
25 April 2024

AperTO - Archivio Istituzionale Open Access dell'Università di Torino

Original Citation:

A NonMonotonic Description Logic for Reasoning About Typicality

Published version:

DOI:10.1016/j.artint.2012.10.004

Terms of use:

Open Access

(Article begins on next page)

Anyone can freely access the full text of works made available as "Open Access". Works made available
under a Creative Commons license can be used according to the terms and conditions of said license. Use
of all other works requires consent of the right holder (author or publisher) if not exempted from copyright
protection by the applicable law.

Availability:

This is the author's manuscript

This version is available http://hdl.handle.net/2318/117632 since 2016-06-28T15:29:21Z

JID:ARTINT AID:2679 /FLA [m3G; v 1.85; Prn:8/11/2012; 17:32] P.1 (1-38)

Artificial Intelligence ••• (••••) •••–•••
Contents lists available at SciVerse ScienceDirect

Artificial Intelligence

www.elsevier.com/locate/artint

A non-monotonic Description Logic for reasoning about typicality

L. Giordano a,1, V. Gliozzi b, N. Olivetti c, G.L. Pozzato b,1,∗
a DISIT, Università del Piemonte Orientale “A. Avogadro”, viale Teresa Michel, 11, 15121 Alessandria, Italy
b Dipartimento di Informatica, Università degli Studi di Torino, C.So Svizzera, 185, 10149 Torino, Italy
c Aix-Marseille Université, CNRS, LSIS UMR 7296, Campus de Saint Jérôme, Avenue Escadrille Normandie-Niemen, 13397 Marseille Cedex 20, France

a r t i c l e i n f o a b s t r a c t

Article history:
Received 8 August 2011
Received in revised form 5 October 2012
Accepted 8 October 2012
Available online xxxx

Keywords:
Description Logics
Non-monotonic reasoning
Tableau calculi
Prototypical reasoning

In this paper we propose a non-monotonic extension of the Description Logic ALC for
reasoning about prototypical properties and inheritance with exceptions. The resulting
logic, called ALC + Tmin, is built upon a previously introduced (monotonic) logic ALC + T
that is obtained by adding a typicality operator T to ALC. The operator T is intended
to select the “most normal” or “most typical” instances of a concept, so that knowledge
bases may contain subsumption relations of the form T(C) � D (“T(C) is subsumed
by D”), expressing that typical C-members are instances of concept D . From a knowledge
representation point of view, the monotonic logic ALC + T is too weak to perform
inheritance reasoning. In ALC + Tmin, in order to perform non-monotonic inferences,
we define a “minimal model” semantics over ALC + T. The intuition is that preferred
or minimal models are those that maximize typical instances of concepts. By means of
ALC + Tmin we are able to infer defeasible properties of (explicit or implicit) individuals.
We also present a tableau calculus for deciding ALC + Tmin entailment that allows to give
a complexity upper bound for the logic, namely that query entailment is in co-NExp

NP.
© 2012 Elsevier B.V. All rights reserved.

1. Introduction

The family of Description Logics (for short: DLs) is one of the most important formalisms of knowledge representation.
They have a well-defined semantics based on first-order logic and offer a good trade-off between expressivity and complex-
ity. DLs have been successfully implemented by a range of systems and they are at the basis of languages for the semantic
web such as OWL.

A DL knowledge base (KB) comprises two components: the TBox, containing the definition of concepts (and possibly
roles) and a specification of inclusion relations among them, and the ABox containing instances of concepts and roles. Since
the very objective of the TBox is to build a taxonomy of concepts, the need of representing prototypical properties and of
reasoning about defeasible inheritance of such properties naturally arises. The traditional approach is to handle defeasible
inheritance by integrating some kind of non-monotonic reasoning mechanism. This has led to study non-monotonic exten-
sions of DLs [3,4,10,19,21,22,52,17]. However, finding a suitable non-monotonic extension for inheritance with exceptions is
far from being obvious.

To give a brief account,2 [3] proposes the extension of DL with Reiter’s default logic. However, the same authors have
pointed out that this integration may lead to both semantical and computational difficulties. Indeed, the unsatisfactory

* Corresponding author.
E-mail addresses: laura@mfn.unipmn.it (L. Giordano), gliozzi@di.unito.it (V. Gliozzi), nicola.olivetti@univ-cezanne.fr, nicola.olivetti@univ-amu.fr

(N. Olivetti), pozzato@di.unito.it (G.L. Pozzato).
1 The author is supported by the project MIUR PRIN08 “LoDeN: Logiche Descrittive Nonmonotone: Complessitá e implementazioni”.
2 A more detailed discussion on other non-monotonic extensions of DLs can be found in Section 7.
0004-3702/$ – see front matter © 2012 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.artint.2012.10.004

http://dx.doi.org/10.1016/j.artint.2012.10.004
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/artint
mailto:laura@mfn.unipmn.it
mailto:gliozzi@di.unito.it
mailto:nicola.olivetti@univ-cezanne.fr
mailto:nicola.olivetti@univ-amu.fr
mailto:pozzato@di.unito.it
http://dx.doi.org/10.1016/j.artint.2012.10.004

JID:ARTINT AID:2679 /FLA [m3G; v 1.85; Prn:8/11/2012; 17:32] P.2 (1-38)

2 L. Giordano et al. / Artificial Intelligence ••• (••••) •••–•••
treatment of open defaults via Skolemization may lead to an undecidable default consequence relation. For this reason,
[3] proposes a restricted semantics for open default theories, in which default rules are only applied to individuals explicitly
mentioned in the ABox. Furthermore, Reiter’s default logic does not provide a direct way of modeling inheritance with
exceptions. This has motivated the study of extensions of DLs with prioritized defaults [52,4]. A more general approach is
undertaken in [21], where it is proposed an extension of DL with two epistemic operators. This extension allows to encode
Reiter’s default logic as well as to express epistemic concepts and procedural rules.

In [10] the authors propose an extension of DL with circumscription. One of the motivating applications of circumscrip-
tion is indeed to express prototypical properties with exceptions, and this is done by introducing “abnormality” predicates,
whose extension is minimized. The authors provide decidability and complexity results based on theoretical analysis.
A tableau calculus for circumscriptive ALCO is presented in [38].

In [17,18] a non-monotonic extension of ALC based on the application of Lehmann and Magidor’s rational closure [43]
to ALC is proposed. The approach is based on the introduction of a consequence relation |∼ among concepts and of
a consequence relation � among an unfoldable KB and assertions. The authors show that such consequence relations are
rational. It is also shown that such relations inherit the same computational complexity of the underlying DL.

Recent works discuss the combination of open and closed world reasoning in DLs. In particular, formalisms have been
defined for combining DLs with logic programming rules (see, for instance, [22] and [47]). A grounded circumscription
approach for DLs with local closed world capabilities has been defined in [42].

In this work, we propose a new non-monotonic logic ALC + Tmin for defeasible reasoning in Description Logics. The
logic ALC + Tmin extends the monotonic logic ALC + T introduced in [26], obtained by adding a typicality operator T to
ALC . Both ALC + T and ALC + Tmin are based on the approach to non-monotonic reasoning pioneered by Kraus, Lehmann
and Magidor (for short: KLM). KLM axiomatic systems provide a terse and well-established analysis of the core properties
of non-monotonic reasoning [41]. ALC + T is an extension of Description Logics with a semantics strongly related to the
KLM preferential semantics for non-monotonic reasoning. As a further step, ALC + Tmin is a non-monotonic extension of
ALC + T with a minimal model semantics that allows to capture useful non-monotonic inferences that ALC + T in itself
cannot perform. We apply here our approach to the basic Description Logic ALC . However, our approach, which consists
in defining a typicality extension of DL together with its preferential semantics, is a general one: by its semantical nature
it can be applied to other Description Logics. For instance, we have applied it to low complexity Description Logics, some
results are contained in [28,29,35,33,34], and they show the feasibility of our typicality extension. Although we have not yet
investigated it in details, our approach can be applied equally well to more expressive Description Logics including some
combinations of number restrictions, qualified number restrictions, inverse roles, and role hierarchies, provided they have
the finite model property in order to ensure both decidability and the existence of minimal models.

The operator T that characterizes ALC + T provides a natural way of expressing prototypical properties, and its intended
meaning is that for any concept C , T(C) singles out the instances of C that are considered as “typical” or “normal”. Thus
an assertion as

“normally, a member of the Department has lunch at the restaurant”

is represented by

T(DepartmentMember) � LunchAtRestaurant

As shown in [26], the operator T is characterized by a set of postulates that are essentially a reformulation of KLM axioms
of preferential logic P, namely the assertion T(C) � D is equivalent to the conditional assertion C |∼ D of P. The operator
T is non-monotonic, in the sense that from C � D (C is subsumed by D) we cannot infer that T(C) is subsumed by T(D):
even if C � D , T(C) and T(D) can have different properties, and we can consistently say that for some P , T(C) � P whereas
T(D) � ¬P . The semantics of the typicality operator T can be specified by enriching with a preference relation “<” standard
ALC models. Intuitively, the domain elements that belong to the extension of T(C) (i.e., the typical instances of C) are
elements that (i) belong to the extension of C and (ii) are minimal with respect to <. This semantics can be seen as a modal
semantics. Indeed, the preference relation < works as an accessibility relation R (with R(x, y) ≡ y < x) of a modality �,
so that we can define T(C) as C � �¬C . We shall see that � satisfies the properties of Gödel–Löb modal logic G.

Observe that < is an “absolute” preference relation that does not take into account different aspects of a class. For
instance < does not allow to express the fact that x is more preferred than y with respect to aspect P1 but not with
respect to aspect P2. We can think of extending our approach in order to deal with several preference relations (whence
typicality operators) <Pi dependent on different aspects Pi . This might increase the expressive power. We expect however
that this extension will have a price: priorities will be then needed in order to constrain the behavior of different <P1 and
<P2 in particular – but not exclusively – when P1 and P2 are logically related. The extension with multiple preference
relations will be the object of future work.

