
23 April 2024

AperTO - Archivio Istituzionale Open Access dell'Università di Torino

Original Citation:

Simple parser combination

Publisher:

Terms of use:

Open Access

(Article begins on next page)

Anyone can freely access the full text of works made available as "Open Access". Works made available
under a Creative Commons license can be used according to the terms and conditions of said license. Use
of all other works requires consent of the right holder (author or publisher) if not exempted from copyright
protection by the applicable law.

Availability:

ELDA

This is the author's manuscript

This version is available http://hdl.handle.net/2318/112811 since



Simple Parser Combination

Alessandro Mazzei, Cristina Bosco

Dipartimento di Informatica, Università degli studi di Torino
Corso Svizzera 185, 10149, Torino, Italy

mazzei@di.unito.it, bosco@di.unito.it

Abstract

This paper presents an ensemble system for dependency parsing: three parsers are separately trained and combined by means
of a majority vote. The three parsers are (1) the MATE parser [http://code.google.com/p/mate-tools/], (2) the DeSR parser
[http://sites.google.com/site/desrparser/], and (3) the MALT parser [http://maltparser.org/]. The MATE, that was never used before on
Italian language, drastically outperforms the other parsers in the SPLeT shared task. Nonetheless, a simple voting combination further
improves its performances.
Keywords: ensemble parsing, MATE parser, DeSR parser, MALT parser

1. Introduction

In last few years parsing community devoted great attention
to dependency formalisms, and today dependency pars-
ing can be seen as the first step in many applicative NLP
systems (Kübler et al., 2009). Larger dependency tree-
banks and more sophisticated parsing algorithms allowed
improved performances of dependency parsers for many
languages (Nivre et al., 2007; Hajič et al., 2009).
Indeed, dependency parsing performances constantly in-
creased for Italian. As reported in the Evalita evaluation
campaigns specific for NLP systems for Italian (EVALITA
2011 Organization Comitee, 2012), the best scores for Ital-
ian dependency parsing (expressed in Labelled Attachment
Score, LAS) was 86.94% in 2007, 88.73% in 2009, and
91.23% in 2011 (Bosco and Mazzei, 2012). These re-
sults were obtained by using the Turin University Tree-
bank, a dependency treebank for Italian (Bosco and Lom-
bardo, 2004) (see the Section 4.). However, statistical de-
pendency parsing seems to be still improved. On the one
hand, new promising specific algorithms for learning and
classification are emerging; on the other hand researchers
are applying universal machine learning techniques to this
specific task. Some are trying to use lager sets of syntac-
tic features (e.g. (McDonald and Pereira, 2006; Carreras,
2007)), while others are trying to apply general techniques
to combine together the results of various parsers (Zeman
and Žabokrtskỳ, 2005; Sagae and Lavie, 2006; Hall et al.,
2007; Attardi and dell’Orletta, 2009; Surdeanu and Man-
ning, 2010; Lavelli, 2012).
Our system in the SPLeT competition follows both these
mentioned directions. We employ three state of art statisti-
cal parsers, which use sophisticated parsing algorithms and
advanced feature sets. The three parsers are (1) the MATE
parser (Bohnet, 2010), (2) the DeSR parser (Attardi, 2006),
(3) the MALT parser (Nivre et al., 2006). Moreover, in
our system we combine these three parsers by using two
very simple voting algorithms (Breiman, 1996; Zeman and
Žabokrtskỳ, 2005). We decided to apply an “out of box”
approach, i.e. we apply each parser with its standard con-
figurations for learning and classification.
In the next Sections we first give a short description of the
three parsers (Section 2.), then we describe our approach

for ensemble parsing (Section 3.) and we report the results
of our experiments (Section 4.), before to conclude the pa-
per (Section 5.).

