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Abstract:  

It is well known that hierarchical structure is an important feature in biological materials to 

optimize various properties, including mechanical ones. It is however still unclear how these 

hierarchical architectures can improve material characteristics, for example strength. Also, the 

transposition of these structures from natural to artificial bioinspired materials remains to be 

perfected. In this paper, we introduce a numerical method to evaluate the strength of fibre-based 

heterogeneous biological materials and systematically investigate the role of hierarchy. Results 

show that hierarchy indeed plays an important role and that it is possible to “tune” the strength of 

bio-inspired materials in a wide range of values, in some cases improving the strength of non 

hierarchical structures considerably. 
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1. Introduction 

It is known that many biological materials and organisms display fascinating physical and 

mechanical properties, which have up to now been hard to replicate in artificial materials and 

systems. One of these is the ability to combine exceptional strength and toughness, which occurs for 

example in nacre, bone and dentine (Espinosa et al., 2011; Pugno, 2006; Wegst and Ashby, 2004), 

or the smart adhesion which is found in spiders and geckos (Autumn et al., 2000; Autumn and 

Peattie, 2002; Foelix, 1996; Tian et al., 2006). An important feature underlying these properties is 

thought to be material structure and hierarchy (Fratzl and Weinkamer, 2007; Lakes, 1993). A prime 

example of this is spider silk, whose hierarchical structure ranges from nanostructure to 

macrostructure and consists of an amorphous network of chains and β-sheet crystals constituted by 

poly-(Gly-Ala) and poly-Ala domains (Ackbarow et al., 2007; Keten et al., 2010). Molecular 

dynamics and atomistic simulations have shown how the specific structure and bonding at 

molecular level affects macroscopic properties like strength and toughness (Bratzel and Buehler, 

2012; Keten et al., 2010; Nova et al., 2010).  

Aside from spider silk, a great number of biological materials are inherently structurally 

hierarchical. The hierarchical structure of tendon, taken from (Riley, 2005 ) is shown in Fig1a. 

Another example is the case of bone, where variability at the nanometer level lies in the shape and 

size of mineral particles, at the micron level in the arrangement of mineralized collagen fibers into 

lamellar structures, and beyond in the inner architecture, the porosity and the shape of the bone. 

Various studies show the dependence of the mechanical properties of bone on all these parameters 

(Currey, 2002; Gibson et al., 1995; Launey et al., 2010; Rho et al., 1998; Weiner and Wagner, 

1998). Other biological systems that have been studied to assess the role of hierarchy are tendons 

(Puxkandl et al., 2002), protein materials (Gao, 2006), Gecko adhesion (Yao and Gao, 2006), tissue 
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growth (Cranford and Buehler, 2011). 

Given a hierarchical organization, various designs are possible, by altering the type and 

arrangement of the components at different levels. Hierarchy and functional grading frequently lead 

to variable mechanical properties at different length scales, i.e. overall mechanical properties are 

often quite different from those of constituents (Lakes, 1993; Pugno, 2006), and many natural 

materials can be considered an equivalent of artificial composite materials. For example, stiff 

biological materials are often composites with the smallest components mostly in the nanometer 

range (Gao and Ji, 2004). In the case of plants or insect cuticles, a polymeric matrix is reinforced by 

stiff polymer fibers, such as cellulose or keratin (Vincent, 1999), and in the case of bone or dentin 

even stiffer structures are obtained using a fibrous polymeric matrix reinforced by hard carbonated 

hydroxylapatite particles (Currey, 1999).  

One possible hypothesis is therefore that the exceptional mechanical behavior of biological 

materials is due to two essential elements: hierarchy and material heterogeneity. To verify this 

conjecture, a number of theoretical models which include both these elements have been 

formulated, including molecular dynamics or atomistic simulations (Buehler et al., 2009; Currey, 

1999, 2003; Gao and Ji, 2004; Pugno, 2006). A simplified numerical approach is the fiber bundle 

model (FBM) which has been extensively studied during the past years (Pradhan et al., 2010). This 

model consists of a set of parallel fibers having statistically distributed strengths. The sample is 

loaded parallel to the fiber direction, and the fibers fail if the load exceeds their threshold value, 

with the load carried by the broken fiber being redistributed among the intact ones. The Equal Load 