We assume that a KB comprises, in addition to the standard TBox and ABox, a set of assertions of the type T(C) � D
where D is a concept not mentioning T. For instance, let the TBox contain:

T(DepartmentMember) � LunchAtRestaurant

JID:ARTINT AID:2679 /FLA [m3G; v 1.85; Prn:8/11/2012; 17:32] P.3 (1-38)

L. Giordano et al. / Artificial Intelligence ••• (••••) •••–••• 3
T(DepartmentMember � TemporaryWorker) � ¬LunchAtRestaurant

T(DepartmentMember � TemporaryWorker � ∃Owns.RestaurantTicket) � LunchAtRestaurant

corresponding to the assertions: typical members of the Department spend their lunch break at a restaurant, whereas
normally a temporary member does not have lunch at the restaurant (in order to save money), but normally a temporary
member having restaurant tickets eats at the restaurant.

Suppose further that the ABox contains alternatively one of the following facts about greg:

1. DepartmentMember(greg)

2. DepartmentMember(greg), TemporaryWorker(greg)

3. DepartmentMember(greg), TemporaryWorker(greg), ∃Owns.RestaurantTicket(greg)

From the different combinations of TBox and one of the above ABox assertions (either 1 or 2 or 3), we would like to infer
the expected (defeasible) conclusions about greg. These are, respectively:

1. LunchAtRestaurant(greg)

2. ¬LunchAtRestaurant(greg)

3. LunchAtRestaurant(greg)

Moreover, we would also like to infer (defeasible) properties of individuals implicitly introduced by existential restrictions,
for instance, if the ABox contains

∃HasChild.(DepartmentMember � TemporaryWorker)(paul)

we would like to infer that:

∃HasChild.(¬LunchAtRestaurant)(paul)

Finally, adding irrelevant information should not affect the conclusions. From the TBox above, one should be able to infer as
well

T(DepartmentMember � Tall) � LunchAtRestaurant

T(DepartmentMember � TemporaryWorker � Tall) � ¬LunchAtRestaurant

T(DepartmentMember � TemporaryWorker � ∃Owns.RestaurantTicket � Tall) � LunchAtRestaurant

as Tall is irrelevant with respect to having lunch at the restaurant or not. For the same reason, the conclusion about greg
being an instance of LunchAtRestaurant or not should not be influenced by adding Tall(greg) to the ABox.

From a knowledge representation point of view, the monotonic logic ALC + T is not sufficient to perform inheritance
reasoning of the kind described above. Indeed, in order to derive the expected conclusion about greg from the above TBox
and ABox containing, for instance, the facts DepartmentMember(greg) and TemporaryWorker(greg), we should know that greg
is a typical temporary member of the Department, but we do not have this information. Similarly, in order to derive that
also a typical tall member of the Department must have lunch at a restaurant, we must be able to infer or assume that
a “typical tall member of the Department” is also a “typical member of the Department”, since there is no reason why it
should not be the case; this cannot be derived by the logic itself given the non-monotonic nature of T. The basic monotonic
logic ALC + T is then too weak to enforce these extra assumptions, so that we need an additional mechanism to perform
defeasible inferences.

In order to perform the inferences described above, two different approaches are discussed in [26], namely:

• we can define a completion of an ABox: the idea is that each individual is assumed to be a typical member of the most
specific concept to which it belongs. Such a completion allows to perform inferences as 1, 2, 3 above;

• we can strengthen the semantics of ALC + T by proposing a minimal model semantics. Intuitively, the idea is to restrict
our consideration to models that maximize typical instances of a concept.

The first proposal is computationally easier, but it presents the following difficulties:

• it is not clear how to take into account implicit individuals. The approach of completion has indeed the same limitations,
concerning the treatment of implicit individuals, as default extensions of DLs (see Section 7 for details);

• the completion might be inconsistent even if the initial KB is consistent;
• it is not clear whether and how the completion has to take into account concept instances that are inferred from

previous typicality assumptions introduced by the completion itself (this would require a kind of fixpoint definition).

JID:ARTINT AID:2679 /FLA [m3G; v 1.85; Prn:8/11/2012; 17:32] P.4 (1-38)

4 L. Giordano et al. / Artificial Intelligence ••• (••••) •••–•••
Given the above difficulties, in this work we investigate in detail the second proposal, which is computationally more ex-
pensive, but is more powerful for inheritance reasoning. Rather than defining an ad-hoc mechanism to perform defeasible
inferences or making non-monotonic assumptions, we strengthen the semantics of the logic ALC + T by proposing a min-
imal model semantics. Intuitively, the idea is to restrict our consideration to models that minimize the atypical instances
of a concept. In order to define the preference relation on models we take advantage of the modal semantics of ALC + T:
the preference relation on models (with the same domain) is defined by comparing, for each individual, the set of modal
concepts (occurring in the scope of �) containing the individual in the two models. Similarly to circumscription, where we
must specify a set of minimized predicates, here we must specify a set of concepts LT of which we want to minimize the
atypical instances (it may just be the set of all concepts occurring in the knowledge base). We call the new logic ALC+Tmin

and we denote by |�LT
min semantic entailment determined by minimal models.

Taking the KB of the examples above, and letting

LT = {DepartmentMember,DepartmentMember � TemporaryWorker,

DepartmentMember � TemporaryWorker � ∃Owns.RestaurantTicket,

DepartmentMember � TemporaryWorker � ∃Owns.RestaurantTicket � Tall}
we obtain, for instance:

1. KB ∪ {DepartmentMember(greg),TemporaryWorker(greg)} |�LT
min ¬LunchAtRestaurant(greg)

2. KB ∪ {∃HasChild.(DepartmentMember � TemporaryWorker)(paul)} |�LT
min ∃HasChild.¬LunchAtRestaurant(paul)

3. KB |�LT
min T(DepartmentMember � Tall) � LunchAtRestaurant

As the second example shows, we are able to infer the intended conclusion also for the implicit individuals.
Our semantic approach is seemingly close to non-monotonic extensions of DL based on circumscription. For this reason,

we discuss in detail the relationships between our approach and the one introduced in [10], based on an extension of DLs
with circumscription. We point out differences and similarities, as well as a formal relation between the two approaches.
Moreover, we provide a polynomial reduction of satisfiability in concept circumscribed KBs (for which it is known [10] that
satisfiability in ALC is NExp

NP-hard) to satisfiability in ALC + Tmin with nominals: by this reduction, we obtain the same
hardness result for ALC + Tmin with nominals.

We also provide a decision procedure for checking minimal entailment in ALC + Tmin . Our decision procedure has the
form of tableau calculus, with a two-step tableau construction. The idea is that the top level construction generates open
branches that are candidates to represent minimal models, whereas the auxiliary construction checks whether a candidate
branch indeed represents a minimal model. Termination is ensured by means of a standard blocking mechanism. Our pro-
cedure can be used to determine constructively an upper bound of the complexity of ALC + Tmin . Namely we obtain that
checking query entailment for ALC + Tmin is in co-NExp

NP. We also show how to reduce standard reasoning problems
in DLs to query entailment, obtaining complexity upper bounds for them. In detail, we show that the complexity of in-
stance checking and of subsumption for ALC + Tmin is in co-NExp

NP, whereas the complexity of concept satisfiability for
ALC + Tmin is in NExp

NP. Finally, we consider the problem of checking the satisfiability of KB (alone), and we show that its
complexity for ALC + Tmin is EXPTIME complete.

The plan of the paper is as follows. In Section 2 we recall the monotonic logic ALC + T introduced in [26]. In Section 3
we observe that ALC + T is too weak to reason about typicality, then we introduce the stronger non-monotonic logic
ALC + Tmin . In Section 4 we discuss the relationships between the extension of DLs based on the T operator and the one
based on circumscription. In Section 5 we present a tableau calculus for checking entailment in ALC + Tmin and study
an upper bound of its complexity. In Section 6 we consider other well-known reasoning problems for ALC + Tmin , namely
instance checking, subsumption, concept satisfiability and KB satisfiability. Sections 7 and 8 concludes this work with a discussion
on existing approaches to non-monotonic extensions of DLs and with some pointers to future issues. Preliminary results of
this paper have been presented in [25].

2. The logic ALC + T

In this section, we recall the original ALC + T, which is an extension of ALC by a typicality operator T introduced
in [26]. Given an alphabet of concept names C , of role names R, and of individual constants O, the language L of the logic
ALC + T is defined by distinguishing concepts and extended concepts as follows:

• (Concepts)
– A ∈ C , � and ⊥ are concepts of L;
– if C, D ∈L and R ∈R, then C � D , C
 D , ¬C , ∀R.C , ∃R.C are concepts of L.

• (Extended concepts)
– if C is a concept of L, then C and T(C) are extended concepts of L;
– boolean combinations of extended concepts are extended concepts of L.

JID:ARTINT AID:2679 /FLA [m3G; v 1.85; Prn:8/11/2012; 17:32] P.5 (1-38)

L. Giordano et al. / Artificial Intelligence ••• (••••) •••–••• 5
A knowledge base is a pair (TBox,ABox). TBox contains subsumptions C � D , where C ∈ L is an extended concept of the
form either C ′ or T(C ′), and C ′, D ∈ L are concepts. ABox contains expressions of the form C(a) and aRb where C ∈ L is
an extended concept, R ∈R, and a,b ∈O.

In order to provide a semantics to the operator T, we extend the definition of a model used in “standard” terminological
logic ALC3:

Definition 1 (Semantics of T with selection function). A model is any structure

〈�, I, fT〉
where:

• � is the domain, whose elements are denoted with x, y, z, . . . ;
• I is the extension function that maps each extended concept C to C I ⊆ �, and each role R to an R I ⊆ � × �. I assigns

to each atomic concept A ∈ C a set AI ⊆ � and it is extended to arbitrary extended concepts as follows:
– �I = �;
– ⊥I = ∅;
– (¬C)I = � \ C I ;
– (C � D)I = C I ∩ D I ;
– (C
 D)I = C I ∪ D I ;
– (∀R.C)I = {x ∈ � | ∀y.(x, y) ∈ R I → y ∈ C I };
– (∃R.C)I = {x ∈ � | ∃y.(x, y) ∈ R I and y ∈ C I };
– (T(C))I = fT(C I).

