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ABSTRACT 
 

The terms mélange and broken formation have been used in different ways in the literature. The lack 

of agreement on their definition often leads to confusion and misinterpretations. An evaluation of the 

various uses of these terms allows us to consider several types of chaotic rock bodies originated by 

tectonic, sedimentary and diapiric processes in different tectonic settings. Our review of stratal 

disruption and mixing processes shows that there exists a continuum of deformation structures and 

processes in the generation of mélanges and broken formations. This continuum is directly controlled 

by the increase of the degree of consolidation with burial. In tectonically active environments, at the 

shallow structural levels, the occurrence of poorly consolidated sediments favors gravitational 

deformation. At deeper structural levels, the deformation related to tectonic forces becomes gradually 

more significant with depth. Sedimentary (and diapiric) mélanges and broken formations represent the 

products of punctuated stratal disruption mechanisms recording the instantaneous physical conditions 

in the geological environment at the time of their formation. The different kinematics, the composition 

and lithification degree of sediments, the geometry and morphology of the basins, and the mode of 

failure propagation control the transition between different types of mass-transported chaotic bodies, 

the style of stratal disruption, and the amount of rock mixing. Tectonically broken formations and 

mélanges record a continuum of deformation that occurs through time and different degrees of 

lithification during a progressive increase of the degree of consolidation and of the diagenetic and 

metamorphic mineral transformation. Systematic documentation of the mechanisms and processes of 

the formation of different broken formations and mélanges and their interplay in time and space are 

highly important to increase the understanding of the evolutionary history of accretionary wedges and 

orogenic belts.  
 

 

Key words: Tectonic and sedimentary mélanges, diapiric mélanges, broken formations, mélange 

forming processes, stratal disruption and mixing of rocks, mass-transport deposits and processes. 
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1. Introduction 

 

Mélanges and broken formations represent a significant component of most convergent 

margins and orogens around the world (Fig. 1), and the details of their block-in-matrix character 

reflect a close relationship between the processes and the tectonic setting of their formation (Suzuki, 

1986; Festa et al., 2010a). However, the lack of agreement on the definition of mélange (e.g., Silver 

and Beutner, 1980; Rast and Horton, 1989; also compare Şengör, 2003 with Pini, 1999; Cowan and 

Pini, 2001; Festa et al., 2010a; Wakabayashi, 2011) has lead to some confusion and 

misinterpretations in the literature. At shallow structural levels in tectonically active environments, 

sediments are subject to small-scale deformation immediately after deposition at rates and in ways 

dependent on the interplay between gravitational deformation and tectonic burial (e.g., Byrne, 1994; 

Maltman, 1994). The downward increase in both the consolidation and lithification of buried sediments 

and tectonic forces controls the progressive increase in deformation and, in cases, stratal disruption 

(Maltman, 1994 and references therein; Onishi and Kimura, 1995; Yamamoto et al., 2012a). The 

result of these conditions is a continuum of development of structures in the originally coherent 

stratigraphic successions via stratal disruption and mixing processes, which play a major role in the 

genesis of broken formations and mélanges (e.g., Hsü, 1968; Raymond, 1984; Cowan, 1985).  

Time-progressive evolution of deformation structures in chaotic rock units, such as broken 

formations to mélanges, has been rarely described in the literature (see e.g., Smith et al., 1979; 

Raymond, 1984; Cowan, 1985; Needham, 1995; Harris et al., 1998; Lucente and Pini, 2003; Ogata et 

al., 2012a; Pini et al., 2012; Yamamoto et al., 2012a). This is in part due to the fact that collisional and 

post-collisional shortening, magmatism, extensional deformation, and strike-slip tectonics may have 

obscured or strongly remodified the structural evidence for the pre-existing continuum. Nevertheless, 

a careful examination of the rock record and the internal fabric of the chaotic rock bodies, together 

with their contact relationships with the country rocks, reveals important clues about the larger-scale 

processes that occurred in different tectonic settings and at shallow structural levels during mélange 

formation. The most important mélange forming process at deeper structural levels is thought to have 
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taken place in subduction channels (e.g., Cloos, 1982; Cloos and Shreve, 1988a, 1988b; Ogawa, 

1998; Gerya et al., 2002; Guillot et al., 2004; Ernst, 2006; Federico et al., 2007; Blanco-Quitero et al., 

2010; Malatesta et al., 2012), in which high degrees of mixing of rocks (including ultramafic rocks) 

with differing P-T-t histories and metamorphic grades may occur. 

 

This paper is aimed at streamlining the existing discussions on the mechanisms and 

processes of stratal disruption and mixing in the development of mélanges and broken formations, 

and at redefining and reclassifying the mélanges and related rock units. In the first part of the paper, 

we briefly review and discuss the definitions of the terms mélange and broken formation and re-define 

these terms in light of recent observations and interpretations made by the international scientific 

community. We also discuss the origins of the chaotic rock masses (tectonic, sedimentary, diapiric, 

and polygenetic) and review their global occurrences, expanding on the tectonic-genetic classification 

of chaotic rocks we proposed earlier (see Festa et al., 2010a). In the second part of the paper, we 

present several models for the formation of various types of mélanges and broken formations at 

shallow structural levels in accretionary wedges and orogenic belts (where metamorphism is very low 

grade or absent). Here, we review and synthesize the existing data, and demonstrate that a 

continuum of stratal disruption and mixing processes operates across different structural levels or 

depths of burial in various tectonic settings. The nomenclature we propose here and the continuum of 

stratal disruption and mixing described at shallow structural levels provide a useful and coherent 

framework for future studies in mélange terrains. Redefinition and more systematic, process-oriented 

classification of mélanges should also be highly insightful for the recognition of these chaotic rock 

bodies in the Precambrian greenstone belts (Dilek and Ahmed, 2003; Dilek and Polat, 2008). 

 

2. Mélange and broken formation terminology 

 

“Mélange” is a descriptive, non-genetic term that must be used only in describing a mappable 

(at 1:25,000 or smaller scale) body of internally disrupted and mixed rocks in (or rarely without) a 
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pervasively deformed matrix (Berkland et al., 1972; Wood, 1974; Silver and Beutner, 1980; Raymond, 

1984; Cowan, 1985). Yet, the debate and discussions on the mélange concept continue after nearly 

four decades of extensive studies of mélanges and related rock units around the world (Silver and 

Beutner, 1980; Raymond, 1984; Rast and Horton, 1989; Wakabayashi and Dilek, 2011). We refer the 

reader to Hsü (1968), Cowan (1974, 1985), Raymond (1984), Suzuki (1986), Rast and Horton (1989), 

Pini (1999), Şengör (2003), Camerlenghi and Pini (2009), Festa et al. (2010a), Vannucchi and Bettelli 

(2010), Wakabayashi and Dilek (2011) and Ogata et al. (2012b) for various discussions on the 

conflicting uses of the term mélange.  

The term mélange, in its classical descriptive and non-genetic definition (Berkland et al., 1972; 

Wood, 1974; Silver and Beutner, 1980; Raymond, 1984; Cowan, 1985), does not restrict the nature of 

lithological units involved (sedimentary, metamorphic or igneous); contact relationships between 

these diverse lithological units can be tectonic, stratigraphic or intrusive, depending on the process of 

mélange formation (Tab. 1). This definition implies that the term mélange can be used only, at least in 

part, as a synonym of complex (see Salvador, 1994). However, the controversial definition of 

complex, as a lithodeme subunit (NACSN, 2005), suggests a mostly tectonic origin of its contacts 

(see also Pasquarè et al., 1992; Vannucchi and Bettelli, 2010). The term complex, however, is also a 

formal lithostratigraphic term, defining any rock body that is characterized by complicated deformation 

patterns and bounded by primary (i.e. stratigraphic) contacts (see also Pasquarè et al., 1992; 

Salvador, 1994). Only “sedimentary mélanges” (olistostromes) are compatible with the classic 

principles of stratigraphic superposition, whereas many mélange occurrences in nature do not follow 

these principles (Silver and Beutner, 1980) because they are not bounded by stratigraphic contacts. 

The classical definitions of the term mélange (Hsü, 1968; Berkland et al., 1972; Silver and 

Beutner, 1980) portray these rock bodies to “commonly” include a “pervasively deformed matrix” 

(Silver and Beutner, 1980) or a “fragmented matrix of finer-grained material” (Raymond, 1984). Some 

researchers have avoided in these definitions any specification of the origin of that matrix as tectonic, 

sedimentary or diapiric. This matter is particularly important in studying sedimentary mélanges in that 

it restricts the use of the term mélange only to mass-transport deposits, which display a chaotic 
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internal arrangement and mixing of exotic and native blocks in a deformed matrix (debris flows, 

hyperconcentrated flows, blocky flows, Mutti et al., 2006; Ogata et al., 2012a). It also excludes other 

sedimentary deposits such as turbidites. Glacial till (e.g., Hoffmann and Piotrowski, 2001) or the 

Martian chaos (e.g., Kargel et al., 2007) may be included in this definition of mélange because they, 

too, form by mixing of different blocks as a result of slope failure, mass-transport processes, gas 

outburst by clathrate dissociation, mud volcanism, and bolide impacts on the surface of the planet. 

