
20 April 2024

AperTO - Archivio Istituzionale Open Access dell'Università di Torino

Original Citation:

An interactive system to learn functional logic programs

Publisher:

Terms of use:

Open Access

(Article begins on next page)

Anyone can freely access the full text of works made available as "Open Access". Works made available
under a Creative Commons license can be used according to the terms and conditions of said license. Use
of all other works requires consent of the right holder (author or publisher) if not exempted from copyright
protection by the applicable law.

Availability:

International Joint Conference on Artificial Intelligence, Inc.

This is the author's manuscript

This version is available http://hdl.handle.net/2318/122156 since

An Interactive System
to Learn Functional Logic Programs

Francesco Bergadano
University of Catania

via A. Doria 6/A
95100 Catania, Italy

e-mail: bergadan@mathct.cineca.it

Daniele Gunetti
University of Torino
corso Svizzera 185
10149 Torino, Italy

e-mail: gunetti@di.unito.it

Abstract

The problem of learning functional logic pro-
grams from positive examples is addressed. We
describe a system, called FILP, which asks ex-
istential queries to the user, and is able to learn
multiple predicates and recursive clauses. We
prove that the learned descriptions are correct
in the sense that they are consistent with the
given examples. Moreover, a correct solution is
always found if it exists.

1 Introduction

Inductive Logic Programming (ILP) is the field of Ma-
chine Learning concerned with the task of learning logic
programs from positive and negative examples in the
form of ground literals [Muggleton, 1991; Muggleton,
1992; Rouveirol, 1992; Bergadano et al., 1993]. The ob-
tained results have shown some major problems.

Systems tend to be slow and do not always termi-
nate successfully, even when a solution program ex-
ists. A natural approach consists in restricting the hy-
pothesis space by means of strong constraints of var-
ious kinds, including rule models [Kietz and Wrobel,
1991], predicate sets [Bergadano, 1991], mode [Kirschen-
baum and Sterling, 1991; Muggleton and Feng, 1990;
Shapiro, 1983] and type [Morik, 1991; DeRaedt, 1991;
Shapiro, 1983] of the variables, and integrity constraints
[Raedt and Bruynooghe, 1992].
FILP follows the same idea, and restricts the inductive

hypotheses to logic programs that are functional, in the
sense that every n-ary predicate P can be associated to
a functional relation as follows:

• m of P’s arguments are labeled as input,

• the other n-m arguments are labeled as output,

• for every given sequence of input values, there is one
and only one sequence of output values that makes
the predicate true.

The above properties must be determined by the user
and are assumed also for the examples that are not seen.
This is necessary because some examples may be missing
and will be queried later.
These requirements do not affect the expressive power,
as any computable function can be represented by a
functional logic program and, on the other hand, make
the learning task a lot easier, because many clauses
that would otherwise need to be generated and checked
against the examples are now disallowed a priori, and
the order of the literals within a clause antecedent is
somehow constrained by the need of computing an out-
put value before it can be used as input in another literal.

Only few systems [Kietz and Wrobel, 1991; Morik, 1991;
DeRaedt and Bruynooghe, 1991] are able to learn pro-
grams with more than one clause consequent. The reason
for this lies in the extensional interpretation of all predi-
cates occurring in clause antecedents, including recursive
calls. As a consequence, systems may be unable to learn
a program, even when an allowed inductive hypothesis
that is consistent with the examples exists. Even worse,
it may happen that a program is learned that computes
wrong outputs even for the given examples. We solve
this problem by querying the user for relevant examples
that may be missing, depending on the hypothesis space
that has been defined. As a result of this, every learned
program behaves as required on the given examples and
such a program is always found if it exists. The queries
that are asked to the user are of the type of the existen-
tial queries of CLINT [DeRaedt and Bruynooghe, 1991],
because they contain unbound variables. However, these
variables are labeled as output, and, as a consequence,
there is always one and only one answer to every such
query.