2. The three parsers

In this Section we give a brief description of the three
parsers applied in our experiments, i.e. MATE, DeSR and
MALT parser.
The MATE parser (Bohnet, 2009; Bohnet, 2010) is a de-
velopment of the algorithms described in (Carreras, 2007;
Johansson and Nugues, 2008). It basically adopts the sec-
ond order maximum spanning tree dependency parsing al-
gorithm. In particular, Bohnet exploits hash kernel, a new
parallel parsing and feature extraction algorithm that im-
proves the accuracy as well as the parsing speed (Bohnet,
2010). The MATE performances on English and German,
which are 90.14% and 87.64% respectively (LAS), posed
this parser at the state of art for these languages (Hajič et
al., 2009; Bohnet, 2010; Anders et al., 2010).
The DeSR parser (Attardi, 2006) is a transition (shift-
reduce) dependency parser similar to (Yamada and Mat-
sumoto, 2003). It builds dependency structures by scanning
input sentences in left-to-right and/or right-to-left direction.
For each step, the parser learns from the annotated depen-
dencies if to perform a shift or to create a dependency be-
tween two adjacent tokens. DeSR can use different set of
rules and includes additional rules to handle non-projective
dependencies. The parser can choose among several learn-
ing algorithms (e.g Multi Layer Perceptron, Simple Vec-
tor Machine), providing user-defined feature models. In
our experiments we adopted for DeSR the Multi Layer Per-
ceptron algorithm, which is the same configuration that the
parser exploited when it won the Evalita 2009 competition.
The MALT parser (Nivre et al., 2006) implements the
transition-based approach to dependency parsing too. In
particular MALT has two components: (1) a (non-
deterministic) transition system that maps sentences to de-
pendency trees; (2) a classifier, that predicts the next tran-
sition for every possible system configuration. MALT per-
forms a greedy deterministic search into the transition sys-
tem guided by the classifier. In this way, it is possible to
perform parsing in linear time for projective dependency



trees and quadratic time for arbitrary (non-projective) trees
(Nivre, 2008). MALT has several built-in transition sys-
tems, but in our experiments we adopted just the standard
“Nivre arc-eager” system, that builds structure incremen-
tally from left to right. Moreover, we use the standard clas-
sifier provided by MALT, i.e. the SVM (Simple Vector Ma-
chine) basic classifier on the standard “NivreEager” feature
model.
In our knowledge this is the fist work that experimented the
MATE parser on Italian, while DeSR and MALT parsers
have been used in many occasions on Italian (e.g. (Lavelli,
2012; Attardi et al., 2012)), reaching the best results in sev-
eral contests.

3. The combination algorithms

In order to combine the three parsers we used two very sim-
ple algorithms, COM1 and COM2, both implemented in
PERL programming language. These algorithms have been
previously experimented in (Zeman and Žabokrtskỳ, 2005)
and in (Surdeanu and Manning, 2010).
The main idea of the COM1 algorithm is to do a demo-
cratic voting among the parsers. For each word1 of the sen-
tence, the dependency (parent and edge label) assigned to
the word by each parser is compared: if at least two parsers
assign the same dependency, the COM1 algorithm selects
that dependency. In the case that each parser assigns a dif-
ferent dependency to the word, the algorithm selects the
dependency assigned by the “best parser”, that in our ex-
periments on development set was the MATE parser (see
below). As noted by (Zeman and Žabokrtskỳ, 2005), that
uses the name voting for COM1, this is the most logical de-
cision if it is possible to identify a priori the “best parser”,
in contrast with the more democratic random choice.
The COM2 algorithm is a variation of the COM1. COM1
is a single word combination algorithm that does not con-
sider the whole dependency structure. This means that in-
correct dependency trees can be produced by the COM1
algorithm: cycles and several roots can corrupts the “tree-
ness” of the structure. The solution that we adopt in the
COM2 algorithm is very simple: if the tree produced by
the COM1 algorithm for a sentence is corrupted, then it is
selected as dependency structure for that sentence the tree
produced by the “best parser” . Again, in accord (Zeman
and Žabokrtskỳ, 2005), that uses the name switching for
COM2, this is the most logical decision since MATE is
without doubts the best parser on development score.

4. Experimental Results

We used two machines for experiments. A powerful Linux
workstation, equipped with 16 cores, processors 2GHz, and
128 GB ram has been used for the MATE parser, so that
the average time for learning is 8 hours. Another Linux
workstation equipped with a a single processor 1GHz, and
2 GB ram has been used for learning of the DeSR and
MALT parsers, that usually required a couple of hours, and
for testing that required several minutes for MATE parser
and few minutes for MALT and DeSR parsers. MALT and

1In this paper we use the term word in a general sense, as syn-
onym of token.

