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Abstract--Acetaminophen was given to mice at a single dose of 375 mg/kg. In situ liver chemiluminescence, H202 steady- 
state concentration, and the liver concentrations of total and oxidized glutathione were measured 15, 30, and 60 min after 
acetaminophen administration. Increases of 145% and 72% in spontaneous chemiluminescence and H202 concentration were 
observed 15 rain after the injection, respectively. Total glutathione was decreased by acetaminophen administration at all the 
times studied. The maximal decrease, 83%, was found 60 rain postinjection. The ratio GSH/GSSG was found significantly 
decreased at all the times studied. Microsomal superoxide production was increased by 2.4-fold by addition of acetaminophen. 
The activities of the antioxidant enzymes superoxide dismutase, catalase, and glutathione peroxidase were determined. Catalase 
was slightly inhibited (30%) 15 rain after acetaminophen administration. No significant changes were found in superoxide 
dismutase activity. Se and non-Se glutathione peroxidase activities were decreased by 40% and 53% respectively, 15 rain after 
acetaminophen administration. The decrease in catalase and glutathione peroxidase would result in an increased steady state 
level of H202 and hydroperoxides, contributing to ceU injury. Damaged hepatocytes were observed, and severe lesions and 
necrosis appeared 60 rain after acetaminophen administration. Our results indicate the occurrence of oxidative stress as a possible 
mechanism for acetaminophen-induced hepatotoxicity. 
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INTRODUCTION 

It is well known that acetaminophen, a widely used 
analgesic-antipyretic drug, produces centrilobular liver 
necrosis and renal failure, at relatively high doses. ~ 
The use o f  acetaminophen, phenacetin (a  precursor 
for acetaminophen) ,  and aspirin has been correlated 
epidemiologically with a 2-fold increased risk o f  renal 
pelvic cancer. 2 

A large number  o f  metabolites are produced by acet- 
aminophen in biological systems; some of  them can 
form covalent adducts with cellular macromolecules,  
and others can generate free radicals and superoxide. 
Formation of  such reactive metabolites is thought to 
be critical to the toxicity, mutagenicity, and potential 
carcinogenicity o f  these compounds.  High concentra- 
tions o f  metabolic intermediates o f  phenacetin and acet- 
aminophen induce morphological  transformation of  
C 3 H / 1 0 T 1 / 2  mouse embryo  cells. 3 

Address correspondence to: Silvia Lores Arnaiz, Instituto de 
Qufmicay Fisicoqulmica Biol6gicas, Facultad de Farmaciay Bioqufm- 
ica, Universidad de Buenos Aires, Junfn 956, 2 °, (I113) Buenos 
Aires, Argentina. 

Acetaminophen is mainly metabolized by cyto- 
chrome P450 to form an electrophilic metabolite, N- 
acetyl p-benzoquinone imine, which is primarily inac- 
tivated by conjugation with glutathione. 4'5 At high 
doses, the detoxification pathways become saturated, 
and the intermediate metabolite accumulates and 
causes liver damage by covalent binding to tissue mol- 
ecules. 6,7 

Acetaminophen hepatotoxicity appears to be criti- 
cally dependent on the depletion o f  cellular glutathi- 
one. Numerous studies showed the effectiveness o f  
sulfhydryl  compounds  in reducing the degree o f  cova- 
lent binding of  the reactive metabolite o f  acetamino- 
phen. 8 Methionine and N-acetylcysteine have been 
successfully used in the clinical treatment o f  acetamin- 
ophen overdosage, 9 

Reduced glutathione functions as a reductant in the 
metabolism of  both hydrogen peroxide and various 
organic hydroperoxides.  This reaction is catalized by 
the glutathione peroxidases present in the cytosol and 
mitochondria of  various cells, t° A relatively high re- 
duction in the intracellular level o f  reduced glutathione 
leads to a situation o f  oxidative stress. 
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Alternatively, the one-electron oxidation of acet- 
aminophen by P450 may generate reactive oxygen spe- 
cies, and the subsequent thiol depletion via oxidation 
may lead to an alteration in calcium homeostasis and 
cause hepatotoxicity. ~ It has been suggested that an 
alkylating acetaminophen metabolite causes Ca 2÷ de- 
regulation in the nucleus, leading to activation of a 
Ca 2÷-sensitive endonuclease, fragmentation of DNA, 
and cell death. ~2 Evidence was provided that nuclear 
DNA fragmentation is an early step in acetaminophen- 
induced hepatocellular damage in vitro.~3 