Therefore, functionality is the central idea that allows us
to face what we have individuated as two major problems
in ILP: (1) restricting further and in an explicit way the
set of allowed inductive hypotheses and (2) being able
to learn multiple predicates, in our case by means of in-
put/output queries that make the extensional informa-

tion sufficient. In the following we will call the predicates
that we need to learn the inductive predicates, while the
others will be either built-in or defined by the user.
FILP does not need a complete extensional specifica-

tion of the predicates to be learned, up to a certain ex-
ample complexity, as it happens, e.g., with FOIL [Quin-
lan, 1990]. Such a specification can be even more time-
consuming and error-prone for the user than actually
writing the desired program. By contrast, a very lim-
ited number of initial examples is required by FILP, and
a few additional input values are presented to the user,
and the corresponding outputs are requested. However,
not all of these input/output examples are always nec-
essary, in the sense that it may happen that, even for a
subset of them, there is only one allowed program that is
consistent (i.e., the solution is determined). We believe
that this problem cannot be remedied unless we give up
the extensional interpretation of predicates. But, in that
case, the order the clauses are generated with becomes
relevant, and backtracking may be required.

2 The Learning Procedure

In this section we present the FILP system and prove
some formal properties about it. As in most other ILP
learning systems clauses are learned one at a time, inde-
pendently of the ones that were learned previously. Since
FILP learns functional relations, it really only needs
positive examples. Negative examples are implicitly as-
sumed to be all the ones having the same input values
as the positive examples but different outputs.

2.1 A functional mode for variables

For functional logic programs we need to specify a func-
tional mode for every variable of every literal used in the
learning task, in order to employ and learn only func-
tional relations. For example sum(in,in,out) would be
a legal way to use sum, but sum(out,out,in) would not,
because it does not represent a function. For this reason,
FILP asks the user to provide a functional mode for all
predicates, and then uses it for constraining the allowed
clauses as follows: a literal L can occur in a clause an-
tecedent β ∧ L ∧ γ only if all of its input variables occur
in β, or are input variables in the head. Moreover, as a
result must always be produced, the output variables of
the head must occur somewhere in the body.
For example, suppose we have to learn a concept c

with a mode for variables c(in,in,out), using predicates
a, b, d with a mode for variables a(in,out), b(in,out),
d(in,in,in,out). Then the clause c(X,Y,Z) :- a(X,W),
b(Y,K), d(X,W,K,Z) is a legal one because every input
variable is defined before of being used, and the output
variable of c is at last instantiated.

2.2 A general extensional top-down method

This subsection contains a basic version of FILP, without
queries for adding the missing information, and an ex-

ample of its use, in order to describe the approach and to
prepare the discussion of the problems stemming from it
and the extension that is needed. This basic algorithmic
scheme is similar to the ones of ML-SMART [Bergadano
and Giordana, 1988] and FOIL [Quinlan, 1990], but uses
the notion of a predicate set and requires the function-
ality constraints, and, therefore, does not need any neg-
ative example. It also accepts more than one inductive
predicate, although the extension presented later is nec-
essary for making this feature work in general. In the
following α and γ represent generic conjunctions of lit-
erals.
The main loop in the algorithm tries to cover every

positive example of every predicate P. This is done by
repeatedly generating clauses of the form “P(�X) :- α”,
and then removing the covered examples. Clause gener-
ation is performed as follows:

α ← true
while covered(α) �= ∅ do

if consistent(α) then return(P(�X) :- α)
else choose a predicate Q and its arguments Args

such that the functionality constraint
is satisfied

if no such Q is found then backtrack
α ← α ∧ Q(Args)

where covered(α) and consistent(α) are defined below:

Definition 1: We say that the clause P(X,Y) :- α(X,Y)
extensionally covers P(a,b) iff α(a,Y) extensionally
computes Y = b, where extensional computation is de-
fined as follows:

• α = Q(a,Y) with functional mode Q(in,out). Then
Q(a,Y) extensionally computes Y = b iff Q(a,b)
is derivable from the definition of Q or is a given
example of Q.

• α = γ(X,T), Q(T,Y) with functional mode γ(in,out)
and Q(in,out). Then γ(a,T), Q(T,Y) extensionally
computes Y = b iff γ(a,T) extensionally computes
T = e and Q(e,b) is derivable from the definition of
Q or is a given example of Q.

In the algorithm, an example P(a,b) belongs to
covered(α) iff α(a,Y) extensionally computes Y=b, and
consistent(α) is true iff, for no such example, α(a,Y) ex-
tensionally computes Y=c and c�=b.

Suppose, for instance, that we have to learn the logic
program for reverse. Let examples(reverse) be:

reverse([],[]), reverse([a],[a]), reverse([c],[c]),
reverse([a,b],[b,a]), reverse([b,c],[c,b]),
reverse([a,b,c],[c,b,a]).

