
26 April 2024

AperTO - Archivio Istituzionale Open Access dell'Università di Torino

Original Citation:

Learning logic programs with negation as failure

Publisher:

Terms of use:

Open Access

(Article begins on next page)

Anyone can freely access the full text of works made available as "Open Access". Works made available
under a Creative Commons license can be used according to the terms and conditions of said license. Use
of all other works requires consent of the right holder (author or publisher) if not exempted from copyright
protection by the applicable law.

Availability:

IOS Press

This is the author's manuscript

This version is available http://hdl.handle.net/2318/124568 since

Learning Logic Programs with Negation as
Failure

F. Bergadano
University of Messina,

Salita Sperone, S. Agata, Messina, Italy,
bergadan@di.unito.it

tel: (+39) 90 393229, fax: (+39) 90 393502

D. Gunetti
University of Torino,

corso Svizzera 185, 10149 Torino, Italy,
gunetti@di.unito.it

tel: (+39) 11 7429216, fax: (+39) 11 751603

M. Nicosia, G. Ruffo
University of Catania,

via A. Doria 6/A, 95100 Catania, Italy,
{nicosia,ruffo}@dipmat.unict.it

tel: (+39) 95 330533, fax: (+39) 95 330094

Abstract. Normal logic programs are usually shorter and easier to
write and understand than definite logic programs. As a consequence,
it is worth investigating their learnability, if Inductive Logic Program-
ming is to be proposed as an alternative tool for software development
and Software Engineering at large. In this paper we present an exten-
sion of the ILP system TRACY, called TRACYnot, able to learn normal
logic programs. The method is proved to be sound, in the sense that
it outputs a program which is complete and consistent w.r.t. the ex-
amples, and complete, in the sense that it does find a solution when it
exists. Compared to learning systems based on extensionality, TRACY
and TRACYnot are less dependent on the kind and number of training
examples, which is due to the intensional evaluation of the hypothe-
ses and, for TRACYnot, to the possibility to have restricted hypothesis
spaces through the use of negation.

1 Introduction

It is well known that definite logic programs have the computational power of Turing
machines [2]. However, experienced Prolog programmers normally use much more than
just the simple syntax of definite clauses. In particular, clauses containing negative
literals in the body are widely used, resulting in the so-called normal logic programs
[16]. As we are interested in the construction of program development and Software
Engineering tools based on Machine learning techniques [6] (and see also the papers
by Idestam-Almquist [13], Jorge and Brazdil [14], and Mofizur and Numao [18] in this

book), we believe the ability to learn normal programs to be an important step towards
that achievement.

Normal logic programs are widely used just because they are much easier to devise,
write and analyze, than definite programs. Many theoretical considerations could be
done on this issue, but we prefer to take a practical stand: normal logic programs are
shorter and clearer than definite programs, because negative knowledge can be expressed
through what is already known. Consider, for example, the intersection program, re-
turning the intersection of the two input lists X and Y. Such a program must check
whether an item occurring in X also occurs in Y, or not. To this end, two subprograms
member and notmember are needed. If negation is allowed, we have just to devise a
program for member, and then set: “notmember(A,B) :- not member(A,B).” If negation
is not allowed, the two subprograms must be treated as independent concepts, and a
program for notmember must be developed, too. Since negation can make programs
sensibly shorter, this may have a positive influence on their learnability, as the difficulty
of learning a given logic program is very much related to its length.

As usual, we want a learned logic program to behave correctly, at least on the given
examples E+ and E−. Moreover, we want the learning system to be able to output only
correct programs and to be able to find them whenever they exist in the hypothesis
space HS. These requirements are formally grasped by the following definitions:

Definition 1 A program P is complete w.r.t. E, iff ∀e+ ∈E P � e+.

Definition 2 A program P is consistent w.r.t. E, iff ∀e−∈E P �� e−.

Definition 3 An induction procedure M is sound iff whenever M terminates success-
fully and outputs a program P belonging to HS, then P is complete and consistent w.r.t.
E.

Definition 4 An induction procedure M is complete iff whenever a complete and con-
sistent program w.r.t. E exists in HS, then M will output one such program.

In the ILP literature, different approaches to handling negation can be found. [23]
is a beautiful theoretical extension of inverse resolution [20] to normal clauses, but
the approach turns out to have many practical drawbacks. Moreover, we feel bottom-
up methods (such as also an improved version of CLINT [9], which is able to handle
negation) not particularly suited for program assistants and Software Engineering ap-
plications [6]. An approach based on a three-valued logic can be found in this book, in
[17]. This approach overcomes the main limitations of extensional methods (discussed
below), but it has been applied only to single predicate learning, whereas multiple pred-
icate learning is essential for Software development. Also, extensive tests on medium
size/complexity normal programs are still missing.

Extensional top-down systems too, such as FOIL [21] and its derivatives, are able
to learn clauses containing negative literals (i.e., normal clauses). However, this is
different from learning normal programs. In fact, to achieve efficiency, extensional
systems generate candidate program clauses one at a time and check them against the
examples independently of one another. For instance, the clause “p(X) :- q(X,Y), not
p(Y).” is normally said to cover the example p(a) if there is a positive example q(a,b)
of q such that p(b) is a negative example of p (or it is not known to be a positive
example). Other clauses for p and q (e.g. those learned previously) are not used to try

a derivation for q(a,b) and p(b). In other words, clauses are evaluated extensionally at
the time of learning.

