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Abstract The asteroid 2008 TC3 was telescopically seen prior to entering Earth’s at-

mosphere and was predicted to fall in Sudan on October 7, 2008, as it actually hap-

pened. Subsequently, many fragments were collected from the Nubian desert. At Monte

dei Cappuccini Laboratory (IFSI, INAF) in Torino, using a selective gamma spectrometer

we measured gamma rays from fragment #15, one of the largest retrieved, a ureilite of mass

75 g. Six cosmogenic radionuclides have been measured (46Sc, 57Co, 54Mn, 22Na, 60Co and
26Al). 60Co and 26Al activities allowed us to deduce that the fragment was located at a depth

of 41±14 cm inside the 1.5–2 m radius asteroid. Moreover, 22Na activity is slightly greater

than expected on the basis of the average cosmic ray flux and this could be ascribed to the

prolonged solar minimum preceding the meteorite fall.
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1. Introduction

The solar magnetic field shields the inner solar
system from cosmic rays (CR) to a variable ex-
tent. CR produce a large number of radioactive
and stable isotopes in meteoroids while they
are exposed in the interplanetary space and be-
fore they fall on the Earth where the CR irra-
diation becomes negligible. Each radioisotope

preserves past record of the CR flux over its
mean life. Cosmogenic radionuclides produced
in Almahata Sitta meteorite provided unique
information about the cosmic ray flux at the
time of the unusual prolonged solar minimum
before the 24th sunspot cycle.

Asteroid 2008 TC3 was seen telescopi-
cally prior to entering the Earth’s atmosphere
on 7 October 2008. As reported in Jenniskens
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et al. (2009), subsequently at JPL (Pasadena,
California) time and position of the expected
impact area were calculated. The orbital posi-
tions of 2008TC3 have been reported in Taricco
et al. (2010).

The asteroid fragmented at an unusu-
ally high altitude of ∼37 km and fell in the
Nubian Desert of northern Sudan. During
the first search campaign in December of
2008, 15 stones weighing 563 g were collected
(Jenniskens et al. 2009; Shaddad et al. 2010)
and named Almahata Sitta meteorites (men-
tioned hereafter as Alma). The radial size of
the asteroid was estimated to be between 1.5
to 2 meters; the density should lie between
the values for the lightest (∼1.8 g/cm3) and
the densest (∼3.1 g/cm3) recovered fragments.
Therefore the preatmospheric mass should lie
between 25 and 100 tons. Alma has been clas-
sified as an achondrite, a polymict ureilite con-
taining 20–30 percent of anomalous chondritic
fragments (Jenniskens et al. 2009; Zolensky
et al. 2010; Rumble et al. 2010).

Fragment #15 (75 g) is a ureilite and was
made available to us for non-destructive γ-ray
counting 7 months after the fall. It has a den-
sity of 3.11+0.14/-0.07 g cm−3 (Shaddad et al.
2010).

2. Experimental procedure

In order to reveal γ activity of the Alma frag-
ment, we used a large volume high-efficiency
HPGe-NaI(Tl) γ-ray spectrometer, located in
the underground (70 m.e.w., meter equivalent
water) Laboratory of Monte dei Cappuccini
(IFSI-INAF, Torino, Italy). This system con-
sists of a hyperpure Ge detector (3 kg, 147%
relative efficiency), operating within an um-
brella of NaI(Tl) scintillator (90 kg) and is
housed in a thick Pb-Cd-Cu passive shield.
Both detector signals are digitized to allow
coincidence and anti-Compton spectroscopic
analyses. Figure 1 shows the 2-dimensional
spectrum of Alma in the 26Al 1808.65 keV re-
gion. The spectrometer is described in greater
detail in Bonino et al. (1992), Taricco et al.
(2006, 2007) and Colombetti et al. (2008).

The counting γ-efficiency of Alma has
been determined by making an identical mould
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Figure 1. HPGe–NaI(Tl) γ-ray spectrum of

Almahata Sitta fragment #15 between 1750 and

1835 keV Ge energies. Various peaks observed due

to 214Bi, 22Na (in the middle) and 26Al are marked.

of the meteorite filled with labelled sediment
having known amounts of 60Co, 40K, 137Cs,
mixed with iron to match the density of the me-
teorite.