• Given S ⊆ �, fT is a function fT : Pow(�) → Pow(�) satisfying the following properties:
– (fT − 1) fT(S) ⊆ S;
– (fT − 2) if S �= ∅, then also fT(S) �= ∅;
– (fT − 3) if fT(S) ⊆ R , then fT(S) = fT(S ∩ R);
– (fT − 4) fT(

⋃
Si) ⊆ ⋃

fT(Si);
– (fT − 5)

⋂
fT(Si) ⊆ fT(

⋃
Si).

Intuitively, given the extension of some concept C , the selection function fT selects the typical instances of C . (fT − 1)
requests that typical elements of S belong to S . (fT − 2) requests that if there are elements in S , then there are also typical
such elements. The following properties constrain the behavior of fT with respect to ∩ and ∪ in such a way that they do
not entail monotonicity. According to (fT − 3), if the typical elements of S are in R , then they coincide with the typical
elements of S ∩ R , thus expressing a weak form of monotonicity (namely, cautious monotonicity). (fT − 4) corresponds to
one direction of the equivalence fT(

⋃
Si) = ⋃

fT(Si), so that it does not entail monotonicity. Similar considerations apply
to the equation fT(

⋂
Si) = ⋂

fT(Si), of which only the inclusion
⋂

fT(Si) ⊆ fT(
⋂

Si) holds. (fT − 5) is a further constraint
on the behavior of fT with respect to arbitrary unions and intersections; it would be derivable if fT were monotonic.

In [26], we have shown that one can give an equivalent, alternative semantics for T based on a preference relation seman-
tics rather than on a selection function semantics. The idea is that there is a global, irreflexive and transitive relation among
individuals and that the typical members of a concept C (i.e., those selected by fT(C I)) are the minimal elements of C with
respect to this relation. Observe that this notion is global, that is to say, it does not compare individuals with respect to
a specific concept. For this reason, we cannot express the fact that y is more typical than x with respect to concept C ,
whereas x is more typical than y with respect to another concept D . All what we can say is that either x is incomparable
with y or x is more typical than y or y is more typical than x. In this framework, an element x ∈ � is a typical instance of
some concept C if x ∈ C I and there is no C-element in � more typical than x. The typicality preference relation is partial
since it is not always possible to establish given two element which one of the two is more typical. Following KLM, the
preference relation also satisfies a Smoothness Condition, which is related to the well-known Limit Assumption in Conditional
Logics [48]4; this condition ensures that, if the extension C I of a concept C is not empty, then there is at least one minimal
element of C I . This is stated in a rigorous manner in the following definition:

Definition 2. Given an irreflexive and transitive relation < over a domain �, called preference relation, for all S ⊆ �, we de-
fine

Min<(S) = {x ∈ S | �y ∈ S s.t. y < x}
We say that < satisfies the Smoothness Condition if for all S ⊆ �, for all x ∈ S , either x ∈ Min<(S) or ∃y ∈ Min<(S) such that
y < x.

3 We refer to [2] for a detailed description of the standard Description Logic ALC.
4 More precisely, the Limit Assumption entails the Smoothness Condition (i.e. that there are no infinite < descending chains). Both properties come for

free in finite models.

JID:ARTINT AID:2679 /FLA [m3G; v 1.85; Prn:8/11/2012; 17:32] P.6 (1-38)

6 L. Giordano et al. / Artificial Intelligence ••• (••••) •••–•••
The following representation theorem is proved in [26]:

Theorem 1 (Theorem 2.1 in [26]). Given any model 〈�, I, fT〉, fT satisfies postulates (fT − 1) to (fT − 5) above iff there exists
an irreflexive and transitive relation < on �, satisfying the Smoothness Condition, such that for all S ⊆ �, fT(S) = Min<(S).

Having the above Representation Theorem, from now on, we will refer to the following semantics:

Definition 3 (Semantics of ALC + T). A model M of ALC + T is any structure

〈�, I,<〉
where:

• � is the domain;
• < is an irreflexive and transitive relation over � satisfying the Smoothness Condition (Definition 2);
• I is the extension function that maps each extended concept C to C I ⊆ �, and each role R to a R I ⊆ � × �. I assigns

to each atomic concept A ∈ C a set AI ⊆ �. Furthermore, I is extended as in Definition 1 with the exception of (T(C))I ,
which is defined as

(
T(C)

)I = Min<

(
C I)

Let us now introduce the notion of satisfiability of an ALC + T knowledge base. In order to define the semantics of
the assertions of the ABox, we extend the function I to individual constants; we assign to each individual constant a ∈ O
a distinct domain element aI ∈ �, that is to say we enforce the unique name assumption. As usual, the adoption of the unique
name assumption greatly simplifies reasoning about prototypical properties of individuals denoted by different individual
constants. Considering the example of department staff having lunches, if (in addition to the TBox) the ABox only contains
the following facts about Greg and Sara:

DepartmentMember(greg)

DepartmentMember(sara),TemporaryWorker(sara)

we would like to infer that Greg takes his lunches at the restaurant, whereas Sara does not; but without the unique name
hypothesis, we cannot get this conclusion since Greg and Sara might be the same individual. To perform useful reasoning we
would need to extend the language with equality and make a case analysis according to possible identities of individuals.
While this is technically possible, we prefer to keep the things simple here by adopting the unique name assumption.

Definition 4 (Model satisfying a knowledge base). Consider a model M, as defined in Definition 3. We extend I so that it
assigns to each individual constant a of O an element aI ∈ �, and I satisfies the unique name assumption. Given a KB
(TBox,ABox), we say that:

• M satisfies TBox iff for all inclusions C � D in TBox, C I ⊆ D I ;
• M satisfies ABox iff: (i) for all C(a) in ABox, we have that aI ∈ C I , (ii) for all aRb in ABox, we have that (aI ,bI) ∈ R I .

M satisfies a knowledge base if it satisfies both its TBox and its ABox. Last, a query F is entailed by KB in ALC + T if it
holds in all models satisfying KB. In this case we write KB |�ALC+T F .

Notice that the meaning of T can be split into two parts: for any x of the domain �, x ∈ (T(C))I just in case (i) x ∈ C I ,
and (ii) there is no y ∈ C I such that y < x. As already mentioned in the Introduction, in order to isolate the second part
of the meaning of T (for the purpose of the calculus that we will present in Section 5), we introduce a new modality �.
The basic idea is simply to interpret the preference relation < as an accessibility relation. By the Smoothness Condition,
it turns out that � has the properties as in Gödel–Löb modal logic of provability G. The Smoothness Condition ensures that
typical elements of C I exist whenever C I �= ∅, by avoiding infinitely descending chains of elements. This condition therefore
corresponds to the finite-chain condition on the accessibility relation (as in G). The interpretation of � in M is as follows:

Definition 5. Given a model M as in Definition 3, we extend the definition of I with the following clause:

(�C)I = {
x ∈ �

∣∣ for every y ∈ �, if y < x then y ∈ C I}

It is easy to observe that x is a typical instance of C if and only if it is an instance of C and �¬C , that is to say:

JID:ARTINT AID:2679 /FLA [m3G; v 1.85; Prn:8/11/2012; 17:32] P.7 (1-38)

L. Giordano et al. / Artificial Intelligence ••• (••••) •••–••• 7
Proposition 1. Given a model M as in Definition 3, given a concept C and an element x ∈ �, we have that

x ∈ (
T(C)

)I
iff x ∈ (C � �¬C)I

Since we only use � to capture the meaning of T, in the following we will always use the modality � followed by
a negated concept, as in �¬C .

The Smoothness Condition, together with the transitivity of <, ensures the following lemma:

Lemma 1. Given an ALC + T model as in Definition 3, an extended concept C , and an element x ∈ �, if there exists y < x such that
y ∈ C I , then either y ∈ Min<(C I) or there is z < x such that z ∈ Min<(C I).

Proof. Since y ∈ C I , by the Smoothness Condition we have that either (i) y ∈ Min<(C I) or (ii) there is z < y such that
z ∈ Min<(C I). In case (i) we are done. In case (ii), since < is transitive, we have also that z < x and we are done. �

Last, we state a theorem which will be used in the following:

Theorem 2 (Finite model property of ALC + T). The logic ALC + T has the finite model property.

Proof. The theorem is a consequence of Theorems 3.1 and 3.2 in [26], which prove the soundness, the completeness and
the termination of a tableau calculus for ALC+T. Indeed, if a KB is satisfiable in an ALC+T model, then there is a tableau
with a finite open branch. With a construction similar to the one used in the proof of Theorem 3.1, from this branch we can
build a finite model satisfying KB. �
3. The logic ALC + Tmin

As mentioned in the Introduction, the logic ALC + T presented in [26] allows to reason about typicality. As a difference
with respect to standard ALC , in ALC + T we can consistently express, for instance, the fact that three different concepts,
like Department member, Temporary Department Member and Temporary Department member having restaurant tickets, have
a different status with respect to Have lunch at a restaurant. This can be consistently expressed by including in a knowledge
base the three formulas:

T(DepartmentMember) � LunchAtRestaurant

T(DepartmentMember � TemporaryResearcher) � ¬LunchAtRestaurant

T(DepartmentMember � TemporaryResearcher � ∃Owns.RestaurantTicket) � LunchAtRestaurant

Assume that greg is an instance of the concept DepartmentMember �TemporaryResearcher �∃Owns.RestaurantTicket. What can
we conclude about greg? We have already mentioned that if the ABox explicitly points out that greg is a typical instance of
the concept, and it contains the assertion that:

T(DepartmentMember � TemporaryResearcher � ∃Owns.RestaurantTicket)(greg) (∗)

then, in ALC + T, we can conclude that

LunchAtRestaurant(greg)

However, if (∗) is replaced by the weaker

(DepartmentMember � TemporaryResearcher � ∃Owns.RestaurantTicket)(greg) (∗∗)

in which there is no information about the typicality of greg, in ALC+T we can no longer draw this conclusion, and indeed
we cannot make any inference about whether greg spends its lunch time at a restaurant or not. The limitation here lies in
the fact that ALC + T is monotonic, whereas we would like to make a non-monotonic inference. Indeed, we would like
to non-monotonically assume, in the absence of information to the contrary, that greg is a typical instance of the concept.
In general, we would like to infer that individuals are typical instances of the concepts they belong to, if this is consistent
with the KB.