However, since clauses are learned extensionally, but then the whole program is
interpreted intensionally (i.e. it is run on a Prolog interpreter), extensional methods
present some major drawbacks. First, they can fail to find a complete and consistent
program w.r.t. the given examples, even if it exists in the hypothesis space. Second,
they can output a program which is inconsistent w.r.t. the given examples. In other
words they are not sound nor complete. These problems can be avoided only if some
special examples are given to the system, or if the system is able to query the user for
the missing examples, as in the FILP system [4]. Nonetheless, some (or even many) of
the given examples may be unnecessary, in the sense that even a subset of them would
be sufficient to learn the desired program. As a consequence, the learning system may
waste a lot of time by trying to cover examples which are, in fact, useless. A thorough
discussion of these problems can be found in [4]. Moreover, the kinds of programs
that are learned are usually very simple and often limited to clauses defining just one
predicate. Few systems [22, 15, 19, 10, 4, 11] are able to learn programs for multiple
predicates, while even simple Prolog programs contain clauses with different predicates
in the head. Again this is due, in part, to the fact that clauses are learned one at a
time and independently of each other. If we want to learn a program for predicates
P and Q, and we try to construct a clause antecedent for P where Q occurs, then Q
must have been defined by the user, or determined extensionally, by means of all of its
relevant examples.

The above problems are particularly serious in a Software Engineering setting. Es-
pecially in this case, the potential ILP user should be able to get a logic program each
time it exists in the designed hypothesis space (and not only sometimes or even often),
and the synthesized program should be correct (and not only “approximately” correct)
at least on the seen examples. Moreover, the user should not be compelled to provide
an extensionally complete list of examples, since otherwise it could be simpler and/or
faster to write down directly the required program.

In this paper we present a system, called TRACYnot, able to fulfill the above re-
quirements by adopting an intensional evaluation of candidate clauses, and able to learn
normal logic programs. In TRACYnot, clauses are checked against positive and nega-
tive examples by running them with a Prolog Interpreter. In this way the problems of
extensionality are automatically overcome, since a (normal) logic program is learned in
the same way as it will be used. The rest of the paper is organized as follows. In sections
2 and 3 we briefly review the TRACY system, thoroughly described in [5], in order to
present the adopted approach. In section 4, the shortcomings of the basic approach
when learning normal programs are discussed, and section 5 contains the description of
TRACYnot, able to learn normal logic programs. TRACYnot is proved to be complete
and sound in section 6. Section 7 contains an example of the use of TRACYnot with a
normal logic program of medium complexity. In section 8 we discuss our approach and
conclude.

2 Review of the Basic TRACY Algorithm

Searching a space of possible programs is clearly unfeasible. As a consequence, TRACY
only consider partial programs made up of clauses successfully used to prove at least
one positive example (we will also call such partial programs traces). Partial programs

are put together and checked against the negative examples. If some negative example
is derived, backtracking occurs. The learning algorithm is automatically suitable for
multiple predicate learning and it can work with any number of positive and negative
examples. In particular, in no sense it requires an extensionally complete set of positive
examples.

The complexity of the method is not as good as for extensional approaches, that only
need to enumerate allowed clauses, and evaluate them independently. However, it is not
as bad as enumerating all allowed programs (sets of clauses), because only the sets of
clauses that are derivation traces for some positive example need to be examined. If the
examples are sufficiently simple and well-chosen, this means a dramatic improvement.

TRACY is not the first intensional approach to the ILP problem (see, e.g., [22,
20, 10, 12]). However, two distinct features of our TRACY are that (a) the induction
procedure does not require any interaction with the user and does not rely on any
special provided example in order to be sound and complete, and (b) it can learn sets
of clauses instead of just one clause at a time.

To describe TRACY, we need the following definition:

Definition 5 Given a set of clauses S and an example e such that S �SLD e, a clause
of S is successful (w.r.t. e) if it used in the proof of e.

TRACY works as follows: The actual set of candidate clauses (CC) is produced from
a description of the hypothesis space (HS), and is given in input to TRACY. For each
positive example e+, TRACY looks for a set of successful clauses (a partial program) de-
riving that example. The partial program p is added to the partial programs discovered
previously, and the covered examples are removed, until no more positive examples re-
main. At every step, the whole set of clauses learned up to that point is checked against
the negative examples, and if some of them are derived the learning task backtracks to
a different derivation for e+. Here is an informal description of TRACY:

TRACY:

input: a set of positive examples E+
a set of negative examples E-
a description of the hypothesis space HS
a background knowledge BK

CC ← generate all clauses(HS)
P ← ∅
while E+ �= ∅ do

for each e+ such that CC ∪ BK �SLD e+ do
let p ⊆ CC be the set of clauses successfully used
in the derivation of e+

P ← P ∪ p
if ∃ e− such that P ∪ BK �SLD e− then backtrack
E+ ← E+ - e+

We note that candidate recursive clauses must satisfy some well-order relation, to guar-
antee the termination of learned programs, and for making the learning procedure
terminate. That is, we require the set of clauses in CC form a terminating program,
since otherwise the test CC ∪ BK �SLD e+ could not terminate. As a consequence, all

candidate recursive clauses must satisfy the following pattern:

R(Y1, ..., Yi, ..., Yn) :- ..., wor(Z,Yi), ..., R(Y1, ..., Z, ..., Yn), ...

where wor is any well-order relation, which makes every recursive call of the clause
one step closer to the termination. As an example, cons(A,B,C) determines the well
ordering |B| < |C|, while tail(A,B) determines the well ordering |B| < |A|. Obviously
even more sophisticated techniques can be adopted, which apply to sets of clauses and
not just to a single clause. A thorough discussion of such techniques can be found in
[7].