FOREACH sentence
FOREACH word IN sentence

IF [L-DeSR(word)==L-MALT(word)]
L-COM1(word):=L-DeSR(word)

ELSE
L-COM1(word):=L-MATE(word)

Table 1: The combination algorithm COM1, that corre-
spond to the voting algorithm reported in (Zeman and
Žabokrtskỳ, 2005)

FOREACH sentence
FOREACH word IN sentence

IF [L-DeSR(word)==L-MALT(word)]
L-COM2(word):=L-DeSR(word)

ELSE
L-COM2(WORD):=L-MATE(WORD)

IF [!CORRECT(TREE-COM2)]
T-COM2(sentence):=T-MATE(sentence)

Table 2: The combination algorithm COM2, that corre-
spond to the switching algorithm reported in (Zeman and
Žabokrtskỳ, 2005)

DeSR parsers accept as input the CONLL-07 format, that
is the format provided by the SPLeT organizers. In contrast
MATE accept the CONLL-09 format: simple conversions
scripts have been implemented to manage this difference.
In the first experiment, in order to evaluate the “best parser”
in the COM1 and COM2 algorithms, we used the ISST
training (file: it isst train.splet, 71, 568 words, 3, 275
sentences) as learning set and the ISST development (file:
it isst test.splet, 5, 165 words, 231 sentences) as devel-
opment set. The second row in Table 3 shows the results
of the three parsers in this first experiment. MATE parser
outperforms the DeSR and MALT parsers: in particular,
MATE does ∼ 3% better than DeSR and ∼ 5% better than
MALT. On the basis of this result, we decided to use MATE
as our “best parser” in the combination algorithms (cf. Sec-
tion 3.). COM1 and COM2 reach the score of 82.54% and
82.36% respectively, and so both combination algorithms
improve the performances of the MATE parser close to the
0.5%.
In the second experiment, we use the whole ISST as learn-
ing set (files: it isst train.splet and it isst test.splet,
total 76, 733 words, 3, 506 sentences) and we use the
blind file provided by the organizers as test set (file:
it EULaw test blind.splet, 5, 662 words, 240 sentences,
European Directives Laws). The first row in Table 3 shows
the results of the three parsers in this second experiment:
the value 83.08%, produced by the COM2 algorithm, is the
final result of our participation to the SPLeT shared task.2
Note that there is a ∼ 0.1% difference between the COM1
and COM2 results: similar to (Zeman and Žabokrtskỳ,

2A previous value of 84.95% was computed on the basis of
two misunderstandings: (1) the NatReg set was added to the learn-
ing set and (2) the COM1 algorithm was used (instead of the
COM2) since it was not assumed the tree-structure constraint.



MATE DeSR MALT COM1 COM2 BlendedW2 BlendedW3 BlendedW4

TestSet 82.57 78.68 77.98 83.20 83.08 82.23 83.15 83.24
DevSet 81.92 78.99 77.04 82.54 82.36 81.45 82.54 82.63
NatReg 75.76 70.66 70.33 76.28 75.88 74.78 76.07 75.97

Evalita11 89.07 86.26 80.76 89.19 89.16 88.03 89.19 89.19

Table 3: The performances (LAS score) of the three parsers, their simple combination (COM1 and COM2), their blended
combination (BlendedW2 , BlendedW3 , BlendedW4 ) on the SPLeT test set, development set, Regional laws set and on the
Evalita test.

