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Testing by Means of Inductive Program
Learning

FRANCESCO BERGADANO and DANIELE GUNEITl

University of Torino

Given a program P and a set of alternative programs //’, we generate a sequence of test cases
that are adequate, in the sense that they distinguish the given program from all alternatives
The, m(,thod is related to fault-based approaches to test case generation, but programs in P
need not he s]mp]e mutations of P. The technique for generating an adequate test set is based
on the inductive learning of programs from finite sets of input-output examples: given a
partial test set. we generate inductively a program P’ E P which is consistent with P on those
input values; then we look for an input value that distinguishes P from P’, and we repeat the
process until no program except P can be induced from the generated examples. We show that
the obtained test set is adequate with respect to the alternatives belonging to P. The method
IS made possible by a program induction procedure which has evolved from recent research in
mnchine Iei]rnlng and inductive logic programming. An implemented version of the test case
~encration procedure is demonstrated on simple and more complex list-processing programs.
and tb(, scalability of’ the approach is discussed,

(’ate~ories and Subject Descriptors: D.2.5 [Software Engineering!: Testing-test datn
gcncra(,}r,s; 1.2.6 [Artificial Intelligence]: Learning–induction

(;eneral Terms: Algorithms, Reliability

Addltiona] Key Words and Phrases: Program induction by examples

1. INTRODUCTION

Testing is concerned with the problem of detecting the presence of errors in
programs by executing them on specific and well-chosen input data. An
error is known to be present in a program P when the output is not
consistent with the specifications or is perceived as mistaken by the tester.
Both for checking the output and for generating meaningful test cases, we
need some information about the “correct” program PC.

This information may be more or less complete. In the best case, one
might actually have available a correct version of the program, or an
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120 ● F. Bergadano and D. Gunetti

executable specification, and program testing reduces to proving or giving
probabilistic evidence of program equivalence by means of inputloutput
examples. This corresponds to the first notion of program correctness
discussed in Budd and Angluin [19821 in connection with testing and leads
to various forms of algebraic [Tsai et al. 1990], syntax-directed [Bazzichi

and Spadafora 1982; Gorlick et al. 19901, and specification-based testing
[Choquet 1986; Hayes 1986]. The corresponding concept of an ideal test set
is defined as follows [Budd and Angluin 1982; Denney 1991; Howden 19761:

Definition 1.1. A test set T for a program P is reliable (with respect to a
correct program PC) iff [Wx = T P(x) = PC(X)] -+ P = PC. If P contains errors,
this will be shown by the test cases in T.

Even if an executable specification PC is not available, one may have a
priori knowledge about the correct functionality of the desired program,
such as domain and codomain of the needed subprograms, boundary, or
otherwise critical values within these domains, and possible interactions
among different input and output variables. This leads to techniques based
on functional and domain testing [Clarke et al. 1982; Hoffman and Strooper
1991; Howden 1980; Strooper and Hoffman 1990] and may be combined
with executable specifications [Tsai et al. 1990].

If no precise a priori information about the correct or desired behavior of
the program is known, then errors can only be detected by the tester
through a direct inspection of the outputs during the normal execution of
the program. The “correct” program is basically defined as “the one the
tester has in mind,” not a very informative concept. In these cases it has
been assumed that, although the correct program is unknown, there is a
known set of programs that we may view as alternative implementations
and should contain at least one correct solution. This is the second concept
of program correctness analyzed in Budd and Angluin and leads to the
following definition of meaningful test data (see also DeMillo and Offutt
[1991] and Hamlet [ 19811).

Definition 1.2. A test set T for a program P is adequate (with respect to
a set T of alternative programs) iff it is reliable w.r.t. every program in P.

It follows that, if 9’ contains at least one correct program PC, then the test
set will also be reliable for P. Many diverse test case generation techniques
correspond to this notion, including the method described in this article.
When the set of alternatives $!! depends on the given program P, we are
dealing with white-box test case generation methods: one needs to inspect
the code of P in order to generate the test data, because P is needed for
determining the alternative programs. In the approach presented here, we
do not make any assumption about 9, and in general, this set need not
depend on the particular structure of the program to be tested.

The idea of relating the problem of testing a program P to a set of
possible alternatives 3’ is fully undertaken and made explicit by fault-based
methods [DeMillo and Offutt 1991; DeMillo et al. 1978; Howden 1982; King
and Offutt 1991; Morell 19881. Here, a general-purpose set of typical
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programming errors is defined a priori, and alternative programs are
obtained by inserting in P all of’ these errors. Actually, many approaches

use single mutation operators that modify the basic components of P by
simple syntactic changes. and therefore only one fault at a time is intro-

duced: the set of alternative programs differs from P by only one mutation.
If one assumes the “coupling effect” [DeMillo 1989: IleMillo et al. 1978;
(lffutt 1989], i.e., complex errors are detected by an analysis of simpler

ones, and if at least one correct implementation is obtained from P by a
sequence of allowed mutations, then all the errors in P will be detected.
More precisely we may define the coupling-effect as.surnpfion:

if a test set T is adequate w.r.t. single mutations of P, then T is also
adequate w.r. t. any mutant of P.

The above definition is absolute, although the coupling effect is usually
defined probabilistically, in the sense that single faults tend to reveal
multiple faults as well. It is not always easy to generate test data that are
adequate with respect to a large set of mutants, especially if the coupling
effect is not assumed. Weak-mutation testing lHowden 19821 provides a
different proposal:

The Weak-Mutation Assumption. Suppose Q], . . . . Q. are the relevant
components of program P; given a test T, let TI, . . , Tn be the data that
are passed to Q,. . , Q. respectively, when P is called on the inputs of T.
Weak-mutation testing assumes that if, for all i, T, is adequate for Q, w.r.t.
its mutations, then T is adequate for P w.r.t. to any combination of these
mutations.

In DeMillo and offutt 119911, yet another assumption is made, suggest-
ing that it may be enough to make the mutated program’s state differ from
Ps state only after the statement where the mutation occurs (this is shown
to be a necessary condition for test data adequacy). In general these kinds
of assumptions make the testing system ignore the global effect of errors
IMorel] 1988] or the interaction between mutations at the global program
level.

The method proposed in this article makes one step further in the
direction of realizing the importance of an explicit set 1 of alternative
programs. It is suggested that when we are given a program P for testing,
the set of alternative implementations is often problem dependent, and
much could be said about it by the programmer of P. We describe a test
data generation procedure for distinguishing P from the given alternatives.
This procedure cannot be similar to the ones used in mutation testing, as
we have a user-given set of alternative programs and since locality assump-
tions are not made. Such sets may contain many programs that are not just
simple mutations of P, but depend on the application domain and on the
programmer’s knowledge. The number of alternative implementations may
be very large, and they cannot all be executed on the test data. Moreover,
we would like to limit the size of the test set. so that the tester is not
required to inspect an excessive number of output values for correctness.
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122 ● F. Bergadano and D. Gunetti

The test case generation procedure is based on techniques for learning logic
programs from examples.

2. INDUCTION AND TESTING

The relation between induction and testing has been analyzed in Chernia-
vsky and Smith [19871 and Weyuker [19831 and, only indirectly, in Budd
and Angluin [1982], Hamlet [19811, and Kilpelainen and Mannila [19901.
An intuitive symmetry is almost immediately noticed: induction is the
inference from examples to programs; test case generation is from pro-
grams to input values. Given a test set T of input values for a program P,
the examples of P for T are defined as E(P, T) = {(i, o) Ii G T and P(i) = o}.
Weyuker [1983] formalizes this notion:

Definition 2.1. A test set T is inference adequate for a program P
intended to satisfy a specification S iff PI is inductively inferred from E(P,
T) and PI = P = S. If only PI = P is true, then T is said to be program
adequate, and if only PI = S is true, then T is said to be specification
adequate.