Suppose we also know that reverse depends on the
following set of predicates, with their usual definition
supplied (except for reverse, of course):

null, head, tail, assign, append, reverse.

This is an important information, but obviously still
very far away from the actual program that we want
to learn: we need to associate variables to these pred-
icates, and divide the obtained literals among the un-
known number of clauses that will be necessary. The or-
der of the literals is partially constrained by their mode:

null(out), null(out), head(in,out), tail(in,out),
assign(in,out), append(in,in,out), reverse(in,out).

The algorithm starts to generate the first clause - the
antecedent α is initially empty. We need to choose the
first literal Q(Args) to be added to α. As we have left
the heuristics unspecified, we will choose it so as to make
the discussion short. Variables are taken from the clause
head, or from a finite set of additional typed variables.

Let α=null(Y). A given example is covered, but we
cannot accept the clause reverse(X,Y) :- null(Y) as it
is, because it computes wrong outputs for some given
input values, e.g. reverse([a],[]), so more literals need to
be added.
Let α=null(Y) ∧ head(X,H); in this case no positive

examples are covered. Clause generation fails and we
backtrack to the last literal choice.
Let α=null(Y) ∧ null(X); the first example is covered

and no wrong outputs can be computed. A clause is gen-
erated and the covered example reverse([],[]) is removed
from examples(reverse).

We proceed to the generation of another clause; α
is empty again. Suppose we have already generated
α=head(X,H) ∧ tail(X,T); all the remaining examples
are covered, but again we have to specialize because α
could compute wrong outputs.
Let α = head(X,H) ∧ tail(X,T) ∧ reverse(T,W);

this clause again extensionally covers all remaining ex-
amples. For instance, for the last example we have
that head([a,b,c],a) and tail([a,b,c],[b,c]) are true, and
reverse([b,c],[c,b]) is a given example. However, the
output variable Y is not instantiated and the procedure
needs to be continued.
Suppose we add the literal assign([H],Y). The so ob-

tained clause covers reverse([a],[a]) and reverse([c],[c]),
but for reverse([a,b,c],Y) it computes Y=[a], which is
not consistent with the data. Further specialization
would fail to correct this problem and we need to back-
track, obtaining, e.g.,

α = head(X,H) ∧ tail(X,T) ∧

∧ reverse(T,W) ∧ append(W,[H],Y)

which covers all remaining examples and does not com-
pute wrong outputs. The final solution turns out to be:

reverse(X,Y) :- null(Y), null(X).
reverse(X,Y) :- head(X,H), tail(X,T),

reverse(T,W), append(W,[H],Y).

2.3 Partial justification of extensionality

Extensional methods are able to learn clauses individu-
ally, without worrying about their behavior in the con-
text of the final program. This is an advantage in terms
of efficiency, because once a clause is generated, it will
be kept, and there is no need for backtracking of this
type. This independence of the clauses is made possi-
ble by the extensional interpretation of recursion and of
the other sub-predicates: when a predicate Q occurs in
a clause antecedent α, it is evaluated as true when the
arguments match one of the positive examples. For in-
stance, the clause

reverse(X,Y) :- head(X,H), tail(X,T),
reverse(T,W), append(W,[H],Y).

extensionally covers the example reverse([a],[a]) because
head([a],a) and tail([a],[]) are true, and reverse([],[]) is
also a given example. The previously generated logical
definitions of Q are not used. The method leads to a fun-
damental property of extensional methods, which will be
proved below.

Definition 2: A program P is complete w.r.t. the ex-
amples E iff (∀ Q(i,o) ∈ E) P � Q(i,o). A program P is
consistent w.r.t. the examples E iff (� ∃ Q(i,o) ∈ E) P �
Q(i,o’) and o �=o’.

In other words, a complete program computes all de-
sired outputs, and a consistent program does not com-
pute wrong outputs.

Lemma 1: Suppose the extensional top-down method
given above outputs a logic program P, that always ter-
minates for the given examples.
Let Q(X,Y) :- α(X,Y) be any clause of P, then
(∀Q(a,b) ∈ Examples(Q)) α(a,Y) ext. computes Y=b
→ P � Q(a,b).
Proof (by contradiction)
Suppose that (1) (∀Q(a,b) ∈ Examples(Q)) α(a,Y) ext.
computes Y=b but (2) P �� Q(a,b). Let α = β(X,Z) ∧
R(Z,W) ∧ γ(W,Y), where R(Z,W) is the first literal such
that:
- R is an inductive predicate (in particular, R could be
Q),
- there is an example R(r,s) such that β(a,r) ∧ R(r,s) ∧
γ(s,b) is extensionally true.
- for any such r and s, P �� R(r,s).