In this study, we evaluated the occurrence of mouse 
liver oxidative stress by acetaminophen acute treat- 
ment through measurements of chemiluminescence 
and hydrogen peroxide steady-state concentration. Su- 
peroxide production by acetaminophen was deter- 
mined in liver microsomes supplemented with 
NADPH. Glutathione content, the activities of antioxi- 
dant enzymes, and morphological parameters of tissue 
damage were also measured. 

MATERIALS AND METHODS 

Animals and treatment 

Female Swiss mice weighing 20-25 g were sup- 
plied with water and laboratory animal food ad libitum 
and housed at 22-24°(2 on a 12-h light-dark cycle. 
Acetaminophen was dissolved in 0.9% NaCI solution 
at 40°C and injected to the animals at a dose of 375 
mg/kg of body weight. 

Liver chemiluminescence 

Control and treated mice were anesthetized with 
urethane (1.5 g/kg of weight ip). The liver surface 
was exposed by laparotomy, and chemiluminescence 
was measured with a Johnson Foundation photon- 
counter (Johnson Research Foundation, University of 
Pennsylvania, Philadelphia, PA). t4 Chemilumines- 
cence is expressed in counts per second per unit of 
liver surface (cps/cm2). 

Sample handling 

Liver fragments (0.5-1 g) obtained from the left 
lateral lobule of control and treated mice were hemi- 
sectionated for biochemical and histopathological de- 
terminations. 

Intracellular steady-state concentration of hydrogen 
peroxide 

Tissue slices 0.1 mm thick were incubated 10 min 
in 120 mM NaCl, 30 mM phosphate buffer (pH 7.4) 

at 30°C and at a tissue/medium ratio of 1/20. Sam- 
ples of the incubation medium were diluted 1/2.5 
with 100 mM phosphate buffer (pH 7.4) containing 
2.8 U/ml horseradish peroxidase and 40 #M p- 
hydroxyphenylacetic acid as hydrogen donor and 
fluorescence intensity was measured at 317-414 nm. 
H202 concentration was determined by a standard 
calibration curve and calculated by subtracting the 
value of a sample treated with 0.1 pM catalase from 
the value of an untreated sample. Ls 

Glutathione content 

Total and oxidized glutathione were determined 15, 
30, and 60 min after acetaminophen administration. 
The sum of the reduced and oxidized forms of glutathi- 
one was determined using 5,5'-dithiobis (2-nitroben- 
zoic acid) (DTNB), NADPH, and glutathione reduc- 
tase in a kinetic assay at 412 nm. Oxidized glutathione 
(GSSG) was determined using NADPH and glutathi- 
one reductase, at 340 nm. Glutathione concentration is 
expressed in #mol/g organ. ~6 

Superoxide production 

The superoxide dependent oxidation of epineph- 
rine to adrenochrome is followed spectrophotometri- 
cally at 480 nm with a sensitive single-wavelength 
spectrophotometer (e = 4.0 mM -1- cm -1) in a reac- 
tion medium containing 50 mM glycine buffer pH 
8.5, 1 mM epinephrine, 100/~M NADPH, and 1 mg 
liver microsomes/7 

Enzyme assays 

Mouse liver homogenates were prepared in a me- 
dium consisting of 120 mM KCI and 30 mM potassium 
buffer (pH 7.4) and centrifuged at 600 g for 10 min 
to discard nuclei and cellular debris. The supernatant, 
a suspension of preserved organelles, was termed "ho- 
mogenate. ' ' 

Superoxide dismutase (SOD) was determined in the 
homogenates by measuring the inhibition of the rate 
of autocatalytic adrenochrome formation and ex- 
pressed in U/g liver. ~s 

Catalase activity was determined in the homogenates 
following the decrease in absorption at 240 nm ~9~° and 
expressed in nn~l catalase heme/g liver (#M). 