2005; Surdeanu and Manning, 2010) we have 10 corrupted
trees in the test set, i.e. ∼ 4% of the total (240 sentences).
In Table 4 we detailed the results of the three parsers in the
second experiment on the basis of their agreement. When
the three parsers agree on the same dependency (Table 4,
first row), this happens on ∼ 72% of the words, they have
a very high LAS score, i.e. 95.6%. Moreover, DeSR and
MALT parsers do better of the MATE parser only when
they agree on the same dependency (Table 4, second row).
The inspection of the other rows in Table 4 shows that
COM1 algorithms has the best possible performance w.r.t.
the voting strategy. In other words, COM1 selects all the
parser combinations that correspond to higher value of LAS
score (cf. the discussion on minority dependencies in (Sur-
deanu and Manning, 2010)).
In the third experiment, we again use the whole
ISST as learning set (files: it isst train.splet and
it isst test.splet, total 76, 733 words, 3, 506 sentences),
but we use the NatReg file provided by the organizers as test
set (file: it NatRegLaw test blind.splet, 5, 194 words,
119 sentences, Regional Laws of Piedmont Region). The
third row in Table 3 shows the results of the three parsers
in this third experiment: in this case we have 75.88% for
COM2 algorithm. This lower result can be advocated to the
different nature of the domain. It is interesting to note that
in this experiment MALT and DeSR parsers give similar
results (∼ 70%), while the MATE parser still outperforms
them by ∼ 5%.
Finally, we performed a fourth experiment on totally dif-
ferent learning and test sets, by using a different Italian
Treebank with a different PoS tag set and a different de-
pendency format. We used the Evalita 2011 Development
Set as learning set (file: evalita2011 train.conll, 93, 987
words, 3, 452 sentences; balanced corpus of newspapers,
laws, wikipedia) and we use the Evalita 2011 test as test
set (file: evalita2011 test.conll, 7, 836 words, 300 sen-
tences; balanced corpus), that are produced by using the
Turin University Treebank (Bosco and Mazzei, 2012). The
fourth row in Table 3 shows the results of the three parsers
in this third experiment: in this case we have 89.16% for
COM2 algorithm3. It is interesting to note that the im-
provement of the COM2 algorithm w.r.t. with respect to
the MATE parser is only ∼ 0.1%. In Table 5 we detailed
the results of the three parsers in this fourth experiment on

3This score is the third w.r.t. to Evalita 2011 dependency
parsing shared task, where the Parsit Parser achieved the best
score (91.23%) the DeSR parser achieved the second best score
(89.88%).

Scores Frequency

MATE == DeSR == MALT 71.99

95.6

MATE != DeSR == MALT 4.20

30.7 45.8

MATE == DeSR != MALT 7.70

67.2 14.4
MATE == MALT != DeSR 8.21

59.1 20.0
MATE != DeSR != MALT 7.89

31.1 14.5 16.3

Table 4: The detailed performances (LAS score) of the
three parsers and their simple combination on the SPLeT
blind set, i.e. corresponding to the first row of the Table 3.

the basis of their agreement. Again, when the three parsers
agree on the same dependency (Table 5, first row), this
happens on ∼ 78% of the words, they have a very high
LAS score, i.e. 96.6%. In contrast with the second experi-
ment, here we have a not relevant improvement when DeSR
and MALT parser do better of the MATE parser, i.e. only
when they agree on the same dependency (Table 5, second
row). In other words, on the SPLeT test set the COM1 (and
COM24) algorithm do much better than MATE since DeSR
and MALT parsers have a good performance (45.8% vs.
30.7%) when they do not agree with the MATE parser: this
is not true for the Evalita11 experiment, where DeSR and
MALT have 38.8% while the MATE has 35.2%.

Combining versus Re-parsing

Since COM1 can produce corrupted dependency trees, as
in (Zeman and Žabokrtskỳ, 2005) we used the COM2 algo-
rithm, that checks the correctness of the tree and, in case
of tree-corruption, returns the dependency structure pro-
duced by the “best parser” of the ensemble. We hypoth-
esize that this strategy can produce good results in our sys-
tem since one of the parser of the ensemble drastically out-
performs the others. However, a general solution to the
tree-corruption problem has been proposed: the re–parsing
strategy (Sagae and Lavie, 2006; Hall et al., 2007; Attardi
and dell’Orletta, 2009). In re–parsing, a new (not cor-
rupted) dependency tree is produced by taking into account
the tree produced by each parser of the ensemble: (Attardi
and dell’Orletta, 2009) proposed a approximate top-down
algorithm that starts by selecting the highest-scoring root

4In the fourth experiment there are 8 corrupted trees.