3 Example

We show in details the behavior of TRACY on a very simple example: learningmember.
Let CC containing the following three clauses:

CC =
{
c1 = member(X,Y) :- tail(Y,Z), null(Z).
c2 = member(X,Y) :- head(Y,H), tail(Y,T), member(X,T).
c3 = member(X,Y) :- head(Y,X). }

The background knowledge BK will contain the usual definitions for all of the predi-
cates above, except obviously for member. The examples used are the following:

e+
1 = member(a,[a]), e+

2 = member(a,[c,b,a]),
e−1 = member(a,[]), e−2 = member(a,[b,c]).

1) CC � e+
1 (we omit the background knowledge for brevity, and we use � for �SLD),

by using c1. As a consequence, we set P = {c1}, and since P does not derive any of the
negative examples we can continue. Since P �� e+

2 , the learning process goes on.

2) Now, CC � e+
2 and the first successful clauses used to derive e+

2 are c1 and c2, so we
set P = {c1, c2}. However, P � e−2 . Hence, we backtrack to a different partial program
for e+

2 , and we find {c2, c3}. However, P = {c1, c2, c3} is still inconsistent (P � e−2),
and since backtracking to a different partial program for e+

2 fails (there is not such a
program in CC), we must backtrack to the first positive example. P is empty again.

3)We discover that e+
1 can be derived from c3, and we set P = {c3}, which is consistent

with the negative examples. Then, e+
2 is derived from c1 and c2, and we set P = {c1,

c2, c3}. Now P � e−2 , and backtracking to a different partial program for e+
2 allows to

discover the partial program {c2, c3}. Now, P = {c3} ∪ {c2, c3} = {c2, c3}. At this
point, P derives all the positive examples and no negative examples, and represents a
legal program for member.

We observe from the above example, that an extensional system would have been
unable to learn member with the examples provided, since member(a,[c,b,a]) is not
extensionally covered by the recursive clause of member. In fact, the positive example

member(a,[b,a]) would be required. Note also that member could have been learned by
using only the second positive example (i.e. the one involving recursion).

Clearly, we could also define a hypothesis space containing clauses with different
consequents. As a consequence, multiple predicate learning is automatically achieved.

4 Trying to Learn Normal Programs with TRACY

The soundness and completeness of TRACY (proved in [5]) are based on monotone
reasoning, which is in force when dealing with pure definite clauses. But, what happens
when negation is brought into consideration? In fact, derivation is no longer monotone,
and TRACY can fail to work correctly. Two main problems come out, that will be
discussed in the next subsections. As an illustrating example, we will use the problem
of learning intersection, together with its main subprogram member. As a hypothesis
space (i.e., a set of candidate clauses), we will use the set of clauses reported in figure
1.

1) int(X,Y,Z):-null(X),null(Z).
2) int(X,Y,Z):-null(Z).
3) int(X,Y,Z):-null(Z),head(X,X1),member(X1,Y).
4) int(X,Y,Z):-null(Z),head(X,X1),not member(X1,Y).
5) int(X,Y,Z):-head(X,X1),tail(X,X2),member(X1,Y),int(X2,Y,Z).
6) int(X,Y,Z):-head(X,X1),tail(X,X2),member(X1,Y),int(X2,Y,W),assign(W,Z).
7) int(X,Y,Z):-head(X,X1),tail(X,X2),member(X1,Y),

int(X2,Y,W),cons(X1,W,Z).
8) int(X,Y,Z):-head(X,X1),tail(X,X2),not member(X1,Y),int(X2,Y,Z).
9) int(X,Y,Z):-head(X,X1),tail(X,X2),not member(X1,Y),

int(X2,Y,W),assign(W,Z).
10) int(X,Y,Z):-head(X,X1),tail(X,X2),not member(X1,Y),

int(X2,Y,W),cons(X1,W,Z).
11) int(X,Y,Z):-head(X,X1),tail(X,X2),int(X2,Y,W),cons(X1,W,Z).
12) int(X,Y,Z):-tail(X,X2),int(X2,Y,Z).
13) int(X,Y,Z):-tail(X,X2),int(X2,Y,W),assign(W,Z).
14) member(X,Y):-head(Y,X).
15) member(X,Y):-head(Y,X),tail(Y,Tail),member(X,Tail).
16) member(X,Y):-head(Y,KW),tail(Y,Tail),member(KW,Tail).
17) member(X,Y):-tail(Y,Tail),member(X,Tail).

Figure 1: A hypothesis space for learning intersection

The background knowledge will contain the usual definitions for null, head, tail,
cons, and assign1, while negation is defined as usual in Prolog:

not(X) :- X,!,fail.
not(X).

Finally, the following positive and negative examples of intersection will be used2:

1For example, assign is defined as: assign(X,X).
2Note that we do not provide any positive or negative example for member.

e+
1 : int([a],[b,a],[a])
e+
2 : int([b,a],[a],[a])
e−1 : int([a],[a],[])
e−2 : int([],[a],[a])
e−3 : int([a],[b,a],[])
e−4 : int([b],[a],[b])

4.1 Useful but not successful clauses

If TRACY is given in input the above information, it will output the trace made up
of clauses 1, 7, 8, 14, 17, that represents a legal solution for intersection and member.
However, consider what happens if the positive examples are given in input (and hence
taken into consideration by TRACY) in reverse order: The learning process starts by
searching for a derivation for e+

2 . Example e+
2 can be derived from the hypothesis space

using only clause 14 for member, plus some clauses for intersection. Clause 17 is not
necessary, and is not learned. However, clause 17 is required in order to avoid the
derivation of the negative examples.3 As a consequence, no consistent traces are found
for example e+

2 , and the learning task fails. In fact, TRACY is unable to find a program
that is consistent w.r.t. example e+

2 and the negative examples. Here, the problem is
that derivation is no longer monotone, and it can be the case that a negative example
is derived by a set of clauses (a trace) but not by a superset of those clauses, as above.
But TRACY is only able to learn programs that are traces, i.e., where every clause
in the program is used to derive at least one positive example. It is unable to learn
programs where some clauses are used only to avoid undesired derivations.