In this article we are interested in the case where a specification S is not
given, and therefore we will only use the notion of a program-adequate test
set. The intuitive meaning of the above definition is as follows: if, given a
set E(P, T) of input/output examples, we inductively infer a program PI =
P, then T is likely to be useful for testing the program P.

This analysis leaves a number of unspecified notions. Most important,
when we say “PI is inductively inferred from T we must have in mind some
particular kind of learning procedure. The induction method of Summers
[19771 is used by Weyuker [19831, but the above definition should not be
tied to it in general; it may be more appropriate to characterize an
inductive inference procedure by means of the basic requirements it must
satisfy. But even in this case, we need to define this more precisely,
because many and quite different proposals have been made and because
there is no unique understanding of the word “induction.” These include
EX-identification [Cherniavsky and Smith 1987; Gold 1967], finite identifi-
cation [Gold 1967], probably approximately correct (PAC) induction [Val-
iant 1984], and complete and consistent classification rules [Bergadano et
al. 1992; Michalski 1980]. An inductive inference machine (IIM) M receives
in input a sequence of examples (i, o) of a program P, and after every such
example, it outputs a guess PI = Y. Given a set T of input values, an IIM M
EX-identifies P from E(T, P) iff after some point it always makes the same
correct guess PI = P.

The notions of EX-identification and testability are compared by Cher-
niavsky and Smith and are found to be quite different: many simple classes
of programs are shown to be easily EX-identified from examples, even when
a finite test set that is adequate in the sense of Definition 1.2 may not be
found. Moreover, although an oracle for the halting problem will make all
the partial recursive functions EX-identifiable, it will not make the previ-
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E(T, P),!T’ p, y

P T

Induction Test Case Generation

Fi~. 1. Induction and test case generation compared

ously analyzed testing problems any easier. We will then use, in this
article, the alternative notion of finite identification [Gold 19671:

Definition 2.2. An IIM finitely identifies a program P = .9 from E(T, P) iff
after seeing a finite subset of E(T, P), it can determine that the correct guess is
P, and P, = P. It will then ignore the remaining examples in E(T, P).

This is closer to test case generation, because in both cases we are to deal
with a finite set of input/output pairs. By contrast, with EX-identification,
the induction procedure eventually obtains a correct guess, but is not aware
of having reached that point.

In all of the above-cited approaches to induction, it is fundamental to
determine beforehand the class )? of programs that could be produced. In
fact, this is generally observed in most approaches to induction. It is true
for such diverse areas as Bayesian inference (where /’ takes the form of a
prior probability ) and connectionist induction (where .4’ is defined by the
structure of the neural net). The importance of restricting J’ through some
form of bias was also a natural conclusion for the research in machine
learning and inductive logic programming during the last few years [Ber-
gadano 1993; Bergadano and Gunetti 1993: Kirschenbaum and Sterling
1991; Muggleton 1991; Utgoff 1986].

N\) matter which meaning of inductive inference we want to use in
Definition 2.1, it is then appropriate to relativize it to the set of legal
pro~rarns ./’, that 1’1 must belong to. This is consistent with our discussion
on testing. ~iven in the introduction, where it was shown that all test case
generation procedures that are not specification based refer (sometimes
implicitly) to a set .? of alternative programs. The intuitive symmetry
bet}veen induction and test case generation is then pictured as in Figure 1.
The basic proposal of Definition 2.1 can now be understood more precisely
by defining “inductive inference” as “finite identification. ” Moreover, this is
strongly related to the concept of test data adequacy (Definition 1,2):

(lb,sertwtion 2.3. T is adequate for P ~ P is finitely identified from E(T, P).

The restriction to a finite set of alternative programs P seems to be
acceptable for testing; for instance, all approaches to fault-based testing,
such as mutation analysis, are based on this assumption.

Previous comparisons of induction and test case generation were either
mainly theoretical lBudd and Angluin 1982; Cherniavsky and Smith 1987;
Hamlet 1981 ] or devoted to the problem of checking test set adequacy
[Weyuker 1983 ] rather than actually generating the adequate test cases.
This was due, in part. to the fact that research in program induction was
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124 ● F. Bergadano and D. Gunetti

not very well developed at that time [Weyuker 1983]. Although a general
solution is not available at present, some progress has been made, particu-
larly within the field of inductive logic programming [Muggleton 1991]. In
this article we use a method that has evolved from this recent research
[Bergadano 1993; Bergadano et al. 1988; Quinlan 1990] and adapt it to the
needs of our test case generation procedure. This is, to our knowledge, the
first implemented test case generation method that is based on machine-
learning techniques, although some related work has been done for the
problem of knowledge base validation [DeRaedt et al. 1991].

3. TEST CASE GENERATION

Test cases are generated through a sequence of inductive inferences of
programs from examples. Initially, there are no examples, and in the end,
the generated set of examples will be adequate in the sense of Definition
1.2.

Suppose P is the program to be tested. At any given moment, the
examples generated so far are used to induce a program P’. New examples
that distinguish P from P’ are added, and the process is repeated until no
program P’ that is not equivalent to P can be generated, This procedure is
described in more detail below.

Test case generation procedure:

Input: a program P to be tested
a finite set 9’ of alternative programs
an induction procedure M

Output: an adequate test set T

T+@;

loop forever:

(P’, T) + M(E(T, P),9)

if P’ = “fail” then return (T)

if (3 i) P’(i) # P(i)

then T + T U {i}

else P+- P-P’

The induction procedure M takes in input a set of examples E(T, P) and a
set Q of alternative programs and gives in output a program P’ E 9 that is
consistent with E(T, P). In order to do so, M may need to add input values
to T, yielding an extended set T’ ~ T; this will be illustrated in Section 3.2.
M must satisfy a basic admissibility requirement:

Definition 3.1. An induction procedure M is admissible iff

(1) M(E(T, P),@) = (P’, T’) ~ P’ is consistent with E(T’, P)

(2) M(E(T, P),9) = (fail, T’) + (ZP’ c 9) P’ is consistent with E(T’, P).

Requirement (1) is a form of correctness property, and (2) is a form of
completeness. An admissible induction procedure is described in Section
3.2. In the test case generation procedure, the test set T is initially empty.
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The main step in the loop consists of calling the induction procedure M and
obtaining a program P’ which is consistent with the examples generated so
far. Then, this program P’ will be ruled out either by f 1 ) adding an input
value to T or (2) removing it from PP.As a consequence, P’ will never be
generated again. The condition in the second “if’ statement addresses the
question of program equivalence, which is of course undecidable, in gen-
eral, If, for the particular set Y, a decision procedure is available for finding
an input i such that P(i) # P’(i), this is used directly in the above test
generation method. As this is not true in general, examples are found by
enumerating (in some random or ad hoc order) the possible inputs i and
stopping when an i is found such that P(i) = o # P’(i ) = o’. This
enumeration could also be guided by other test case generation techniques,
such as path or functional testing. The requirement of decidable equiva-
lence is not easily verified or accepted. Program equivalence was found to
be a major theoretical [Budd and Angluin 1982] and practical lDeMillo
1989; DeMilio and Offutt 1991; King and Offutt 1991] issue in program
testing. In the implementation of our test case generation method we
approximate it by means of its time-bounded semidecision procedure. A
better implementation would not use randomly generated examples for this
purpose, but, for example, large sets of examples obtained through some
black-box testing method. Except for this approximation, the system pro-
duces adequate test sets with respect to any finite class of programs .4’. In
fact, when M cannot find a program P’ E .P that is consistent with the
examples, then the only programs with this property are P and those
equivalent to it, i.c~,, the test set T is adequate, as proved in the following:

THFX)RItM 3.2. [f equivalence is decidable for progranl.s in P, then the
a LYN’(Jtest case ~~t’ncration procedure produces an adequott’ test wt T for P.