There must be a literal R(Z,W) in α with these prop-
erties, because of the assumptions (1) and (2). But the
example R(r,s) must be extensionally covered, since the
algorithm has successfully terminated. Therefore, the
same argument can be repeated for R(r,s), with a never
ending chain of valid deductions. This contradicts the
assumption that the program output by the system ter-
minates on all given examples.

Theorem 1: If the given extensional top-down method
terminates successfully, then it outputs a complete pro-
gram P.
Proof
(∀e ∈ examples) P extensionally covers e, since the algo-
rithm terminated successfully. By Lemma 1, then, P �
e, i.e. P is complete.

The above proof is also valid for systems such as FOIL,
and is a partial justification of the extensional evaluation
of the generated clauses. However, other desirable prop-
erties, similar to the one given by Theorem 1, are not
true. First, even if a complete and consistent program
P exists in the hypothesis space, we are not guaranteed
that it will be found. Second, the algorithm may out-
put a program which is inconsistent with respect to the
given examples. This is due to the fact that some ex-
amples may be missing, while extensionality somehow
assumes them to be present. This is true also for func-
tional programs, because even if the single clauses of
P satisfy the functionality constraints, different values
may be computed by different clauses. A detailed dis-
cussion of these problems with examples may be found
in [Bergadano, 1993].

2.4 Completing examples before learning

There is no reason why all examples smaller than some
fixed complexity bound should have to be given by the
user. After all, the whole motivation of induction is that
some information is missing. The important points are
that (1) if a program P consistent with the given exam-
ples exists, then it must be found and (2) the induced
program P must not compute wrong outputs on the in-
puts of given examples. The basic extensional method
described in the previous section (and other systems,
such as FOIL) guarantees neither, unless some specially
determined examples are given in the inductive relations.
To overcome this problem, FILP queries the user for
some of the missing examples, as done with the “eager”
strategy in MIS. For every legal clause (= permitted by
the constraints) of the type
P(X,Y) :- A(X,W), Q(X,W,Z), α.
where Q has mode Q(in,in,out), and for every example
P(a,b), we do the following:

• extensionally compute A(a,W), obtaining a value W
= c;

• ask the user for the value Z computed by Q(a,c,Z);

• add this example to examples(Q).

Adding one example may cause the request of others.
Suppose, for instance, that an example A(a,d) is added
for A. Then, the above procedure might add an example
for Q, e.g. the one matching Q(a,d,Z). As a consequence,
the procedure must be repeated for every clause, again
and again, until no more examples are added for the in-
ductive predicates.

Both for making the above procedure terminate and
for guaranteeing the termination of learned programs, we
require that any recursive call within a generated clause
matches the following pattern:

P(X1 , ... , Xi, ..., Xn) :- ..., Q(Xi,Y), ...,
..., P(X1, ..., Y , ..., Xn),

where Q(X ,Y) is known to define a well ordering be-
tween Y and X (Y <X). It is possible to show that, if
every recursive clause in P satisfies the above constraint,
then the procedure terminates.

As an instance, suppose that we want to learn a sort
program. Consider the following clause:
sort(X,Y) :- tail(X,T), sort(T,W).
It satisfies the constraint on recursive calls because,
when tail(X,T) is true, then T is a shorter list than X
and this is a well order relation. Consider the exam-
ple sort([3,2,1],[1,2,3]). By using the clause, the user is
queried for the value of sort([2,1],W), and this is added
to examples(sort). This new example causes the rep-
etition of the procedure, and the user is queried for
sort([1],W), and at the next step for sort([],W).
Not all possible examples have been added, only the

ones that were useful for that clause, given the initial
example in examples(sort). If this is done for all the
clauses that are possible a priori, i.e. that satisfy the
given constraints, then the problems mentioned in the
previous subsection are solved. When speaking of FILP,
we will assume in the following that the above comple-
tion procedure has been executed as a first step.