In this case, the above problem could be remedied by testing different example
orderings. But, in the worst case, n! different orderings of a set of n positive examples
must be checked, which could be practically unfeasible. Moreover, in general, the above
solution won’t work. Suppose the only given positive example is e+

2 . Again, clauses 1, 7,
8, 14, and 17 represent a correct solution program that cannot be found because clause
17 cannot be learned from e+

2 . Of course, in this case we have no different example
orderings to test for.

4.2 “Always true” Antecedents

Suppose we add to the set of clauses of figure 1 the clause:

18) member(X,Y):-true.

Then, TRACY will never be able to learn clause 8. The problem, again, lies in the
non-monotonicity of SLDNF derivation. Clause 18 is always successful and, as a conse-
quence, negative literals for member, as those in the body of clause 8, will always fail.
No clause containing a negative literal for member can be successfully used to derive
any positive example, and hence such a clause cannot be learned.

The above situation, due to clause 18, is somewhat artificial, since clauses with an
empty body can be easily avoided when designing a hypothesis space. However, the
problem remains. It could be in general difficult, or even impossible, to determine if a

3For example, the first candidate trace discovered by TRACY is the set of clauses S = {1, 7, 8, 14}.
It is easy to check that S � e−3 . However, S ∪ {clause 17} �� e−3 .

hypothesis space contains clause antecedents that are always evaluated to true w.r.t. the
given examples and background knowledge. If such a clause “P (X1, ..., Xn) : −body” is
in the hypothesis space, then no clause of the form “head : −α, notP (T1, ..., Tn), β” can
be learned by TRACY.

5 TRACYnot

The problems illustrated in the previous section are due to the fact that TRACY is
based on the properties of SLD derivation, which is monotonic: if e can be derived
by a set of clauses S, it will be derived by any superset of S. But this is no longer
true when negative literals are introduced and SLDNF derivation is activated, which
is nonmonotonic. To solve this problem, we propose the following solution: instead of
modifying TRACY in order to be able to deal with nonmonotonic reasoning (in this
case, negation as failure), we go back to SLD derivation, but handle negative literals
encountered in the bodies of candidate clauses in a special way. This is formalized in
what we call a TRACYnot derivation, which is defined as follows:

Definition 6 Let S be a set of clauses and e and example. We say that S �TRACY not e,
with the sequence of goals e = G0, G1, ..., Gn = ✷, if the current goal Gi+1 is obtained
from goal Gi in one of the following two ways:

1. if Gi = R,L2, ..., Ln, and R is a positive literal, then Gi+1 is obtained by applying
SLD resolution to Gi (i.e., R is resolved with the first matching clause found in
S);

2. if Gi = not Q,L2, ..., Ln, then Gi+1 = L2, ..., Ln, and the procedure
side effect(Q,σ) is called (see below). σ is the computed answer substitution.

Hence, a TRACYnot derivation differs from the classical SLDNF derivation because
of the way negative literals are treated. In TRACYnot, a negative literal not Q is always
immediately successful, but, as a side effect, Q is treated as follows:

side effect(Q,σ):

• If S �TRACY not e+, then E− ← E− ∪ Qσ (i.e., Qσ is a new negative example that
must not be covered by the solution program);

• If S �TRACY not e−, then E+ ← E+ ∪ Qσ (i.e., Qσ is a new positive example that
must be covered by the solution program; no backtracking to a different trace is
required in this case. There can be different derivations of e− from S, and for each
of them the corresponding Qσ must be added to E+);

The effects of side effect(Q,σ) must be retracted in case of backtracking of the main
procedure (i.e., examples added as a consequence of side effect(Q,σ) must be removed).

The rationale for the above way of handling negation should be clear: if the deriva-
tion of a positive example e+ from a program P requires proving (with negation as
failure) “not Q”, this is equivalent to require that P �� Q (i.e., Q is a negative example
w.r.t. P). Conversely, if P � e−, and a negative literal “not Q” is involved, we can
avoid such a derivation by looking for another program P’ such that P’ � Q (i.e., Q is
a positive example w.r.t. P’). By assuming the input set of candidate clauses to be a

terminating program (see section 2), we are sure that a finite number of positive and
negative examples will be added, and that the learning process will terminate (either
successfully or not).

The shown approach also overcomes the problem of “always true” antecedents. A
negative literal is immediately evaluated to true, and hence “always true” antecedents
cannot influence the learning process (in fact, “always true” antecedents could be
learned because they can be used to derive every positive example, but are later rejected
because they also derive every negative example).

In the following section, some formal properties of TRACYnot will be proved. We
conclude this section illustrating the behavior of TRACYnot on the problem of learning
intersection.

Let be given the same set of candidate clauses CC and the same background knowl-
edge as in section 4, together with the following positive and negative examples of
intersection:

e+
1 int([b,a],[a],[a])
e−1 int([a],[b,a],[])
e−2 int([a,b],[c,a],[])

As we saw in subsection 4.1, example int([b,a],[a],[a]) does not allow to learn the
recursive clause for member, which is however required in order to avoid the derivation
of the negative examples. Let us show how TRACYnot works on this set of examples.