As a difference with respect to ALC + T, ALC + Tmin is non-monotonic, and it allows to make this kind of inference.
Indeed, in ALC + Tmin if (∗∗) is all the information about greg present in the ABox, we can derive that greg is a typical in-
stance of the concept, and from the inclusions above we conclude that LunchAtRestaurant(greg). We have already mentioned
that we obtain this non-monotonic behavior by restricting our attention to the minimal ALC + T models. As a difference
with respect to ALC + T, in order to determine what is entailed by a given knowledge base KB, we do not consider all
models of KB but only the minimal ones. These are the models that minimize the number of atypical instances of concepts.

JID:ARTINT AID:2679 /FLA [m3G; v 1.85; Prn:8/11/2012; 17:32] P.8 (1-38)

8 L. Giordano et al. / Artificial Intelligence ••• (••••) •••–•••
Given a KB, we consider a finite set LT of concepts occurring in the KB: these are the concepts for which we want
to minimize the atypical instances. The minimization of the set of atypical instances will apply to individuals explicitly
occurring in the ABox as well as to implicit individuals. We assume that the set LT contains at least all concepts C such
that T(C) occurs in the KB. Notice that in case LT contains more concepts than those occurring in the scope of T in KB, the
atypical instances of these concepts will be minimized but no extra properties will be inferred for the typical instances of
the concepts, since the KB does not say anything about these instances.

We have seen that (T(C))I = (C � �¬C)I : x is a typical instance of a concept C (x ∈ (T(C))I) when it is an instance of C
and there is no other instance of C preferred to x, i.e. x ∈ (C � �¬C)I . By contraposition an instance of C is atypical if
x ∈ (¬�¬C)I therefore in order to minimize the atypical instances of C , we minimize the instances of ¬�¬C . Notice that
this is different from maximizing the instances of T(C). We have adopted this solution since it allows to maximize the set
of typical instances of C without affecting the extension C I of C (whereas maximizing the extension of T(C) would imply
maximizing also the extension of C).

We define the set M�−
LT

of negated boxed formulas holding in a model, relative to the concepts in LT:

Definition 6. Given a model M= 〈�, I,<〉 and a set of concepts LT , we define

M�−
LT

= {
(x,¬�¬C)

∣∣ x ∈ (¬�¬C)I , with x ∈ �, C ∈ LT
}

Let KB be a knowledge base and let LT be a set of concepts occurring in KB.

Definition 7 (Preferred and minimal models). Given a model M = 〈�M, IM,<M〉 of KB and a model N = 〈�N , IN ,<N 〉
of KB, we say that M is preferred to N with respect to LT , and we write M<LT N , if the following conditions hold:

• �M = �N ;
• aIM = aIN for all individual constants a ∈O;
• M�−

LT
⊂N�−

LT
.

A model M is a minimal model for KB (with respect to LT) if it is a model of KB and there is no a model M′ of KB such
that M′ <LT M.

Given the notion of preferred and minimal models above, we introduce a notion of minimal entailment, that is to say we
restrict our consideration to minimal models only. First of all, we introduce the notion of query, which can be minimally
entailed from a given KB. A query F is a formula of the form C(a) where C is an extended concept and a ∈ O. We assume
that, for all T(C ′) occurring in F , C ′ ∈ LT . Given a KB and a model M = 〈�, I,<〉 satisfying it, we say that a query C(a)

holds in M if aI ∈ C I .
Let us now define minimal entailment of a query in ALC+Tmin . In Section 6 we will reduce the other standard reasoning

tasks to minimal entailment.

Definition 8 (Minimal entailment in ALC + Tmin). A query F is minimally entailed from a knowledge base KB with respect
to LT if it holds in all models of KB that are minimal with respect to LT . We write KB |�LT

min F .

The non-monotonic character of ALC + Tmin also allows to deal with the following examples.

Example 1. Consider the following KB:

KB = {
T(Athlet) � Confident,Athlet(john), Finnish(john)

}

and LT = {Athlet, Finnish}. We have

KB |�LT
min Confident(john)

Indeed, there is no minimal model of KB that contains a non-typical instance of some concept (indeed in all minimal models
of KB the relation < is empty). Hence john is an instance of T(Athlet) (it can be easily verified that any model in which
john is not an instance of T(Athlet) is not minimal). By KB, in all these models, john is an instance of Confident. Observe that
Confident(john) is obtained, in spite of the presence of the irrelevant assertion Finnish(john).

Example 2. Consider now the knowledge base KB′ obtained by adding to KB the formula T(Athlet � Finnish) � ¬Confident,
that is to say:

KB′ = {
T(Athlet) � Confident,T(Athlet � Finnish) � ¬Confident,Athlet(john), Finnish(john)

}

JID:ARTINT AID:2679 /FLA [m3G; v 1.85; Prn:8/11/2012; 17:32] P.9 (1-38)

L. Giordano et al. / Artificial Intelligence ••• (••••) •••–••• 9
and to LT the concept Athlet � Finnish. From KB′ , Confident(john) is no longer derivable. Instead, we have that

KB′ |�LT
min ¬Confident(john)

Indeed, by reasoning as above it can be shown that in all the minimal models of KB′ , john is an instance of T(Athlet�Finnish),
and it is no longer an instance of T(Athlet). This example shows that, in case of conflict (here, john cannot be both a typical
instance of Athlet and of Athlet � Finnish), typicality in the more specific concept is preferred.

In general, a knowledge base KB may have no minimal model or more than one minimal model, with respect to
a given LT . The following properties hold.

Proposition 2. If KB has a model, then KB has a minimal model with respect to any LT .

The above fact is a consequence of the finite model property of the logic ALC + T (Theorem 2).

Proposition 3. Given a knowledge base KB and a query F , let us replace all occurrences of T(C) in KB and in F with C . We call KB′ the
resulting knowledge base and F ′ the resulting query. If KB |�LT

min F then KB′ |�ALC+T F ′ .

Proof. We show the contrapositive that if KB′ �|�ALC+T F ′ then KB �|�LT
min F . Let M be an ALC + T model satisfying KB′ and

not satisfying F ′ . Since neither KB′ nor F ′ contain any occurrence of T, the relation < does not play any role in M and we
can assume that < is empty. Notice that in M, for all C , we have that T(C)I = C I . Therefore it can be shown by induction
on the complexity of formulas in KB and in F that M is also a model of KB that does not satisfy F .

Furthermore, by Definition 5, for all C : (¬�¬C)I = ∅, hence M is a minimal model of KB. We therefore conclude that
KB �|�LT

min F , and the proposition follows by contraposition. �
The above proposition shows that the inferences allowed by ALC + Tmin have as upper approximation the consequences

that can be drawn classically from the knowledge base KB′ obtained by transforming T(C) � C ′ into the trivial C � C ′ , what
corresponds to assume that all individuals are typical. Obviously the KB′ may be inconsistent or degenerated (all concepts
are empty), whereas the original KB is not. For this reason the inverse of the proposition obviously does not hold.

4. ALC + Tmin and circumscribed knowledge bases

Among the approaches to non-monotonic DL, the one based on circumscription is perhaps the closest to ours as both are
based on the idea of minimizing atypical, or “abnormal” members of a concept. For this reason it is worthwhile to investi-
gate the relations between the two approaches. In [10] the authors propose an extension of ALC with circumscription. One
of the motivating applications of circumscription is to express prototypical properties that can have exceptions, and this is
done by introducing “abnormality” predicates, whose extension is minimized. In order to express that “Typical Cs are Ds”,
that in ALC+ Tmin we express as T(C) � D , the authors introduce the inclusion C � D
 AbC (or equivalently C �¬AbC � D)
where AbC (“abnormal C”) is a predicate to be minimized5: roughly speaking the attention will be restricted to models in
which the extension of AbC will be as little as possible. More precisely, circumscribed knowledge bases as defined in [10]
are knowledge bases equipped with a so-called circumscription pattern: a tuple CP = (≺, M, Fix, V) where M are the pred-
icates and roles to be minimized, Fix are the predicates to be kept fixed, V are the predicates that vary, and ≺ is a strict
partial order over M that allows to express priorities among predicates to be minimized. As pointed out by the authors,
these priorities usually reflect the taxonomy described by the TBox and since the subsumption hierarchy is a partial order,
priorities are assumed to form a partial order too, as a difference with standard prioritized circumscription which assumes
a total ordering. In order to establish a formal relation between ALC+Tmin and circumscribed knowledge bases, in this sec-
tion we restrict our attention to simple circumscribed knowledge bases in which: (1) there are no fixed predicates (Fix = ∅),
(2) there are no priorities over M (≺ = ∅), and (3) M only contains abnormality predicates with form AbC . Restrictions (1),
(2) and (3) are motivated by the fact that this is the case which is closer to our approach. Notice however that all the
following considerations and results still hold for ≺ that imposes specificity: more specific abnormality predicates must be
minimized before more general ones (and for instance AbA�B ≺ AbA). A simplified version of circumscribed knowledge bases
without priorities is considered in [9]. As for ALC + Tmin , for circumscribed knowledge bases one only considers minimal
models w.r.t. the preference relation <CP over models which, in the restricted case we are considering, can be defined as:
given two models I and J , we define I <CP J if (i) �I = � J , (ii) for all individual constants a aI = a J , (iii) for all AbA ∈ M ,

5 Notice that this is one of the possible uses of circumscription to formalize commonsense reasoning. A more sophisticated way suggested in [46] and
used in [5] represents the information that an individual a is an abnormal instance of a class C with respect to a given aspect P by means of binary
abnormality predicates such as Ab(P , x). We consider here the simplified version of circumscription because it is the closer to our approach. As already
mentioned in the Introduction, in future work we will consider the problem of parameterizing the preference relations to distinct aspects by considering
a family of preference relations <P for each aspect P rather than the single preference relation <.