PR[)I]F. Since equivalence is decidable for programs in ./’, the procedure
terminates, as th~’ condition ( “Ii) P’(i) # P(i) always produces an answer. As
a consequence each loop execution will make P’ inconsistent or remove it
from tht~ finite set .?. By virtue of Observation 2.3. it will then be sufficient
to show that M finitely identifies P from E(T, P), where T is the test set
obtained after termination. Since M is admissible, M(E(T, P), .)’ U {P}) =
{PI, T’), because P is consistent with E(T’, P) for any T’, and therefore M
cannot fail. But, just before termination, M(E(T”, P), J’ {P’ I P’ = P}) =
(fail, T), for some T“ c T, and, being M admissible, .+ {P’ , P’ = P} cannot
contain any program consistent with E(T, P). Therefore, after seeing E(T,
P), M can stop and determine that the correct and only consistent guess is
PI-P, ‘“

3.1 Defining a Set of Alternative Programs

SupposcJ we wanted to test a program P. In order for the testing procedure
to work, we must be able to ( 1 ) describe a set P of alternative programs and
(‘2) use P and a partial test set T to learn inductively an intermediate
program P‘ = M( E(T, P), .J’). Inductive learning is described in Section 3.2.
Here we describe how a set ‘Y of alternative programs may be provided.

A(’hl Transactlms on Software Eng]ncer]ng and Methodology, VI)I 5. N(I ‘2 April 1996



126 . F. Bergadano and D. Gunetti

The basic philosophy in our approach is that no general-purpose alterna-
tive set of programs may be useful. Every problem, and every implementa-
tion, has special weaknesses, likely errors, and significant mutations. We
have developed a language for describing mutations that are specific to a
given program. This language refers to alternative programs that are
written in Prolog, but the overall method does not require that the tested
program be a Prolog program.

A full description of this “mutation description language” is found in
Bergadano and Gunetti [19961, viewed there as a language for specifying
inductive bias. Here we summarize a subset of it, by describing the notion
of “clause sets” and “literal sets.” In general, a set 9 of alternative
programs is described by a pair (known clauses, possible clauses). A
program P belongs to W if P = {known clauses U PI}, where P1 is a subset
of the possible clauses. The simplest syntactic tool for specifying inductive
bias within the present framework is given by Clause Sets: known clauses
are listed as in a Prolog program, while possible clauses are surrounded by
brackets denoting a set. For instance, there follows a possible description of
a priori information for learning a logic program for member:

member(X, [X/_]).
{member(X, [YIZ]) :- COnS(X, W, Z).}

cons(X, Y, [XIYI).

{member(X, [YIZ]) :-X # Y, member(X, Z).

member(X, [YIZ]) :- cons(Y, Z, W).

member(X, [YIZJ) :- member(X, Z).}

This means that the learned program will have to include the first clause,
which is known, possibly followed by the second clause “member(X, [Y/Zl) :-
cons(X, W, Z).”; the third clause “cons(X, Y, [XIY]).” will have to follow.
Finally, some or all of the remaining clauses may be appended to the
program. There are 16 different logic programs satisfying these very strict
requirements; among these some represent a correct implementation of
member.

Unfortunately, a priori information about possible faults is not always so
precise, and the set of possible clauses may be much larger. As a conse-
quence, the user may find it awkward, or even impossible, to type them one
after the other. To this purpose we define literal sets. If a clause occurs in a
clause set, then some conjunctions of literals of its antecedent may be
surrounded by brackets, denoting a set. In this case the clause represents
an expansion given by all the clauses that may be obtained by deleting one
or more literals from the set. Formally:

{P:- A,{ B, C,. ..}, D}

={ P:- A, {C,... }, D}u{P:- A, B,{ C,. ..}, D}

In other words, the expansion of a clause is the set of clauses obtained by
replacing the literal sets with a conjunction of any of its literals. With this
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int(o,., (j).

{
int([X1/X2], Y,Z) :- {member(Xl,Y), notmember(Xl, Y)},

{int(X2,Y,Z), int(X2,Y,W), cons(Xl,W,Z)}.

member(X,Y) :- {cons(X,Y,Z), cons(X,Z,Y), cons(W,Y,Z),

cons(W,Z,Y), member(X,Z), member(W,Z)}.

}
cons(X,Y,[XIYl).

notmember(X,U).

notmember(X,[YIZ]) :- X+Y, notmember(X,Z)

Fig. 2. Inductive bias for intersection

syntactic mechanism, one can define in a concise way a large set of possible
clauses. Figure 2 gives an example of inductive bias for learning intersec-
tion. The clause set of Figure 2 contains 25 + 26 = 96 clauses, and there are
296 permitted programs. Then, even if the given bias may seem quite
informative, it still allows for a very large set of alternative programs.

This language, with the additional syntax for term sets, described in
Bergadano and Gunetti [ 1996], has been used by the authors in connection
with different program induction techniques [Bergadano and Gunetti 1993,
1994b; Bergadano et al. 1995] and was used or extended by other groups
within the machine-learning community [Ade and de Raedt 1995; Nedellec
and Rouveirol 1994]. In the present context, it may be viewed as a way to
specify meaningful mutations in a concise way, depending on the special
characteristics of the program to be tested.

3.2 Induction Procedure

We may view a logic program as defining an inputloutput transformation,
associated to a “main” predicate p. The procedure defined in this section
induces a logic program P belonging to a set !?? of legal programs, given a
set of input values for its main predicate p. We require that every predicate
occurring in T’ be also defined by some clause in P, or in a common external
module.

Without loss of generality, we may also assume that all predicates q
occuring in ‘P are binary, where ~ q(x, y) will indicate that input x is
transformed into output y. For a program P and its main predicate p, P(i) =
o can now be written as P E p(i, o). During the induction process, more
input values may be added to the test set T, both for the “main” predicate p
and for other predicates occurring in P. Such input values are added to T
through a side effect of the procedure “covers” described below. The final
generated program will then have to be consistent with all of these
examples. Given a predicate q, we will write T(q) for the input values for q
in the test set T = U~T(q).

The main loop in the proposed procedure follows the basic scheme of
many machine-learning methods (e. g., Bergadano et al. [1988; 1992],
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128 . F. Bergadano and D. Gunetti

Michalski [1980], and Quinlan [1990]): clauses are generated one at a time,
independently of each other, and the examples that they “cover” are
deleted. We stop when all examples are covered by some generated clause.
When generating the clauses, we will be careful that they are consistent
with E(T, P). The main difference, in the method presented here, is that the
program P to be tested is used to generate missing examples, and function-
ality constraints are used, so that negative examples are not necessary,
The great advantage of these approaches is that we do not have to try all
programs in 9 and pick the first which is consistent with the examples; we
just need to try all possible clauses, generate the ones that are consistent
with the examples, and add them to the logic program which is being
developed. As programs are sets of clauses, the number of programs is
exponential in the number of clauses, and being able to generate one clause
at a time results in a learning procedure which is linear in the number of
clauses. This is necessary for the feasibility of the approach. The learning
algorithm follows:

Induction procedure M(E(T, P),@):
T’e T; p’+-@

while (3 q) T’(q) # 0 do
generate_one_clause C = “q(X, Y) :- a“
P’+p’uc
if C = “fail” then return (fail, T)
/* remove inconsistent clauses “/
P’ - P’ – {C I (3 i E T) covers(C, r(i, o’)) A P } r(i, o) A o + o’}
/$ remove covered examples */
T’ * T – {i I (3C = P’) covers(C, r(i, o)) A P F r(i, o)}

return (P’, T)

generate_one_clause C = “q(X, Y) :- a“:
a +- “true”

while )* C is not consistent with E(T, P) *j

(3i G T(q)) covers(C, q(i, o’)) ~ P } q(i, o) A o # o’

do choose r(Z, W) s.t. “q(X, Y) :- a, r(Z, W)” belongs to
some alternative program in SO(a backtracking point)

if no such r(Z, W) is left, then return (“fail”)
a+ ffAr(z, W)

if/* C never produces a correct output */
(Z i G T’(q)) covers(C, q(i, o)) A P Kq(i, o)
then backtrack to a different literal choice

where covers(”r(X, Y) :- /3”, r(i, o)) is true iff

r(i, o) :- ~[ilX, oN] A transform (P) F r(i, o)

and transform (P) is the same as P, except that

(1) no clause can unify with r(i, o) and

(2) whenever s(Z, W) E ~ and s(a, W) is resolved against some clause of P that
needs to be tested (not a clause from an external module), a is added to T(s).
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{
merge(X,Y.Z) :- {

null(X), null(Y), X=Z. Y=Z, head(X,Xl), tail(X,X2), head(Y,Yl), tail(Y,Y2),

X1<Y1, X1>Y1, Xl~Yl, merge(X2,Y,W), merge(X,Y2,W).

cOns(Xl,W, Z), cons(Yl,W, Z), Xl~Yl, X1=Y1, W=Z,

Fig. 3. Set of alternative programs for testing merge

Input values may then be added to T as a side effect of the function
“covers~C, e). ” Examples are removed when they satisfy one of the gener-
ated clauses. Clause generation is achieved by adding to the antecedent one
predicate at a time. A predicate is chosen from the corresponding literal set
in the description of the possible mutations, described by using the clause
set language of Section 3.1. The antecedent a is completed when the clause
C produces the correct output for at least one i E T’ and gives no incorrect
outputs. An exampIe of how the induction procedure learns a clause C is
given at the end of Section 4.

It may be proved [Bergadano and Gunetti 1993] that the above procedure
M is admissible. As a consequence, the overall test case generation method
will produce a test set which is adequate for the given program P with
respect to the set .P of alternative programs, as stated in Definition 1.2.

4. EXAMPLE

Suppose we wanted to test the following program P for merging two
ordered lists:

merge(X, Y, Z) :- null(XJ, Y = Z.

merge(X, Y, Z) :- null(Y), X = Z.

merge(X, Y, Z) :- head(X, Xl), head(Y, Yl), tail(X, X2), Xl = Yl, merge(X2, Y,
W), cons[Xl, W, Z).

merge(X, Y, Z} :- head(X, Xl), head(Y, Yl), tail(Y, Y2), Xl > Y], merge(X, Y2,
W), cons(Yl, W, Z).

There is an error related to the third clause: the comparison Xl = Y1
should be replaced by Xl < Yl, and another clause should be inserted for
the case Xl = Y1. The effect of this error is that elements occurring in both
input lists X and Y are repeated in the output Z. Suppose also, as a possible
example, that the set of alternatives ?? is defined through Clause Sets in
Figure 3 by using all of the literals occurring in P plus some additional
Iiterals (the last three) allowing further possible program changes (we will
discuss this choice in Section 6).

There are 21s possible clauses and 22’” alternative programs in .), i.e., all
possible subsets of the space of clauses, Among those there are versions of
the correct implementation. The problem is feasible for our method because
the induction procedure only needs to explore heuristically the space of
possible clauses, not the space of possible programs. Moreover, once a
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clause is found to be incorrect w.r.t. the generated examples, all of its
specializations are ruled out; this results in a drastic pruning of the search
space. Learning merge with this set of possible clauses takes between two
and five minutes of elapsed time on a Sun SPARCstation 5, depending on
which examples are given. This time can be brought to the desired
performance by reducing the size of Y, i.e., by allowing for a smaller
number of mutations.

The test case generation procedure will start with an empty test set To of
input values and call the induction procedure M. As E(TO, P) contains no
examples, the empty program P. is an acceptable output of M(E(TO, P),9’).

We now enumerate pairs of lists X and Y, so that P. F merge(X, Y, Z’),
P F merge(X, Y, Z), and Z # Z’. The first such pair that was found is (X, Y) =

([1, [1); for this input, Po produces no output, and P outputs Z = [1.The new test
set is then TI = {{[1, [1)}.

M(E(TI, P), 9) is called again, yielding Pl:

merge(X, Y, Z) :- X = Z.

This program is an acceptable output of M because merge ([], [], []) is
derived from it, and the output is the same as the one of P.

We now enumerate pairs of lists X and Y, so that PI I merge(X, Y, Z’),
P E merge(X, Y, Z), and Z # Z’. The first such pair that was found is
(X, Y) = ([1, [11); for this input, P, outputs Z = [1 while P outputs Z = [1].
The new test set is then Tz = T, U {([1, [11)}.

M(E(T2, P),9) is called again, yielding P2:

merge(X, Y, Z) :- Y = Z.

This program is an acceptable output of M because merge([], [], []) and
merge([], [1], [1]) are derived from it.

Ts = Tz U {([11, [1)}
P3:
merge(X, Y, Z) :- head(X, Xl), X = Z.

merge(X, Y, Z) :- head(Y, Yl], Y = Z.
merge(X, Y, Z) :- null(X), Y = Z.

T. = T. U {([11, [21)}
P4:
merge(X, Y, Z) :- head(X, Xl), tail(X, X2), merge(X2, Y, W), cons(Xl, W, Z).
merge(X, Y, Z) :- null(Y), X = Z.

merge(X, Y, Z) :- null(X), Y = Z.
As a side effect of M, the procedure “covers” also added another input pair,
yielding:

Tj = T. U {([1, [21)}.

Ts = T: U {([21, [11)}
P5:

merge(X, Y, Z) :- head(X, Xl), head(Y, Yl), tail(X, X2), Xl < Yl, merge(X2, Y,
W), cons(Xl, W, Z).
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merge(X, Y, Z) :- head(X, Xl), head(Y, Yl), tail(Y, Y2), Xl .> Yl, merge(X, Y2,
W), cons(Yl, W, Z).

merge{Xl Y, Z) :- null(Y), X = Z.

merge[X, Y, Z) :- null(X), Y = Z.

T,, = T5 U {([11, [11)}

P,,:

merge(X, Y, Z) :- head(X, Xl), head(Y, Yl), tail(X, X2), Xl < Yl, merge(X2, Y,
W), cons(Xl, W, Z),

merge(X, Y, Z) :- head(X, Xl), head(Y, Yl), tail(Y, Y2), Xl > Yl, merge(X, Y2,
W), cons(Yl, W, Z).

merge(X, Y, Z) :- head(X, Xl), head(Y, Yl), tail(X, X2), Xl = Yl, merge(X2, Y,
W), cons(Xl, W, Z).

merge(X, Y, Z) :- null(Y), X = Z.

merge(X, Y, Z) :- null(X). Y = Z.

As P,j = P, it is removed from ‘Y, and no test case is generated, A few more
programs equivalent to P are then generated. Finally, no other program
consistent with TG can be found, and M fails, ending the test generation
process. TG is adequate, and it contains an input–namely, X = [1] and Y =
[Ii–that demonstrates the error of P, giving Z = [1, 11 as output. The
correct output would be Z = [1].

Only seven examples were necessary to isolate the error, while many
more would have been required by random testing, if there are many
possible element values with respect to the average list length. Functional
testing would succeed easily, if the rather usual criterion of having equal
elements in input lists and vectors is adopted [Howden 1980]. Neverthe-
less, we view this not as a general criterion, but as a specific hypothesis
about typical programming errors, that is made explicit in the set :? of
alternative programs. We share this philosophy with other fault-based
testing methodologies, but methods presented in the literature and cited in
our references would have problems with the above program. The reason is
that the correct program is not a simple mutation of the program P to be
tested: it requires one simple modification and the addition of one entire
clause. In an imperative programming language, this would correspond to
having a conditional or a similar piece of code to be added to P, in order to
obtain the correct mutant. Most approaches to fault-based testing, instead,
are only able to generate minor and syntactically simple modifications.