Sharing (ELS) formulation is most often adopted, whereby after each fiber break the stress is 

equally distributed on the intact fibers, neglecting stress concentrations in the vicinity of failed 

regions. Based on this model, we developed a hierarchical formulation of the FBM (“HFBM”) and 
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used it to calculate the space elevator cable strength including the role of defects (Pugno et al., 

2008). With this model we also studied the strength and toughness of nanotube-based composites, 

starting from the properties and volume fractions of the fragile and ductile constituents (Bosia et al., 

2010). In recent work, we addressed the issue of the synergy between hierarchy and material mixing 

to enhance the mechanical performance of composites, finding evidence that some hierarchical 

configurations lead to an improvement with respect to the non hierarchical case (Bosia et al., 2012) 

An important numerical study of damage evolution in hierarchical FBMs was also recently carried 

out by Mishnaevsky (Mishnaevsky, 2011).  

However, despite the recent advances in this field, a systematic study addressing the role of 

pure hierarchy (independently of the specific material system it refers to), its interaction with 

material heterogeneity, and their effect on macroscopic mechanical properties is still missing. In this 

paper, we therefore wish to begin such a systematic study, and investigate the possibility of tuning 

and optimizing the strength of hierarchical fibre bundles composed of different fibre types as a 

function of hierarchy and distribution of different fibre types. 

The paper is structured as follows: in Section 2, we introduce the numerical model used to 

calculate the strength of hierarchical fiber bundle architectures in composite materials and the 

evaluation procedure; in Section 3, we present results of calculations and their discussion; finally, 

conclusions and outlook are given. 

2. Hierarchical Fibre Bundle Model 

2.1 Model implementation 

As mentioned above, a Hierarchical Fibre Bundle Model (HFBM) was adopted for simulations. The 

model used here is related to that proposed by Bosia et al. (Bosia et al., 2008) and Pugno et al. 

(Pugno et al., 2008). As with all FBMs, the individual fibres have randomly-assigned statistically-
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distributed strengths, in our case according to the 2 parameter Weibull distribution (see Fig.2), 

which is described by the following equation (Weibull, 1939, 1951): 

 

m

eP












 01)(




         (1) 

 

The model is based on an Equal-Load-Sharing (ELS) FBM approach, replicated in a hierarchical 

scheme at various length scales (“levels”) to predict from statistical considerations the mechanical 

behaviour of different hierarchical architectures. Also, in order to model heterogeneous fibrous 

media, the fibres of each bundle can assume different mechanical properties. The k-th fibre type is 

characterized by a Young’s moulus Ek, length lk, cross-sectional area Ak, and Weibull-distributed 

fracture strengths, the latter characterized by a scale parameter 0k and shape parameter mk. The 

various types of fibres combine in forming bundles, with complex mechanical behaviour emerging 

from the mechanical properties and arrangement of the constituent fibres. The specimen’s stress-

strain behaviour is determined by imposing an increasing displacement and “rupturing” individual 

fibres in the bundle (i.e. setting their stiffness to zero) when their statistically assigned strength is 

exceeded. After each fracture event, the load is redistributed uniformly among the fibres in the 

same bundle as the fractured one (ELS). The bundle strength strength is obtained as the maximum 

stress value reached in the simulation before failure, i.e. when all parallel fibres of the bundle have 

failed. Since the fibre strengths are assigned randomly according to the Weibull distribution, results 

differ for each simulation, and average trends can be derived from repeated simulations.  

Hierarchy is implemented as described by Pugno et al. (Pugno et al., 2008) and Bosia et al. 

(Bosia et al., 2008), schematically illustrated in Fig.3, i.e. the input mechanical behaviour of a level 

i=h-1 “fibre” or subvolume is statistically inferred from the output deriving from hundreds of level 
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h simulations, that of a level i=h-2 subvolume from level i=h-1 simulations, and so on, down to the 

lowest hierarchical level i=1. Overall, the specimen is modelled as an ensemble of N1 subvolumes 

arranged in a bundle. Each of these subvolumes is in turn constituted by N2 subvolumes, arranged 

in a bundle as before. This scheme is applied for h “generations”, up to a level h subvolume, which 

is constituted Na type "a" fibres, Nb type "b" fibres, and so on.  