Mixing of rocks is clearly stated in the definition of mélange by Hsü (1968) and Silver and 

Beutner (1980), and is addressed by Raymond (1984) as one of the two fundamental mélange-

forming processes, but the significance and the amount of mixing is not clearly defined in these earlier 

definitions. In addition, the meaning of the terms “exotic” and “native” blocks is ambiguous (Tab. 1) 

mainly because the concept of an exotic origin changes dramatically in different tectonic settings, 

structural levels, and according to the different origins of mélanges. A restrictive usage of the term 

“exotic” is consistent with a virtual association between exotic blocks and subduction settings (e.g., 

Bailey et al., 1964; Cowan, 1978, 1985; Aalto, 1981; Cloos, 1982; Barber et al., 1986; Brown and 

Westbrook, 1988; Cloos and Shreve, 1988a, 1988b; Onishi and Kimura, 1995; Meschede et al., 1999; 

Wakabayashi, 2004, 2011; Ikesawa et al., 2005; Federico et al., 2007; Malatesta et al., 2012) partly 

because subduction channel is the most popular setting where exotic blocks (e.g., HP eclogite blocks) 

become encased in epizonal metamorphic binders (e.g., Cloos, 1982; Cloos and Shreve, 1988a, 

1988b; Ogawa, 1998).  

At shallow structural levels in subduction zone settings or in other tectonic environments (e.g., 

continental to intracontinental deformation settings, strike-slip tectonics, extensional settings), the 

meaning of “exotic” must be extended to a wider range of blocks. Hsü (1968) defined an exotic 

component as a “tectonic inclusion detached from some stratigraphic rock units foreign to the main 

body of mélange”, whereas native components are „„disrupted brittle layers interbedded with the 

ductiley deformed matrix‟‟. Berkland et al. (1972) clearly distinguished between “exotic” and “tectonic” 

blocks, whereas Hsü (1968) considered them to be synonymous. These authors defined “exotic” 

blocks as “variably sized masses of rock occurring in a lithological association foreign to that in which 
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the mass formed”. “Tectonic” blocks are then considered more restricted in origin because they 

consist of only blocks “transported through the operation of tectonic processes”. Then, not all 

“tectonic” blocks are “exotic”, and not all “exotic” blocks are tectonic in origin (Berkland et al., 1972). 

Sedimentary and diapiric processes and a combination and superposition of them with 

tectonic processes have been widely accepted to play a major role in the incorporation and mixing of 

exotic blocks during mélange formation (e.g., Hsü, 1968; Berkland et al., 1972; Cowan, 1974; Cowan 

and Page, 1975; Aalto, 1989; Harris et al., 1998; Erickson, 2011; Osozawa et al., 2011; Wakabayashi, 

2011). Exotic component can be “foreign” at different levels with respect to the “native” component of 

the main body, varying from simply extra-formational (e.g., Panini et al., 2002; Codegone et al., 

2012b), to an extra-basinal origin (e.g., Lash, 1987; Ogata et al., 2012c), up to having been derived 

from different structural units (Abbate et al., 1970, 1981; Alonso et al., 2006; Lucente and Pini, 2008 

and references therein), paleogeographic domains, tectonic settings or structural levels (P-T 

conditions, diagenetic/metamorphic degree) (e.g., Cloos, 1982; Cowan, 1985; Cloos and Shreve, 

1988a, 1988b; Dilek, 1989; Harris et al., 1998; Ogawa, 1998; Dilek et al., 1990, 1999, 2007; 

Wakabayashi, 2011, 2012; Ukar, 2012). 

The processes of exotic block incorporation into mélanges can provide important information 

about the mélange genesis. Fragmentation and dismemberment may exceed the strength of a given 

lithostratigraphic unit (or formation), and the rocks that formed in different geological environments at 

different times may involve extensive mixing (Raymond, 1984). If fragmentation and dismemberment 

does not exceed the strength of a given lithostratigraphic unit (or formation), we must then use the 

term “broken formation” (sensu Hsü, 1968) to describe a stratally disrupted unit, which contains no 

exotic blocks but only “native” components. These broken formations preserve their lithological and 

chronological identity (“„tectonosomes” sensu Pini 1999). Here, stratal disruptions and fragmentation 

occur without mixing (Hsü, 1968; Cowan, 1985) (Tab. 1) and broken formations show a gradual 

transition from a bedded succession to a strongly disrupted block-in-matrix fabric (Lash, 1987; Barnes 

and Korsch, 1991; Sunesson, 1993; De Libero, 1998; Festa et al., 2010a; Codegone et al., 2012a) 

representing the intraformational equivalent of mélanges (Tab. 1). In this sense, this definition 
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embodies “broken” and “dismembered units”, as described by Raymond (1984), that were proposed 

to differ from each other in the degree of stratal disruption and from mélanges by the lack of exotic 

blocks. Cowan (1985) chose not to use the exotic block requirement in defining mélanges, and the 

four types of mélanges he defined included the broken formation of Hsü (1968) and Raymond (1984). 

In this article and as our common practice (Codegone et al., 2012a, 2012b; Ogata et al., 

2012b), we consider mélanges and broken formations two end-members, which differ from each other 

in terms of the nature of blocks (exotic vs. native) and the mechanisms of their formation (mixing plus 

stratal disruption vs. only stratal disruption; e.g., Hsü, 1968; Harris et al., 1998). They can also both 

form by tectonic, sedimentary or diapiric processes (Tab. 1) or through a combination and 

superposition of these processes. Independently from their deformational path and origin, we favor to 

define a disrupted rock body without exotic blocks and rock mixing as a broken formation and not as 

mélange. Following Raymond (1975), we define mélange as a body of mixed rocks, containing blocks 

(exotics and native) that are derived from different stratigraphic units or sequences, different tectonic 

units, various paleogeographic domains, and/or dissimilar metamorphic zones.  

The scale of observation is highly important in characterization of mélanges. Although 

extension of the mélange term to bodies that are non-mappable at 1:25,000 or smaller scales renders 

the term mélange useless (e.g., Raymond, 1984), it is not unusual to find this term used in describing 

small-scale or meso-scale mélanges (e.g., Bosworth and Vollmer, 1981; Bradley and Kusky, 1992; 

Wakita, 1988, 2000; Fukui and Kano, 2007). To avoid any confusion, we agree to the use of the terms 

“small-scale mélanges and broken formations” (see Codegone et al., 2012b) or “meso-scale mélange” 

(see Bradley and Kusky, 1992) in order to indicate not-mappable (at 1:25,000 scale) mélanges and 

broken formations, whereas “chaotic or disrupted (rock) units” (sensu, e.g., Yamamoto et al., 2009; 

Festa, 2011) must be considered a general term to indicate bodies apart from the nature of the 

embedded blocks. These terms do not define micro-scale mélanges and broken formations, nor do 

they suggest applying these terms to chaotic bodies at the scale of sedimentary layers/beds. 

However, they are to be used in describing chaotic rock units mappable on a scale that is larger than 
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1:25,000 according to the requirement of geological map databases and GIS technologies used for 

the production of modern geological maps. 

 

 

3. Types, processes of formation and triggering mechanisms of broken formation and 

mélanges 

 

The re-defined terms mélange and broken formation and their clarified meaning could be 

extended to a large number of bodies of mixed rocks formed at different structural levels and in 

various tectonic settings (Fig. 1, and Tab. 2; see Suzuki, 1986; Festa et al., 2010a, 2010b and 

reference therein). It is important, however, to distinguish mélange-forming processes from triggering 

mechanisms in each of these tectonic settings (Tab. 2; Moore and Wheeler, 1978; Cloos, 1982; 

Saleeby, 1984; Barber et al., 1986; Raymond et al., 1989; Orange, 1990; Festa et al., 2010a; Festa, 

2011). 