Lemma 2: Suppose the examples given to an exten-
sional learning system are completed with the above
given procedure. Suppose also that some program P be-
longs to the hypothesis space and Q(a,b)∈examples(Q)
after the completion.
If P � Q(a,b) then the first clause in P resolved against
Q(a,b) extensionally covers Q(a,b).
Proof (by contradiction)

Suppose that (1) P � Q(a,b), where Q(X,Y) :- α(X,Y)
is the first clause used in the proof, but (2) Q(a,b) is not
extensionally covered by this clause.
Let α(X,Y) = β(X,Z) ∧ R(Z,W) ∧ γ(W,Y). Suppose
that P � β(a,r) ∧ γ(s,b) and P � R(r,s), but R(r,s) �∈
examples(R). There must be one literal R(Z,W) having
this property, because of assumptions (1) and (2), and
let R(Z,W) be the first such literal. The user must have
been queried for R(r,W), because β(a,r) is extensionally
covered. Since R(r,s) �∈ examples(R), the answer must
have been W=w �=s. But then no clause could extension-
ally cover R(r,s), or it would be inconsistent, while P �
R(r,s). We could now repeat the same argument for R.
This would produce a non-terminating chain of resolu-
tion steps, and a finished proof of Q(a,b) would never be
obtained, contradicting the initial hypothesis that P �
Q(a,b).

Theorem 2: If a complete and consistent program P
exists, then FILP will terminate successfully.
Proof (by contradiction)
If FILP does not terminate with a solution, there must
be an example Q(a,b) that it cannot cover. Since P
is complete, P � Q(a,b). Take the first clause Q(X,Y)
:- α resolved against Q(a,b). By Lemma 2, α(a,Y) ex-
tensionally computes Y=b. But this clause would have
been expanded by FILP and found to cover the example.
Moreover, consistent(α) is true, because P is consistent
and by the contrapositive of Lemma 1, and therefore
the clause would have been generated and the example
would have been covered.

Theorem 3: If FILP terminates successfully, then it
outputs a consistent program P.
Proof
If P is not consistent, then there must be some example
Q(a,b), such that P �Q(a,c) and b�=c. But, by Lemma 2,
some clause Q :- α of P will extensionally cover Q(a,c).
But, in that case, consistent(α) would have been false
and FILP would not have generated that clause.

By virtue of Theorem 1, this program will also be com-
plete.

3 Results

FILP is written in C-prolog (interpreted) and runs on
a SUN SPARCstation 1. Table 1 contains results about
some standard logic programs learned by FILP. Times
required to learn the programs are in seconds.
The second column of the table contains the set of
examples initially given to FILP. Observe that, apart
from member and subset, one initial carefully chosen ex-
ample is sufficient to learn the corresponding program.
Member and subset require a minimum of two examples
because they do not represent functional relations, and

must be turned into functions by adding a boolean ar-
gument which is true if the corresponding relation holds
and false otherwise. In general, it is possible to prove
that one initial example is sufficient to learn all the
clauses necessary to derive it. This means that it is possi-
ble to learn a program starting with the minimum set of
examples such that the program itself and the negation
of those examples represent a minimally unsatisfiable set
of clauses. Then, it is obviously better to chose exam-
ples as simple as possible, in order to limit the number
of queries the user will have to answer.
The third column shows the final number of examples
used by FILP in the learning process, the initial ones
plus those queried to the user. For example, starting
from the given example, the set of examples of union
is completed by querying the user for union([b],[a,c],?)
and for union([],[a,c],?).
Note that FILP is also able to learn more concepts at
the same time. For example it has learned quicksort
together with its major subprogram partition, starting
with only one example of quicksort and, at the begin-
ning, without examples of partition. The time required
for the entire task was about the sum of the times re-
quired to learn independently quicksort and partition.
We must remark that FILP does not learn concepts
separately, as it would be done by other systems such as
FOIL and GOLEM [Muggleton and Feng, 1990]. We tell
the system that quicksort could depend on partition,
and FILP queries the user for the missing examples
of partition. Then these examples are used to learn
partition itself.
FILP can also work with the extensional definition of

a concept. So, it is possible to learn quicksort without
learning partition, and only relying on its extensional
definition (the given or queried examples). On the other
hand it can learn more than two concepts together. We
could also give no intensional definition for append, but
only some examples, and have FILP learn also append
together with quicksort and partition. Finally, the last
program in the table is a version of quicksort not em-
ploying the append predicate.