Since at every single fibre failure the load is only redistributed among parallel fibres in the 

“local” bundle, fibre failures in different bundles "interact" only at the next hierarchical level. Thus, 

comparing hierarchical bundles with the same overall number of fibres and fibre-type percentages, 

but different hierarchical architectures, amounts to considering different stress redistribution 

schemes in the material. To simplify the problem, we initially consider only 2 fibre types (a and b, 

basically a “matrix” and a “reinforcement” as in composites) and symmetrical structures (each 

bundle is split into identical bundles at each hierarchical level). Thus, to define the overall bundle, 

we require the following parameters:  

i. Fixed parameters: 

N (integer): total number of fibres 

Ea and Eb (real number): stiffnesses for fibres a and b 

a and b (real number): Weibull scale parameters for fibres a and b 

ma and mb (real number): Weibull shape parameters for fibres a and b 

 (real number): Fraction of type a fibres, so that (1- ) is the fraction of type b fibres. 0 <  

ii. Variable parameters: 

h (integer): number of hierarchical levels  

n1 , n2 ...nh-1 (integers): number of parallel bundles at hierarchical levels i=1,2...(h-1) 

na (integer): number of parallel bundles of type a fibres at the last hierarchical level i=h 
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nb (integer): number of parallel bundles of type b fibres at the last hierarchical level i=h 

Clearly, for h>1, any configuration with ni=1 corresponds to a (h-1) architecture, e.g. a h=3 

configuration with n1=1, n2=2, na=5, nb=10 is identical to h=2, n1=2, na=5, nb=10. Therefore, for 

h>1, only configurations with ni >1 are considered.  

The number of free parameters depends on the number of hierarchical levels of the considered 

structures. Two equivalent parameters are the number of type a and b fibres, respectively, in each 

bundle at level h, i.e. 
ai

a
nnnn

N
N

121 ... 




 

and 
 

bi

b
nnnn

N
N

121 ...

1







. The only constraints on the variable 

parameters are thus that Na and Nb must be integers. To be able to satisfy this constraint, N needs to 

be sufficiently large, however this increases computational time, so a compromise is required 

(typically N=10
2
÷10

4
). To avoid excessively time-consuming problems, we can consider initially 

h<4. Each simulation is repeated typically 10
2
 times to obtain a mean strength for the considered 

structure.  

To illustrate the procedure, let us consider an example of a 3-level hierarchical structure (h=3) 

with N=3600 and =0.2. The chosen mechanical parameters are Ea =1000 GPa and Eb =10 GPa for 

the Young’s moduli, and a =100 GPa b=1 GPa, ma =2 , mb=3 for the Weibull scale and shape 

parameters, respectively. One possible structure with these parameters is shown in Fig.3a. Each 

“box” in the figure represents a fibre bundle. Ni indicates the number of fibres in each bundle at 

hierarchical level i. A fibre bundle at hierarchical level i is equivalent to a single fibre at hierarchical 

level i-1. The distinction between fibres a and b occurs only at the highest hierarchical level i=h. We 

observe here that a rule of mixtures (Gibson, 2007) for this non-hierarchical configuration yields a 

strength value of 18.44 GPa. This is because the rule of mixtures is strictly be valid only in the case 

of simultaneous failure of all fibres in the bundle, which does not occur because of the statistical 

distribution of the fibre strengths. Typically, in this study the non-hierarchical bundle reaches its 
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maximum stress (i.e. strength value) when about 50% of its constituent fibres (both a and b) have 

failed, leading to the cited strength value of about 9.1 GPa. Consequently, the rule of mixtures is 

only an upper bound for the mean strength, and does not provide a reliable estimation method in 

this case.  

The strength of hierarchical structures with the same fixed parameters (specified above) is thus 

compared to the non-hierarchical (h=0) fibre bundle (Fig.3b), the “default configuration”, where all 

fibres are in parallel (N=3600, Na=720, Nb=2880). The latter configuration has a mean strength of 

9.1 GPa. In order to evaluate the variation of bundle strength with hierarchy level and type, all 

possible configurations are systematically considered for h=1, 2 and 3. The number of possible 

configurations for the given parameters are 1260 for h=1, 4690 for h=2, and 8641 for h=3, 

respectively. These numbers are calculated numerically for by determining all n1 (and n2 if h=3), na 

and nb values that give rise to integer values for Na and Nb. Since single-fibre strengths are 

randomly assigned based on a Weibull distribution, there is some variability in results for each 

given configuration. Thus, simulations are repeated 10
2
 times for each configuration and a mean 

value and standard deviation are calculated. 