JID:ARTINT AID:2679 /FLA [m3G; v 1.85; Prn:8/11/2012; 17:32] P.10 (1-38)

10 L. Giordano et al. / Artificial Intelligence ••• (••••) •••–•••
AbA
I ⊆ AbA

J , and (iv) there is an AbA ∈ M s.t. AbA
I ⊂ AbA

J . We write KB |�CP
CIRC F if F holds in all minimal models of KB

w.r.t. <CP .
The question now is: do the inferences that can be done in circumscribed knowledge bases with the above restrictions 1,

2, and 3 coincide with those that can be done in ALC + Tmin?
We will see that although there are major similarities between the two approaches, there are also some differences. First

we provide some examples of the similarities and differences in the two formalisms. Then in Lemmas 2, 3, and Theorem 3,
we formally analyze under what conditions the two formalisms coincide.

4.1. Similarities

Both formalisms are based on the idea of minimizing atypical, or abnormal instances of concepts. By this fact, many
inferences coincide in the two logics.

We consider an adaptation of a well-known example provided by [24], and used by [23]. Consider a knowledge base
saying that typical molluscs are shell-bearers, and that Fred is a mollusc. In the two formalisms this knowledge base would
be formalized as

KB = {
T(Mollusc) � ShellBearer,Mollusc(fred)

}

and

KB = {
Mollusc � ¬AbMollusc � ShellBearer,Mollusc(fred)

}

respectively.
Both logics would infer that Fred is a typical, not abnormal mollusc (T(Mollusc)(fred) and ¬AbMollusc(fred)), and therefore

ShellBearer(fred), although this is not explicitly said in KB.
Suppose now we added to the knowledge base above the information that cephalopods are exceptional molluscs be-

cause they typically do not have a shell. This addition would result in the addition to KB of the following sets formulas:
in ALC + Tmin

{
Cephalopod � Mollusc,T(Cephalopod) � ¬ShellBearer

}

and, in circumscribed knowledge bases

{Cephalopod � Mollusc,Cephalopod � ¬AbCephalopod � ¬ShellBearer}.
Both logics infer (in the absence of information to the contrary) that there are no cephalopods (Cephalopod � ⊥), since
these are atypical molluscs. In general, in both logics if there is a concept C that is exceptional with respect to the
typical properties of a more general concept D , then C is assumed to be empty, in the absence of information to the
contrary.

What happens if we added to the KBs above the information that Jim is a cephalopod (Cephalopod(jim))? First of all,
obviously in neither of the two logics it would be inferred that Cephalopod � ⊥ anymore.6 However, in ALC + Tmin we
would derive that T(Cephalopod)(jim) and ¬ShellBearer(jim), whereas in circumscribed knowledge bases (without priorities)
we would not make this inference. This is the Specificity Principle, that ensures that an individual is assumed to be a typical
instance of the most specific concept it belongs to. The Specificity Principle holds in ALC + Tmin as a consequence of the
fact that the semantics of T is based on the properties of KLM logic P, whereas it does not hold in circumscribed knowledge
bases simplified as above (with ≺ = ∅). In prioritized circumscribed knowledge bases in which AbCephalopod ≺ AbMollusc one
could infer that ¬AbCephalopod(jim) and therefore ¬ShellBearer(jim), as in ALC+Tmin . Notice that this behavior holds for free
in ALC + Tmin whereas in circumscribed knowledge bases it requires to specify a priority between abnormality predicates.

4.2. Differences

We here provide two examples of the different inferences that can be drawn in the two formalisms. In both examples the
differences are due to the fact that in ALC + Tmin the typicality operator T has some properties (such as the Smoothness
Condition or the constraints on the possible combinations of typicality assumptions) that do not hold in circumscribed
knowledge bases.

Example 1. Suppose we added to the knowledge base in the example above the information that Jim is not a typical
cephalopod. Do we want to conclude that Jim is a typical mollusc or not? The correct answer is unclear but probably we
would not want to draw this conclusion since cephalopods (also atypical ones) are usually atypical molluscs (recall that

6 In circumscription an alternative way to block inferences such as the one that Cephalopod � ⊥ is to fix predicates. Our semantics does not treat fixed
predicates. Handling fixed predicates will be the object of future research.

JID:ARTINT AID:2679 /FLA [m3G; v 1.85; Prn:8/11/2012; 17:32] P.11 (1-38)

L. Giordano et al. / Artificial Intelligence ••• (••••) •••–••• 11
typicality is here an absolute notion and we cannot distinguish between typicality with respect to the concept of being
a shell bearer and typicality with respect to other concepts). ALC+ Tmin and circumscribed knowledge bases draw opposite
conclusions. In ALC + Tmin we would derive that Jim is not a typical mollusc either (i.e., ¬T(Mollusc)(jim)), whereas in
circumscription (also in the prioritized version) we would derive that he is a typical mollusc ((¬AbMollusc)(jim)). Indeed,
in ALC + Tmin we have strong constraints on the possible combinations of typicality throughout subclasses: a cephalopod
cannot be a typical mollusc without being also a typical cephalopod. This is due to the fact that in ALC + Tmin we have
that (T(M) � C)I ⊆ T(M � C)I .

Another example of the different behavior of the two formalisms comes from another property of our T operator that is
not enforced in circumscribed DLs: the Smoothness Condition.

Example 2. In the knowledge base of the previous example there is no information that forces us to conclude that typical
cephalopods exist: the only cephalopod we are aware of is Jim who is not a typical cephalopod. Can we conclude that
typical cephalopods don’t exists, i.e. T(Cephalopod) � ⊥ (or equivalently Cephalopod � ¬AbCephalopod � ⊥)? The answer again
is different in the two formalisms. In circumscription (also in the prioritized version) the answer is yes: we conclude that
Cephalopod�¬AbCephalopod � ⊥. On the other hand, in ALC+Tmin by the Smoothness Condition we have that if cephalopods
exist then also typical ones exist and therefore we conclude that T(Cephalopod) �� ⊥.

4.3. Formal relation between circumscribed KBs and ALC + Tmin

First of all we define the following natural translation of formulas from the language of ALC + Tmin to the language of
circumscribed knowledge bases.

Definition 9. The translation of an ALC + Tmin formula into a circumscribed KB formula is obtained by replacing each
occurrence of T(A) with A � ¬AbA .

Since T(A) can be equivalently defined as A � �¬A, the above Definition 9 entails that we translate �¬A with ¬AbA .
This is in accordance with the intuition underlying the two formalisms.

As we said above in ALC + Tmin there are strong constraints on the possible combinations of typicality, and of boxed
formulas whereas in circumscribed knowledge bases there are no equivalent constraints on the abnormality operator.
We therefore impose these constraints in a circumscribed KB (call it KBCIRC) in order to obtain a KB which is equivalent,
and leads to the same inferences as the starting ALC + Tmin KB (call it KBALC+Tmin). The equivalence between KBALC+Tmin

and the KB resulting from the addition of these constraints to KBCIRC is formally stated in Theorem 3 below. Examples
of constraints that hold for typicality and boxed formulas in ALC + Tmin but do not hold for abnormality predicates in
circumscribed KBs and must therefore be explicitly added are the following:

(i) In ALC + Tmin it holds that (T(A) � T(B))I ⊆ T(A
 B)I , and it holds that (�¬A � �¬B)I = (�¬(A
 B))I : this gives
a relation between typical (A
 B)s, typical As and typical Bs. No such relation exists for abnormality predicates in
circumscription. If we want an equivalent relation for abnormality predicates we have to require that if x ∈ AbA
B

I ,
then x ∈ AbA

I or x ∈ AbB
I , and vice versa.

(ii) Similarly, in ALC + Tmin we have that T(A)I ∩ B I ⊆ T(A � B)I , and (�¬A
 �¬B)I ⊆ �¬(A � B), which establish
a relation between typical A � Bs and typical As. Translated into circumscription terms this corresponds to enforcing
that if x ∈ AbA�B , then x ∈ AbA and x ∈ AbB .

(iii) By the Smoothness Condition, in ALC + Tmin if there is an atypical A, then there is also a typical A. In circumscribed
knowledge bases this amounts to requiring that if (A � AbA)I �= ∅, then (A � ¬AbA)I �= ∅.

Is there a simple way of imposing these constraints to abnormality predicates, in order to obtain a correspondence with
the typicality operator in ALC + Tmin? The answer is constraint (Constr) below. It can be verified that constraint (Constr)
enforces (i), (ii), (iii) above, and indeed ensures that the behavior of abnormality predicates corresponds to the properties
of T.

AbB � ¬AbA1 � · · · � ¬AbAn � ∃R B,A1,...,An .(B � ¬A1 � · · · � ¬An � ¬AbB � ¬AbA1 � · · · � ¬AbAn) (Constr)

where role R B,A1,...,An is new for each instance of (Constr).
We consider a constraint (Constr) for each subset {B, A1, . . . , An} of LT .
(Constr) is better understood if we separately consider its components. Let us first consider: AbB �¬AbA1 � · · · �¬AbAn �

∃R B,A1,...,An B � ¬A1 � · · · � ¬An . Only if abnormality predicates satisfy this property there is a hope that they behave as
typicality assertions of ALC + Tmin . Indeed, the property requires that if x is an abnormal, atypical instance of B , whereas
it is a typical A1, . . . , An element, then there must be a y preferred to x which is a B element but a ¬A1, . . . ,¬An element
(otherwise it would conflict with the typicality of x w.r.t. A1, . . . , An). Furthermore, by the Smoothness Condition, there
must be a typical B element y preferred to x such that all the elements preferred to it do not satisfy B nor A1, . . . , An

JID:ARTINT AID:2679 /FLA [m3G; v 1.85; Prn:8/11/2012; 17:32] P.12 (1-38)

12 L. Giordano et al. / Artificial Intelligence ••• (••••) •••–•••
(otherwise these elements would contradict that x is a typical A1, . . . , An element). This is why on the right hand side of
(Constr) it appears that ¬AbB �¬AbA1 � · · · �¬AbAn (the fact that y is an instance of ¬AbB �¬AbA1 � · · · �¬AbAn guarantees
that all elements preferred to y are instances of ¬B,¬A1, . . . ,¬An).