program initial examples c. e. time
exponential exponential(2,3,8) 4 4.52
factorial factorial(3,6) 4 5.32
member member(a,[c,a],yes) 4 12.24

member(a,[b],no)
reverse reverse([a,b,c],[c,b,a]) 4 4.38
union union([a,b],[a,c],[b,a,c]) 3 13.67
intersection int([b,a],[c,a],[a]) 3 13.90
subset subset([b],[c,b,a],yes) 3 16.07

subset([a,d],[c,b,a],no)
partition part([1,3,0],2,[1,0],[3]) 7 81.50
quicksort quick([2,1,3,0],[0,1,2,3]) 6 12.86
qsort. app. qsapp([2,1,3],[],[1,2,3]) 7 6.80

Table 1.

As an example, below are the learned programs for
partition and quicksort without append; it should be
noted that FILP works with “flattened” clauses [Rou-
veirol, 1993], where functions are transformed into pred-
icates.

partition(L,El,L1,L2) :- null(L), null(L1), null(L2).
partition(L,El,L1,L2) :- head(L,X1), tail(L,X2),

partition(X2,El,Ls,Bs),
cons(X1,Bs,L2),
assign(Ls,L1), X1>El.

partition(L,El,L1,L2) :- head(L,X1),tail(L,X2),
partition(X2,El,Ls,Bs),
cons(X1,Ls,L1),
assign(Bs,L2), X1≤El.

qsort app(X,Acc,Y) :- null(X),assign(Acc,Y).
qsort app(X,Acc,Y) :- head(X,H),tail(X,T),

partition(T,H,Ys,Yl),
qsort app(Yl,Acc,Yls),
cons(H,Yls,Ylsacc),
qsort app(Ys,Ylsacc,Y).

4 Conclusion

We have described four major characteristics of FILP.
First of all, since FILP knows it is learning a func-

tion, it needs only positive examples of the program
to be learned. This makes the task of the user easier,
because he or she has to think only in terms of “what
the program must compute” and not in terms of “what
the program must not compute”. Nonetheless, for ev-
ery given positive example Q(a,b), all the corresponding
negative examples {Q(a,k)|k �=b} are implicitly known
and can be used by FILP. Moreover, strong function-
ality constraints limit the number of legal clauses and
consequently increase the efficiency of the system.
Second, FILP requires a very limited number of exam-

ples and, partially, this is still due to the knowledge of
FILP about functions. For example, quicksort is learned
with only six positive examples (plus seven examples for
partition, if we want to learn that, too), while GOLEM
employs fifteen positive examples (plus an unspecified
number of negative examples) to learn quicksort alone.
Simpler programs require a smaller number of examples
to be learned. The only system, up to our knowledge,
able to learn logic programs with a smaller number of ex-
amples than FILP is LOPSTER [Lapointe and Matwin,
1992]. Usually LOPSTER works with only two exam-
ples, but one of the two is in fact required to corre-
spond to the non-recursive clause of the desired program.
Moreover LOPSTER is a restricted learning system and
it is, for example, unable to learn quicksort.
Third, FILP queries the user for the missing examples.

This means that the user must not provide all the needed

examples to learn a program at the beginning. He or
she can forget some examples, and FILP will ask for
them. Observe that FILP queries the user only for the
examples it really needs, so it will not waste time trying
to cover useless examples. A similar technique is used
in Shapiro’s MIS. However MIS is an incremental sys-
tem, and newly added examples may require some pre-
viously generated clause to be retracted. This happens
both with the contradiction backtracing algorithm and
when refining clauses with the eager strategy [Shapiro,
1983]. In other systems [Muggleton and Feng, 1990;
Quinlan, 1990] the user must provide all the examples at
one time, and usually a superset of the examples needed
is given, resulting in a lot of time wasted in covering
useless examples. Experience with FILP has shown that
the best way to use it is to start with just few significant
examples (most of the time one is enough), and the sys-
tem will query for the missing ones needed to perform
the learning task.
Finally, FILP learns complete and consistent pro-

grams, and this means first of all that programs learned
by FILP have not unexpected behavior (that is, they do
not cover negative examples) as it is the case for other
extensional methods (such as FOIL) which do not com-
plete the given examples.
Experiments and results obtained with FILP have

shown how, limiting our attention to functional logic
programs, it is possible to acquire efficiency (with al-
most no loss in generality) by exploiting constrains on
functionality and implicit negative examples. We believe
that this possibility is not limited to extensional meth-
ods, but could be useful for every ILP learning system.