 

2.2 Hierarchical configuration analysis 

Regarding the number of possible configurations for given N and  parameters, some general 

considerations can be made. Given an even number N of springs, if we denote by ĥ the maximum 

number of levels allowed for N, this number is at most the total number of prime factors (distinct or 

not) of N. On the other hand, the total number T(N) of different configurations must take into 

account the number of levels l =2...ĥ and for each level l all related configurations. As explained 

above, at least two fibres must be present in each bundle at every level, or else the configuration 
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must be considered as belonging to the lower hierarchical level. T(N) is significantly larger than N 

already for a limited value of ĥ. Indeed, if we consider the case where N is a power of 2 (namely 

N=2
ĥ
) and =0.5, then we have ĥ prime factors all equal to 2 and N = (1−)N =2

ĥ-1
. Hence, as Na 

and Nb must be integers, we have a feasible configuration if the product n1·n2·...(nl-1) =2
j 

for any 

integer j =1, ..., ĥ -1, where l =1, ..., j denotes the number of levels of this configuration. Notice that, 

as n1·n2·...(nl-1) are all integers, they are also a power of 2. Correspondingly, the total number of 

different combinations such that n1·n2·...(nl-1) = 2
j 

summed on all values of l =1, ..., j is exactly 2
j

. 

On the other hand, given j, 
a

jh

a
n

N
1ˆ

2 

  and 
b

jh

b
n

N
1ˆ

2 

 . Hence na and nb can each have any value 

2
x 

with x =0, 1, ..., ĥ - j - 1. That is, for any given j the number of different combinations of na and nb 

is given by (ĥ − j)
2

. Overall, by summing upon all j =1, ..., h
*
- 1, we have that, for N =2

ĥ
, 

 





1ˆ

1

2
ˆ2)(

h

j

j jhNT . For instance, for N = 4096 = 2
13

, we have 
 

  


12

1

2
132)(

j

j jNT
 

= 

48756. When N is not a power of 2, the analysis becomes more tedious while the combinatorial 

explosion is even larger. Just to give a rough idea on the matter, if we suppose one wants to 

compute the number of different configurations with =0.5, na = nb = 1 and number of levels t = ĥ: 

then, when the prime factors of N are all identical (as for N=2
ĥ
), there is just one configuration. On 

the other hand, when the prime factors of N are all distinct, for any t-uple of these different factors 

assigned to t different levels, there are t! different assignments of such factors to the levels (namely 

all possible permutations of a string with length t) correspondingly inducing t! different 

combinations. 

Based on these observations, for the chosen value of N, the required calculation time for h≥4 

becomes unacceptable, so that in further studies global optimization techniques have to be 

implemented to maximize strength or other required properties.  
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3. Results 

3.1 Influence of hierarchy  

First, we consider the case where only one type of fibre is present, i.e.  =1, to evaluate the 

influence of hierarchy only. The mean strength in the non hierarchical case here is 43.1 GPa). The 

allowable configurations are evaluated numerically for the chosen N and h parameters by 

determining all n1 and na values that give rise to integer values for Na. The numbering of the 

configurations is chosen so as to have increasing n1 values as first criterion, and increasing na values 

as second. Figure 4 illustrates the calculations for the mean strength of the various hierarchical 

configurations for h=2. A quasi-periodic behaviour is found, related to the n1 value (as highlighted 

in Fig.4b). Maximum strength is obtained when maximizing na values, for given n1 values, and the 

overall maximum strength value is obtained when maximizing both n1 and na (49.7 GPa). This 

corresponds to hierarchical architectures where bundles constituted of a minimal number of fibres 

are present, i.e. where minimum stress redistribution occurs in the material in the fracture process. 

In 9 cases the non-hierarchical mean strength is exceeded, although values are affected by some 

fluctuations, due to the statistical nature of the simulations. 