We call KB∗
CIRC the circumscribed KB resulting from the addition to KBCIRC of all instances of (Constr). We show that

KBALC+Tmin |�LT
min F iff KB∗

CIRC |�CP
CIRC F ′ , where F ′ is the translation of F (see Theorem 3 below), where the circumscription

pattern CP = (≺, M, Fix, V) is defined as: ≺ = ∅, Fix = ∅, M = {AbA: A ∈ LT} (see Definition 8), and V contains all the
predicates occurring in the KB∗

CIRC except from those in M .
In the following lemma we consider the model MCIRC for which we define MCIRC

Ab = {(x,AbA) s.t. AbA ∈ M and x ∈ AbA
I

in MCIRC}.

Lemma 2. Given any ALC + Tmin model MALC+Tmin satisfying KBALC+Tmin , there is a model MCIRC satisfying KB∗
CIRC such that

the domain of MALC+Tmin and MCIRC coincide and for all AbA in M, (x,AbA) ∈ MCIRC
Ab iff (x,¬�¬A) ∈ M�−

ALC+Tmin
. The other

direction from MCIRC to MALC+Tmin also holds.

Proof. ⇒ Consider MALC+Tmin = 〈�, I,<〉 satisfying KBALC + Tmin . We can build MCIRC = 〈�, I ′〉 satisfying KB∗
CIRC such

that the domains � of the two models coincide. I ′ of MCIRC is defined as I of MALC+Tmin except from the fact that for all
AbA in M

(i) AbA
I ′ = (¬�¬A)I ;

(ii) R I ′
B,A1,...,An

= {(x, y): x ∈ (AbB � ¬AbA1 � · · · � ¬AbAn)
I ′ and y ∈ (B � ¬A1 � · · · � An � ¬AbB � ¬AbA1 � · · · � ¬AbAn)I ′ }.

By (i) we have that ¬AbA
I ′ = (�¬A)I and since T(A)I = (A � �¬A)I , for each ALC + Tmin formula F and its translation F ′ ,

x ∈ F I in MALC+Tmin iff x ∈ F I ′ in MCIRC . It follows that the model obtained is a model of KBCIRC . Furthermore, it is
also a model of KB∗

CIRC since it satisfies all instances of (Constr). Indeed if x ∈ (AbB � ¬AbA1 � · · · � ¬AbAn)
I ′ , then x ∈

(¬�¬B � �¬A1 � · · · � �¬An)I . It follows from the semantics of ALC + Tmin that there is a y < x such that y ∈ (B �
¬A1 � · · · � ¬An � �¬B � �¬A1 � · · · � �¬An)I . By definition of I ′ (i) y ∈ (B � ¬A1 � · · · � ¬AbB � ¬AbA1 � · · · � ¬AbAn)I ′ ,
hence by (ii) (x, y) ∈ R I ′

B,A1,...,An
, and x ∈ (∃R B,A1,...,An (B �¬A1 � · · · �¬AbB �¬AbA1 � · · · �¬AbAn))I . Last by what said above

¬AbA
I ′ = �¬AI , hence (x,¬�¬A) ∈MALC+Tmin

�− iff (x,AbA) ∈MCIRC
Ab .

⇐ Let MCIRC = 〈�, I〉 of KB∗
CIRC . We build an ALC + Tmin model MALC+Tmin = 〈�, I ′,<〉 of KBALC + Tmin as follows.

The domain � of the two models coincides. We say that y < x if:

(a) either for all AbA in M we have x ∈ AbA
I , whereas there is an AbA in M s.t. y ∈ (A � ¬AbA)I ;

(b) or there is an AbA in M s.t. x ∈ ¬AbA
I and for all AbA s.t. x ∈ ¬AbA

I : y /∈ AI and there exists B in M s.t. AI ⊆ B I and
y ∈ (B � ¬AbB)I .

The two cases (a) and (b) above are mutually exclusive. I ′ is defined as I of MCIRC (except from the predicates AbA that do
not belong to the language of ALC + Tmin).

We now show that MALC+Tmin is a model of KBALC+Tmin .
1. < is irreflexive and transitive. Both properties can be easily proven.
2. x ∈ �¬AI ′ iff x ∈ ¬AbI

A . This results from 2a and 2b below.
2a. ⇐ Let x ∈ ¬AbA

I . Consider y < x. Clearly y < x has been inserted by (b). Hence y /∈ AI and by definition of I ′ , y /∈ AI ′ ,
and x ∈ �¬AI ′ .

2b. ⇒ If x ∈ �¬AI ′ . For a contradiction suppose x ∈ AbA
I . We distinguish two cases: case (a) of the definition of <.

Consider y ∈ A � ¬AbA
I . This y exists by constraint (Constr). By (a) y < x and y ∈ AI , i.e. by definition of I ′ , y ∈ AI ′ , which

contradicts x ∈ �¬AI ′ , therefore impossible. (b) There are B1 . . . Bn s.t. x ∈ (¬AbB1 � · · · � ¬AbBn)
I . Since we are reasoning

under the assumption that x ∈ AbA
I , by the constraint (Constr) there is a y ∈ (A � ¬B1 � · · · � ¬Bn � ¬AbA � ¬AbB1 � · · ·

� ¬AbBn)I . By (b) y < x. Furthermore, y ∈ AI , and by definition of I ′ y ∈ AI ′ which contradicts that x ∈ �¬AI ′ . Both in
case (a) and in case (b) the assumption that x ∈ AbA

I leads to contradiction. We therefore conclude that x ∈ ¬AbA
I .

3. < satisfies the Smoothness Condition. Consider x ∈ AI ′ . If x ∈ ¬AbA
I , by 2 x ∈ (�¬A)I ′ , hence Min<(AI ′) �= ∅. On the

other hand, if x ∈ AbA
I , by (Constr) there is a y ∈ (A � ¬AbA � ¬AbB1 � · · · � ¬AbBn)I for B1 · · · Bn: x ∈ ¬AbB1

I · · ·¬AbBn
I .

By definition of I ′ , y ∈ AI ′ , and by 2a y ∈ (�¬A)I ′ and y ∈ Min<(AI ′). Therefore Min<(AI ′) �= ∅.
4. By definition of I ′ and by 2 we have that for each ALC + Tmin formula F and its translation F ′ , x ∈ F I ′ in MALC+Tmin

iff x ∈ F ′ I in MCIRC . Since MCIRC is a model of KBCIRC which is obtained by substituting each formula in KBALC + Tmin with
its translation it follows that MALC+Tmin is a model of the corresponding KBALC + Tmin .

5. Last, by 2 we immediately conclude that (x,¬�¬A) ∈MALC+Tmin
�− iff (x,AbA) ∈MCIRC

Ab . �
Lemma 3. Consider any model MCIRC and its equivalent MALC+Tmin of the previous lemma. MCIRC is a minimal model of KB∗

CIRC iff
MALC+T is a minimal model of KBALC+T .
min min

JID:ARTINT AID:2679 /FLA [m3G; v 1.85; Prn:8/11/2012; 17:32] P.13 (1-38)

L. Giordano et al. / Artificial Intelligence ••• (••••) •••–••• 13
Proof. ⇒ If MCIRC is a minimal model of KB∗
CIRC , suppose for a contradiction that MALC+Tmin is not minimal. Then

there is an M′
ALC + Tmin such that M′

ALC + Tmin is preferred to MALC+Tmin , i.e., it has the same domain however

M′
ALC + Tmin

�− ⊂ MALC+Tmin
�− . By Lemma 2 above, from M′

ALC + Tmin we can build a model M′
CIRC that has the

same domain as MCIRC but such that M′
CIRC

Ab ⊂ MCIRC
Ab , against the minimality of MCIRC . We are therefore forced to

conclude that also MALC+Tmin must be a minimal model of KBALC + Tmin .
⇐ If MALC+Tmin is a minimal model of KBALC + Tmin we reason as above to conclude that also MCIRC must be

a minimal model of KB∗
CIRC . �

Theorem 3. Given a query F , and its translation F ′ , KBALC+Tmin |�LT
min F iff KB∗

CIRC |�CP
CIRC F ′ .

Proof. ⇒ By contraposition, let KB∗
CIRC �|�CP

CIRC F ′ . Then there is a minimal model MCIRC = 〈�, I〉 of KB∗
CIRC and an x such that

x /∈ F ′ I in MCIRC . By Lemmas 2 and 3 above there is a minimal ALC + Tmin = 〈�, I ′,<〉 model of KBALC+Tmin such that

x /∈ F I ′ . Hence KBALC+Tmin �|�LT
min F . ⇐ By reasoning as just done we can prove the other direction: if KBALC+Tmin �|�LT

min F
then KB∗

CIRC �|�CP
CIRC F ′ . �

Observe that the mapping above does not provide a polynomial encoding of ALC + Tmin KBs into circumscribed KBs.
In fact, the number of instances of (Constr) added in KB∗

CIRC is exponential in the number of atomic concepts in LT . Finding
a polynomial encoding is at present an open problem and it will be addressed in future research.

4.4. A mapping between circumscribed DLs and ALC + Tmin with nominals

In [10] Bonatti, Lutz and Wolter prove that, in ALC , satisfiability with respect to concept-circumscribed KBs is NExp
NP-

hard even if the TBox is acyclic, the ABox and preference relations are empty, and there are no fixed predicates.
In this section we show that the same hardness result can be proved for ALC+ Tmin , with nominals. In the following we

call ALCO + Tmin the logic ALC + Tmin with nominals, and we provide a polynomial reduction of satisfiability in concept
circumscribed KBs to satisfiability in ALCO + Tmin .

Unfortunately, this result does not provide a lower bound for ALC + Tmin , since nominals cannot be defined in
ALC + Tmin . These issues will be discussed at the end of this section, after the proof of the following Theorem 4.

Theorem 4. Satisfiability in ALCO + Tmin is NExp
NP-hard.

In oder to prove the theorem, we define a polynomial reduction of satisfiability in concept-circumscribed KBs to satisfi-
ability in ALCO + Tmin . The theorem is an immediate consequence of the lemmas below.