 

3.1. Mélanges and tectonic settings of their formation 

When we compare some of the exhumed, ancient chaotic rock bodies and their modern 

analogues that developed as a result of different tectonic processes in different geodynamic 

environments, we realize that several examples of “tectonic mélanges” described in the literature do 

not include exotic blocks (see, e.g., Cowan, 1974, 1985; Vollmer and Bosworth, 1984; Lash, 1987; 

Brandon, 1989; Wakabayashi, 1992, 2011; Harris et al., 1998; Onishi et al., 2001; Vannucchi and 

Bettelli, 2002) (Tab. 2). Instead, they consist of variably disrupted units or well-developed block-in-

matrix units corresponding to broken formations (sensu Hsü, 1968), which are transitional to slightly 

boudinaged beds and coherent layered units. These broken formations were formed by stratal 

disruption of the original coherent successions in various tectonic environments, mainly related to 

subduction zone processes (Type 4b in Tab. 2, and Figs. 2B and 2D), arc-continent and continent-

continent collisions (Type 5 in Tab. 2, and Fig. 2E), intra-continental deformation (Types 6a3, 6b2 and 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

10 

 

 

6c2 in Tab. 2, and Fig. 2E) and strike-slip tectonics (Type 3 in Tab. 2, and Fig. 2F). Some of the most 

salient examples of broken formations include the Ligurian mélanges in the eastern Northern 

Apennines (Fig. 3C) (e.g., Pini, 1999; Vannucchi and Bettelli, 2010), part of the Argille Varicolori and 

“Flysch Rosso” (Figs. 3A and 3B) in the Central-Southern Apennines (Festa et al., 2010a, 2010b; 

Vezzani et al., 2010), the Costal Range mélange of Hikurangi margin, and the Esk Head (Fig. 3D) and 

similar chaotic rocks in the Torlesse Complex in New Zealand (e.g., Pettinga, 1982; Barnes and 

Korsch, 1991), part of the Franciscan Complex in California (e.g., Wakabayashi, 1992, 2011; 

Meneghini et al., 2009), the youngest section of the Shimanto Belt in Japan (Ditullio and Byrne, 1990), 

the Bobonaro Mélange of the active Banda arc-continent collision (Harris et al., 1998; Harris, 2011), 

and the Taconic mélanges in the Central-Northern Appalachians (e.g., Vollmer and Bosworth, 1984; 

Lash, 1987; Codegone et al., 2012a). 

The origin of exotic blocks and the nature of processes responsible for their emplacement and 

mixing within a mélange are a subject of long-lasting debate and controversy (e.g., Bailey et al., 1964; 

Hsü, 1968; Coleman and Lanphere, 1971; Berkland et al., 1972; Cowan, 1974, 1985; Raymond, 

1984; Suzuki, 1986; Aalto, 1989; Harris et al., 1998; Şengör, 2003; Osozawa et al., 2011; 

Wakabayashi, 2011). Tectonic mélanges with exotic blocks mixed solely by tectonic processes (Tab. 

2) are predominant in shear zones (Figs. 3E and 3F, see also Type 3 in Fig. 2F), and occur at 

different scales in (1) narrow, anastomosing and coalescent fault zones (Fig. 3F; see, e.g., Coleman 

and Lanphere, 1971; Suppe, 1972; Cowan, 1974; Pettinga, 1982; Kimura et al., 1996; Hashimoto and 

Kimura, 1999; Codegone et al., 2012b), (2) crustal-scale thrust fault zones (e.g., Moore and Sample, 

1986; Doubleday and Trenter, 1992; Kusky et al., 1997; Meneghini et al., 2009), (3) plate boundaries 

(e.g., Wakabayashi, 1992; Ogawa, 1998; Onishi et al., 2001; Vannucchi et al., 2008; Meneghini et al., 

2009; Kusky and Jianghai, 2010; Kimura et al., 2012) and transform fault or fracture zones (e.g., 

Moseley and Abbotts, 1979; Suzuki, 1986; Dilek, 1989; Saleeby, 1989; Dilek et al., 1991; Shervais et 

al., 2011), where they may be as thick as 1000-2000 meters, and (4) subduction channels (e.g., 

Cloos, 1982; Federico et al., 2007; Blanco-Quitero et al., 2010; see Type 4b in Fig. 2C) where flow-

mélanges form (e.g., Cloos, 1982; Shreve and Cloos, 1986; Ukar, 2012). In these settings tectonic 
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processes incorporate exotic blocks into the mélange matrix by offscraping, underplating, sinking of 

roof thrust rocks, and tectonic slicing (see Type 4b in Figs. 2B, 2C and 2D). In view of similar 

observations, Cowan (1974) suggested that tectonic mélanges are structurally equivalent to faults, 

along which the tectonic dislocation “has expanded from a plane (i.e., fault) to a zone of several 

members to kilometers in width (i.e., tectonic mélange)”. However, mélanges with exotic blocks 

originated from sedimentary (e.g., Hsü, 1968; Cowan and Page, 1975; Abbate et al., 1981; Naylor, 

1982; Cowan, 1985; Liu and Einsele, 1996; Burg et al., 2008; Erickson, 2011; Wakabayashi, 2011; 

Cieszkowski et al., 2012; Codegone et al., 2012b; El Bahariya, 2012; Hitz and Wakabayashi, 2012; 

Pini et al., 2012) and diapiric processes (e.g., Maxwell, 1974; Cloos, 1983; Becker and Cloos, 1985; 

Maekawa et al., 1993; Fryer et al., 1999; Camerlenghi and Pini, 2009) are common in other tectonic 

settings (Tab. 2). Both of these mélange types may subsequently be overprinted and structurally 

reworked by tectonic processes such as shearing and tectonic mixing when placed in an accretionary 

wedge or in a subduction channel (e.g., Cowan and Page, 1975; Cloos, 1982; Cowan, 1985; Cloos 

and Shreve, 1988a, 1988b; Medialtea et al., 2004; Dilek and Thy, 2006; Burg et al., 2008; Osozawa et 

al., 2009, 2011; Cowan and Brandon, 2011; Wakabayashi, 2011; Fig. 2C; see Type 4b in Tab. 2; see 

also Figs. 4A and 4B), or by thrusting and folding in a collisional belt (e.g., Brandon, 1989; Pini, 1999; 

Dilek, 2006; Camerlenghi and Pini, 2009; Osozawa et al., 2009, 2011; Festa et al., 2010a, 2010b; 

Codegone et al., 2012b; Ogata et al., 2012b; Fig. 3A; see Types 6a2 and 6b2 in Tab. 2 and Fig. 2E). 

These mélanges (with exotic blocks) mainly represent “polygenetic” mélanges, in which the 

occurrence of exotic blocks in their matrix is commonly due to different types of mass-transport 

(slides, debris flows and avalanches, etc.) or diapiric processes (Fig. 4C) rather than due solely to 

tectonic processes.  

Although subsequent tectonic processes commonly affect and overprint the existing 

sedimentary and diapiric mélanges (Cowan and Page, 1975; Osozawa et al., 2011), it is not 

uncommon for tectonic mélanges and broken formations to be, in turn, reworked and overprinted by 

later sedimentary or diapiric processes (e.g., Aalto, 1981). The occurrences of mud diapirs, which 

reworked some previously formed tectonic mélanges and broken formations, have been described 
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from the wedge-top succession of the Tertiary Piedmont Basin (Dela Pierre et al., 2007, Festa, 2011) 

and from the frontal part of the ancient External Ligurian accretionary complex of the Northern 

Apennines (Codegone et al., 2012b) in NW Italy. Large-scale sedimentary processes reworking 

tectonic mélanges and broken formations are responsible for the development of basin-wide 

olistostromes in the wedge-top and foredeep Tertiary basin of the Apennines (Abbate et al., 1970, 

1981; Pini, 1999; Lucente and Pini, 2003, 2008; Cavazza and Barone, 2010; Vezzani et al., 2010; 

Remitti et al., 2011). Diapiric processes overprinting sedimentary mélanges occur, for example, in the 

Hoh accretionary complex in the Olympic Peninsula (e.g., Cowan and Brandon, 2011), in the 

Hamburg Klippe of central Pennsylvania (Lash, 1987; Codegone et al., 2012a), in the Timor region of 

the Banda arc (Harris et al., 1998) and in several offshore cases (Camerlenghi and Pini, 2009 and 

references therein). Diapiric mélanges and shale diapirs reworked by sedimentary processes occur in 

the accretionary complex of Timor in Indonesia (e.g., Barber et al., 1986; Barber and Brown, 1988; 

Harris et al., 1998). 

Sedimentary mélanges (Figs. 4D, 4E and 4F) may occur in many tectonic environments, but 

they prevail particularly in extensional (Type 1 in Tab. 2, and Fig. 2A; e.g., Bernoulli, 2001; Alonso et 

al., 2008) and passive margin settings (Types 2a and 2b in Tab. 2, and Fig. 2A; e.g., Naylor, 1982; Liu 

and Einsele, 1996; Dilek at al., 2005; Camerlenghi and Pini, 2009; Robertson et al., 2009; Ghikas et 

al., 2010; Bonev et al., 2012), where the direct contribution of extensional tectonic processes (e.g., 

crushing and mixing in normal fault zones) is negligible. Sedimentary processes commonly take place 

at the front and atop of a nappe stack in collisional and intra-continental deformation zones (Types 5, 

6a1 and 6a2 in Tab. 2, and Fig. 2E; e.g., Dilek et al., 1999; Remitti et al., 2011; Hernaiz Huerta et al., 

2012; Ogata et al., 2012a, 2012b) of ancient, submarine collisional orogens as in the “Alpine-

Himalayan” chains (e.g., Abbate et al., 1970; Smith et al., 1979; Liu and Einsele, 1996; Marroni and 

Pandolfi, 2001; Burg et al., 2008), and modern ones as in the Gela Nappe in the Sicily Channel 

(Tricardi and Argnani, 1990; Minisini et al., 2009) and Adriatic Sea (Tricardi et al., 2004; Argnani et al., 

2011). Their occurrence in exhumed accretionary wedge and in subduction settings (Type 4a in Tab. 

