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1 Introduction

Inductive Logic Programming (ILP) is an emerging research area at the intersection of machine
learning, logic programming and software engineering. The first workshop on this topic was held in
1991 in Portugal (Muggleton, 1991). Subsequently, there was a workshop tied to the Future
Generation Computer System Conference in Japan in 1992, and a third one in Bled. Slovenia, in
April 1993 (Muggleton, 1993). Ideas related to ILP are also appearing in major Al and machine
learning conferences and journals. Although European-based and mainly sponsored by ESPRIT,
ILP aims at becoming equally represented elsewhere: for example, among researchers in America
who are investigating relational learning and first order theory revision (see, for example. the
papers in Birnbaum and Collins, 1991) and within the computational learning theory community.
This year's IJCAI workshop on ILP is a first step in this direction, and includes recent work with a
broader range of perspectives and techniques.

Many different problem settings have been proposed, but it is still possible to abstract similarities
and identify one simplified ILP problem:

Given:

A hypothesis space H

A set of Positive Examples E+
A set of Negative Examples E—
A body of prior knowledge K

Find:

A hypothesis h& H such that

(1) K;h [= e+, for all e+ € E+ (completeness)
(2) K,h|=e—, forall e~ € E— (consistency)

where, in the majority of approaches,

® Hisasetof possible logic programs, often defined by means of a set C of possible Horn clauses;
in this case H=2, For instance, C may be defined as all clauses having ancestor(X.Y) as their
head, and a body formed with any conjunction of literals obtained with the predicate symbols
“parent” and “ancestor”, :

® Positive and Negative examples are ground atoms, ¢.g., ancestor(paul, susan).

® The prior knowledge K is often just a Horn theory, e.g.,

parent(X,Y):- mother(X,Y).
parent(X,Y):- father(X,Y).
father(paul,jane).
mother{jane,susan).

® The desired hypothesis is a logic program P C C, e.g.,

ancestor(X,Y):- parent(X,Y).
ancestor(X,Y):- parent(X,Z), ancestor(X,Y).

The motivation for the above problem setting is twofold:

® From a machine learning point of view, this is the natural evolution of work in concept
acquisition and relational learning during the past ten vears, where researchers have moved
towards more and more expressive representation formalisms: from numerical classifiers, to
propositional formulas and decision trees, then to descriptions containing variables with




F. BERGADANO and D. GUNETTI 74

restricted forms of quantification and non-recursive Horn clauses. This evolution has atlowed for
more complex classification applications, where the mutual relationships among object com-
ponents is essential for distinguishing positive and negative examples.

* Forlogic programming and software engineering, this represents a body of novel techniques for
program synthesis from incomplete specifications. Logic programs are particularly adequate for
inductive synthesis, because of their simple syntax, and because it is often possible to learn
individual clauses (= small-scale subprograms) one at a time and independently of each other.
Moreover, as pure logic programs have a declarative meaning, an incomplete specification by
examples makes perfect sense, There are strong ties between ILP and work done on Logic
Program Synthesis and Transformation, and Dr. K K Lau, who has chaired two previous
international workshops on this topic (Lau & Clement. 1993). is an invited speaker at our
meeting. For software engineering, there are also applications in the area of fault-based
program testing (Bergadano, 1993).

2 Background

Early work on issues now developed within the ILP area are well represented by Plotkin’s study on
teast general generalizations (Plotkin, 1970) and Shapiro’s Model Inference System (Shapiro,
1983). The former is related to the problem of generalizing clauses. as a basis for the bottom-up
induction of logic formulas: the least general generalization of a number of examples will serve as a
compressed description. The latter is based on the top-down specialization of clauses. until a logic
program which is consistent with the available examples is produced.

Plotkin was the first to rigorously analyse generalization, based on the notion of &-subsumption.
He did not restrict himself to Horn clause logic; in fact logic programming did not yet exist at that
time.

A clause C g-subsumes (or is a generalization of) a clause D. if there exists a substitution & such
that CAC D. Usually this is written C=<t D. We say that C is the least general generalization (lgg) of
D if C =< D and, for every other E such that E < D it is also the case that E < C. For example
(Plotkin, 1970), consider the following two ground clauses:

C = win(confl):-occ(piacel,x,conf]),occ(p[ace2,o,conf1).
Co= win(coan):-occ(pIacel,x.conf2),occ(placeZ,x.coan).

which represent two winning configurations in a two-person game, where two board positions can
be occupied by either an *x” or an ‘o’. The lgg of the two clauses. after the elimination of redundant
literals, turns out to be:

lgg({C,,C;) = win(Conf):-occ(placel,x,Conf),occ(place2,Y,Conf).