Let us consider an ALC concept-circumscribed KB CircCP(T , A), where T is a TBox, A = ∅ an empty ABox, and where
CP = (≺, M, F , V) is a circumscription pattern, with ≺ = ∅ (the preference relations are empty), M , F and V respectively
the minimized, fixed and varying predicates. We assume F = ∅. As in [10] (Theorem 15 and Corollary 16) we assume that
there is no bound on the number of minimized predicates.

Let C0 be an ALC concept in the language of CircCP(T , A). We construct an ALCO+Tmin knowledge base KB′ = (T ′, A′),
as follows. Let MKB be the concept names p ∈ M such that p occurs either in the KB or in C0. We define the language of KB′
as the language containing the atomic concepts MKB ∪ V ∪{D, G} where D and G are two new concept names. Furthermore,
we introduce in the language of KB′ some new individual names: c1 and c2 and, for each proposition p ∈ MKB , an individual
name cp . We let

LT = {p: p ∈ MKB} ∪ {G}
To define KB′ , we translate each ALC concept C into C∗ as follows:

• C∗ = C , if C is a concept name;
• C∗ = ¬C∗

1 if C = ¬C1;
• C∗ = C∗

1 � C∗
2 if C = C1 � C2;

• C∗ = ∃R.(C∗
1 � D), if C = ∃R.C1;

• C∗ = ∀R.(C∗
1 � D), if C = ∀R.C1.

The TBox T ′ contains the following inclusions:

D � C∗
1 � C∗

2, for all the inclusions C1 � C2 ∈ T ;
D � p � ¬T(p), for each p ∈ MKB;
D � G � ¬T(G).

The ABox A′ contains:

JID:ARTINT AID:2679 /FLA [m3G; v 1.85; Prn:8/11/2012; 17:32] P.14 (1-38)

14 L. Giordano et al. / Artificial Intelligence ••• (••••) •••–•••
• the assertion D(c1);
• for each p ∈ M occurring in T , the assertion

(
T(p) � ¬D � ¬p1 � · · · � ¬pn

)
(cp)

where p1, . . . , pn are all the concept names in MKB , different from p;
• the assertion

(¬D � G � ¬p1 � · · · � ¬pn)(c2)

where p1, . . . , pn are all the concept names in MKB .

To state that the domain elements corresponding to the individuals c2, cp1 , . . . , cpn are the only ¬D-elements, we add in
the TBox T ′ the inclusion:

¬D � {c2}
 {cp1}
 · · ·
 {cpn } (1)

where p1, . . . , pn are all the concept names in MKB .
Finally, the concept C ′

0 is defined as C ′
0 = C∗

0 � D .
By the above construction of KB′ , we immediately get:

Lemma 4. The size of KB′ is polynomial in the size of KB.

Let us consider an atomic concept p ∈ M , which occurs in the KB or in C0. The idea is that minimizing p in CircCP(T , A)

corresponds to maximizing T(p) (and thus minimizing ¬�¬p) in KB′ according to ALCO + Tmin . The D elements of the
domain in a model of KB′ define the domain of a model of CircCP(T , A). If a D-element of the domain satisfies p, by the
inclusion above, it also satisfies ¬T(p), and hence it satisfies ¬�¬p. By minimizing ¬�¬p in KB′ , we also minimize p.
The introduction of an individual name cp , for each minimized concept name p, guarantees that the model contains at least
a T(p) � ¬D element in the domain that satisfies only p and no other concept names in MKB .

For each q ∈ M − MKB (i.e., for each q ∈ M such that q neither occurs in KB nor in C0), we encode the atomic concept q
with the concept G � ¬T(G). By minimizing ¬�¬G , we globally minimize all the q ∈ M − MKB .

The idea is that each model M of the KB′ in ALCO + Tmin corresponds to a model I of the circumscribed KB, where I
is obtained from M by: taking the set of D-elements of M as the domain �I and defining the interpretation of concepts
and roles as in M , except for the concept names q ∈ M − MKB , whose interpretation in I is defined as the interpretation
of G in M .

What we want to prove is that the minimal ALCO + Tmin models of KB′ correspond to models of CircCP(T , A) in which
the p ∈ M are minimized. We prove the following lemma:

Lemma 5. The concept C0 is satisfiable in CircCP(T , A) if and only if the concept C ′
0 is satisfiable with respect to KB′ in ALCO+ Tmin.

Proof. For the “⇒” direction, let us assume that the concept C0 is satisfiable in CircCP(T , A), that is, there is a model
I = 〈�I , .I〉 of CircCP(T , A) such that x0 ∈ CI

0 , for some x0 ∈ �. We show that we can construct a model M′ = 〈�′,<′, I ′〉
of KB′ which is minimal w.r.t. ALCO + Tmin and is such that x0 ∈ �′ and x0 ∈ (C ′

0)
I ′ . �′ contains the domain elements

in �I plus a new domain elements up , for each p ∈ M such that p occurs in KB or in C0, and a further element u, i.e.,

�′ = �I ∪ {up: p ∈ MKB} ∪ {u}
The idea is that, in the model M′ , each domain element up is defined as a typical p-element (for p ∈ MKB), and that u is
defined as a typical G element, which is a ¬p-element for all the p ∈ MKB . We interpret individual constants as follows:

cI ′
1 ∈ �I (cI ′

1 is any element of �I)

cI ′
p = up, for all p ∈ MKB

cI ′
2 = u

On the elements of x ∈ �I the interpretation I ′ is defined as follows:

• x ∈ D I ′ ;
• x ∈ G I ′ iff there is a q ∈ M − MKB such that x ∈ qI ;
• x ∈ pI ′ iff x ∈ pI , for all concept names p ∈ (MKB ∪ F ∪ V);
• (x, z) ∈ r I ′ iff (x, z) ∈ rI , for all role names r, for all x, z ∈ �I .

Let us define the interpretation I ′ on the new domain elements of �′ . For all up ∈ �′ (where p ∈ MKB):

JID:ARTINT AID:2679 /FLA [m3G; v 1.85; Prn:8/11/2012; 17:32] P.15 (1-38)

L. Giordano et al. / Artificial Intelligence ••• (••••) •••–••• 15
• up /∈ D I ′ ;
• u /∈ G I ′ ;
• up ∈ pI ′ ;
• up /∈ qI ′ , for all concept names q ∈ MKB with q �= p;
• (up, z) /∈ r I ′ and (z, up) /∈ r I ′ , for all role names r and for all z ∈ �′ .

For element u ∈ �′:

• u /∈ D I ′ ;
• u ∈ G I ′ ;
• u /∈ pI ′ , for all concept names p ∈ MKB;
• (u, z) /∈ r I ′ and (z, u) /∈ r I ′ , for all role names r and for all z ∈ �′ .

The relation <′ is defined as follows:

• for all x ∈ �I such that x ∈ pI for some p ∈ MKB , we let up <′ x;
• for all x ∈ �I such that x ∈ GI , we let u <′ x;
• no other pairs of elements of �′ belong to the relation <′ .

Observe that, for all p ∈ MKB , up ∈ (T(p))I ′ . Moreover, for all x ∈ �I , for all p ∈ MKB:

x ∈ pI iff x ∈ (¬�¬p)I ′

x /∈ pI iff x ∈ (�¬p)I ′

and, for all x ∈ �I , x ∈ G I ′ and x ∈ (¬�¬G)I ′ iff there is a q ∈ M − MKB such that x ∈ qI .
It can be shown that, for all x ∈ �I and for all concepts C on the language of CircCP(T , A) which do not contain any

atomic concept in M − MKB:

x ∈ (C)I iff x ∈ (
C∗)I ′

(2)

The proof is by induction on the structure of C . Observe that the atomic concepts in MKB ∪ V have the same interpretation
in I and in I ′ on the elements x ∈ �I .

It is easy to see that M′ is a model of KB′ (observe that, each inclusion D � C∗
1 � C∗

2 in KB′ is true for all D-elements,
as well as (trivially) for ¬D-elements).

It can be proved that, M′ is minimal model of KB′ w.r.t. ALCO+Tmin . If it were not, there would be a model M′′ of KB′
preferred to M′ . Suppose that, for some p ∈ MKB and x ∈ �′ , x ∈ (�¬p)I ′′ while x ∈ (¬�¬p)I ′ . By construction, it must be
that x ∈ �I and hence x ∈ D I ′ . Moreover, it must be that x ∈ pI and x ∈ pI ′ . As x ∈ �I , it must be that x ∈ D I ′′ (otherwise,
by the inclusion (1), x would be in {u, up1 , . . . , upn }). Then, it must be x /∈ pI ′′ as, otherwise, we would have x ∈ (¬�¬p)I ′′

by axiom D � p � ¬T(p). From M′′ we are able to construct a new model I ′′ of T and A (on the same domain �I) such
that I ′′ <CP I , by taking the interpretation of the atomic concepts in MKB ∪ V as in M′′ and the interpretation of the
concepts in M − MKB as in I . This contradicts the hypothesis that I is a model of CircCP(T , A).

Suppose instead that the model M′′ of KB′ is preferred to M′ since for some x ∈ �′ , x ∈ �¬G I ′′ while x ∈ ¬�¬G I ′ .
By construction, it must be that x ∈ D I ′ and that there is at least a q ∈ M − MKB such that x ∈ qI . Then, we can construct
a model J preferred to I by defining the interpretation in J as in I apart from taking x /∈ qJ . Again, this contradicts the
hypothesis that I is a model of CircCP(T , A). Hence, M′ is a minimal model of KB′ w.r.t. ALCO + Tmin .

Finally, as from the hypothesis x0 ∈ CI
0 , for some x0 ∈ �I , by (2), we have that x0 ∈ (C∗

0)I ′ and, thus, x0 ∈ (C ′
0)

I ′ . This
concludes the proof of the ⇒ direction of Lemma 5.