2, and Figs. 2A, 2C, and 2D) is relatively minor, although it has been recently re-evaluated in some 
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on-land examples of ancient accretionary complexes (e.g., Collot et al., 2001; Burg et al., 2008; 

Yamamoto et al., 2012b). These mélanges occur at the wedge front of subduction settings (Yamada 

et al., 2010) and are mainly related to subduction of seamounts and to the reactivation of normal 

faults (Fig. 2A) in a downgoing plate (see e.g., Marroni and Pandolfi, 2001; Martinez Catalan et al., 

1997). Some may also form when accretion is replaced by tectonic erosion at a convergent margin 

(e.g., von Huene and Lallemand, 1990; Ranero and von Huene, 2000; von Huene et al., 2004; Remitti 

et al., 2011). Sedimentary processes might also have been responsible for the formation of different 

types of sub-aerial mélanges (Type 7a in Tab. 2), such as debris flow and avalanches, alluvial fan 

deposits, talus breccias (scree deposits) and megabreccias, block falls, and glacial till (see Hoffmann 

and Piotrowski, 2001).  

 

3.2. Tectonics as a prominent triggering mechanism 

The occurrence of different types of sedimentary mélanges in most geodynamic environments 

(Tab. 2) could be simply related to the fact that sedimentary processes are more efficient in terms of 

conservation of kinetic energy in comparison to tectonic and diapiric ones. These processes may also 

play a prominent role in maintaining the dynamic equilibrium in active tectonic settings (e.g., frontal 

erosion in accretionary complexes, slope failure on steep margins of carbonate platforms or passive 

margins). However, tectonic processes, rather than sedimentary or diapiric ones, constitute the most 

effective triggering mechanisms (both directly and indirectly) (see Tab. 2). Hence, they play a primary 

role in controlling the processes and mechanisms of stratal disruption and mixing, and in the 

formation of tectonic, sedimentary or diapiric mélanges (Fig. 5). 

The direct role played by tectonics is achieved mainly by seismic faulting associated with 

strike-slip or contractional deformation (Fig. 5). Faulting is an effective mechanism of disruption of a 

coherent stratigraphic succession (e.g., Cowan, 1974, 1985; Vollmer and Bosworth, 1984; Karig et al., 

1986; Needham, 1995; Rassios and Dilek, 2009; Ghikas et al., 2010; Festa et al., 2010a). The 

superposition of displacements along innumerable subparallel, meso-scale shear faults and fractures 

develop zones of distributed shear from several meters to kilometers in width (Coleman and 
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Lanphere, 1971; Suppe, 1972; Pettinga, 1982; Moore and Sample, 1986; Kimura et al., 1996; Kusky 

et al., 1997; Ogawa, 1998; Meneghini et al., 2009; Bradbury et al., 2011). This process represents an 

effective mechanism of formation of tectonic mélanges and broken formations with different end-

members, from brittle broken formations to flow mélanges according to the tectonic setting and 

structural level of their formation.  

In poorly- or non-consolidated sedimentary successions, faults represent the preferential 

pathways for the upward rise of overpressured fluids (Fig. 5) that facilitate in situ stratal disruption, 

diapiric deformation and related processes. These fluids are able, in turn, to increase the driving 

forces along the slope, inducing gravitational processes and the formation of sedimentary mélanges.  

Tectonic processes can also play an indirect role in triggering stratal disruption and mixing in 

most geodynamic settings (Fig. 5). Tectonic activities can trigger mass-transport processes by both 

(1) reducing the shear strength of sediments (e.g. higher sedimentation rates, gas hydrates 

dissociation, etc.) and, thus decreasing the resisting forces along the slope, and (2) magnifying the 

effect of other driving mechanisms, processes and events along the slope (e.g., failure by slope 

oversteepening, mud diapirism and mud volcanism, sea level fluctuation, etc.).  

Sedimentary instability may be caused by the upward rise of over-pressured fluids from a 

subduction zone. The upward rise of these fluids is commonly related to tectonic loading (Fig. 5) 

along the decollement surface developed at the toe of an accretionary wedge (e.g., Brown and 

Westbrook, 1988; Brown, 1990) or to fluids pumped-up along strike-slip faults (e.g., Dela Pierre et al., 

2007). The abrupt emplacement of mass-transport chaotic bodies can strongly increase the 

magnitude of sedimentary loading, causing overpressure and consequent sediment liquefaction (Figs. 

4G and 4H), which in turn induces diapiric processes forming diapiric mélanges (Fig. 5). The 

emergence of diapiric bodies (e.g., sedimentary diatremes, mud volcanoes or diapirs) may create 

instability in unconsolidated material and then gravitational movement along the slope, forming mass-

transport chaotic bodies (e.g., Barber et al., 1986; Camerlenghi and Pini, 2009). This complicated 

interplay of different processes induced mainly by tectonics is strongly controlled, in each tectonic 

setting, by the physical conditions (e.g. water content, overpressure, P-T conditions, etc.), the nature 
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and state of consolidation of sediments, and the burial depth or structural level at which broken 

formations and mélanges form (see below). 

 

4. Mechanisms of stratal disruption, mixing and related chaotic products  

 

At shallow structural depths in different tectonic environments, the final structural texture and 

the fabric of chaotic rock units are commonly achieved through progressive deformation of originally 

coherent stratigraphic successions (stratal disruption), and through series of interacting or overlapping 

mechanisms (Fig. 6). This progressive deformation is directly controlled by the increase of the degree 

of consolidation with burial, or with the increasing depth of the structural level in which these 

processes commonly operate (see Tab. 2, and Fig. 7). Consolidation controls the change of 

mechanical strength of sediments from deposition to progressive burial (e.g., Lash, 1989; Jones et al., 

1991); it is time-dependent and closely related to changes in pore-volume, expulsion of pore-fluid, and 

interaction and packing of grain particles (e.g., Maltman, 1994; Maltman and Bolton, 2003). Then, the 

occurrence of poorly consolidated sediments in the shallow part of accretionary prisms or sedimentary 

piles favors gravitational deformation, whereas with the downward increase of consolidation at depth, 

the deformation related to tectonic forces becomes gradually more significant (Fig. 6, see also 

Maltman, 1994). However, tectonics and related stress conditions may greatly affect this linear 

relationship between consolidation and structural or burial level (see below), changing the local 

physical properties of sediments (e.g., permeability, strength; see Maltman, 1994; Michiguchi and 

Ogawa, 2011).  

 

4.1. Sedimentary stratal disruption and mixing 

At shallow structural levels, sedimentary mass transport processes are the most efficient 

causes for stratal disruption (Figs. 6A and 6B), occurring both inside of a sliding body of rocks (e.g. 

via partial disaggregation of still stratified blocks) and outside (e.g. within the uppermost portion of the 

overridden substrate) during its downslope motion. This kind of deformation commonly involves 
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poorly-lithified or loose material, and results in the formation of a broad spectrum of structures (Figs. 

6A and 6B) ranging from folded and boudinaged successions (e.g. slump deposits) to block-in-matrix 

bodies (e.g. debris flow deposits; Figs. 6A and 6B). These products are characterized by the 

occurrence of a strongly mixed, liquidized matrix (i.e. hyper-concentrated suspension sensu Mutti, 

1992) enveloping disrupted layers and blocks. Those layers or blocks may show different degrees of 

lithification, and represent the final artifacts of progressive down-slope, soft sediment deformation 

(e.g., Maltman, 1994; Ogata, 2010). The latter deformation is enabled by the relative movement (i.e., 

fast vs. slow) of unlithified masses with progressive flow transformation, stratal disruption, or both, of 

the partially-to largely lithified sediments (Pini et al., 2012).  

The different velocities of movement, the composition and lithification degree of sediments 

(related to the stratigraphic level of the rupture surface), the geometry and morphology of the 

depositional setting, and the mode of failure propagation (progressive vs. regressive collapse) 

commonly control the nature of the transition between different types of mass-transport chaotic bodies 

(Fig. 8A). Pini et al. (2012; see also Lucente and Pini, 2003) distinguished three main types of mass-

transport chaotic bodies, representing the end-members of a continuum of chaotic products and 

displaying different characteristics. First, viscous-flow, which is dominated by shearing in fine-grained 

sediments, is responsible for the movement and emplacement mode of classic olistostromes (Figs. 