3. Results

We identified six cosmogenic radioisotopes
46Sc (half life 83.79 d), 57Co (271.74 d), 54Mn
(312.05 d), 22Na (2.6027 y), 60Co (5.2711 y)
and 26Al (0.717 My) by measuring Alma from
July to October 2009. Figure 2 shows the γ-
ray spectrum of Alma obtained in normal mode
(Ge signal acquired without gating). The peaks
of cosmogenic radioisotopes are marked in the
spectrum and magnified in Fig. 3. The results
show that it is possible to obtain a good signal-
to-noise with this spectrometer, even for this
relatively small sample.

Table 1 gives the activity of the radionu-
clides, corrected to the time of fall, and the
γ-ray energies of the measured peaks. Due to
the uncertainty in the activity of standards used
for calibrations, a systematic error of about 5%
must be added.

4. Discussion and conclusions

The production of a cosmogenic radionuclide
in a meteoroid depends on the concentration of
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Figure 2. γ- ray spectrum of Almahata Sitta fragment #15 measured in normal mode (without gating).

The counting period is 65,197 minutes (∼45 days). Peaks of cosmogenic radionuclides are marked. The

511 keV peak is from β+ annihilations and other peaks are due to the background of naturally occurring

potassium, uranium, thorium and their γ-emitting decay products. 214Bi and 208Tl come from 238U and
232Th respectively.
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Figure 3. Regions of interest of the normal mode spectrum shown in Fig 2, corresponding to the measured

peaks of the six cosmogenic radioisotopes.

target elements in it, the primary cosmic ray
flux, and the shielding of the sample.

The 60Co and 26Al activity measurements
together offer the opportunity to deduce infor-
mation on the shielding depth of fragment #15

inside 2008 TC3. Cosmogenic 60Co is mainly
produced by thermal neutron capture in stable
59Co, while a negligible amount (≪1 dpm/kg)
is expected to be produced from spallation of
nickel by cosmic ray nucleons. 26Al is mainly
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Table 1. Cosmogenic radioisotope activities of

Almahata Sitta fragment #15.

nuclide half life energy, keV dpm/kg

57Co 271.74 d 122.06 3.4 ± 0.5
54Mn 312.05 d 834.85 83.5 ± 0.9
46Sc 83.79 d 889.28 7.1 ± 1.0
60Co 5.2711 y 1332.49 27.7 ± 0.8
22Na 2.6027 y 1274.54 105.4 ± 1.0
26Al 0.717 My 1808.65 62.1± 0.8

produced by cosmic ray interactions with Mg,
Al and Si present in the meteorite.

The measured 60Co activity in Alma is
27.7 ± 0.8 dpm/kg, about 10 times the value
measured in our laboratory for the Torino me-
teorite, which fell in 1988, in a similar phase
of the solar cycle (details of the Torino-Alma
comparison are given in Taricco et al. (2010)).
Using the production rate curves calculated by
Spergel et al. (1986) for 1.5–2 m radius and for
a Co concentration of 120 µg/g, we concluded
that the high concentration of 60Co is mainly
due to a higher shielding depth, which should
be between 27 and 55 cm. This value is com-
patible with that deduced from 26Al activity.
The large uncertainty is due to the uncertain
bulk density of 2008 TC3.

22Na (half life 2.6027 y) is sensitive to cos-
mic ray variations over the 11 year Schwabe
cycle whereas the long lived 26Al (half life
0.717 My) is insensitive to such variations.

The activity ratio 22Na/26Al is nearly inde-
pendent of chemical composition and shield-
ing parameters, because 22Na and 26Al are pro-
duced in similar nuclear reactions (Evans et al.
1982; Wacker 1993). Thus, the ratio 22Na/26Al
is a good measure of CR variations over a
decadal scale. In Alma this activity ratio is
1.70 ± 0.03; as discussed in Taricco et al.
(2010), this high value reflects the high cosmic
ray flux during the unusually prolonged solar
minimum in the years before the fall. This, pe-
riod, however, did not result in an unusually
large cosmic ray flux in the near Earth space

sampled by Alma compared to that during the
previous solar minima.
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