Scores Frequency

MATE == DeSR == MALT 78.39

96.6

MATE != DeSR == MALT 3.38

35.2 38.8

MATE == DeSR != MALT 9.17

82.0 7.2
MATE == MALT != DeSR 4.27

63.3 19.6
MATE != DeSR != MALT 4.78

40.7 18.4 7.9

Table 5: The detailed performances (LAS score) of the
three parsers and their combination on the Evalita 2011 test
set, i.e. corresponding to the fourth row of the Table 3.

node, then the highest-scoring children and so on; (Sagae
and Lavie, 2006; Hall et al., 2007) apply a two-steps al-
gorithm: (1) create a graph funding all the structures pro-
duced by the parser on the ensemble, and (2) extract the
most probable dependency spanning tree from this graph.
(Surdeanu and Manning, 2010) provided experimental ev-
idence that re–parsing algorithms are a better choice for
practical ensemble parsing in out-domains: in order to test
this hypothesis we performed a number of experiment by
using the “MaltBlender” tool (Hall et al., 2007). In Ta-
ble 3, the columns BlendedW2 , BlendedW3 , BlendedW4

report the application of the algorithm described in (Hall
et al., 2007). There are three weighting strategies: the re-
sults of the three parsers are equally weighted (W2); the
three parsers are weighted according to the total labeled ac-
curacy on a held-out development set (W3); the parsers are
weighted according to labeled accuracy per coarse grained
PoS tag on a held-out development set (W4).
For the first, the second and the third experiments (Table 4,
first second and third row), the held-out development set
is the SPLeT development set; for the fourth experiment
(Table 4, fourth row), the held-out development set is the
Evalita 2011 test set. Three evidences seems to emerge
from this last experiment: (1) the re–parsing strategies al-
ways performs slightly better than COM2 algorithms but
not always better than COM1 algorithm; (2) there is no win-
ning weighting strategy for re–parsing; (3) it does not seem
that blending performs better out-domain than in-domain.

5. Conclusions

In this paper we described our parsing system for the par-
ticipation to the SPLeT 2012 Shared Task, and two main
issues arise by our contribution. The first issue is that the
MATE parser has very good performance on Italian ISST
treebank, both in domain and out domain, reaching very
good scores; similar results have been obtained on the Turin
University Treebank. The second issue is that very simple
combination algorithms, as well as more complex blending
algorithms, can furthermore improve performance also in
situations where a parser outperforms the other ones.
In future research we plan to repeat our experiments on
larger set of parsers. In particular, on the basis of the con-
sideration that “diversity” is an important value in ensem-

ble parsing, we want to experiment the possibility to com-
bine together statistical parsers with rule based parsers, e.g.
(Lesmo, 2012).

Acknowledgements

We want to thank Alessia Visconti and Francesca Cordero
for their valuable (human and machine) time. Moreover we
like to thank Felice Dell’Orletta for the suggestion to use
MaltBlender in the analysis of the results.

6. References

Björkelund Anders, Bohnet Bernd, Love Hafdell, and
Pierre Nugues. 2010. A high-performance syntactic and
semantic dependency parser. In Coling 2010: Demon-
strations, pages 33–36, Beijing, China, August. Coling
2010 Organizing Committee.

Giuseppe Attardi and Felice dell’Orletta. 2009. Reverse
revision and linear tree combination for dependency
parsing. In HLT-NAACL, pages 261–264.

Giuseppe Attardi, Maria Simi, and Andrea Zanelli. 2012.
Tuning DeSR for the Evalita 2011 Dependency Parsing.
In Working Notes of EVALITA 2011. CELCT a r.l. ISSN
2240-5186.

Giuseppe Attardi. 2006. Experiments with a multilan-
guage non-projective dependency parser. In Proceedings
of the Tenth Conference on Computational Natural Lan-
guage Learning (CoNLL-X), pages 166–170, New York
City, June. Association for Computational Linguistics.

Bernd Bohnet. 2009. Efficient parsing of syntactic and
semantic dependency structures. In Proceedings of the
Thirteenth Conference on Computational Natural Lan-
guage Learning: Shared Task, CoNLL ’09, pages 67–72,
Stroudsburg, PA, USA. Association for Computational
Linguistics.

Bernd Bohnet. 2010. Top accuracy and fast dependency
parsing is not a contradiction. In Proceedings of the 23rd
International Conference on Computational Linguistics
(Coling 2010), pages 89–97, Beijing, China, August.
Coling 2010 Organizing Committee.

Cristina Bosco and Vincenzo Lombardo. 2004. Depen-
dency and relational structure in treebank annotation. In
Proceedings of the COLING’04 workshop on Recent Ad-
vances in Dependency Grammar, Geneve, Switzerland.