8A and 8B; see also Figs. 4D, 4E and 4F), which are characterized by centimeter-to meters sized 

hard blocks that are randomly distributed in a mud-rich, brecciated matrix (Fig. 8C) (e.g., Swarbick 

and Naylor, 1980; Abbate et al., 1970, 1981). Commonly, at the base of these bodies, a shear zone 

may form accommodating the flow of sediments (e.g. Pini, 1999; Ogata et al., 2012a) and deforming 

poorly consolidated blocks (Figs. 8A and 8D). These bodies may assume different shapes depending 

on the deformation style (flattening vs. simple-shear) and strain magnitude (see Type 1 MTC of Pini et 

al., 2012). Second, overpressure of fluids sustaining mud-silt-sandy sediments, controls the down-

slope movement of hyper-concentrated suspension (sensu Mutti, 1992) characterized by a block-

dominated part overlying a matrix-dominated one (Fig. 8A; see Ogata, 2010; Ogata et al., 2012a, 

2012b). Third, narrow and over-pressured shear zones (millimeters-to decimeters thick, see Dykstra, 
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2005) allow the emplacement of chaotic, sandy sediments displaying folds, boudinage, extensional 

and contractional duplexes, and showing a gradual downward increase of stratal disruption (Figs. 8A, 

8E and 8F; see Pini et al., 2012). Localized zones of liquefaction of sandy sediments can also be 

locally related to the emplacement of these chaotic bodies (see Lucente and Pini, 2003 for detail). 

In all these types of mass-transport chaotic bodies, the mixing of rocks and the incorporation 

of exotic blocks are controlled by two fundamental factors. The first one is the depth reached by the 

slope failure and its propagation toward the basin margins. Mixing of the rocks derived from the basin 

margins with those sediments in the basin is a common process in the formation of mass-transport 

bodies (Page and Suppe, 1981; Callot et al., 2008; Ogata et al., 2012c). During deposition, these 

"exotic" rocks were extraformational, extrabasinal, older and much more consolidated than the basin 

sediments. The second factor involves the exhumation and uplift and the subsequent reworking of 

older rocks. The emplacement of submarine nappes can supply extrabasinal blocks of different size, 

centimeters to hundreds of meters, to mass-transport deposits in the foredeep basins. Originated from 

different structural units, these blocks are composed of rocks that were completely consolidated, 

tectonically deformed and metamorphosed at the time of deposition. Classic examples include the 

precursory olistostromes in the Apennines of Italy (see, e.g., Abbate et al., 1970, 1981; Elter and 

Trevisan, 1973; Lucente and Pini, 2008 and references therein), the Porma mélange in the 

Cantabrian chain (Alonso et al., 2006), the "wildflysch" of the Alps (Trümpy, 2007) and the "klippen 

zones" in the Carpathians (Camerlenghi and Pini, 2009 and references therein; Cieszkowski et al., 

2012; Ślączka et al., 2012). The same scenario could occur in oblique subduction (Hernaiz Huerta et 

al., 2012) and transpressional tectonic zones (Marroni et al., 2001). In the Franciscan Complex, the 

HP (and medium pressure) blocks, hosted by a low metamorphic epizonal matrix, can be explained 

as clasts (see Cowan and Page, 1975) eroded from exhumed blueschists facies rocks and deposited 

as debris flows and avalanches in the accretionary prism front (Erickson, 2011; Wakabayashi, 2011). 

Exhumation of subduction channels, such as in Timor and Taiwan, represents the source of exotic 

blocks of different metamorphic grades and mantle origins (e.g., Guillot et al., 2009; Ota and Kaneko, 
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2010) that may be mixed together by mass-transport processes forming sedimentary mélanges or 

supplying UHP-HP "knockers".  

 

4.2. Diapiric stratal disruption and mixing 

Liquefaction of sediments is a primary factor in controlling the downslope mobilization of 

unconsolidated or incompletely lithified sediments (Maltman and Bolton, 2003), but it is also highly 

important for in situ stratal disruption processes characterized by relatively limited transport of 

material. At shallow crustal-levels, injectites and seismites (Figs. 4G, 4H and 6B) may develop in 

response to slope tectonics and seismic shocks (at least at the micro-and meso-scales). Yamamoto 

et al. (2009) described some notable examples of these structures from the Miura-Boso accretionary 

complex that formed during the early stages of accretion (Fig. 4G; Central Japan) and Codegone et 

al. (2012a) from the Hamburg Klippe in the central Appalachians (Central-eastern Pennsylvania). 

These authors described some good examples of injectites and seismites intruding the overlying and 

underlying sandy layers, and showing a randomly oriented ”block-in-homogeneous sandy matrix”. 

These examples lack sedimentary features such as lamination, grain-size grading or small-block 

preferred orientation (Fig. 4G). Another important diagnostic feature of injectites and seismites is the 

lack of a basal erosive surface and internal slip planes. The injectites and seismites in other chaotic 

bodies are characterized by a liquefied matrix and constitute hyper-concentrated density flows 

(Lucente and Pini, 2003; Ogata, 2010). 

With an increase of the consolidation degree and the rheological contrast between the layers 

of the stratigraphic succession, an abrupt increase of tectonic or lithostatic loading, gas hydrates 

dissociation, density inversion, and diagenetic transformation (Kopf, 2002) may cause the 

overpressurization of fluids at relatively deeper structural levels. Over-pressured fluids may then result 

in the development of sedimentary diatremes (e.g., Borgia et al., 2006), mud-volcanoes (e.g., Kopf, 

2002; Camerlenghi and Pini, 2009) and diapiric bodies (Fig. 4C; e.g., Barber et al., 1986; Orange, 

1990; Festa, 2011) of unconsolidated sediments. These structures may show a great diversity 

stemming from the origin of the fluid phases (e.g., Kopf, 2002; Camerlenghi and Pini, 2009). Diapiric 
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processes are widespread as subordinate processes in most tectonic environments (see Tab. 2, Fig. 

2) and occur where the necessary physical and mechanical conditions (such as fluid overpressure) 

exist (e.g., Brown and Westbrook, 1988; Kopf, 2002; Dela Pierre et al., 2007; Camerlenghi and Pini, 

2009; Festa, 2011). The mixing of exotic blocks is mainly achieved by a combination of 

hydrofracturing processes and the progressive incorporation of the wall-rock material (collapse and 

assimilation of the roof and margins of the structure) and flow. Notable examples of mud volcanoes 

with exotic blocks of blueschist rocks contained in serpentine-dominated muds have been described 

from the forearc region of the active Mariana subduction zone (Maekawa et al., 1993; Fryer et al., 

1999). These exotic blocks, originated from the metamorphosed subducted plate, were entrained in 

rising serpentine mud diapirs (up to 30 km wide and 2 km high), and were then extruded from the mud 

volcanoes onto the sea floor. 

Blocks may be also derived from the previously formed underlying mélanges (Camerlenghi 

and Pini, 2009). Cyclic diapiric reactivation of the previously formed sedimentary or tectonic mélanges 

(Fig. 4C) may also occur when the physical conditions are sufficient, leading to the formation of a 

complex polygenetic mélange (Barber et al., 1986; Henry et al., 1990; Brown and Orange, 1993; 

Cronin et al., 1997; Camerlenghi and Pini, 2009; Festa et al., 2010a; Festa, 2011; Codegone et al., 

2012b).  

 

4.3. Tectonic stratal disruption and mixing 

Immediately after deposition, sediments may start undergoing deformation due to the interplay 

between gravitational forces and tectonic stresses during progressive burial (see Maltman, 1994). 

There exists an overlapping zone at shallow structural levels, where the block-in-matrix fabric of 

broken formations shows a strong convergence of fabric with sedimentary mélanges.  

In general, layer-parallel extension occurring in all directions records a coaxial strain history 

compatible with sedimentary processes on gently dipping slopes (Fig. 9A and 9A1; e.g., Lash, 1987, 

1989; Cowan, 1985), whereas layer-parallel shearing records a non-coaxial strain history commonly 

related to extensional slicing across a basal shear zone and underthrusting (e.g., Cowan, 1985; 
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Byrne, 1984; Fisher and Byrne, 1987; Hashimoto and Kimura, 1999). The development of layer-

parallel extension and shearing may change as a function of the relationships between the 

consolidation degree, dewatering processes, and the magnitude of strain occurring in the tectonic 

setting, whereas tectonic loading may produce layer-parallel extension with coaxial strain on sub-

horizontal bedded succession.  

Tectonic loading related to pre-thrusting deformation during the advancement of an 

accretionary wedge or a continental nappe stack is an effective mechanism in triggering dewatering 

and fluid expulsion (Breen et al., 1986; Harris et al., 1998) (Fig. 6C). These fluid-driven processes 

result in layer-parallel disruption and in the development of boudinage or dismemberment of the most 

lithified layers due to hydrofracturing and fluid overpressure (e.g., blocky veins, see Meneghini et al., 

2009; web-like fragmentation, see Kimura et al., 2012; brecciation, etc.). Depending on the degree of 

consolidation and rheological contrasts within a stratigraphic succession (see Bettelli and Vannucchi, 

2003), layer-parallel disruption can evolve into an incipient foliation, formation of a scaly fabric in the 

less competent layers (e.g., claystone, limestone, mudstone), and development of a progressive 

boudinage structure in competent layers (Figs. 9A; e.g., sandstone; see Lash, 1989; Kimura and 

Mukai, 1991; Onishi and Kimura, 1995). Pinch-and-swell structures and irregular boudinage features 

defining ellipsoidal-shaped blocks are commonly related to coaxial strain that induced heterogeneous 

flattening in all directions (Figs. 9A and 9A1; Harris et al., 1998; Pini, 1999). Regular boudinage 

features form as a result of non-coaxial strain and may produce lozenge-to sigmoidal shaped blocks 

(Figs. 9B and 9B1).  