Glutathione peroxidase (GPx) was measured in the 
homogenates following NADPH oxidation at 340 nm 
in the presence of GSH, glutathione reductase, and 
tert-butyl hydroperoxide or H202 as described by Floh6 
and Gunzler. 2~ The activity of glutathione peroxidase 
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is expressed in U/g  liver, and the enzyme content is 
also expressed as nmol enzyme/g liver (#M) .  A sig- 
nificant effect of hepatic residual acetaminophen in 
inhibiting glutathione peroxidase activity of liver ho- 
mogenates was ruled out by appropriate controls. 

Histopathological studies 

Hemisections of liver fragments obtained from control 
and treated mice were fixed in 10% formol buffer pH 
7.4 for 24 h, included in parafin, and stained with hema- 
toxilin-eosine. Morphological damage was evaluated in 
slices 5 #m thick, by examining 50 nonconsecutive high 
power fields (×400) .  Liver damage was scored using a 
scale of 0 to 3 points based on the degree of two structural 
parameters: cell swelling and vacuolar degeneration. Ne- 
crotic cells were also evaluated according to their pres- 
ence (3 points) or absence (0 points). Those cells with 
nuclear alterations (picnosis, fragmentation, or lysis), cy- 
toplasmic rarefaction with cell boundaries lost were con- 
sideratedas necrotic. The total score of lesion per sample 
was obtained from the sum of the scores given to each 
morphological type of damage including necrosis (maxi- 
mal score per high power field examinated = 9 points). 
If the score per each examinated field were the maximal 
(9 points), the total score of lesions per sample would 
be 450 points. It was assumed that this score represented 
100% of total damage, 

Marker enzymes of liver damage 

Serum samples were assayed for lactate dehydroge- 
nase (LDH),  alanine aminotransferase (ALT) ,  and 
aspartate aminotransferase (AST) using commercial 
laboratory kits. Values are given in units per liter of 
serum. 

Statistics 

Values are expressed as mean values +__ SEM. The 
significance of differences between mean values were 
analyzed by ANOVA and Tukey test. 

R E S U L T S  

Spontaneous chemiluminescence and H202 
steady-state concentration 

In situ liver chemiluminescence was measured at dif- 
ferent limes after acute acetaminophen administration. 
Spontaneous chemiluminescence (control value = 109 
___ 13 cps/cm z) was transiently increased by 145% 15 rain 
after acetaminophen administration. Chemiluminescence 
values were not significantly different from control ones 
in animals measured 60 min after acetaminophen admin- 

istration (Fig. 1 ). The intmcellular H2Oz steady-state con- 
centration was also measured in liver slices of control 
and acetaminophen-treated animals. H202 steady-state 
concentrations showed a similar pattern to the one of 
chemiluminescence, being transiently increased by 72% 
15 rain after acetaminophen administration and returning 
to normal values at 30 and 60 min postinjection. The 
control value was 0.09 _+ 0.01 /.tM (Fig. 1 ). 

Glutathione content 

Total glutathione was decreased by acetaminophen 
administration at all the studied times. The maximal ef- 
fect was observed 60 min after the injection (83% de- 
crease). The control value was 8.1 + 0.7/.tmol/g liver 
(Table 1 ). Oxidized glutathione (GSSG) was increased 
by 70% 15 min after acetaminophen administration, but 
at longer periods (30 and 60 min postinjection) decreases 
of 45% and 65% were observed, respectively, as com- 
pared with control values (Fig. 2). Reduced glutathione 
(GSH) content values were calculated and are shown in 
Figure 2 and Table 1. There is a maximal decrease of 
83% in GSH content 60 min after acetaminophen admin- 
istration, as compared with control values. The ratio 
GSH/GSSG was found significantly decreased at all the 
times studied (Table 1 ). 

