Molecular engineering of hybrid dye-silica fluorescent nanoparticles: influence of the dye structure on the distribution of fluorophores and consequent photoemission brightness

Gabriele Alberto,^{*,†,§} Giuseppe Caputo,^{†,§} Guido Viscardi,^{†,§} Salvatore Coluccia^{†,§} and Gianmario Martra^{*,†,§}

[†]Department of Chemistry, University of Torino, via P. Giuria 7, 10125 Torino, Italy

[§] NIS (Nanostructured Interfaces and Surfaces) Interdepartmental Centre of Excellence, at the Centre for Innovation, via G. Quarello 11/a, 10135, Torino, Italy

SUPPORTING INFORMATION

Chart S1. Molecular structures of I3BS-NHS (a), I3MS-NHS (b) and I3NS-NHS (c)

Table S1. Retention time in reverse phase HPLC analyses (as a measure of hydrophilicity/hydrophobicity) and absorption and emission quantitative features of the three cyanine-APTS derivatives

	RP-HPLC analyses	Absorption/Emission quantitative features				
Cyanine-APTS derivative	Retention Time (min) (in brackets: capacity factor)	Solvent	ε (mol ^{-1.} cm ⁻¹) (in brackets: relative value)	Φ	$\tau^{\scriptscriptstyle 0}_{\rm F}$	
I3BS-APTS		Water	120000 (0.80)	0.025	0.20	
	8 (3.99)	Cyclohexane	~~			
		n-hexanol		~~	0.51	
		Microemulsion	~		1.31	
I3MS-APTS	24 (12.23)	Water	130000 (0.87)	0.037	0.35	
		Cyclohexane				
		n-hexanol			0.90	
		Microemulsion			0.93	
I3NS-APTS	29 (14.65)	Water	150000 (1.00)	0.05	0.42	
		Cyclohexane	~		0.83	
		n-hexanol			1.11	
		Microemulsion	~~		0.86	

Figure S1. Emission spectra of I3BS-APTS (panel A and A') I3MS-APTS (panel B and B') and I3NS-APTS (panel C and C') in water ("a" lines, blue), *n*-hexanol ("b" lines, red), Cyclohexane ("c" lines, black) and Microemulsion ("d" lines, green)

Figure S2-A. Comparison of absorption spectra of I3BS-APTS (panel A), I3MS-APTS (Panel B) and I3NS-APTS (Panel C) at the beginning (curve a, black) and after 1h of reaction (curve b, red)

Figure S2-B. Comparison of photoemission spectra of I3BS-APTS (panel A), I3MS-APTS (Panel B) and I3NS-APTS (Panel C) at the beginning (curve a, black) and after 1h of reaction (curve b, red):

						Reaction T	ime (hours)				
		0	1	2	4	6	8	10	16	20	24
I3BS	$\tau^0_{F}(ns)$	1.30 (100%)	1.21 (85%)	1.19 (76%)	1.18 (73%)	1.20 (73%)	1.22 (74%)	1.22 (74%)	1.22 (57%)	1.24 (55%)	1.28 (55%)
	$\boldsymbol{\tau}_{\mathrm{F}}^{1}(\mathrm{ns})$		1.62 (15%)	1.76 (24%)	1.79 (27%)	1.91 (27%)	2.07 (26%)	2.05 (26%)	2.05 (43%)	2.05 (45%)	2.06 (45%)
	χ ²	1.21	1.12	1.21	1.19	1.11	0.98	1.01	1.04	1.04	1.05
	$\boldsymbol{\tau}^{\boldsymbol{0}}_{F}(\mathbf{ns})$	0.95 (97%)	0.95 (89%)	0.94 (88%)	0.95 (86%)	0.96 (82%)	0.96 (79%)	0.95 (75%)	0.95 (73%)	0.96 (74%)	0.95 (73%)
I3MS	$\boldsymbol{\tau}_{F}^{1}(\mathbf{ns})$	1.9 (3%)	1.94 (11%)	1.97 (12%)	2.11 (14%)	2.09 (18%)	2.10 (21%)	2.11 (25%)	2.11 (27%)	2.11 (26%)	2.10 (27%)
	χ^2	1.06	1.07	1.00	1.09	1.12	0.99	1.04	1.04	1.02	1.05
I3NS	$\tau^0_{F}(ns)$	0.86 (93%)	0.86 (86%)	0.91 (80%)	0.91 (63%)	0.92 (55%)	0.91 (51%)	0.90 (44%)	0.97 (36%)	0.99 (36%)	0.99 (36%)
	$\boldsymbol{\tau}_{F}^{1}(\mathbf{ns})$	1.76 (7%)	1.78 (14%)	1.85 (20%)	1.92 (37%)	1.94 (45%)	1.99 (49%)	1.99 (56%)	2.03 (64%)	2.04 (64%)	2.1 (64%)
	χ^2	1.06	1.03	1.04	1.02	1.00	1.14	1.04	1.03	1.01	0.99