We conclude this section by showing how the first clause of program PJ
above is learned by the induction procedure. As a first step in gener-
ate_one_clause, C is set to “merge(X, Y, Z) :- true. ” For the input pair
([11. 12]) P computes o = [1. 2], whereas covers(C, merge([ l], 12], o’)) is true
for an-v value of o’. Hence it is the case that o + o’, and generate_one_
clause goes on. Suppose literal “head(X, Xl )“ is chosen 1 from the literal set of
Figure 3, Then, ~ = “merge(X, Y, Z) :- head(X, Xl ).” Again, covers(C,

‘To make the discussion short, we only show the “correct” Ii.e., leading to a solution i choices
made hy the induction procedure. In practice, backtracking would occur when necessary.
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merge([l], [2], o’)) is true for any value of o’, since o’ is not instantiated by C,
and we must continue. Let literals “tail(X, X2)” first, and “merge(X2, Y, W)”
then, be chosen. At this point we have:

C = merge(X, Y, Z) :- head(X, Xl), tail(X, X2), merge(X2, Y, W).

When calling covers(C, merge([l], [21, o’)), “merge([l, [21, W)” is evaluated
using P, yielding W = [21. The input pair ([1, [21) is added to T4. Still o # o’,
and let “cons(Xl, W, Z)” be chosen. We have:

C = merge(X, Y, Z) :- head(X, Xl), tail(X, X2), merge(X2, Y, W), cons(Xl, W, Z).

Now covers(C, merge([l], [21, o’)) is no longer true for any o’ + o (i.e., C
produces only the output o = [1, 2] for the input pair ([1], [2])). C is
returned to the main loop, and ([11, [21) is removed from T~.

5. A MORE COMPLEX CASE STUDY

For a more complex example, consider the classical problem of inserting a
new element into a balanced binary search tree with rebalancing. We refer
to the well-known algorithm described by Knuth [1973] yielding an O(n log
n ) sorting procedure. We recall that a binary tree is balanced if the height
of the left subtree of every node never differs by more than ~ 1 from the
height of its right subtree. The balance factor within each node is +1, O, or
– 1. This is computed as the height of the right subtree minus the height of
the left subtree.

The program takes in input an element and a balanced tree, inserts the
element at the right place, and rebalances the tree if necessary (we assume the
inserted element does not already occur in the input tree). A second output
variable, the increase factor, is set to 1 if the height of the tree increased after
the insertion, to O otherwise. This is used to decide whether rebalancing is
needed. The insert program assumes a tree being represented as a list of four
elements: [key, left_subtree, right_subtree, balance_factor].

Suppose the following (incorrect) program P, to be tested is given:

Pe:
1) insert(A, T, Y, Inc) :- null(T), Y = [A, nil, nil, O], Inc = 1.
2) insert(A, T, Y, Inc)

:- T = [H, L, R, B], A < H, B <0, insert(A, L, NewL, IncL), IncL = 1,
Inc = O, rebalL([H, NewL, R], [NH, NL, NRI), Y = [NH, NL, NR, 01.

3) insert(A, T, Y, Inc)
:- T = [H, L, R, B], A < H, B 2 0, insert(A, L, NewL, IncL), IncL = 1,
Inc = O,Y = [H, NewL, R, -l].

4) insert(A, T, Y, Inc)
:- T = [H, L, R, B], A < H, insert(A, L, NewL, IncL), IncL = O, Inc = O,
Y = [H, NewL, R, B].

5) insert(A, T, Y, Inc)
:- T = [H, L, R, B], A > H, B >0, insert(A, R, NewR, IncL), IncL = 1,
Inc = O, rebalR([H, L, NewRI, [NH, NL, NRI), Y = [NH, NL, NR, 01.
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6) insert[A, T, Y, Inc)
:- T = [H. L, R, B], A > H, B s O, insert(A, R, NewR, IncL), IncL = 1,
Inc = 1, Y = [H, L, NewR, 1].

7) insert(A, T, Y, Inc)
:- T = [H, L, R, B], A > H, insert(A, R, NewR, IncL), IncL = O, Inc = O,
Y = [H, L, NewR, B].

8) rebalL(H, NL, R, Y)
:- NL = ILH, LL, LR, -l], YR = [H, LR, R, 0], Y = [LH, LL, YR, 01,

9) rebalL(H, NL, R, Y)
:- NL = [LH. LL, LR, 1], LR = [LRH, LRL, LRR, 0], YL =
0], YR = [H, LRR, R, 01, Y = [LRH, YL, YR, 0],

10J rebalL(H, NL, R, Y)
:- NL = [LH, LL, LR, 11, LR = [LRH, LRL, LRR, 11, YL =
11, YR = [H, LRR, R, O], Y = LRH, YL, YR, 01.

11 ) rebalL(H, NL, R, Y/

LH, LL, LRL,

LH, LL, LRL,

:- NL = ILH, LL, LR, 1], LR = [LRH, LRL, LRR, -11, YL = [LH, LL,
LRL, 0], YR = [H, LRR, R, 1], Y = ILRH, YL, YR, 01.

1!2) rebalR(H, L, NR, Y}
:- NR = IRH, RL, RR, 1], YL = IH, L, RL, O], Y = [RH, YL, RR, 0].

13} rebalR(H, L, NR, Y)
:- NR = [RH, RL, RR, -l], RL = [RLH, RLL, RLR, 0], YL = [H, L, RLL,
0], YR ==[RH, RLR, RR, O], Y = [RLH, YL, YR, 01.

14) rebalR(H, L, NR, Y)
:- NR = IRH. RL, RR, - 1], RL = [RLH, RLL, RLR, - 1], YL = [H, L, RLL,
0], YR = IRH, RLR, RR, 11, Y = [RLH, YL, YR, -1].

15) rebalR(H, L, NR, Y)
:- NR = IRH, RL, RR, -1], YR = [RL, RLH, RLR, 1], YL = [H, L, RLL,
- 1], YR - lRH, RLR, RR, O], Y = [RLH, YL, YR, -1].

Clauses 3 and 6 are wrong. In fact, w.r.t. clause 3, two different clauses
must be used to test separately for the balance factor being equal to or
greater than O. In the correct program, clause 3 must be replaced by the
following two clauses:

insert(A, T, Y, Inc)
:- T = IH, L, R, B], A < H, B >0, insert(A, L, NewL, IncL), IncL = 1, Inc = O,
Y = IH, NewL, R, 0].

insert(A, T, Y, Inc)
:- T = [H, L, R, B], A < H, B = O, insert(A, L, NewL, IncL), IncL = 1, Inc = 1,
Y = [H, NewL, R, -l\.

And, similarly, clause 6 must be replaced by the two clauses:

insert(A, T, Y, Inc)
:- T = [H, L, R, B], A ~ H, B <0, insert(A, R, NewR, IncL), IncL ==1, Inc = O,
Y = [H, L, NewR, 01,

insert{A, T, Y, Inc)
:- T = [H, L, R, Bl, A > H, B = O, insert(A, R, NewR, IncL), IncL = 1, Inc = 1,
Y = /H, L, NewR, 11.
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{
insert(A,T,Y,Inc) :- {

null(T), Y=[A,nil,nil,O], T=[H,L,R,B],
A<H, A>H, B>O, B=O, B<O, Inc=O, Inc=l, IncL=O, IncL=l,
insert(A,L,NewL,IncL), insert(A,R,NewR,IncL),
Y=[H,NewL,R,O], Y=[H,NewL,R,-l], Y=[NH,NL,NR,O], Y=[H,NewL,R,B],
Y=[H,L,NewR,O], Y=[H,L,NewR,l], Y=[H,L,NewR,B],

rebalL([H,NewL,R],[NH,NL,NR]), rebaIR([H,L,NewR],[NH,NL,NR]),

}

}

Fig. 4. Set of alternative programs for testing insert.