Superoxide production 

The addition of 8 mM acetaminophen produced a 
marked increase of approximately 2.4-fold in the rate of 
superoxide production by liver microsomes supplemented 
with NADPH. The effect depended on the acetaminophen 
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Fig. 1, Spontaneous chemiluminescence (@) and H202 steady-state 
concentration ( • )  in the liver of acetaminophen-treated mice. Sym- 
bols indicate mean values from six animals and bars indicate S.E.M. 
*p < 0.05. 
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Table I. Effect of Acetaminophen Administration on Mouse Liver Antioxidant Enzyme 
Activities and Glutathione Content 

Parameter Control 15 min 60 rain 

A - - E n z y m e  activity 
SOD (U/g) 600 ± 187 561 _± 77 561 _+ 44 (85%) 
Catalase (#M) 1.2 ± 0.1 0.8 ± 0.2 1.1 ± 0.1 (92%) 
Se-GPx (U/g) 2.5 -+ 0,4 1.5 ± 0.2 1.3 _+ 0.2* (52%) 
(#M) 0.13 ± 0.02 0.08 ± 0.03 0.07 ± 0.01 
non Se-GPx (U/g) 2.20 ± 0.20 0.30 ± 0.06* 0.70 ± 0.10" (32%) 

B- -Glu ta th ione  
GSH + 2GSSG (/~mol/g) 8.1 ___ 0.7 5.9 _+ 0.8 1.4 ± 0.5* (17%) 
GSSG (/~mol/g) 0,20 ___ 0.03 0.34 ___ 0.01" 0.07 ± 0.02* (35%) 
GSH (#mol/g) 7.7 +_ 0.5 5.2 _+ 0.6 1.3 ± 0.1" (17%) 
GSH/GSSG 38.50 ± 0.20 15,40 ± 0.60* 17.40 ± 0.04* (45%) 

Values are expressed as mean + SEM of 4 - 6  animals. Numbers between parenthesis are 
percent of  control values. 

* p  < 0.05. 

concentration (Fig. 3). The rate of rnicrosomal NADPH 
oxidation was also increased by acetaminophen in a con- 
centration-dependent manner. Adrenochrome formation 
was inhibited by addition of 0.2 #M superoxide dismutase, 
both in the presence or absence of acetaminophen, giving 
specificity to the assay. The effect of 8 mM acetaminophen 
increased NADPH oxidation in 4.7 nmol/min.mg and 
superoxide production in 7.2 nmol/min-mg, indicating a 
stochiometry of 1.5 02"-/NADPH with a highly efficient 
02"- production in the acetaminophen-sdmulated NADPH 
oxidation. In the absence of acetaminophen, the stochi- 
ometry was 0.6 O2"-/NADPH. 

Antioxidant enzyme activities 

Superoxide dismutase, catalase, and glutathione 
peroxidase activities were measured in liver homoge- 
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Fig. 2. Effect of  acetaminophen administration on GSH (©)  and 
GSSG (O)  content. Bars represent mean values of  4 - 6  animals ___ 
S,E,M, *p < 0,05, 

nates at 15 and 60 min after acetaminophen administra- 
tion. Superoxide dismutase was not significantly af- 
fected by acetaminophen treatment. Catalase was in- 
hibited by 30% 15 min after injection. Se-glutathione 
peroxidase showed a decrease of 40% 15 min after 
acetaminophen administration, while non-Se glutathi- 
one peroxidase was decreased by 53% as compared 
with control values (Table 1 ). 

Histopathological studies 

Indexes of liver damage were high in the experi- 
mental treated groups with respect to the control group 
(Table 2). The index of liver damage increased with 
the time of drug administration. A minor degree of 
vacuolar degeneration was observed in the control 
group, as it is shown in Figure 4. More severe forms 
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Fig. 3. Effect of  added acetaminophen concentrations on superoxide 
production ( • )  and NADPH oxidation (O) in liver microsomes. 
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Table 2. Index of Liver Damage (%) in 
Acetaminophen-Treated Animals 

Index of Liver Damage 
Time (min) (%) 

0 4+_1 
15 39 +_ 7* 
30 39 +_ 2* 
60 89 +_ 2* 

Values are expressed as mean _ SEM 
of 4 - 6  animals. 