Table S2. Photoemission lifetimes of cyanine-APTS derivatives during NPs formation (in brackets population abundance, %)

Table S3. Photoemission lifetimes of I3-NPs in solvents with different polarity

Cyanine-NPs	Solvent	τ^{0}_{F}	${f au}_{ m F}^1$	χ^2
	Water	1.28 (55%)	2.07 (45%)	1.05
I3BS-NPs	Methanol	1.28 (53%)	2.07 (47%)	1.01
	Ethanol	1.28 (54%)	2.07 (46%)	1.03
	Water	0.86 (47%)	2.10 (53%)	1.09
I3MS-NPs	Methanol	0.90 (49%)	2.10 (51%)	1.08
	Ethanol	0.97 (48%)	2.10 (52%)	1.10
	Water	1.09 (35%)	2.05 (65%)	1.09
I3NS-NPs	Methanol	1.12 (38%)	2.05 (62%)	1.16
	Ethanol	1.13 (36%)	2.05 (64%)	1.12

Figure S3. Evolution, along the period required for the formation of the nanoparticles, of the percentage of emitting dyes exhibiting the "shorter" lifetime (τ^0_F , open symbols) and the "longer" lifetime (τ^1_F , full symbols): I3BS-APTS (black); I3MS-APTS (blue); I3NS-APTS (red).

Figure S4. Representative TEM micrograph of silica NPs and correspondent histogram of their size distribution

Figure S5. Photoemission (λ_{ex} = 520 nm) spectra of I3BS-NPs (panel A), I3MS-NPs (panel B) and I3NS-NPs (panel C) in water (blue, curve a), methanol (red, curve b) and ethanol (green, curve c). In the case of I3DS-NPs, all curves resulted overlapped

I.	TEOS Partition	: Si(OR) ₄ (b) \iff Si(OR) ₄ (m)	
		$Si(OR)_4 (m) + H_2O (m) \xrightarrow{OH} Si(OR)_3OH (m) + ROH (m)$	
		$Si(OR)_4$ (b) + H2O (m) $\stackrel{K_p}{\longleftrightarrow}$ $Si(OR)_3OH$ (m) + ROH (m)	
П.	Hydrolysis	: Si(OR) ₃ OH (m) + xH ₂ O (m) \xrightarrow{OH} Si(OR) _{3-x} OH _x (m) + xROH (m) x = 1.2.3 Si(OR) _{3-x} OH _{x+1} (m) = "monomer" (m) x = 0.1.2.3	
Ш.	Nucleation	: n.monomer (m) \longrightarrow nucleus (m) monomer (m) + monomer (m') \longrightarrow nucleus (m, or m')	
IV.	Particle Growth	: monomer (m) + nucleus (m) monomer (m') + nucleus (m) growth (monomer addition)	
		$nucleus (m) + nucleus (m') \longrightarrow growth (nuclei aggregation)$	
V.	Nuclei dissolution	: nucleus (m) \xrightarrow{OH} n.monomer (m)	
VI.	Monomer exchange	: monomer (m) $\stackrel{K_{\alpha}}{\longleftrightarrow}$ monomer (m')	
VII	. Monomer ionization	: Si(OH) ₄ (m) + yOH ⁻ (m) \longrightarrow SiO _y OH _{4-y} ^{y-} (m) + yH ₂ O (m) y = 1.2	
VII	I. surface ionization	: Si(OH) (s) \xrightarrow{OH} SiO (s)	

 Scheme S1.General reaction scheme of NPs formation in microemulsion (adapted from Arriagada, F.J.; Osseo-Asare, K. *Colloids Surf. A* 1999, 154, 311)