1. The trace T1={1,7,8,14}, is learned from example e+
1 , using the negative literal

“not member(b,[a])” from clause 8. “not member(b,[a])” is immediately evaluated
to true, but, side effect 1: e−3 = member(b,[a]) becomes a new negative example.

2. T1 is checked against the negative examples:

(a) T1 �� e−3 ;
(b) T1 � e−1 using “not member(a,[b,a])”.

side effect 2: e+
2 = member(a,[b,a]) becomes a new positive example;

(c) T1 � e−2 through literals “not member(a,[c,a])” and “not member(b,[c,a])”.
side effect 3: e+

3 = member(b,[c,a]) becomes a new positive example4.

3. No trace can be learned from e+
3 (i.e., CC �� e+

3), and backtracking to point 2.(c)
occurs. e+

3 is removed from the set of positive examples, and e+
4 = member(a,[c,a])

is added.

4. From example e+
4 the trace T2 = {1,7,8,14,17} is learned. T1 ∪ T2 = T2 is found

consistent with the negative examples; since T2 also derives e+
2 , no new derivation

is attempted and the learning task terminates with a learned program for inter-
section and member which is consistent with the given (and added) positive and
negative examples.

4In general, it is not possible to avoid a negative example to be classified as a positive one, or vice
versa, during the learning task. We will come back to this problem in the last section.

6 Soundness and Completeness of TRACYnot

To prove the soundness of TRACYnot we first need two lemmas relating SLDNF deriva-
tion with TRACYnotderivations5, as defined by definition 6.

Lemma 1 if T � e then T �tn e.

Proof: If T � e does not involve negative literals, then obviously T �tn e, for the
definition of �tn. If T � e involves negative literals, then T �tn e, since negative literals
are always successful in �tn.

Lemma 2 If T �tn e then T � e, if T derives each of the negative literals involved
in T �tn e (i.e., TRACYnot does not derive any of the examples added because of the
derivation T �tn e).

Proof: If T �tn e does not contain negative literals, then T � e, since we are using
SLD-derivation. Otherwise, suppose T �tn e involves negative literals “not Q1”, ... “not
Qn”. Then, by the hypothesis, T � not Qi, for 1 ≤ i ≤ n, and hence T � e.

Now, if we suppose the candidate clauses given in input to TRACYnot form a ter-
minating program, we have the following:

Theorem 1 TRACYnot is sound.

Proof: Let TRACYnot(CC,E+,E−) = P. The learning procedure terminates success-
fully only if, for none of the negative examples e−, it is the case that P �tn e−. Hence,
for the contrapositive of lemma 1, it turns out that P is consistent. Now, P = ∪Pi,
such that, ∀e+

i ∈ E+, Pi �tn e+
i . But �tn is a monotonic derivation, and P does not

derive any of the negative examples added during the learning task. Hence, by virtue
of lemma 2, P � e+

i for each e+
i ∈ E+, i.e., P is complete.

Theorem 2 TRACYnot is complete.

Proof: Let P be a complete and consistent program in the hypothesis space, w.r.t.
the given positive and negative examples E+ and E−. Obviously, ∀ ei ∈ E+, P � ei.
∀i, let Pi ⊆ P be such that Pi � ei and all of the clauses in Pi are successfully used in
the derivation. Also, let P

′
i = P1 ∪ P2 ∪ ... ∪ Pi be consistent for each i. By lemma

1, if Pi � ei then Pi �tn ei. Hence, TRACY
not will sooner or later find such a trace Pi

and will add it to P
′
i−1, until P

′
i = P.

It remains to show that P
′
i is consistent, for each i. We need the following definition:

Definition 7 Let G be a goal, and let S be a set of clauses such that S �SLDNF G. Let
{Q} = {not q1, ..., not qn} be a set of negative literals involved in the derivation of G.
Since SLDNF derivation is in force, it is the case that P �� qi for 1 ≤ i ≤ n. We say
that {Q} is essential (for the derivation of G) if and only if P ∪ {Q} �� G but P ∪ qi

� G for 1 ≤ i ≤ n.

Lemma 3 P
′
i is consistent.

5In the following, � will stand for �SLDNF , and �tn will stand for �TRACY not .

Proof: Suppose P
′
i is inconsistent. As a consequence, there must exist and example

e− such that P
′
i � e−. There are two cases to consider:

• if P
′
i � e− does not involve negative literals, then we have a contradiction, since

P
′
i ⊆ P, and P �� e− by hypothesis.

• If P
′
i � e− involves negative literals, let {R1}, ..., {Rm} be the essential sets

occurring in the derivation.
TRACYnot rejects P

′
i iff, for each {Ri}, � ∃ T ⊆ CC such that T �tn {Ri}, and T

∪ P
′
i is consistent.

Since P is consistent, P �� e−. Since P
′
i ⊆ P and the sets {R1}, ..., {Rm} are

essential for the derivation of e−, it must be the case that P � {Ri} for some i.
Hence, by lemma 1, P �tn {Ri}. But then, ∃ P ⊆ CC such that P is consistent and
P �tn {Ri} for some i. As a consequence, TRACYnot cannot derive e−, against
the initial hypothesis.

7 A More Complex Case

In this section we report the performance of TRACYnot to learn a normal program
whose size is slightly larger than classical ILP test cases. The program receives as
input a directed graph and return as output an hamiltonian cycle for the graph, if it
exists. This program is described as problem number 31 in [8]. It is worth noting as
the program can be kept short and fairly simple because of an extensive use of not.

The hypothesis space used by TRACYnot is given through the notation of Clause
Sets (see [6] for a description of Clause Sets) and is reported in figure 2 (f(X,Y) means
that there is an arc connecting X and Y). Figure 3 reports the background knowledge
and the set of forbidden conjunctions of literals.6 Clauses containing one of these
conjunctions will never be true, and hence there is no need to produce them into the
actual set of candidate clauses CC given in input to TRACYnot.