Plotkin’s ideas on least general generalizations are the basis for subsequent bottom-up ILP
algorithms: the solution program P will be computed as the Igg of the given positive examples, and
we move from most specific formulas (the examples) towards more general descriptions, until a
consistent solution is output. Plotkin also introduces a notion of relative lgg to take into account the
given prior knowledge K. Recent bottom-up inductive methods stch as Golem (Muggleton, 1991)
and CLINT (DeRaedt, 1991) are based on this scheme.

Shapiro’s Model Inference System (MIS) is concerned with the inductive synthesis of logic
programs. The method is incremental, in the sense that it maintains a current inductive hypothesis
(a logic program P}, and modifies it as new examples are provided. By contrast, one step methods
require all the examples at the beginning, and try to generate a program which is consistent with
those examples.

The hypothesized program P can be modified in two ways: (1) P|—a, butais false, and therefore
P must be weakened; and (2) P |+~ a, but a is true and therefore P must be made stronger. P can be
weakened by either removing one of its clauses (as done in MIS) or by making a clause weaker,
e.g., by adding literals to its body. P can be strengthened by either adding a new clause (as done in
MIS) or by making one of its clauses more general, e.g., by removing literals from its body. MIS
keeps on doing modifications of type (1) or (2) until Pis consistent with all of the examples currently
available. After this, it will be ready to read a new example.
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Strengthening P is done by “refining” some previously removed clause. Refining is a top-down
specialization process where new literals are added one at a time to the antecedent of the selected
clause. We then move from very general clauses, that will cover both positive and negative
examples, towards more specific ones, until a set P of consistent clauses that cover all positive
examples is found. This scheme is also found in recent top-down ILP systems, including ML-
SMART (Bergadano & Giordana, 1988). Foil (Quinlan, 1990) and Focl (Pazzani & Kibler, 1992).

3 Main themes of the meeting

The ILP problem can be hard to solve. This may be due to the number and the complexity of the
examples, or even to the efficiency of the background knowledge, but the main reason is the size of
the hypothesis space H. As a consequence, all practical induction algorithms need some prior
information or some heuristics for searching for a solution in H. This prior information is often
called an inductive bias, and can take different forms, depending on the nature of the learning
algorithm and on the desired collaboration from the user.

Rouveirol, Ade and De Raedt (1993) analyse the kinds of inductive bias that are relevant in
bottom-up ILP systems. Their analysis is based on the observations that different approaches to
bottom-up induction of relational concepts can be mapped to the following algorithmic framework:

Completed_Examples := &
for all positive examples e+ do
SC ;= starting_clauses(e+,K,B)
Completed_Examples := Completed_Examples U SC
generalize (e.g. via lgg) Completed_Examples

where Kis a theory playing the role of a body of background knowledge, and B is an inductive bias.
A starting clause C for an example e+ is obtained incrementally: at each stage a literal | taken from
aset S is added to C, until no other literals can be added without making C inconsistent. The choice
of the set S of possible literals is a form of static pruning determined by the bias B. Moreover, a
fliteral 1 € S will be added to the clause C, only if a kind of dynamic pruning condition holds, based
on the bias B and the particular example e+ that is being considered.

The systems CLINT (DeRaedt, 1991), GOLEM {Muggleton, 1991) and ITOU (Reuvierol,
1994) can be instantiated to the above scheme:

® CLINT: S contains all literals that are syntactically acceptable in the chosen representation
language. A literal I is dynamically allowed if it is true w.r.t. the background theory and sc /A
coverse+.

¢ GOLEM: S contains all ground literals that are true w.r.t. the background theory. A literal is
statically allowed if it has a depth bound of i. Tt is dynamically allowed if it is j-determinate.

® ITOU: A literal is added to SCif it follows from the theory T, the exampie e+ and the previously
added literals in sc.

Cohen (1993} compares different kinds of bias schemes using the top-down Grendel system: these
include ij-determinism, k-free clauses, k-local clauses and a bias based on relational pathfinding.
The latter was implemented in a special case by means of a small set of rule schemata.