 

3.2 Influence of hierarchy and fibre mixing 

Next, to additionally evaluate the influence of material heterogeneity together with hierarchy, let us 

consider a “mixed” bundle with N=3600 and =0.2. As explained above, the strength of various 

different hierarchical structures is evaluated for h=1, 2, 3. It is important to remember that some 

statistical variability remains in these data, as simulations are based on randomly assigned single-

fibre strengths for fibre types a and b. Thus, while calculation results do not provide an absolute 

comparison between different configurations, results are strongly indicative of the relative strength 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

classification. Mean strength results for h=1 structures are shown in Fig.5. The x-axis represents the 

considered configurations (again ordered according to increasing na), whilst the corresponding 

strength is plotted on the y-axis in log scale. In this case, the parameters na and nb are sufficient to 

define the structure, i.e. the different configurations are obtained by simply changing the number of 

bundles of fibres of type a and b, since only a single level of hierarchy is present. It is found that in 

this case hierarchy does not favour maximal strength, because the maximum value (8.71 GPa) is 

obtained for [na =1, nb =1] (configuration number 1260 in Fig.5), which corresponds to the non-

hierarchical case. However, many other “hierarchical” configurations generate similar strength 

values, and appear as local maxima in the plot in Fig.5. These favourable configurations are those 

where the number of parallel fibres is maximized, both for type a and type b fibres, i.e. when na and 

nb are small and/or not too dissimilar in value. Conversely, the minima appear for large values of na 

or nb, especially if one of the two exceeds a limiting value (e.g. na or nb > 720). This is highlighted 

more clearly in Fig.6, where strength values are plotted vs. na and nb in a 3-D plot.  

From Figs. 5 and 6 it is apparent that the choice of hierarchical arrangement can lead to a 

variation in strength of more than an order of magnitude. These observations lead to the 

consideration that appropriate choice of fibre arrangements can provide the means to obtain tailor-

made strength properties, starting from the same constituents. No strength improvement is obtained 

with respect to the non-hierarchical arrangement, proving that higher-level hierarchy is a key factor 

in this respect. 

Results for h=2 are shown in Fig.7. Here, the number of available configurations is greater (a 

total of 4690), as a function of the additional parameter n1. For each given n1  value, the same quasi-

periodic behaviour as in Figs. 4 and 5 is observed as a function of n1, with maximum strength 

values obtained for simultaneous large values of na and nb and a similar excursion between maxima 
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and minima. Thus, these results are consistent with those for =1 (single fibre type) and h=2, and 

are in contrast with those for =0.2 and h=1. This once again proves the importance of hierarchy in 

determining a qualitatively different behaviour. Here, for increasing n1 values, the number of 

available (na, nb ) pairs decreases, so that the number of evaluated configurations also decreases and 

with it the “period” of the oscillations. The number of configurations with a mean strength greater 

than the non-hierarchical case is 28, with a maximum value of 10.1 GPa, so the introduction of fibre 

mixing improves the situation with respect to the single-fibre case.  

The results obtained with the chosen fibre fraction =0.2 are qualitatively confirmed for 

different  values. For example, the case =0.5 is considered (Fig.8). Clearly, for this  value, the 

overall mean strength increases because of the larger fraction of “strong” fibres (type a), and the 

mean strength in the non-hierarchical case is 21.8 GPa. Again, a quasi-periodic behaviour is 

obtained in the configuration space, with the best configurations occurring for various n1 values 

when maximizing na and nb values, which corresponds to the cases of greatest of "local" stress 

redistributions. Some variability remains, due to the statistical nature of the simulations. A greater 

number of configurations (66) provide an improvement with respect to the non-hierarchical case, 

with a maximum mean strength value of 26.4 GPa (a 21% improvement). Results are compared in 

Tables 1 and 2 for h=2 and =0.2 and =0.5, respectively.  

As shown in Fig.9, results are more complicated for h=3. There remains an oscillating quasi-

periodic behaviour as a function of the hierarchical configuration, with local maxima and minima, 

as a function of the n1, n2, na and nb values. As seen in Table 3, where the 10 most favourable 

configurations are reported, the maxima in mean strength can be found in configurations where at 

least one of these numbers is maximized, in particular the na value, relative to the “strong” type a 

fibres, so the analysis for h=2 is confirmed. Similar to lower-order hierarchies, maximal attained 
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strength values exceed the non hierarchical case (9.1 GPa) in 34 cases, i.e. a smaller number of 

cases with respect to h=2 and = 0.5. This seems to indicate that hierarchical structure is all the 

more effective for greater high-strength fibre content percentage. 