Cristina Bosco and Alessandro Mazzei. 2012. The evalita
2011 parsing task: the dependency track. In Working
Notes of EVALITA 2011. CELCT a r.l. ISSN 2240-5186.

Leo Breiman. 1996. Bagging predictors. Machine Learn-
ing, 24(2):123–140.

Xavier Carreras. 2007. Experiments with a higher-order
projective dependency parser. In Proceedings of the
CoNLL Shared Task Session of EMNLP-CoNLL 2007,
pages 957–961.

EVALITA 2011 Organization Comitee. 2012. Working
Notes of EVALITA 2011. CELCT a r.l.

Jan Hajič, Massimiliano Ciaramita, Richard Johans-
son, Daisuke Kawahara, Maria Antònia Martı́, Lluı́s
Màrquez, Adam Meyers, Joakim Nivre, Sebastian Padó,
Jan Štěpánek, Pavel Straňák, Mihai Surdeanu, Nian-
wen Xue, and Yi Zhang. 2009. The conll-2009 shared



task: syntactic and semantic dependencies in multiple
languages. In Proceedings of the Thirteenth Conference
on Computational Natural Language Learning: Shared
Task, CoNLL ’09, pages 1–18, Stroudsburg, PA, USA.
Association for Computational Linguistics.

Johan Hall, Jens Nilsson, Joakim Nivre, Gülsen Eryigit,
Beáta Megyesi, Mattias Nilsson, and Markus Saers.
2007. Single malt or blended? a study in multilin-
gual parser optimization. In Proceedings of the CoNLL
Shared Task Session of EMNLP-CoNLL 2007, pages
933–939.

Richard Johansson and Pierre Nugues. 2008. Dependency-
based syntactic-semantic analysis with propbank and
nombank. In Proceedings of the Twelfth Conference
on Computational Natural Language Learning, CoNLL
’08, pages 183–187, Stroudsburg, PA, USA. Association
for Computational Linguistics.

Sandra Kübler, Ryan T. McDonald, and Joakim Nivre.
2009. Dependency Parsing. Synthesis Lectures on Hu-
man Language Technologies. Morgan & Claypool Pub-
lishers.

Alberto Lavelli. 2012. An Ensemble Model for the
EVALITA 2011 Dependency Parsing Task. In Working
Notes of EVALITA 2011. CELCT a r.l. ISSN 2240-5186.

Leonardo Lesmo. 2012. The Turin University Parser at
Evalita 2011. In Working Notes of EVALITA 2011.
CELCT a r.l. ISSN 2240-5186.

Ryan McDonald and Fernando Pereira. 2006. Online
learning of approximate dependency parsing algorithms.
In Proceedings of 11th Conference of the European
Chapter of the Association for Computational Linguis-
tics (EACL-2006)), volume 6, pages 81–88.

Joakim Nivre, Johan Hall, and Jens Nilsson. 2006. Malt-
parser: a data-driven parser-generator for dependency
parsing. In Proceedings of LREC-2006, volume 2216-
2219.

Joakim Nivre, Johan Hall, Sandra Kübler, Ryan McDonald,
Jens Nilsson, Sebastian Riedel, and Deniz Yuret. 2007.
The CoNLL 2007 shared task on dependency parsing.
In Proceedings of the CoNLL Shared Task Session of
EMNLP-CoNLL 2007, pages 915–932.

Joakim Nivre. 2008. Algorithms for deterministic incre-
mental dependency parsing. Computional Linguistics,
34(4):513–553, December.

Kenji Sagae and Alon Lavie. 2006. Parser combination by
reparsing. In Robert C. Moore, Jeff A. Bilmes, Jennifer
Chu-Carroll, and Mark Sanderson, editors, HLT-NAACL.
The Association for Computational Linguistics.

Mihai Surdeanu and D. Christopher Manning. 2010. En-
semble models for dependency parsing: Cheap and
good? In NAACL. The Association for Computational
Linguistics.

Hiroyasu Yamada and Yuji Matsumoto. 2003. Statistical
dependency analysis with support vector machines. In
Proceedings of IWPT, volume 3.

D. Zeman and Z. Žabokrtskỳ. 2005. Improving parsing ac-
curacy by combining diverse dependency parsers. In In-
ternational Workshop on Parsing Technologies. Vancou-

ver, Canada, pages 171–178. Association for Computa-
tional Linguistics.