All of the above forms of bias were translated into antecedent description grammars (ADGs).
Grendel, with an appropriate ADG, works as a prototype for an ILP system using that bias, and
allows the user to do some experimentation with different kinds of biases. Results show that (1) ij-
determinism is best for simple Prolog programs, €.g.. append; (2) k-locality is good for the “loan™
database; (3) relational pathfinding is good for the “family” database.

Bias is important for both bottom-up and top-down systems. However, if learning is to be fully
automated, one could reasonably ask where the bias comes from. One possible answer, which is
often well-motivated, is that the bias must come from the user, because if there is no prior
information of this kind. learning is inaccurate and inefficient. Another answer lies in the
possibility of learning the bias from the environment,

To this aim, Silverstein and Pazzani (1993) propose a technique for learning a form of preference
bias based on relational cliches. These indicate conjunctions of literals which are likely to be useful
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in a Foil-like top-down learner. Such conjunctions will then be added in a single specialization step,
instead of one literal at a time. If many cliches are given to the system, learning may turn to be
slower, as the branching factor in the specialization tree is increased. However, particular
conjunctions may be useful in two cases:

¢ they often occur in the solution clauses; then the increased branching factor is remedied by the
smaller number of specializations needed to reach some consistent rule;

® the conjunction as a whole produces some important information gain, while the component
literals do not. Then the heuristics used by Foil-like algorithms might hide away an existing
solution. Relational cliches seem to be a simpler case of preference biases expressed by domain
theories as in FOCL or by ADGs as in Grendel.

Silverstein and Pazzani (1993) suggest a method for learning cliches. The idea is simple:

® use very general cliches on a number of simple domains;
® specialize those cliches to their most useful instantiations;
® use the specialized cliches in more complex domains.

In general, learning a bias is a controversial objective, because bias is a precondition of learning,
which must be given. However, the above framework is meaningful: a weak bias is used to learn
simple concepts, and is made stronger on the basis of the obtained solutions. The specialized,
stronger bias is then used on more difficult problems. All this obviously rests on the assumption that
the complex problem is in some way related to the simpler domains.

As another form of bias, one could consider an initial program P, which may be seen as a
tentative solution given by the user. This is meaningful if the correct program is close to this initial
guess, e.g., if it can be obtained by adding or deleting a small number of clauses or literals, In this
case, the IL.P problem is transformed into what is called a theory revision task. '

Wogulis (1993) considers the problem of revising logic programs with negation, and presents a
system, called A3, together with some experiments. The experiments suggest that A3 produces an
accuracy which is comparable to FOCL, but yields a result which is closer to the theory given
initially.

Previous approaches to theory revision follow two major schemes:

® operationalization (e.g., ML-SMART (Bergadano & Giordana. 1988), FOCL (Pazzani &
Kibler, 1992), Grendel (Cohen, 1993)); the domain theory is unfolded on the basis of given
examples, until more specific, operational descriptions are obtained. These descriptions may
then be specialized further using standard inductive techniques. This idea cannot work when the
original theory contains negation, because the operationalization cannot be pushed into a
negated literal, which is interpreted via negation as failure.

¢ modification (e.g., AUDREY (Wogulis, 1993), Forte (Richards & Mooney, 1991)); if a positive
example is not covered the theory is generalized, if a negative example is covered, the theory is
specialized. If negation is present, the above scheme is inappropriate. For instance, a negative
example may be covered because the call of a negated literal in its definition fails; in that case the
definition of that literal should be generalized.

In the end, even if there is some strong bias which is given by the user, learning will be efficient
only if the hypothesis space H is sufficiently constrained. Systems such as LOPSTER (Aha et al.,
1993) require that the program to be learned be extremely simple, i.e., programs containing one
non-recursive base clause and one linear recursive clause. In general, it is not essential that the
solution program P be simple; the important datum is the size of the hypothesis space H. If P is a
complex program, but H only contains P and a few alternatives, then learning may still be feasible
and likely to be successful.

4 Conclusion and projections

The conclusion is based on the previous observation. ILP has the poiential of learning quite
complex programs, if sufficient prior information is given, for example by means of a restricted
hypothesis space H that still contains a correct solution. Such information must be given by the
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user, but in a software engineering setting this may be acceptable: the user is a programmer who
knows a lot about the program which is being developed. However, not all this knowledge is
written in general rules or procedures; part of it is factual and goes into positive and negative
examples. ILP will provide tools for turning such diverse sources of information into an executable
procedure, which may then be refined further by existing program transformation techniques.
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