Moreover, it is worth noting that, if literal “Inc = O“ in clause 3 is replaced
with literal “Inc = 1,“ then program Pe would be “almost” correct. In fact, it
would always output balanced trees, but the balance factor and the
increase factor could be wrong. Literal “Inc = O“ is responsible for produc-
ing unbalanced trees if an element is inserted as a left leaf and if the
resulting tree needs rebalancing.

Let us suppose that the two rebalancing procedures rebalL and rebalR
are known to be correct. As a consequence, they do not have to be tested
and may be put in the set of known clauses (Section 3.1). This is also called,
in the ILP literature, background knowledge. Through the Clause Set
notation, we define the set of alternative programs Q? on the basis of Pe by
just using all of the literals occurring in the part of the program that was to
be tested, i.e., the first seven clauses.z The literal A = H was not used, as
we assume that the inserted element is not already present in the tree. As
noted in Section 3.1, even if not stated explicitly each mutation program

will always contain the clauses in the background knowledge (the known
clauses), plus a subset of the possible clauses, defined by the clause set of
Figure 4. As a consequence, ‘2P contains 22” alternative programs. Among
the other alternatives, there are versions of the correct implementation.
However, !P does not contain Pe (in fact, this is not required by the test case
generation system), but equivalent versions of P, (as P15 below) are in Y.

To generate the test cases, a simple balanced-tree generator is used.
Trees are generated in order of growing complexity w.r.t. the number of
nodes. To test the insert program it is not important which elements form
an input tree, but their relative values. As a consequence, the same keys
are used by the generator to build a balanced tree. For each input tree, an
appropriate element among those available is chosen, in order to produce
an insertion into all possible positions for that tree. The second column of
Table I clarifies this strategy. Only eight different numeric keys are used.
Each input tree has always the same root key. Recursively, this is also true

for each subtree, if present. The remaining keys are used to produce an

‘Actually, literals B 2 0 and B s O are split into B = O, B > 0, and B < 0, in order to enlarge
the set of allowed mutations.
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Table I

exmples

01:

e2(*) :

e3:

e4 :

e5(*) :

e6(*) :

e7 (*):

e8(*):

e9(*):

elo(*) :

input pair

50 -> nil

25 -> 50

75 -> 50

90 -> +50
\
75

75 -> -50
/

25

65 -> +50
\
75

35 -> -50
/

25

15 -> 50

[I

25 75

35 -> 50

Ii

25 75

65 -> 50

Ii

25 75

90 -> 50

/\

25 75

PI-1 output Pe output time (sac)

o

6

26

136

50 1no

25 1 -50 0

/

25

+50 1

\

75

no

+50 1

\

+75

\

90

no

75 0

/\

50 90

+50 1

/\

25 75

159

22365 0

/\

50 75

+50 o

\

-75

/

65

-50 0

/

+25

\

3s

25 0

/\

15 50

\

75

35 0

/\

25 50

\

75

+50 1

/\

25 -75

/

65

75 0

/\

50 90

35 0

//

25 50

292

50 0

/\

-25 75

/

15

354

-50 0

/\

+25 75

\

35

554

50 0

l\

25 -75

/

65

623

en: +50 1

/\

25 +75

\

90

919

/
25
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Table I –Continued

exenples input pair

e12(*) : 5 -> -50

/\

-25 75

/

15

ei3(*) : 6S -> -5o

/\

-25 75

/

15

e14(*) : 5 -> -50

l\

+25 75

\

35

e15(*) : 5 -> +50

/\

25 -75

/

65

Pi- 1 output

-50 0

/\

15 75

/\

5 25

+50 1

/\

-25 -75

//

15 65

no

-50 0

/\

-25 -75

//

5 65

Pe output

-50 0

/\

-25 75

/

-15

/

5

-50 0

/\

-25 -75

//

15 65

-50 0

/\

-25 75

}\

5 35

+50 o

l\

-25 -75

//

5 65

time (eec )

1171

1327

1478

1810

insertion into all possible positions. As a consequence of using always the
same values, we can keep small the number of input pairs added by
“covers.” This is because input variables in the body of clauses handled by
“covers” are instantiated always to the same values, and therefore such
values need to be added to T only once. For example, in Table 1 there are
three input pairs (examples e12, e14, and e15) using the numeric key 5, but
only the first time (i. e., for example e12) the input pair (5, nil) is added to
T(insert) (i.e., to T12).

As before, the test case generation starts with an empty test set To of
input values, and the induction procedure outputs the empty program3 Po.
Input pairs (element, balanced tree) are enumerated in order of growing
complexity of the input tree. The first such pair for which P, and P. differ is
(50, nil). For this input, P. produces no output, whereas P, outputs

Y = [50, nil, nil, O], Inc = 1.

As a consequence, the new test set becomes T, = To U {(50, nil)}. M(E(T1,
Pe),!!?) is called again, yielding Pl:

Pl: insert(A, T, Y, Inc) :- Y = [A, nil, nil, O], Inc = 1.

3Actually the empty program plus the background knowledge.
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plus clauses 8–15 for rebalL and rebalR as listed in P,. The first enumer-
ated input pair such that P, and PI differ is (25, [50, nil, nil, 0]). For this
input pair PI outputs

Y = [25, nil, nil, O], Inc = 1

whereas Pt. outputs

Y = [25, [50, nil, nil, 0], nil, –l], Inc = 0,

Also, this test case shows one of the errors of Pe, since the increase factor
variable “Inc” should be set to 1 and not to O. However, this may not be
easily noticed, as the output tree is balanced. We set Tz = T1 U {(25, [50,
nil, nil. 01)}, and M(E(T2, PC), ?!) is called, yielding P2:

P,:

insert(A, T, Y, Inc)
:- null(T), Y = 1A, nil, nil, O], Inc = 1.

insert(A, T, Y, Inc)
:- T = [H, L, R, B]. A < H, insert(A, L, NewL, IncL), Inc = O, Y = [H, NewL,
R, -1].

plus clauses 8–15 for rebalL and rebalR as listed in P,.
The test case generation procedure goes on in this way, as shown in

Section 4. Table I summarizes the obtained results. In this table, trees are
represented graphically. In each tree, node keys are positive integers. A
positive or a negative sign is used to indicate that the balance factor of that
node is + 1 or – 1. No sign means a O balance factor. The increase factor is
reported next to the corresponding output tree. For each entry i ( 1 s i s
15), the second column contains the first input pair found (according to the
adopted enumeration) for which Pi_ ~ and P, give different outputs. The
third column is the output pair of P, ..l on the ith input pair. The fourth
column is the output pair of P,. As before, each test set Ti, used by the
induction procedure M to learn Pi, is obtained by adding the ith input pair
to T,. ,. The 15 examples el, . . , e 15represent an adequate test case set for
P,. Examples marked with an asterisk show errors of P,. Fifteen more
examples have been added during the learning process by “covers. ” Exper-
iments have been done on a Sun SPARCstation 5, with the induction
procedure4 written in C-Prolog (interpreted). The fifth column reports
times (in seconds) required to learn program Pi- ~. Program P15, reported
below, has been learned in 1831 seconds. This is the first program equiva-
lent to P. found by the induction procedure:

P,5:

1 ) insert(A, T, Y, Inc) :- null(T), Y = [A, nil, nil, O], Inc = 1.

‘iThe induction procedure is thoroughly described in Bergadano and Gunetti [ 1993] and is
available through ftp at the Machine Learning archive at ftp.gmd.de. Send mail to ml-
archive@ gmd. de for instructions about the use of the archive.
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2) insert(A, T, Y, Inc)
:- T = [H, L, R, B], A < H, B < 0, insert(A, L, NewL, IncL), IncL = 1,
Inc = O, rebalL([H, NewL, R], [NH, NL, NR]), Y = [NH, NL, NR, O].