With the gradual increase of consolidation, conjugate extensional fractures may develop into 

symmetrical brittle boudinage structures, which may turn into asymmetric shear planes with increased 

shearing (Figs. 9F, 9F1, 9G, 9G1 and 9G2; see also Kimura et al., 2012). Boudinage structures may 

also form due to the propagation of Y, P, R, R‟ shear surfaces (Figs. 9G, 9G1 and 9G2; see also 

Needham, 1995; Pini, 1999). In lithified sediments, extensional veining (Figs. 9C and 9C1), cataclastic 

deformation and brecciation at necks and tails of boudins (Figs. 9D and 9D1), and asymmetric veins 

(Fig. 9E) may develop as a result of a sequential process of cataclasis, fracturing, and Riedel 
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shearing leading to boudinage formation (see Kimura et al., 2012). The style and degree of block 

fragmentation may change as a function of block aspect ratio (see Needham, 1995), whereas at 

seismogenic depths the increase of diagenesis and metamorphic grade may also change the shape 

of boudinaged blocks from elongate and oblate to a spherical shape (Kimura et al., 2012).  

With the increase of shear and consolidation, mixing process in fault/shear zones cause 

mechanical crushing of the hanging and footwall rocks, which then becomes progressively 

incorporated into an evolving tectonic mélange (Figs. 4E and 6D; Cowan, 1974, 1985; Pettinga, 1982; 

Barnes and Korsch, 1991; Onishi and Kimura, 1995; Ogawa, 1998). Flattening of subcreted thrust 

sheets, as they are detached from the footwall, also represents an effective mechanism of disruption 

of fractured layers into broken strata and mélange, as for example along the Sonnebad Disruption 

Zone in the Timor region of Indonesia (Harris et al., 1998). Tectonic mélanges formed in these ways 

commonly display (Tab. 2; Fig. 2) a pervasive, scaly fabric, which is most pronounced in fine-grained 

lithologies (Figs. 3C and 3D). At relatively deeper structural levels in an accretionary prism, faulting 

(e.g., Cowan, 1985; Wakabayashi, 1992; Pettinga, 1992; Needham, 1995; Ogawa, 1998) and folding 

(e.g., Moore, 1973; Onishi and Kimura, 1995; Kusky and Bradley, 1999; Vannucchi and Bettelli, 2002; 

Bettelli and Vannucchi, 2003) are the main mechanisms of stratal disruption (Figs. 6E1, and 6E2). 

Deformation here is concentrated within fault and shear zones (Figs. 3F), and tectonic thickening 

occurs due to duplexing, antiformal stacking (Figs. 6D, and 6F) and out-of-sequence thrusting (e.g., 

Pettinga, 1982; Needham, 1995). This phenomenon explains why tectonic mélanges with exotic 

blocks occur exclusively in different scale shear zones, as discussed earlier. Localized fault zones 

(Fig. 3F) are strictly responsible for large-scale tectonic mixing processes (e.g., Cowan, 1974; Festa 

et al., 2010a). 

Although in this study we focus only on mélanges formed at shallow structural levels, at 

deeper levels diagenetic and metamorphic processes significantly influence the deformational style by 

enhancing the competence contrast between different layers through the formation of new mineral 

phases and by dehydration of the clay minerals (e.g. increasing pore pressure). Diagenetic and 

metamorphic processes collectively favor the occurrence of mixing processes, forming tectonic 
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mélanges (Fig. 2C). Brittle or semi-brittle deformation becomes gradually replaced by ductile 

deformation with the progressive increase of the temperature and pressure (e.g., Blanco-Quintero et 

al., 2011). Within a subduction channel (Shreve and Cloos, 1986), for example, tectonic processes 

facilitate the formation of flow mélanges, and control the upward trajectories of exotic rocks 

(blueschist or serpentinized peridotite) (Cloos and Shreve, 1988b; Federico et al., 2007; Blanco-

Quintero et al., 2011) and large-scale serpentinite diapirism (e.g., Maekawa et al., 1993; Fryer et al., 

1999). Here, the buoyancy of subducting sediments affects the flow, and the deformed sediments 

become incorporated into the upper plate of the subduction channel (Fig. 2C). The block-in-matrix 

fabric and the pattern of underplating depend on the shear stress distribution along the hanging-wall 

of the subduction channel, the sediment supply along this channel, the geometry, properties and 

permeability of the overriding units, and particularly the nature of the back-stop (Shreve and Cloos, 

1986; Cloos and Shreve, 1988a, 1988b).  

 

4.4. Small-scale and localized horizons of stratal disruption and mixing 

All the examples described so far show that a “continuum” of stratal disruption and mixing may 

exist (Figs. 6, 8 and 9), recording the history of progressive burial and shear strengthening at shallow 

structural levels (see also Needham, 1995). However, the development of tectonic surfaces, the 

occurrence of impermeable barriers or strong rheological contrasts within stratigraphic successions, 

or both, can define thin horizons of deformation zones (up to tens of meters thick) that can affect the 

progressive increase of stratal disruption related to the burial conditions (Fig. 3F; e.g., Bosworth and 

Vollmer, 1981; Bosworth, 1989; Lash, 1989; Byrne, 1994). Within these horizons, fluid pressure can 

increase up to overpressure point, a level of which drives the sediments toward a critical state 

condition (Maltman and Bolton, 2003), promoting stratal disruption and mixing processes that produce 

broken formations and mélanges. The physical superposition of these horizons, as well as that of 

different mechanisms and processes, further complicate the above described “continuum” of stratal 

disruption and mixing, and can favor the formation of polygenetic mélanges. Although the last 

pervasive process commonly obliterates the products of the previously formed ones (e.g., Raymond, 
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1984; Raymond et al., 1989; Ogawa, 1998; Dela Pierre et al., 2007; Festa et al., 2010a; Festa, 2011; 

Codegone et al., 2012b), polygenetic mélanges may display a continuum of stratal disruption and 

mixing shown by the superposition of different products formed by tectonic, sedimentary and diapiric 

processes. The understanding of the interplay and superposition of these different processes is of 

primary importance in understanding the mechanisms of broken formation, mélange, and polygenetic 

mélange development as well as the evolution of the tectonic setting in which they formed. 

 

5. Conclusions 

 

A redefinition of the terms broken formation and mélange and a clearer distinction between 

them allow us to extend these definitions to a more diverse occurrence of chaotic rock bodies 

developed in different tectonic settings. Tectonic events represent the most prominent triggering 

mechanism inducing, directly or indirectly, different processes of stratal disruption and mixing that 

produce a broad spectrum of chaotic rock bodies. The block-in-matrix arrangement in these chaotic 

rock bodies is mainly controlled by a linear relationship between the degree of consolidation (including 

tectonically-induced compaction) and progressive burial (Fig. 10). As a result, a continuum of 

processes and deformation structures gives rise to gradual disruption and mixing processes that are 

significant for the development of broken formations and mélanges.  

At shallow structural levels in tectonically active environments the occurrence of poorly 

consolidated sediments favors gravitational deformation. Sedimentary (mass-transport) and diapiric 

chaotic products record punctuated and instantaneous stratal disruption features, which provide 

important clues about the physical conditions of their formation (e.g., consolidation, fluid pressure, 

changes of pore-volume, expulsion of pore-fluid and strength of sediments), and about the evolution 

of their tectonic setting of formation (Fig. 10). In the geological record, the occurrence of these 

sedimentary and diapiric chaotic bodies and their tectonic or stratigraphic relationships with other 

chaotic bodies and coherent stratigraphic successions allow us to better constrain the changes in the 

dynamic equilibrium in a geological setting. A good example of the control exerted by these processes 
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on the dynamic equilibrium would be the switch from an accretionary tectonics to an erosion tectonics 

at the wedge front of accretionary complexes (e.g., von Huene and Lallemand, 1990; von Huene et 

al., 2004; Remitti et al., 2011).  

With the downward increase of consolidation at depth, the deformation related to tectonic 

forces becomes gradually more significant. Tectonically broken formations and mélanges record a 

continuum of deformation that occurs through time and different degrees of lithification during a 

progressive increase of the degree of consolidation and of the diagenetic and metamorphic mineral 

transformation (Fig. 10). At shallow structural levels the sediments are affected by a brittle to more 

ductile deformation that follows their progressive dewatering and strengthening as a result of burial. At 

deeper structural levels, diagenetic and metamorphic mineral transformation accompanies 

deformation patterns that are controlled strongly by the increase of P-T conditions. Several tectonic, 

chaotic products may record a deeper progressive evolution in a continuum of deformation that is 

related to several mechanisms of stratal disruption and mixing (i.e., in situ stratal disruption, faulting, 

shearing, thrusting and faulting).  