The hypothesis space of figure 2 describes a space of 28 + 25 + 23 = 296 clauses. By
avoiding the generation of the clauses containing any forbidden conjunctions of literals,
and by requiring that each output variable in the head of candidate clauses must be
instantiated in the body7, the actual set of candidate clauses CC, reported in figure 4,
is produced.

TRACYnot receives in input the set of candidate clauses CC and background knowl-
edge, and the following positive and negative examples:

e+
1 = hamilton([f(a,b),f(b,c),f(a,c)],[a,c,b])
e−1 = hamilton([f(a,b),f(b,c)],[a,b])

the first program output by TRACYnot is found after around seven seconds (precisely,
7.690 seconds), and is made up of clauses {3,23,31,35}. This program, although not
completely correct, is complete and consistent w.r.t. the given examples, and can be
used for sometime. The following examples have been added by TRACYnot during the

6Forbidden conjunctions of literals is one of the many constraints that can be enabled in the Clause
Sets language to limit the size of the hypothesis space.

7To activate this restriction, an input-output mode for each involved predicate must be provided.
We omit this information for brevity. More on this issue can be found in [6].

{hamilton(G,C):-{ edge({f(U,V),f(U,W)},G),
path(U,{V,W},G,C),
not path(U,{V,W},G,C),
not uncovered(C,G),
uncovered(C,G)
}.

uncovered(C,G):-{ node({V,U},G),
not member(V,C),
member({V,U},C)
}.

member(A,B):-{ head(B,A),
tail(B,T),
member(A,T)
}.}

Figure 2: The hypothesis space for learning hamilton.

learning task:

e+
2 = member(a,[a,c,b])
e+
3 = member(b,[a,c,b])
e+
3 = member(c,[a,c,b])
e−2 = member(a,[b])
e−3 = member(c,[])
e−4 = member(c,[a,b])
e−5 = uncovered([a,c,b],[f(a,b),f(b,c),f(a,c)])

The program equivalent to the one described in [8] can be obtained by using the
backtracking facility of the Prolog interpreter8. TRACYnot finds such a program, com-
posed of clauses {3,27,31,35}, in 32 seconds, adding the same examples as above. Four
more examples are added and then retracted during the whole learning task:

member(a,[]) /* classified as positive by TRACYnot */
uncovered([a,b],[f(a,b),f(b,c)]) /* classified as positive */
member(a,[a,b]) /* classified as negative */
member(b,[a,b]) /* classified as negative */

8 Discussion and Conclusion

We conclude this paper by discussing two main issues.

Complexity of the induction procedure. In [5], we proved that the computational com-
plexity of TRACY is proportional to |CC|nd, where |CC| is the number of candidate

8I.e., by asking TRACYnot to look for alternative derivations for the input set of positive examples.

/******** forbidden conjunctions of literals ********/

!(head(,),head(,)).
!(not member(,),member(,)).
!(not uncovered(,),uncovered(,)).
!(path(, , ,),not path(, , ,)).
!(path(, , ,),path(, , ,)).
!(not path(, , ,),not path(, , ,)).
!(edge(,),edge(,)).

/******** background knowledge ********/

rel([|T],[]):-!,fail.
rel([],):-!.
rel([|T1],[|T2]):-rel(T1,T2).

path(U,V,G,P):-path1(U,[V],G,P).

path1(U,[U|P],G,[U|P]).

path1(U,[W|P2],G,P):-rel([W|P2],G),
edge(f(V,W),G),not member(V,P2),
path1(U,[V,W|P2],G,P).

edge(f(V,W),GR) :- head(GR,X),eq(X,f(V,W)).
edge(f(W,V),GR) :- head(GR,X),eq(X,f(V,W)).
edge(f(V,W),GR) :- tail(GR,G),edge(f(V,W),G).

eq(X,X).
head([H|],H).
tail([|T],T).

node(V,G):-edge(f(V,W),G).

Figure 3: Forbidden conjunctions of literals and background knowledge for learning hamilton

1) hamilton(G,C) :- edge(f(U,V),G).
2) hamilton(G,C) :- edge(f(U,V),G),path(U,V,G,C).
3) hamilton(G,C) :- edge(f(U,V),G),path(U,V,G,C),not uncovered(C,G).
4) hamilton(G,C) :- edge(f(U,V),G),path(U,V,G,C),uncovered(C,G).
5) hamilton(G,C) :- edge(f(U,V),G),not path(U,V,G,C).
6) hamilton(G,C) :- edge(f(U,V),G),not path(U,V,G,C),not uncovered(C,G).
7) hamilton(G,C) :- edge(f(U,V),G),not path(U,V,G,C),uncovered(C,G).
8) hamilton(G,C) :- edge(f(U,V),G),not uncovered(C,G).
9) hamilton(G,C) :- edge(f(U,V),G),uncovered(C,G).
10) hamilton(G,C) :- edge(f(U,W),G).
11) hamilton(G,C) :- edge(f(U,W),G),path(U,W,G,C).
12) hamilton(G,C) :- edge(f(U,W),G),path(U,W,G,C),not uncovered(C,G).
13) hamilton(G,C) :- edge(f(U,W),G),path(U,W,G,C),uncovered(C,G).
14) hamilton(G,C) :- edge(f(U,W),G),not path(U,W,G,C).
15) hamilton(G,C) :- edge(f(U,W),G),not path(U,W,G,C),not uncovered(C,G).
16) hamilton(G,C) :- edge(f(U,W),G),not path(U,W,G,C),uncovered(C,G).
17) hamilton(G,C) :- edge(f(U,W),G),not uncovered(C,G).
18) hamilton(G,C) :- edge(f(U,W),G),uncovered(C,G).
19) hamilton(G,C) :- not uncovered(C,G).
20) hamilton(G,C) :- uncovered(C,G).

