, v)V

and this shows that j ′Rh is the restriction of Rh (acting on H) to the subspace
V ⊂ H .

As A∗ ∈ L(V,H) we have (A∗)′ : H ′ → V ′ belongs to L(H ′, V ′).
We denote (A∗)′ by A, so that domA = H ′ (or, as usually written when H

and H ′ are identified, domA = H). The crucial property used in control theory
is expressed by stating that A extends A. The precise statement is:

Lemma A.1. If x ∈ domA then we have:

Ax = R−1(j ′)−1ARx .

Proof. Indeed, if x ∈ domA, v ∈ V = domA∗, then

V ′(ARx, v)V = V ′((A∗)′ Rx, v)V = H′(Rx,A∗v)H = 〈A∗v, x〉
= 〈v, Ax〉 = H′(RAx, j v)H = V ′(j ′RAx, v)V

and so AR = j ′RA. When j ′ and R are not explicitly written, as usual, we get
Ax = Ax. �

The second property that we want to prove is that V ′ is an extrapolation space
generated by A. This means that we can see V ′ as the completion of H when
endowed with the norm |(λI − A)−1 · |, for any λ ∈ ρ(A). In order to see this,
we fix any λ ∈ ρ(A) and we prove that | · |V ′ restricted to H is equivalent to
|(λI − A)−1 · |, i.e., we prove:

Lemma A.2. On H, the norms of V ′ (more precisely, h 7→ |j ′Rh|V ′) and the
norm |(λI −A)−1 · | are equivalent.
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Proof. Let I denote the identity in H and also on V .
Let λ ∈ ρ(A) and h ∈ H . |j ′Rh|V ′ is computed as follows (recall that j ′Rh is

the restriction of Rh to V ).

|j ′Rh|V ′ = sup
|v|V ≤1

|V ′(j ′Rh, v)V | = sup
|v|V ≤1

|〈v, h〉|

= sup
|v|V ≤1

|〈
(

λ̄I − A∗
)−1 (

λ̄I −A∗
)

v, h〉|

= sup
|v|V ≤1

|〈
(

λ̄I − A∗
)

v, (λI − A)−1 h〉| ≤ C
∣

∣(λI −A)−1 h
∣

∣ ,

with C = sup|v|V ≤1 |(λ̄I − A∗)v|. On the other hand,
∣

∣(λI − A)−1 h
∣

∣ ≤ C0|Rh|H′ = C0|(j ′)−1j ′Rh|H′ ≤ C1|j ′Rh|V ′ .

The proof is complete. �

A.2. The parabolic case and fractional powers of (ωI−A∗). Our goal here
is to justify inequality (6).

We assume that A (and so A∗) generates a holomorphic semigroup eAt (respec-
tively eA

∗t). One can also prove that the previous dual semigroup eAt acting on
V ′ is holomorphic.

There exists ω ∈ ρ(A) such that, for any γ ∈ (0, 1), (ωI−A∗)γ is a well defined
closed operator with domain Vγ ⊂ H (cf. [29, Section 2.6]).

Arguing as in (31), we have

Vγ ⊂ H ≃ H ′ ⊂ V ′
γ

and we denote by Aγ the operator [(ω−A∗)γ]′ : H → V ′
γ . Let U be another Hilbert

space and let B ∈ L(U, V ′
γ).

Note that we may consider B : U → V ′, since V ′
γ ⊂ V ′ with dense and

continuous injections. Thus we also have B ∈ L(U, V ′).
Moreover, since B ∈ L(U, V ′

γ), we have B′ ∈ L(Vγ, U
′) and so, for t > 0:

‖B′eA
∗t‖L(H,U ′) = ‖B′(ωI −A∗)−γ (ωI −A∗)γeA

∗t‖L(H,U ′)

≤ ‖B′(ωI − A∗)−γ‖L(H,U ′) ‖(ωI −A∗)γeA
∗t‖L(H,H) ≤

Meω1t

tγ
, t > 0 (32)

(in the last line we have used a well known estimate for holomorphic semigroups).
Next we compute the dual operator of B′eA

∗t and show that it is R−1eAtB, usually
written as eAtB when H and H ′ are identified.