The superposition of different mechanisms and processes of disruption and mixing of rocks in 

some tectonic settings may lead to the reworking of existing mélange products and to the formation of 

polygenetic mélange types. The previously formed chaotic products may then change their block-in-

matrix arrangement according to the last deformation style, strain rate, stress direction, alternating 

coaxial and non-coaxial strain paths, and variations in consolidation degrees. Polygenetic mélanges 

may thus provide useful information on their multiphase evolution (e.g., Festa, 2011; Osozawa et al., 

2011), the spatial and temporal relationships between the physical conditions (e.g., burial loading, 

porosity and fluid pressure), and the mechanisms and processes that acted in the depositional 

environment or within the sedimentary succession where they formed.  

None of the geological processes forming mélanges operates in isolation. They commonly 

interact in a continuum of stratal disruption and mixing processes (Figs. 5 and 6). These processes 

and their mode are also strongly controlled by the balance between the hydrological activities and the 
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rate at which the fluids are produced by burial-related consolidation, mineral dehydration 

mechanisms, diagenesis, and metamorphism in any given tectonic setting (e.g., Byrne, 1994).  
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CAPTIONS TO TABLES AND FIGURES 

Table 1 – Deterministic characters of broken formations and mélanges, representing two end 

members involving the nature of blocks (native vs. exotic) and mechanisms (in situ stratal disruption 

vs. mixing). 

 

Table 2 – Subdivision and classification of mélanges and broken formations on the basis of their 

geodynamic setting of formation, processes, triggering mechanisms, products and mesoscale 

characteristics (modified after Festa et al., 2010a). Acronyms are listed at the bottom of the table. 

 

Figure 1 – Global distribution of mélanges and mélanges terrains. 

 

Figure 2 – Conceptual model for the formation and emplacement of mélanges associated with (A) 

extensional tectonics (type 1 mélanges), passive margin (type 2a mélanges), ocean-continent 

transition settings (type 2b mélanges) and convergent margins (type 4 mélanges). Different models 

and cases of subduction settings are shown: (A) open-double verging wedge with a low elevation 

backstop; (B) obduction of ophiolites (modified after Rassios and Dilek, 2009); (C) close wedge and 

subduction channel (modified after Cloos, 1982); (D) close and smaller wedge with an high elevation 

of the backstop; (E) collisional tectonics (type 5 mélanges; modified after Huang et al., 2008; Ghikas 

et al., 2010; Festa et al., 2010a), intra-continental deformation (type 6 mélanges), and (F) strike slip 

tectonics (type 3 mélanges). 

 

Figure 3 - Different examples of broken formations and mélanges: (A) layer-parallel extension in the 

Argille varicolori displaying lozenge-shaped boudins of red clayey marl enveloped in greyish matrix 

(broken formation) (Aventino valley, Abruzzi region, Central Apennines of Italy; photograph by E. 

Malerba); (B) progressive stratal disruption of well bedded units (Flysch Rosso) forming lozenge-

shaped boudins of mudstone in a clayey marl matrix (broken formation) (Aventino valley, Abruzzi 

region, Central Apennines of Italy); (C) progressive stratal disruption of well bedded units (Subligurian 
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Eocene Canetolo Complex) forming broken formation (Corniglia, La Spezia, western coastal 

exposures of the Northern Apennines of Italy); (D) lozenge-shaped boudins of sandstone within a 

mudstone matrix displaying a pervasive scaly fabric (broken formation), due to transposition of upright 

beds in a fault zone related to an out-of-sequence thrust (Waimarama Beach, South Hawke‟s Bay, 

East Coast of North Island, New Zealand); (E) phacoidal Upper Triassic pelagic limestone blocks in a 

heterogeneous and variously deformed matrix composed of shale, mudstone, and sandstone in the 

Jurassic-Cretaceous Avdella mélange (Pindos Mountains, Northern Greece); (F) narrow, 

anastomosing and coalescent fault zone including exotic blocks of sandstone and mudstone in a 

shaly limestone matrix (Taconic mélange) (Hoosic River at Schaghticoke Gorge, eastern NY, Central 

Appalachian - USA) 

 

Figure 4 – Different examples of polygenetic mélanges, diapiric and sedimentary mélanges: (A) 

sedimentary mélanges overprinted by tectonic deformation forming a polygenetic mélange in the 

footwall of the Taconic Allochthon (Northern Appalachians, USA). Exotic blocks (with respect to the 

shaly limestone matrix) of sandstone, mudstone and chert show a lenticular shape resulting from 

tectonic shearing (Hoosic River at Schaghticoke Gorge, eastern NY, Central Appalachians – USA); 

(B) Exotic blocks of sandstone and volcanic rocks showing an elongated shape within a shaly matrix 

with fluidal feature (tectonic mélange or sheared olistostrome?) (Esk Head mélange, Okuku River, 

New Zealand); (C) small-scale diapiric body overprinting a previously formed broken formation 

(polygenetic mélange) in the footwall of the Taconic Allochthon. Red lines bound the margin of the 

diapiric body. Note the vertical reorientations of blocks enveloped in a fluidal scaly fabric (Poestenkill 

Gorge at Troy, eastern NY, Central Appalachians – USA); (D) olistostrome of the uppermost portion 

of the Oligocene Macigno Costiero Formation (precursory olistostrome) cropping out in the Cinque 

Terre area (La Spezia, westernmost Northern Apennines of Italy); (E) Upper Cretaceous olistostrome 

in the external Ligurian units, flattened and slightly deformed by compaction and tectonics (Berceto, 

Parma area of the Northern Apennines of Italy); (F) Lower Miocene olistostrome (Val Tiepido – 

Canossa olistostrome) of the wedge-top Epiligurian successions. Note the random distribution of hard 
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block in a marly matrix (Costa del Vento, Montalto P.se area of the Norhern Apennines of Italy); (G) 

and (H) liquefied sediments into coherent layers by in situ injection (Kaitocho, Miura Peninsula, 

Japan). 

 

Figure 5 – Diagram showing the direct and indirect role of tectonics as a major triggering mechanism 

in the formation of mélanges. 

 

Figure 6 – Composite diagram showing the continuum of processes of stratal disruption. Arrows 

indicate the genetic link and the continuum of dismemberment processes from shallow to deeper 

structural domains and from sedimentary to tectonic processes. Left and right pictures in Figure A are 

modified from Yamamoto et al. (2009) and Cowan (1985), respectively. Pictures in B, C, E1 and E2, 

modified from Yamamoto et al. (2009), Meneghini et al. (2009), Cowan and Pini (2001), and Bettelli 

and Vannucchi (2003), respectively. 

 

Figure 7 – Schematic diagram showing the progressive increase of the consolidation degree (and 

decrease of fluid production) with depth. Note that consolidation is time-dependent. Modified after 

Collison (1994) and Brown (1994).  

 

Figure 8 – (A) Progressive transition of stratal disruption and mixing processes in mass-transport 

chaotic complexes (modified after Mutti et al., 2006; Ogata et al., 2012a; Pini et al., 2012). Three main 

types of chaotic bodies are formed during the progressive increase of lithification and are 

characterized by a gradual decrease of matrix amount from debris flows to block flow and slide/slump 

bodies (see text for explanation). (B) Example of debris flow (Val Tiepido – Canossa olistostrome at 

Mt. Penola, Val Curone, Northern Apennines of Italy). The arrows indicate the erosive basal surface 

that is characterized by a decimeters-thick shear zone accommodating the flow of sediments (D). 

Away from the basal shear zone, the hard blocks are randomly oriented within the clayey matrix (C). 

(E) and (F) examples of slumping and related boudinage in the Argille varicolori of External Ligurian 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

42 

 

 

Units (Montalto P.se) and Marnoso arenacea Fm. (Passo dei Mandrioli) in Northern Apennines of 

Italy. 

 

Figure 9– Progressive stratal disruption forming different types of broken formations by layer-parallel 

extension (see text for explanation). Stratal disruption is controlled by the degree of consolidation and 

lithification and the increase of shear (see vertical and horizontal arrows). (A) At shallow structural 

levels where sediments are non- to poorly-lithified, pinch-and-swell and boudinage structures are 

formed by coaxial strain. Deformation acts in different ways on the basis of the rheology and nature of 

the bedded succession, inducing heterogeneous flattening. (A1) Photograph showing an example of 

heterogeneous flattening (Marnoso arenacea Fm. at Passo dei Mandrioli, Northern Apennines of 

Italy). (B) With the increasing shear, non-coaxial strain forms lozenge- to sigmoidal-shaped blocks as 

show in the Argille varicolori of photograph (B1) (Monteu da Po, Tertiary Piedmont Basin, NW Italy). 