Acknowledgments: This work was in part supported
by BRA ESPRIT III Project 6020 on Inductive Logic
Programming.

References

[Bergadano and Giordana, 1988] F. Bergadano
and A. Giordana. A Knowledge Intensive Approach
to Concept Induction. In Proc. of the Fifth Int. Conf.
on Machine Learning, pages 305–317, Ann Arbor, MI,
1988. Morgan Kaufmann.

[Bergadano et al., 1993] F. Bergadano, L. DeRaedt,
S. Matwin, and S. Muggleton (Eds.). Proc. of the
IJCAI-93 Workshop on Inductive Logic Programming.
IJCAII, Chambéry, France, 1993.

[Bergadano, 1991] F. Bergadano. The Problem of In-
duction and Machine Learning. In Proc. Int. Joint
Conf. on Artificial Intelligence, pages 1073–1079, Syd-
ney, Australia, 1991. IJCAII.

[Bergadano, 1993] F. Bergadano. Inductive Data Base
Relations. To appear in IEEE Trans. on Data and
Knowledge Engineering, 1993.

[DeRaedt and Bruynooghe, 1991]
L. DeRaedt and M. Bruynooghe. CLINT: A Multi-
strategy Interactive Concept-Learner and Theory Re-
vision System. In R. S. Michalski and G. Tecuci, edi-
tors, Proc. Workshop on Multistrategy Learning, pages
175–190, Harpers Ferry, VA, 1991.

[DeRaedt, 1991] L. DeRaedt. Interactive Concept
Learning. Ph.D. thesis, Katholieke Univ. Leuven,
1991.

[Kietz and Wrobel, 1991] J. U. Kietz and S. Wrobel.
Controlling the Complexity of Learning in Logic
Through Syntactic and Task-Oriented Models. In
S. Muggleton, editor, Inductive Logic Programming,
London, 1991. Academic Press.

[Kirschenbaum and Sterling, 1991] M. Kirschenbaum
and L. Sterling. Refinement Strategies for Inductive
Learning of Simple Prolog Programs. In j. Mylopoulos
and R. Reiter, editors, Proc. Int. Joint Conf. on Ar-
tificial Intelligence, pages 757–761, Sydney, Australia,
1991. IJCAII.

[Lapointe and Matwin, 1992] S. La-
pointe and S. Matwin. Sub-unification: A Tool for
Efficient Induction of Recursive Programs. In Proc. of
the Int. Machine Learning Conference, pages 273–281.
Morgan Kaumann, 1992.

[Morik, 1991] K. Morik. Balanced Cooperative Mod-
eling. In R. S. Michalski and G. Tecuci, editors,
Proc. Workshop on Multistrategy Learning, pages 65–
80, Harpers Ferry, VA, 1991.

[Muggleton and Feng, 1990] S. Muggleton and C. Feng.
Efficient Induction of Logic Programs. In Proc. of the
First Conf. on Algorithmic Learning Theory, Tokyo,
1990. OHMSHA.

[Muggleton, 1991] S. Muggleton, editor. Inductive Logic
Programming. Academic Press, 1991.

[Muggleton, 1992] S. Muggleton, editor. Proc. of the
Workshop on Inductive Logic Programming. Held as a
post-workshop at the FGCS conference, Tokyo, Japan,
1992.

[Quinlan, 1990] J. R. Quinlan. Learning Logical Defini-
tions from Relations. Machine Learning, 5(3):239–266,
1990.

[Raedt and Bruynooghe, 1992]
L. De Raedt and M. Bruynooghe. Belief Updating
from Integrity Constraints and Queries. Artificial In-
telligence, 53:291–307, 1992.

[Rouveirol, 1992] C. Rouveirol, editor. Proc. of the
ECAI Workshop on Logical Approaches to Learning.
ECCAI, Vienna, Austria, 1992.

[Rouveirol, 1993] C. Rouveirol. Flattening: a Represen-
tation Change for Generalization. Machine Learning,
1993. Special issue on Evaluating and Changing Rep-
resentation, K. Morik, F. Bergadano and W. Buntine
(Eds.).

[Shapiro, 1983] E. Y. Shapiro. Algorithmic Program De-
bugging. MIT Press, Cambridge, MA, 1983.