3a) insert(A, T, Y, Inc)
:- T = [H, L, R, B], A < H, B = O, insert(A, L, NewL, IncL), IncL = 1,
Inc = O, Y = [H, NewL, R, –l].

3b) insert(A, T, Y, Inc)
:- T = [H, L, R, B], A < H, B >0, insert(A, L, NewL, IncL), IncL = 1,
Inc = O, Y = [H, NewL, R, –l].

4) insert(A, T, Y, Inc)
:- T = [H, L, R, B], A < H, insert(A, L, NewL, IncL), IncL = O, Inc = O,
Y = [H, NewL, R, B].

5) insert(A, T, Y, Inc)
:- T = [H, L, R, B], A > H, B >0, insert(A, R, NewR, IncL), IncL = 1,
Inc = O, rebalR([H, L, NewR], [NH, NL, NR]), Y = [NH, NL, NR, O].

6a) insert(A, T, Y, Inc)
:- T = [H, L, R, B], A > H, B = O, insert(A, R, NewR, IncL), IncL = 1,
Inc = 1, Y = [H, L, NewR, 1].

6b) insert(A, T, Y, Inc)
:- T = [H, L, R, B], A > H, B <0, insert(A, R, NewR, IncL), IncL = 1,
Inc = 1, Y = [H, L, NewR, 1].

7) insert(A, T, Y, Inc)
:- T = [H, L, R, B], A > H, insert(A, R, NewR, IncL), IncL = O, Inc = O,
Y = [H, L, NewR, B].

plus clauses 8 –15 for rebalL and rebalR as in P,,
It is easy to check that programs P, and P15 are equivalent (in P15 we

have just reordered learned clauses and literals to make the comparison
easier). In particular, clauses 3a and 3b (6a and 6b) of P15 are equivalent to
clause 3 (6) of P.. In fact, clause 3 (6) merges the two tests “B = 0“ and
“B > 0“ (“B < 0“) made separately in 3a and 3b (6a and 6b). However, the
testing procedure has tested P15 and P, for equivalence on all possible
insertion cases into balanced trees from the empty tree up to trees of
maximum height 3. As the outputs are the same, P15 is removed from 9,
and no new test case is generated. Again, a few more programs equivalent
to P, are found, and then no other program consistent with T15 can be
found; and M fails. Of the 15 examples generated, examples e2, e5, e~, es, es,
elo, e12, el~, en, and el~ isolate the errors of Pe. Of particular interest are
examples e~ and e 12. For the input pairs of these two examples P, outputs
unbalanced trees. This is the consequence of the error in clause 3 of P,
discussed above.

Finally, it is worth noting that the learning times for programs PO–P15
grow more or less linearly with the size and complexity of the target
program. This is a consequence of the fact that clauses are learned
independently of each other and shows that the approach is feasible w.r.t.
the size andlor complexity of the program to be tested.
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6. SCALABILITY

In this section we discuss whether the method can be scaled to test larger
programs, and we describe additional experiments.

The first thing that must be noted is that, through the mechanism of
Clause Sets, the set of alternative programs is actually tailored to the
particular program P under testing. In fact, this is precisely what is done in
the field of Theory Revision [Bergadano and Gunetti 1994a; Wrobel 1994].
The underlying assumption, both of Theory Revision and of our method, is
that P may be wrong, but it is plausible to assume it is not completely
wrong: the correct program will not be something completely different from
P. Consequently, it can be used as a starting point: a template to define
possible mutations by using its basic constituents. In the case of logic
programs, they might be the clauses the literals and the terms P is made of,
Actually, through the use of the Clause Sets language this can be done very
easily, even automatically, by surrounding clauses, literals. and terms with
brackets. In the simplest case, +Pmay be defined by just using all of the
Iiterals in P, as we did for the insert clauses of program P, of the previous

section. Of course, in that case the size of 7Pis exponential in the number of
literals, and the induction procedure turns out to be exponential in the size
of P. Howe\’er, the tester may well be supposed to have some knowledge
about the program to be tested. She or he may know some part of the
program (i.e., some clause ~to be correct and avoid testing it (i.e., put the
clauses in the background knowledge). Other parts of the code (i. e., other
clauses) may be suspected to be wrong, and a set of mutants for them may
be defined with a clause set. A finer control is provided by Literal Sets.
Possible faulty literals are put into a literal set, whereas correct literals
may be left outside brackets, as part of any allowed mutation. The actual
number of mutations defined in this way depends on the particular problem
and on the knowledge the tester has on it, but this number can be
controlled through a judicious use of the language. As an example, consider
again program P,, of the previous section. By inspecting the part of code
under testing we may observe the following:

(al

(b)

(c)

The nonrecursive clause of insert seems reasonably correct and may be
put in the background knowledge;s

the literal “T = [H, L, R, B]” is used to split the input tree into its basic
elements and may well be part of every clause of every mutation
program (i.e.. it does not have to be tested):

the subprogram {2, 3, 4} and the subprogram {5, 6, 7} are mutually
exclusiv~, s~nce the first tests for “A < ‘H’’–and the second for “A > H>
We may then define a mutation set for {2, 3, 4} using just the literals
that occur there, and where each allowed clause has to test for “A < H.”
In the same way a mutation test may be defined for {5, 6, 7}, with each
clause testing for “A > H.”

‘In fact this clause corresponds to the insertion of an element in the empty tree.
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Note that this reasoning does not assume nor imply any knowledge of the
faulty parts of the code, but it leads to a reformulation of the clause set of
Figure 4 as follows:

{
insert(A, T, Y, Inc)

:- T=[H, L, R, B], A<H,

{
B= O, B< O, B> O, Inc=O, Inc= l, IncL=O, IncL=l,
Y = [H, NewL, R, O], Y = [H, NewL, R, -l], Y = [NH, NL, NR, O], Y =
[H, NewL, R, B],
rebalL([H, NewL, R], [NH, NL, NR]), insert(A, L, NewL, IncL),

}
insert(A, T, Y, Inc)

:- T=[H, L, R, B], A>H,

{
B= O, B< O, B> O, Inc=O, Inc= l, IncL=O, IncL=l,
Y = [NH, NL, NR, O], Y = [H, L, NewR, O],Y = [H, L, NewR, 1], Y = [H,
L, NewR, B],
rebalR([H, L, NewR], [NH, NL, NR]), insert(A, R, NewR, IncL),

}
}

This clause set defines now a mutation set (!? of “only” 2(2’3+2’3) alternative
programs. 9 still contains a correct version of insert and can be used in
place of the one of Section 5 with the same results, but with shorter
learning times.

In general, we think the sketched situation is better than just having a
standard set of mutations allowed. If the set of mutations is independent of
the program to be tested, it may be the case that a particular kind of
mutation is meaningless. Nonetheless, it will be applied, resulting in a
waste of time. Consider again the insert example, where tests for equal,
greater_than, and smaller_than are used. A “reasonable” set of mutations
would replace any test with a different one. However, this would lead to a
much larger number of clauses and hence to a much larger 9. For example,
there is no need to build any mutation program checking whether “A = H,”
because of the assumption that an inserted element does not already occur
in the input tree.

On the other hand, our approach does not rule out the possibility to
employ a predefine set of mutations. A set of predefined “template
literals” may be available and included together with– or in place of–the
Iiterals from P in a literal set, after a suitable instantiation. For example, a
template such as “equal(varl, varz)” or “greater_or_equal( uarl, uarJ may
be instantiated to (some of) the variables found in P and used to allow for
other mutation programs in Q. This is what we did with the last three
Iiterals of Figure 3 when testing merge.