The increasing amount of lithification is coupled by different mechanisms of stratal disruption as, for 

example, (C and C1) veining, (D and D1) brecciation in the neck and tails of blocks, (E) veining along 

the border of the blocks (modified after Pini, 1999), and (F and F1) extensional fracturing. The 

increasing shearing (G, G1, and G2) forms asymmetrical brittle boudinage with the development of Y, 

R, R‟ and P shear surfaces. Photograph localities are: (C1) Taconic flysch at Schaghticoke Gorge, 

eastern NY, Central Appalachians – USA, (D1) “Messinian mélange” (see Festa, 2011) in the Tertiary 

Piedmont Basin, NW Italy, (F1) Broken formation in the Hamburg Klippe of Eastern Pennsylvania 

(south of Albany, Berks County, USA), (G1) Taconic flysch at Schaghticoke Gorge, eastern NY, 

Central Appalachians – USA, (G2) Argille varicolori in the External Ligurian units at Brusasco, Tertiary 

Piedmont Basin, NW Italy. 

 

Figure 10 – Schematic diagram, showing a conceptual difference between depositionally 

(gravitational), diapirically and tectonically induced deformation with respect to the consolidation. 

Sedimentary and diapiric chaotic bodies may record only instantaneous and episodic events that 

punctuate the consolidation history, whereas tectonic chaotic bodies may record different stages of 
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deformation that persist through time and different degrees of consolidation and lithification (modified 

after Byrne, 1994). 

 



 

Products 
Nature of 

blocks 
Mechanisms 

Lithological 

unit 

involved 

Contacts 

with host 

rocks 

Processes 

Mélange Exotic and 
Native Mixing 

Sedimentary 
Metamorphic 

Igneous Tectonic 
Stratigraphic 

Intrusive 

Tectonic 
Sedimentary 

Diapiric Broken 
Formation 

Intra-
formational 

Stratal 
disruption 

Sedimentary 
Metamorphic 

(?) 
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Types of Mélange 

related to: 
Geodynamic 

environments 
Processes 

Triggering 

mechanisms 
Products Mesoscale characteristics 

Minor related 

products 

1. Extensional tectonics Rifting MTP (debris avalanches 
and flows, etc.) Tectonic 

MTD (megabreccias, 
breccias, olistolith fields, 

debrites, slide blocks, etc.) 

Chaotic angular clasts (cm to 
>10 m) in fine-grained 

(pelitic) matrix 

Fault zones along 
normal fault? 

2. Passive margin 
Passive margins  

(after rifting) 

SSD and mass-wasting 
related progressive 

deformation from slumping 
to debris flow, to complete 

strata disruption 

Tectonic, 
sedimentary 

MTD, poorly sorted 
olistostromes (olistoliths, 

slide blocks) 

Chaotic monomictic 
brecciated (matrix-
supported) masses 

In situ 
fluidification:  
mud diapirs? 

a. 
Downslope mass-

transport deposits 

b. 

Mass-transport 

deposits at the ocean-

continent transition 

(OCT) 

Ocean-continent 
transition 

SSD and  MTP with 
related progressive 

deformation from slumping 
to debris flows, to 

gravitational sliding 

Tectonic, 
sedimentary 

MTD, olistostromes with 
continent rock olistoliths 
(tens of meters to several 

km slide blocks) in a matrix 
of oceanic origin 

Chaotic polymictic 
brecciated (matrix-

supported) masses (including 
native, extra-basinal  
and/or exotic blocks) 

3. Strike-slip tectonics and 

transform setting 

Different types 
of collision 

TSD: fault-to fold-related, 
fluidification (overprinting 

previous mass-wasting-
related deformation) 

Tectonic 

BrFm; mélanges (exotic 
blocks being commonly 

recycled from other 
previously formed 

mélanges) 

Structurally ordered BIM 
fabric (parallel orientation of 
blocks and matrix features – 

i.e. pseudo-bedding) 

Olistostromes s.l.; 
mud diapirs s.l. 

4. Convergent margins and 

oceanic crust subduction Subduction  
(at the front of 

the wedge) 

MTP (debris flows and 
avalanches, slumps, slides, 

etc.) 

Tectonic, 
sedimentary 

MTD, olistostromes 
(olistoliths, olistolith fields 
and swarm, slide blocks) 

Chaotic BIM fabric 
(including native,  

extra-basinal and/or  
exotic blocks) Mud diapirs and 

mud volcanoes, 
serpentinite 

a. 

Mass-transport 

deposits at the wedge 

front 

b. 
Broken fms and 

tectonic mélanges 

Subduction  
(at the base of 
the wedge) and 

subduction 
channel 

TSD: fault-to fold-related, 
fluidification (overprinting 

previous mass-wasting-
related deformation); 

tectonic mixing  

Tectonic 

BrFm; mélanges (exotic 
blocks being  recycled from 

other previously formed 
mélanges or formed by 

subduct. channel processes) 

Structurally ordered BIM 
fabric (parallel orientation of 
BIM features – i.e. pseudo-

bedding) 

5. Collision 
Different types 

of collision 

TSD: fault-to fold-related, 
fluidification (overprinting 

previous mass-wasting-
related deformation) 

Tectonic 

BrFm; méanges? (exotic 
blocks being commonly 

recycled from other 
previously formed 

mélanges) 

Mainly structurally ordered 
BIM fabric (that in some 
cases overprinted chaotic 

BIM fabric) 

Olistostromes s.l.; 
mud diapirs s.l. 

6. Intracontinental deform. 

At the base or at 
the front of  

intra-continental 
thrust sheets or 

nappes 

MTP (debris flows and 
avalanches, slumps, slides, 

etc.) 

Tectonic, 
sedimentary 

MTD, olistostromes 
(olistoliths, olistolith fields 
and swarm, slide blocks) 

Chaotic BIM fabric (from 
matrix-supported cm-to m in 
size blocks to clast supported 
>10 m blocks and olistoliths) Mud diapirs and 

mud volcanoes 

a. 
Mass-transport deposits 

at the wedge front 

 a1. Precursory 
olistostromes 

 a2. Olistostromal 
carpet 

TSD: fault-to fold-related, 
fluidification (overprinting 

previous mass-wasting-
related deformation) 

Tectonic, 
sedimentary 

Mélanges (exotic blocks 
being commonly recycled 

from other previously 
formed sedimentary 

mélanges); BrFm 

Chaotic BIM fabric 
overprinted by tectonic 

deformation and shearing 

 a3. Tectonic mélanges Tectonic Structurally ordered BIM 
fabric 

b. Intra-nappe 

Within intra-
continental 

thrust sheets or 
nappes 

MTP (debris flows and 
avalanches, slumps, slides, 

etc.) 

Tectonic, 
sedimentary 

MTD, olistostromes 
(olistoliths, olistolith fields 
and swarm, slide blocks) 

Chaotic BIM fabric (blocks 
of intra-basinal origin) 

Mud diapirs and 
mud volcanoes 

 b1. Sedimentary 

 b2. 
Tectonic and/or 

tectono-
sedimentary 

TSD: fault-to fold-related, 
fluidification (overprinting 

previous mass-wasting-
related deformation) 

Tectonic 

BrFm; mélanges (exotic 
blocks being commonly 

recycled from other 
previously formed 

sedimentary mélanges) 

Structurally ordered BIM 
fabric (parallel orientation of 
blocks and matrix features – 

i.e. pseudo-bedding) 

c. Epi-nappe 

A top of intra-
continental 

thrust sheets  
or nappes  

(e.g. piggy back, 
top thrust 
basins) 

MTP (debris flows and 
avalanches, slumps, slides, 

etc.) 

Tectonic, 
sedimentary 

MTD, olistostromes 
(olistoliths, olistolith fields 
and swarm, slide blocks) 

Chaotic BIM fabric 
(originated from the 

succession tectonically 
imbricated in the thrust-

sheet) 

Mud diapirs and 
mud volcanoes  c1. Sedimentary 

 c2. Tectono-sedim. 
TSD (overprinting 

previous mass-wasting-
related deformation) 

Tectonic, 
sedimentary BrFm, mélanges Structurally ordered BIM 

fabric 
Olistostromes s.l.;  

mud diapirs s.l. 

 c3. Diapiric Extrusion of non-to poorly 
consolidated sediments 

Tectonic, 
sedimentary 

Mud diapirs and mud 
volcanoes 

Zonation of deformation 
from core to margins Olistostromes s.l. 

7. Sub-aerial deformation 

On the Earth 
and/or other 

planets surface 

MTP and glacial processes 
(debris flows, avalanches, 

slides, etc.) 

Sedimentary, 
glacial, 
tectonic 

MTD (debris 
flows/avalanches, alluvial 

fan dep., talus 
breccias/megabreccias, 

block falls, glacial till, etc.) 

Chaotic BIM fabric (block of 
intra-basinal origin)  a. Sedimentary 

b. Impact of bodies 
Impact of bodies on planet 

surfaces 
Impact 

processes 
Ejected breccias and 

megabreccias 
Chaotic breccias in a fluidal 

matrix 
BIM – Block-in-matrix 
BrFm – Broken Formation 

MTD – Mass-transport deposits 
MTP – Mass-transport processes 

SSD – Soft sediment deformation 
TSD – Tectonic stratal disruption 
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