To better analyze these qualitative indications, a systematic study for higher hierarchical levels 

needs to be carried out. For h>3, it is not possible to analyze all configurations, due to 

computational time, but preliminary data (not reported) shows that the overall tendency highlighted 

at h=1, 2, 3 seems to continue, with a greater span between minimal and maximal strength values, 

and the more favourable configurations being close to those where the number of parallel fibres at 

level h is maximized. 

 

4. Conclusions 

We have presented a systematic procedure to evaluate the influence of heterogeneity and 

hierarchy in fibre bundle architectures using a Hierarchical Fibre Bundle Model. The first three 

hierarchical levels have been investigated and a considerable strength variability as a function of 

hierarchical configuration has been highlighted, with a mean strength improvement of up to 21% 

with respect to the non hierarchical case. The hierarchical configurations with better strength 

characteristics are those favouring the more spatially confined stress redistributions during fracture. 

The results in this paper are promising for the improvement of the performance of artificial bio-

inspired architectures and the design of materials with tailor made properties. To derive more 

specific and quantitative conclusions, in future a wider investigation of the parameter space will be 

carried out. A greater number of hierarchical levels will be assessed, using global optimization 

techniques to avoid exceedingly cumbersome calculations and the emphasis will be particularly on 

metaheuristics based on local improvement techniques (Gendreau and Potvin, 2010). Also, other 
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properties will be investigated, including stiffness and energy dissipation, in order to address the 

problem of the simultaneous optimization of different material properties (e.g. strength and 

toughness), which is a commonplace feature in nature but remains to be effectively achieved in 

artificial materials.  
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Fig.1: a) Hierarchical structure of tendon (from (Riley, 2005 )), b) Schematization of the 

hierarchical procedure in multiscale simulations 

Fig.2: Two-parameter Weibull distribution p() for the strength distribution of level-0 fibres in the 

FBM: 0 is the scale parameter and m is the shape parameter (in this case m=2) 

Fig.3: a) Schematization of an example of a 3-level hierarchical structure; b) Schematization of the 

corresponding reference non-hierarchical structure. 

Fig4.: a) Simulations results for the mean strength of different fibre arrangements for h=2 and =1; 

b) close-up on the first 250 configurations, highlighting the quasi-periodic dependency on the n1 

index. The dotted line indicates the mean strength value for the non-hierarchical case. 

Fig.5: Simulations results for the mean strength of different fibre arrangements for h=1 and =0.2. 

The dotted line indicates the mean strength value for the non-hierarchical case. 

Fig.6: 3-D plot of mean strength simulations results for h=1 and =0.2 

Fig.7: Mean strength simulations results for h=2 and =0.2. The dotted line indicates the mean 

strength value for the non-hierarchical case. 

Fig.8: Mean strength simulations results for h=2 and =0.5.  

Fig.9: Mean strength simulations results for h=3 and =0.2 

 

List of Table captions 

Table 1: Examples of configurations providing maxima in mean strength for h=2 simulations, with 

=0.2.  

Table 2: Examples of configurations providing local maxima in mean strength for h=2 simulations, 

with =0.5 

Table 3: Maxima in mean strength for h=3 simulations, with =0.2 
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Tables 

Table 1 

n1 na nb Strength (GPa) 

5 144 144 10.07 

2 360 720 10.07 

2 360 20 9.81 

3 240 12 9.78 

2 360 10 9.76 

4 180 2 9.75 

3 240 192 9.64 

3 240 6 9.63 

3 240 64 9.57 

720 1 1 9.57 

 

  

Tables



 

Table 2 

n1 na nb Mean Strength (GPa) 

4 450 9 26.4 

4 450 2 25.2 

6 300 100 24.6 

8 225 75 24.4 

4 450 45 24.2 

6 300 60 24.0 

2 900 12 23.9 

6 300 300 23.6 

6 300 3 23.6 

4 450 450 23.5 

 

  



 

Table 3 

Configuration n. n1 n2 na nb Mean Strength (GPa) 

1192 2 4 90 4 10.8 

3020 3 2 120 480 10.3 

527 2 2 180 36 10.0 

6582 6 2 60 6 9.9 

6354 5 144 1 1 9.9 

7704 8 90 1 4 9.8 

5480 4 180 1 2 9.8 

10359 360 2 1 2 9.8 

3393 3 4 60 24 9.7 

2634 2 360 1 1 9.6 

 

 