* p  < 0.05. 

of hepatocellular degeneration were observed in the 
treated groups, mainly in Zones 2 and 3 of the hepatic 
acinus. Necrosis was more markedly observed in the 
acetaminophen-treated group 60 min postinjection of 
the drug. The most damaged zone of the acinus was 
the perivenular area (Fig. 5). 

Marker enzymes of liver damage. Lactate dehydroge- 
nase (LDH), alanine aminotransferase (ALT), and 
aspartate aminotransferase (AST) were determined in 
mouse serum samples, 30 and 60 min after acetamino- 
phen injection. LDH was increased by 42% and 136% 
30 and 60 min after drug administration. ALT showed 
increases of 72% and 100% 30 and 60 min after acet- 
aminophen administration. AST was not altered after 

30 min of acetaminophen injection but was increased 
62% after an hour of treatment (Table 3). 

DISCUSSION 

Increased in situ liver chemiluminescence has been 
associated with the development of cell injury and liver 
necrosis in different experimental situations: chronic 
and acute alcohol administration,22 vitamin E- and se- 
lenium deficiency,23 tumor-bearing animals, 24 and mi- 
toxantrone treatment. 25 Recent studies have shown in 
two models of lung toxicity--paraquat injection and 
exposition to hyperbaric oxygen--that lung chemilu- 
minescence is an earlier marker of lung damage be- 
cause it precedes the decrease in survival and is related 
to polymorphonuclear cell m i g r a t i o n .  26 Increased 
chemiluminescence has also been postulated as the ear- 
liest marker of the septic syndrome in rat liver and 
muscle, preceding the increase of serum levels of 
marker enzymes of liver and muscle damage. 27 In our 
study, the increase in liver photoemission observed 15 
min after acetaminophen administration indicates that 
the drug induces a situation of oxidative stress in liver 
tissue with increases in the steady-state concentrations 
of hydrogen peroxide and singlet oxygen. 2s Slight mor- 
phological changes were observed 15 min after acet- 
aminophen administration, during maximal emission, 
while 60 min after acetaminophen injection more seri- 

Fig. 4. Control mouse liver. Portal space and hepatocytes with normal morphological appearance. (Hematoxylin-eosin ×250). 
HA: hepatic artery; PV: portal vein; BD: biliary duct; Z~: zone 1 = periportal area. 
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Fig. 5. 60 min acetaminophen-treated mouse liver. Perivenular hepatocytes with marked tumefacted cytoplasm and vacuolar 
degeneration. Necrotic cells can also be observed. Periportal hepatocytes with normal morphological appearance (Hematoxylin- 
eosin ×250). 7-a: Zone 2 = medioacinar area; Z3: Zone 3 = perivenular area; VD: hepatocytes with vacuolar degeneration; 
HN: hepatocellular necrosis; THV: terminal hepatic venule. 

OUS damage and coagulation necrosis were observed. 
Necrosis results in a leakage of transaminases (ALT 
and AST)  and LDH into the serum, indicating destabi- 
lization of the hepatocyte cellular membrane. These 
results suggest that oxidative stress induced by acet- 
aminophen in mouse liver precedes the appearance of 
necrosis. 

H202 steady-state concentration increased 15 min 
after acetaminophen administration. Intracellular 02"- 
and H202 concentration lead to lipid peroxidation chain 
reactions with the generation of  excited species respon- 
sible for photoemission. 

Assuming that the most important fraction of the 
total emission detected corresponded to bimolecular 
singlet oxygen de-excitation, while only a minor frac- 
tion would consist of  green-blue light (400 -500  nm) 
coming from excited carbonyls, a quadratic relation- 

Table 3. Effect of Acetaminophen Administration 
on Marker Enzymes of Liver Damage 

Time LDH ALT AST 
(min) (UI/I) (UI/I) (U1/I) 

0 374_+20 39+ 2 26 ± 5 
30 530 ± 117 67 ± 13 23 __+ 4 
60 881 ± 44 78 ± 27 42 ± 1 

ship between chemiluminescence (Chl) and H202 was 
found (eq. 1 ).29 

Chl = K X [ H202 ] 2 (i) 

In our study, such quadratic relationship between 
chemiluminescence and H202 concentration could be 
verified in 15 rain treated animals (t)  in relation to 
control ones (eq. 2). 