21) uncovered(C,G) :- node(V,G).
22) uncovered(C,G) :- node(V,G),node(U,G).
23) uncovered(C,G) :- node(V,G),node(U,G),not member(V,C).
24) uncovered(C,G) :- node(V,G),node(U,G),member(V,C).
25) uncovered(C,G) :- node(V,G),node(U,G),member(V,C),member(U,C).
26) uncovered(C,G) :- node(V,G),node(U,G),member(U,C).
27) uncovered(C,G) :- node(V,G),not member(V,C).
28) uncovered(C,G) :- node(V,G),member(V,C).
29) uncovered(C,G) :- node(U,G).
30) uncovered(C,G) :- node(U,G),member(U,C).

31) member(A,B) :- head(B,A).
32) member(A,B) :- head(B,A),tail(B,T).
33) member(A,B) :- head(B,A),tail(B,T),member(A,T).
34) member(A,B) :- tail(B,T).
35) member(A,B) :- tail(B,T),member(A,T).

Figure 4: Candidate clauses for learning hamilton

clauses given in input to TRACY, n is the number of positive examples, and d is the
maximum “depth” on all the examples9. This complexity stands between an exhaustive
search in the space of possible programs (that would be proportional to the powerset of
CC, and hence exponential in CC), and a search in the space of possible clauses (linear
in the size of CC), typical of the extensional systems. Since TRACYnot differs from
TRACY only for the treatment of negative literals, it is easy to see that its complexity
turns out to be proportional to |CC|(n+m)d, where m is the number of positive examples
added by the induction procedure until a solution program is found. Although the com-
plexity of TRACY is exponential in the number of positive examples, most of the time
a complete program can be learned using only one well chosen example10. Moreover,
the examples can be chosen to be as simple as possible, as long as they carry the same
information, in order to limit their depth (i.e., parameter d)11. See [5] for a thorough
discussion of this issue.

In the case of TRACYnot, the situation seems to get worse because of the examples
added during the learning task. However, this may not be the case for two reasons: (1)
if the number and depth of the initial positive and negative examples are small, then
the number of added examples is small as well. In fact, an example is added because of
the derivation of another example involving a negative literal, and the lower the depth
of an example, the lower the number of clauses (possibly containing negative literals)
involved in its derivation; (2) the use of negation allows to write shorter and simpler
programs and, in general, the shorter a logic program, the easier to learn it. Hence,
being able to learn normal logic programs allows to design smaller hypotheses spaces;
i.e., the size of CC is likely to decrease when learning a normal logic program instead
of an equivalent definite program. Consider, for example, the case study of section 7.
If negation is not allowed, we must define two separate concepts for notuncovered and
notmember12, resulting into a larger hypothesis space and number of candidate clauses
CC.

Misclassified examples. During the learning task it may happen that a positive example
of the target concept is classified as negative, or vice versa. For example, this is the case
for the learning task of intersection, in section 5. There, at step 2.(c), member(b,[c,a])
is added as a positive example. In the subsequent steps no derivation is found for such
an example, and backtracking occurs. However, in general, it is possible for TRACYnot

to find a derivation for a negative example misclassified as positive, and to output a
solution program containing a trace to derive that example. Nontheless, the learned
program still will be correct (i.e., complete and consistent) w.r.t. the positive and
negative examples provided initially. Moreover, the more meaningful are the initial
examples and the more restricted is the hypothesis space, and the lower are the chances
for the above situation.

Automatically misclassified examples can be avoided if we are willing to accept the

9Roughly speaking, the “depth” of an example is related to its complexity, e.g., is proportional to
the size of the sets or lists that it contains. See [5] for the details.

10For instance, this is the case for the program intersection in section 5, which is learned by using
just one positive example; and for the program member in section 3. Obviously the learned program
can be different from the one the user “has in mind”.

11For instance, in section 3, member can be learned by using just the second positive example e+
2 =

member(a,[c,b,a]), but a better choice would be, e.g., member(a,[c,a]), whose depth is 2, whereas the
depth of e+

2 is 3.
12A possible, very simple, clause set for notmember could be, e.g., {notmember(A,B) :- {head(B,H),

different(A,H), tail(B,T), notmember(A,T)}, resulting in 24 = 16 new clauses.

introduction of “yes/no” queries to the user. In this case, when a derivation for a
negative example is found involving a negative literal “not Q”, Q is not immediately
added as positive example, but the user is queried to know whether Q is a positive
example, or not. If the answer is “no”, Q is added to the negative examples, and not
to the positive. In a similar way we do when a trace for a positive example involving
negative literals is found. This procedure can be made automatic if a database of
positive and negative examples of the target concept(s) is available, in place of a user.

The possibility of enhancing TRACYnot with queries becomes particularly interest-
ing when using the system to generate test cases for a program to be tested [3, 6]. In
that case, the program itself is used to classify the added examples during the produc-
tion of an adequate test set distinguishing the program from all of the alternatives in
the hypothesis space.

TRACYnot turns out to be a natural evolution of TRACY. Unlike in classical top-
down and bottom-up methods, in our approach candidate clauses are not evaluated
extensionally, examples are not required to be complete in any sense, queries are not
necessary (although they can be useful in TRACYnot), and set of clauses are learned at a
time. For a comparison of our approach with other systems adopting a pure intensional
evaluation of clauses, the reader can refer to [5], whereas a similar way of handling
additional positive and negative examples, in the framework of theory revision, can be
found in [1].