As a second point, from the definition of the Test Case Generation
Procedure in Section 3 it turns out that in the worst case the induction
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procedure must be invoked 1~1times, Of course this worst case is definitely
unfeasible, as even for the simplest cases P may contain a very large
number of programs. However, the actual situation is quite different.
Consider the merge example of Section 4. There, F contains 22” programs,
but the test case gene~~tion procedure only loops seven times. In the case
of insert we have 22 mutation programs and 15 invocations of the
induction procedure. In the experiment reported in Section 6.1 2(2”+ 2’+2”’
alternative programs require 15 invocations of M. On the basis of all of the
experiments we made, this seems to be the rule: even a very huge number
of mutations leads to a very limited number of loops of the test case
generation procedure.

Finally, a few words about the possibility of using a parallel implemen-
tation of the induction procedure M used in the reported experiments. The
basic algorithm described in Section 3,2 is implemented in a system called
FILP IBergadano and Gunetti 1993]. FILP works in two main steps: a
completion phase and an induction phase. In the completion phase a set of
missing examples ME is added by the function covers(C, e), on the basis of
E(T, P) and 9. In the induction phase a program P E QPconsistent with E(T,
PI U ME is found. The missing examples are queried to the user or, for the
case of test case generation, to the program under testing P. The comple-
tion step is made at the beginning, and it takes only a very small amount of
the whole learning time.~ For example, when learning Pl~ of the previous
section, the completion phase takes about 60 seconds, whereas the induc-
tion phase takes the remaining up to 1831 seconds. What is important here
is that, in the induction phase, clauses are learned independently of each
other. As a consequence, this step can be performed in parallel on a pool of
CPUS or hosts, each one learning a clause covering a different example. If a
sufficient number of CPUS is available, the time needed to synthesize a
program shrinks to the maximum time needed to synthesize one of its
clauses. A parallel version of FILP, called PARFILP, is at the moment
under development [Bergadano and Gunetti 1995]. Although extensive
experiments are not available yet, and although expectations about parallel
implementations of algorithms must always be taken with a grain of salt,
PARFILP is expected to achieve a speedup almost proportional to the
number of employed CPUS.

We conclude this section with an example of the scalability of the
approach.

6.1 Scaling the /nsert Testing Problem

Consider the insert program of the previous section. There, the two rebal-
ancing procedures, rebalL and rebalR, were supposed to be correct and
hence had not undergone the test case generation task. Now, we want to
make them part of the code to be tested. Actually, these two procedures are
correct, but of course that is not known to the testing procedure. Suppose,
for example, that we want to test only part of the code of the rebalancing

‘Of course, in the case of test case generation this also depends on the efficiency of P
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procedures; let us say the first two clauses of rebalL and rebalR. As was
done for insert, we just use the literals of these particular clauses. Hence,
clauses 8 and 9 are removed from the background knowledge, and a set of
their mutations is defined through the folIowing clause set:

{
rebalL(H, NL, R, Y)

:. {
NL = [LH, LL, LR, -l], YR = [H, LR, R, O], Y = [LH, LL, YR, O],
NL = [LH, LL, LR, 11, LR = [LRH, LRL, LRR, O],
YL = [LH, LL, LRL, O], YR = [H, LRR, R, 01,
}

}

Similarly, the set of mutations for clauses 12 and

{
rebalR(H, L, NR, Y)

:- {
NR = [RH, RL, RR, 1], YL = [H, L, RL, O], Y

Y = [LRH, YL, YR, O],

13 is defined by:

= [RH, YL, RR, O],
NR = [RH, RL, RR, –l], RL = [RLH, RLL, RLR, O],
YL = [H, L, RLL, O], YR = [RH, RLR, RR, 0], Y = [RLH, YL, YR, O],
}

}

Clauses 10, 11, 14, and 15 remain part of the background knowledge. The
two new clause eets define 28 different clauses each, the first including clauses
8 and 9 and the second including clauses 12 and 13. Now, any program
synthesized by the induction procedure can be made of clauses from the two
new clause sets and from the clause set for insert given in Figure 4 (plus the
clauses left in the background knowledge). Consequently, the new set of
mutation programs 9 contains 2(223+2’‘2’) alternative programs.

The test case generation is repeated exactly as was done for P. in Section
5. The same set of examples {el, . . . . el~} is found, and 27 more examples
are automatically added through “covers”: fifteen for insert (the same that
were added in Section 5), seven for rebalL, and five for rebalR. Since the
tested subprogram {8, 9, 12, 13} is correct, no example showing errors in its
clauses is found. After the generation of el~, program P15 equivalent to P, is
discovered in 2075 seconds. The 244 extra seconds (w.r.t. the time required
to learn P15 in the previous experiment) are employed to synthesize the
four rebalancing clauses, In the previous steps of the test case generation
task, when learning programs Po, . . . . P14, a proportional amount of time
varying from O to 244 seconds is required to learn the needed rebalancing
clauses.

7. CONCLUSION

A test case generation method was presented that is based on the inductive
inference of programs from input/output examples. A set 9 of alternative
programs is required and may be defined on the basis of the program P to
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be tested. The generated test set is adequate in the sense that it distin-
guishes the program to be tested from all alternatives. If Y contains at
least one correct implementation, then the obtained test set will also be
reliable, i.e., it will isolate any errors that may be present. The method is
related to fault-based test generation techniques.

The efficiency of the method depends mainly on the size of the space !7 of
alternative programs. This is due to the fact that the most critical step in
the described test generation process is the induction of a program P’ G T
consistent with E(T, P), for the partial test set T. The complexity of this
step is proportional to the number of possible clauses and is therefore
logarithmic in the number Ill of possible programs. For every generated
test case, one inductive inference step has to be performed.

By contrast, the size of the program P to be tested does not directly
influence the complexity of the method. This may happen indirectly, in the
sense that a more complex program may contain more errors and may lead
the tester to define a larger set :7 of alternatives. Nevertheless, it is
reasonable to assume that more-complex programs need more testing effort
and more time devoted to defining a restricted, but still meaningful, set of
alternative programs. The method scales up well when the size or the
complexity of the program P to be tested grows. It stops being practical if
the number of alternatives or possible errors becomes too large. This should
be contrasted with usual approaches to fault-based testing, which may
cause problems when the size of the program to be tested is too large. In
fact, the larger the program, the higher the number of syntactical muta-
tions that may be applied systematically to every part of the code.

The test case generation method presented in this article was made possible
by recent advances in inductive logic programming, providing the basis for
practical procedures for inducing programs from finite sets of inputioutput
examples. The set ?l of alternative programs may then be viewed as a space of
allowed inductive hypotheses, and the induced program P’ will have to belong
to that space of logic programs. The program induction method described here
has two important novelties: (1) it uses strong functionality and termination
constraints, so that only positive examples are needed, and ~2) it uses the
program P to be tested for generating the missing examples. The second point
deserves a quite interesting concluding remark.

The induction method is based on the extensional interpretation of the
predicates occurring in a clause: given a clause “p(X, Y) :- ..., qfZ, W), . . .“
the procedure “covers” will treat the literal q(Z, W ) either by calling
external modules or by using the examples provided for q. This extensional
interpretation is what allows the system to learn one clause at a time,
without using previously generated clauses, with a complexity that is only
logarithmic in the number IYI of possible programs. The price paid for it is
that the examples of q(Z, W) must be available for all instantiations j of Z
obtained by calling p(i, Y) with the given clause, for all i E T(p). Only in
this context of program testing can we do that, because we can obtain any
missing example by calling q(j, W) with the program P that we are testing.
For this rather technical reason we contrast the concluding remark of
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Weyuker [1983] which says that, if program induction techniques were
sufficiently developed, there would be no need for testing, as one would
generate correct programs automatically from inputioutput examples, and
there would be no need to write a program by hand and test it afterward.
But our program induction procedure is practical only because it can rely
on the program to be tested.
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