Chl,/Chlc = [H202]Z/[H202] 2 -- 2-3 (2) 

It is generally accepted that acetaminophen hepato- 
toxicity is critically dependent on glutathione deple- 
tion. From several studies it has been estimated that 
loss of  more than 70% is critical to the tissue. Evi- 
dences have been provided that oxidative stress actu- 
ally decreases the [ G S H ] / [ G S S G ]  ratio. 3° In our 
model, the decrease in glutathione content 15 min after 
injection occurs parallel to the increase in chemilumi- 
nescence (Fig. 1 ), suggesting that GSH depletion leads 
to an increase in the steady-state level of H202 (as 
previously described) and of lipid peroxides. The slight 
decrease in GSH content observed 15 rain after acet- 
aminophen administration together with the increase 
in GSSG level reflects the initial oxidation of GSH to 
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GSSG, probably due to direct interaction of GSH with 
free radical intermediates. 

Glutathione peroxidase was markedly inhibited by 
acetaminophen treatment, the decrease in non-Se gluta- 
thione peroxidase being particularly important. The 
partial inactivation of catalase, Se-glutathione peroxi- 
dase, and non-Se glutathione peroxidase leads to a situ- 
ation in which H202 and hydroperoxides formation 
cannot be matched by their corresponding utilization 
by the metabolizing enzymes resulting in an increased 
steady-state level of H202 and hydroperoxides. 

The mechanism by which acetaminophen produces 
hepatocyte necrosis is still unclear. Several metabolites 
of acetaminophen are suggested to be implicated as 
the ultimate toxic species. The main pathway of acet- 
aminophen transformation by cytochrome P450 in- 
volves the formation of the intermediate: N-acetyl p- 
benzoquinone-imine. The mechanism proposed by 
Vries involves the reduction of the oxy-ferrocyto- 
chrome-acetaminophen complex by electron transfer 
from NADPH via the cytochrome c reductase, fol- 
lowed by the oxidation of acetaminophen to the semi- 
quinone. The semiquinone radical intermediate of acet- 
aminophen might undergo a cyclic oxidation-reduction 
process consisting of the oxidation of the semiquinone 
to the quinonimine by molecular oxygen, with the gen- 
eration of superoxide, followed by the reformation of 
the semiquinone by microsomal NADPH-cytochrome 
c reductase. 3~ Recent reports have shown that sily- 
marin, a 3-oxyflavone with antioxidant properties, pro- 
tects against acetaminophen-induced lipid peroxidation 
and liver damage, even at low levels of GSH, possibly 
acting as a scavenger of superoxide and alkoxy radi- 
cals. 32 Our results show that superoxide anion is pro- 
duced during acetaminophen metabolism by hepatic 
cytochrome P450, and NADPH is consumed as a result 
of the process. Depletion of glutathione level to a 
threshold value of 5 nmol/mg protein is associated 
with a significant conversion of xanthine dehydroge- 
nase to reversible xanthine oxidase. This would be 
another possible mechanism for the stimulation of su- 
peroxide production during glutathione depletion. 33 

The results of our study indicate that oxidative stress 
induced by acetaminophen administration in mouse liver 
would play a role in drug hepatotoxicity. The data pre- 
sented here provide evidence for the microsomal produc- 
tion of 02"--forming acetaminophen intermediate, postu- 
lated by Vries, and also for the in situ liver oxidative 
stress, which is consistent with the physiological produc- 
tion of N-acetyl p-benzoquinone-imine. The antioxidant 
depletion (glutathione and the antioxidant enzymes ) pro- 
duced by acetaminophen would lead to an increased 
steady-state level of active oxygen species reflected in in 
situ liver chemiluminescence. Further studies will help to 

elucidate the contribution of other metabolizing pathways 
and molecular mechanisms to acetaminophen-induced 
liver damage. 
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