In this paper, our primary goal was to present a system able to learn correct normal
logic programs while keeping the main qualities of the basic learning procedure. The
learnability of Prolog programs (as opposed to definite logic programs) goes through
the ability to deal with non monotonic reasoning, above all negation as failure. Prolog
programmers make an extensive use of negation, and practical tools for software engi-
neering and program assistants must be able to deal with it.

Acknowledgement: This work was in part supported by BRA ESPRIT project 6020
on Inductive Logic Programming.

References

[1] I. adé, L. De Raedt, and M. Bruynooghe. Theory Revision. In S. Muggleton, editor,
Proc. Third Int. Workshop on Inductive Logic Programming, Ljubljana, Slovenia, 1993.
Jozef Stefan Institute.

[2] H. Andreka and I. Nemeti. The Generalized Completeness of Horn Predicate Logic as a
Programming Language. Acta Cybernetica, 4:3–10, 1978.

[3] F. Bergadano. Test Case Generation by Means of Learning Techniques. In Proc. ACM
SIGSOFT, Los Angeles, 1993. ACM.

[4] F. Bergadano and D. Gunetti. An Interactive System to Learn Functional Logic Pro-
grams. In R. Bajcsy, editor, Proc. 13th Int. Joint Conf. on Artificial Intelligence, pages
1044–1049, Chambéry, France, 1993. IJCAII.

[5] F. Bergadano and D. Gunetti. Learning clauses by tracing derivations. In Proc. 4th Int.
Workshop on Inductive Logic Programming, Bonn, Germany, 1994.

[6] F. Bergadano and D. Gunetti. Inductive Logic Programming: from Machine Learning to
Software Engineering. MIT Press, Cambridge, MA, 1995.

[7] R. M. Cameron-Jones and J. R. Quinlan. Avoiding Pitfalls When Learning Recursive
Theories. In R. Bajcsy, editor, Proc. 13th Int. Joint Conf. on Artificial Intelligence, pages
1050–1055, Chambéry, France, 1993. IJCAII.

[8] H. Coelho and J. C. Cotta. Prolog by Example: How to Learn Teach and Use it. Springer-
Verlag, Berlin, 1988.

[9] L. DeRaedt. Interactive Concept Learning. Ph.D. thesis, Katholieke Univ. Leuven, 1991.
[10] L. DeRaedt and M. Bruynooghe. CLINT: A Multistrategy Interactive Concept-Learner

and Theory Revision System. In R. S. Michalski and G. Tecuci, editors, Proc. Workshop
on Multistrategy Learning, pages 175–190, Harpers Ferry, VA, 1991.

[11] L. DeRaedt and M. Bruynooghe. A theory of clausal discovery. In R. Bajcsy, editor, Proc.
13th Int. Joint. Conf. on Artificial Intelligence, pages 1058–1063, Chambéry, France,
1993. IJCAII.

[12] L. DeRaedt, N. Lavrač, and S. Džeroski. Multiple Predicate Learning. In R. Bajcsy,
editor, Proc. 13th Int. Joint Conf. on Artificial Intelligence, pages 1037–1042, Chambéry,
France, 1993. IJCAII.

[13] P. Idestam-Almquist. Efficient Induction of Recursive Definitions by Structural Analysis
of Saturations. In L. De Raedt, editor, Advances in Inductive Logic Programming. IOS
Press, 1995.

[14] A. Jorge and P. Brazdil. Architecture for Iterative Learning of Recursive Definitions. In
L. De Raedt, editor, Advances in Inductive Logic Programming. IOS Press, 1995.

[15] J. U. Kietz and S. Wrobel. Controlling the Complexity of Learning in Logic Through Syn-
tactic and Task-Oriented Models. In S. Muggleton, editor, Inductive Logic Programming,
London, 1991. Academic Press.

[16] J. Lloyd. Foundations of Logic Programming. Springer Verlag, Berlin, 1984.
[17] L. Martin and C. Vrain. A Three-valued Framework for the Induction of General Pro-

grams. In L. De Raedt, editor, Advances in Inductive Logic Programming. IOS Press,
1995.

[18] C. R. Mofizur and M. Numao. Top-down Induction of Recursive Programs from Small
Number of Sparse Examples. In L. De Raedt, editor, Advances in Inductive Logic Pro-
gramming. IOS Press, 1995.

[19] K. Morik. Balanced Cooperative Modeling. In R. S. Michalski and G. Tecuci, editors,
Proc. Workshop on Multistrategy Learning, pages 65–80, Harpers Ferry, VA, 1991.

[20] S. Muggleton and W. Buntine. Machine Invention of First Order Predicates by Inverting
Resolution. In Proc. of the Fifth Int. Conf. on Machine Learning, pages 339–352, Ann
Arbor, MI, 1988. Morgan Kaufmann.

[21] J. R. Quinlan and R. M. Cameron-Jones. Foil: A midterm report. In P. Brazdil, editor,
Proc. European Conference on Machine Learning, pages 3–20, Berlin, 1993. Springer-
Verlag, LNAI 667.

[22] E. Y. Shapiro. Algorithmic Program Debugging. MIT Press, Cambridge, MA, 1983.
[23] K. Taylor. Inverse Resolution of Normal Clauses. In S. Muggleton, editor, Proc. Third

Int. Workshop on Inductive Logic Programming, Ljubljana, Slovenia, 1993. Jozef Stefan
Institute.