We have, for any x ∈ H , u ∈ U , t > 0,

U ′(B′eA
∗tx, u)U = Vγ

(eA
∗tx,Bu)V ′

γ
= V (e

A∗tx,Bu)V ′ ,

since Bu ∈ V ′
γ ⊂ V ′ (recall that V = domA∗) and eA

∗tx ∈ V , t > 0. It follows
that

U ′(B′eA
∗tx, u)U = H′(eAtBu, x)H = 〈x,R−1eAtBu〉 .

and so the claim follows.
The previous assertion implies the identity

‖B′eA
∗t‖L(H,U ′) = ‖R−1eAtB‖L(U,H), t > 0, (33)

which together with (32) implies the estimate (6), i.e.,

‖eAtB‖L(U,H) ≤
Meω1t

tγ
, t > 0,
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which has been used in Subsection 1.1.
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[19] J. L. LIONS, Contrôlabilité exacte, perturbations et stabilisation de systmes distribués.
Tome 1, Recherches en Mathematiques Appliquees [Research in Applied Mathemat-
ics], 8. Masson, Paris, 1988.

[20] J. C. LOUIS, D. WEXLER, The Hilbert space regulator problem and operator Riccati
equation under stabilizability, Ann. Soc. Sci. Bruxelles, 105 (1991), pp. 137-165.

[21] V. KOMORNIK, Exact controllability and stabilization. The multiplier method, RAM:
Research in Applied Mathematics. Masson, Paris; John Wiley & Sons, Ltd., Chich-
ester, 1994.



LOI, NCVE AND BOUNDARY CONTROLS 21

[22] V. KOMORNIK and P. LORETI, “Fourier Series in Control Theory,” Springer Mono-
graphs in Mathematics. Springer-Verlag, New York, 2005.

[23] L. MILLER, A direct Lebeau-Robbiano strategy for the observability of heat-like semi-
groups, Discrete Continuous Dynamical Systems, 14 (2010), pp. 1465-1485.

[24] J.M.A.M. VAN NEERVEN, Null controllability and the algebric Riccati equation in
Banach spaces, SIAM J. Control Optimization, 43 (2005), pp. 1313-1327.

[25] L. PANDOLFI, A frequency domain approach to the boundary control problem for par-
abolic equations, Modelling and optimization of distributed parameter systems (War-
saw, 1995), pp. 149158, Chapman& Hall, New York, 1996.

[26] L. PANDOLFI, The Kalman-Popov-Yakubovich theorem: an overview and new results
for hyperbolic control systems, Nonlinear Anal., 30 (1997), pp. 735-745.

[27] L. PANDOLFI, The Kalman-Yakubovich-Popov theorem for stabilizable hyperbolic
boundary control systems, Integral Equations Operator Theory, 34 (1999), pp. 478-
493.

[28] L. PANDOLFI, Dissipativity and the Lur’e problem for parabolic boundary control
systems, SIAM J. Control Optim., 36 (1998), pp. 2061-2081.

[29] A. PAZY, Semigroups of linear operators and applications to partial differential equa-
tions, Applied Mathematical Sciences, 44. Springer-Verlag, New York, 1983.

[30] E. PRIOLA, J. ZABCZYK, Null controllability with vanishing energy, SIAM Journal
on Control and Optimization, 42 (2003) pp. 1013-1032.

[31] E. PRIOLA, J. ZABCZYK, Liouvile Theorems for non-local operators, Journal of
Functional Analysis, 216 (2004), pp. 455-490.

[32] S. ROLEWICZ, On universal time for the controllability of time-depending linear
control systems, Studia Math., 59 (1976/77), pp. 133-138.

[33] G. TENENBAUM, M. TUCSNAK, On the null controllability of diffusion equations,
ESAIM: COCV, 2010, DOI:10.1051/cocv/2010035.

[34] M. TUCSNAK, G. WEISS, Observation and control for operator semigroups.
Birkhuser Verlag, Basel, 2009.

[35] J. ZABCZYK, Mathematical Control Theory: an introduction, Birkhauser, Boston
(Second printing, with corrections), 1995.

[36] X. ZHANG, A unified controllability/observability theory of some stochastic and de-
terministic partial differential equation, Proc. Internat. Congress of Mathematicians,
Hydebarad, India, 2010.

[37] E. ZUAZUA, Controllability and observability of partial differential equations: some
results and open problems, in Handbook of differential equations: evolutionary equa-
tions. Vol. III, pp. 527621, Handb. Differ. Equ., Elsevier/North-Holland, Amsterdam,
2007.


	1. Introduction and preliminaries
	1.1. Classes of systems which fit our framework
	1.2. Key results and discussion

	2. Proof of the main results
	2.1. Proof of Theorem 1.5, i.e. if NCVE holds then the invariant subspace  E  does not exist.
	2.2. Proof of Theorem 1.7, i.e., null controllability and  s(A)0  implies NCVE 

	Appendix A. The basic setting for boundary control
	A.1. The operators  A  and  A=( A*)'
	A.2. The parabolic case and fractional powers of (I- A*) 

	References