Let us prove the ⇐ direction of Lemma 5. Assume that the concept C ′
0 is satisfiable in KB′ in ALCO + Tmin , that is,

there is a model M′ = 〈�′,<′, I ′〉 of KB′ which is a minimal model of KB′ in ALCO + Tmin and is such that x0 ∈ (C ′
0)

I ′ , for
some x0 ∈ �′ . We show that we can construct a model I = 〈�I , .I〉 of CircCP(T , A) such that x0 ∈ CI

0 .

We construct the model M as follows. �I is defined as the set of D-elements of �′ , i.e., �I = �′ ∩ D I ′ . The interpreta-
tion .I on the domain �I is defined as I ′ on the language of CircCP(T , A), except for the atomic concepts q ∈ M − MKB . For
all x, y ∈ �I :

• x ∈ pI iff x ∈ pI ′ , for all concept names p ∈ (MKB ∪ V);
• x ∈ qI iff x ∈ (G � ¬T(G))I ′ , for all concept names q ∈ M − MKB;
• (x, y) ∈ rI iff (x, y) ∈ r I ′ , for all role names r.

JID:ARTINT AID:2679 /FLA [m3G; v 1.85; Prn:8/11/2012; 17:32] P.16 (1-38)

16 L. Giordano et al. / Artificial Intelligence ••• (••••) •••–•••
It can be shown that: For all x ∈ � and for all concepts C on the language of CircCP(T , A), which do not contain concept
names q ∈ M − MKB:

x ∈ (C)I iff x ∈ (
C∗)I ′

(3)

The proof can be done by induction on the structure of C .
For C concept name, it holds by construction. Observe that, if x ∈ (C)I , then it must be the case that x ∈ C I ′ . Also,

as x ∈ �I , then x ∈ D I ′ . Hence, x ∈ (C∗)I ′ . Vice versa, if x ∈ (C∗)I ′ , then x ∈ C I ′ . By construction, x ∈ (C)I .
For the inductive case, let us consider the case C = ∃R.C1. If x ∈ (∃R.C1)

I , then there is a y ∈ �I such that (x, y) ∈ rI

and y ∈ CI
1 . We can show that x ∈ ((∃R.C1)

∗)I ′ . As y ∈ �I , by construction, y ∈ D I ′ . As (x, y) ∈ rI , by construction

(x, y) ∈ r I ′ . From y ∈ CI
1 , we get, by inductive hypothesis, y ∈ (C∗

1)I ′ . Hence, y ∈ (C∗
1 � D)I ′ . Thus, x ∈ (∃R.(C∗

1 � D))I ′ , i.e.,

x ∈ ((∃R.C1)
∗)I ′ .

From the hypothesis, since x0 ∈ (C ′
0)

I ′ , then x0 ∈ C I ′
0 , and x0 ∈ D I ′ . Hence, by construction, x0 ∈ �I and, by (3), x0 ∈ CI

0 .
I is a model of T and A (remember that A is empty). In fact, it can be shown that I satisfies all the inclusions in T .

Let C1 � C2 ∈ T . Then, there is an inclusion D � C∗
1 � C∗

2 ∈ T ′ . Assume that x ∈ CI
1 . Then, by (3), we have x ∈ (C∗

1)I ′ . Since

x ∈ �I , by construction, x ∈ D I ′ . By the inclusion in T ′ , x ∈ (C∗
2)I ′ . Again, by (3), we have x ∈ CI

2 .
It is easy to see that there is no model J of T and A, such that J is preferred to I . If there were a model J = 〈�J , .J 〉

of T and A (where �I = �J) preferred to I , we would have that: for all q ∈ M , qJ ⊆ qI and for some p ∈ M , pJ ⊂ pI .
In such a case, it would be possible to construct a model M′′ = 〈�′′,<′′, I ′′〉 of KB′ preferred to M′ . M′′ would have the
same domain �′′ = �′ as in M′ , the same interpretation of concepts and roles on the elements of �I (the D-elements) as
in J , and the same interpretation of concepts and roles as in M′ for the elements of �′ − �I (the ¬D-elements). For all
x, y ∈ �I :

• x ∈ pI ′′ iff x ∈ pJ , for all concept names p ∈ (MKB ∪ V);
• x ∈ G I ′′ iff, for some concept name q ∈ M − MKB , x ∈ qJ ;
• (x, y) ∈ r I ′′ iff (x, y) ∈ rJ , for all role names r.

Observe that, for each p ∈ MKB , given the assertions in A′ , there must be an element of the domain �′′(= �′), let us call
it up , which is a p-element and is a ¬pi -element, for all pi ∈ MKB such that pi �= p. Also, there must be an element of
the domain �′′ , let us call it u, which is a G-element and is a ¬p-element, for all p ∈ MKB . The relation <′′ is defined as
follows. For all x ∈ �I :

for all p ∈ MKB , up <′′ x iff x ∈ pJ

u <′′ x iff, for some q ∈ M − MKB , x ∈ qJ

No other pairs of elements of �′′ are in <′′ .
As there is at least a p ∈ M such that pJ ⊂ pI and, for all q ∈ M , qJ ⊆ qI , M′′ would then be preferred to M′ , against

the assumption that M′ is minimal. Hence, I must be a model of CircCP(T , A). �
Observe that the use of nominals in the proof above prevents that, in the minimization of ¬� formulas, some D-element

becomes a ¬D-element. By inclusion (1) a model of KB′ must contain at most n + 1 ¬D-elements, and, by the assertions
in A′ , it must contain exactly n + 1 ¬D-elements.

The same reduction does not work for ALC + Tmin . One may hope that nominals can be modeled to some extent in
ALC + Tmin by making use of minimization. In particular, to define the nominal {o}, let us introduce an atomic concept L
representing it. Let us also introduce the auxiliary atomic concepts L′ and F and the role R and let the KB contain the
following inclusions:

L � L′

T(L) � F

T(L′) � ¬F

Let the KB contain the assertion L(o). In the minimal ALC + Tmin models M = 〈�,<, I〉 of the KB, there is a single
individual satisfying L, namely oI . Observe, however, that the model M must contain an individual u, such that u < oI

and u is a typical L′-element. This makes the solution above not general enough for defining nominals. Suppose we want to
define a KB in which exactly one individual is a C and exactly one individual is a ¬C . Using nominals we can simply write:

{o1} � C

C � {o1}
{o2} � ¬C

¬C � {o2}

JID:ARTINT AID:2679 /FLA [m3G; v 1.85; Prn:8/11/2012; 17:32] P.17 (1-38)

L. Giordano et al. / Artificial Intelligence ••• (••••) •••–••• 17
However, with the construction above, we would introduce two atomic concepts Lo1 and Lo2 to represent the nominals {o1}
and {o2}. The models of the resulting KB should contain also a typical L′

o1
element and a typical L′

o2
element. But, are

these C or ¬C elements?
For a similar reason, in the proof of Theorem 4, we are unable to encode inclusion (1), i.e. ¬D � {c2}
 {cp1}
 · · ·
 {cpn }.

In order to state that {cI
2, cI

p1
, . . . , cI

pn
} are the only ¬D-elements, a new element u, preferred to all of them, must be

introduced in any ALC + Tmin model. But should u be a D or a ¬D element?
In the definition of ALC + Tmin in Section 3, we have assumed that the typical instances of the concepts in LT are

maximized, essentially, by minimizing the instances of ¬�¬C , for all C ∈ LT . All the other predicates are allowed to vary.
Similarly to what is done for circumscribed KBs [10], we could consider the case where the interpretation of some predicates
is kept fixed during the minimization.

Observe that, when fixed predicates are allowed a polynomial reduction of satisfiability in concept circumscribed KBs to
satisfiability in ALC + Tmin can be defined. In essence, we can adapt the proof of Theorem 4, by requiring that the atomic
concept D is a fixed predicate, so that its interpretation remains unaltered during minimization. This prevents that, in the
minimization of ¬� formulas, some D-element becomes a ¬D-element.

Unfortunately, this result again does not provide a lower bound for ALC + Tmin without fixed predicates. In fact, while
in circumscribed KBs, the fixed predicates can be eliminated by introducing new predicates to be minimized and new
inclusions in the TBox, a similar construction cannot be used to eliminate fixed predicates in ALC + Tmin .

In [10] the idea was that, to fix an atomic predicate p, we both minimize p and its complement ¬p. In ALC + Tmin ,
fixing an atomic concept p requires not only the introduction of new symbols in the language but also of new preferred
elements in the semantics. The problem is that, the preferred elements must be either p or ¬p elements, and this becomes
incompatible with the finite chain property of the semantics.

5. A tableaux calculus for ALC + Tmin

In this section we present a tableau calculus for deciding whether a query F is minimally entailed by a knowledge base
(TBox,ABox). We introduce a labeled tableau calculus called TABALC+T

min , which extends the calculus TALC+T presented in
[26], and allows to reason about minimal models.

TABALC+T
min performs a two-phase computation in order to check whether a query F is minimally entailed from the

initial KB. In particular, the procedure tries to build an open branch representing a minimal model satisfying KB ∪ {¬F }.
In the first phase, a tableau calculus, called TABALC+T

PH1 , simply verifies whether KB ∪ {¬F } is satisfiable in an ALC + T

model, building candidate models. In the second phase another tableau calculus, called TABALC+T
PH2 , checks whether the

candidate models found in the first phase are minimal models of KB. To this purpose for each open branch of the first
phase, TABALC+T

PH2 tries to build a “smaller” model of KB, i.e. a model whose individuals satisfy less formulas ¬�¬C

than the corresponding candidate model. The whole procedure TABALC+T
min is formally defined at the end of this section

(Definition 22).
TABALC+T

min is based on the notion of a constraint system. We consider a set of variables drawn from a denumerable
set V . Variables are used to represent individuals not explicitly mentioned in the ABox, that is to say implicitly expressed
by existential as well as universal restrictions.

TABALC+T
min makes use of labels, which are denoted with x, y, z, A label represents either a variable or an individual

constant occurring in the ABox, that is to say an element of O ∪ V .

Definition 10 (Constraint). A constraint (or labeled formula) is a syntactic entity of the form either x
R−→ y or y < x or

x : C , where x, y are labels, R is a role and C is either an extended concept or has the form �¬D or ¬�¬D , where D is
a concept.

Intuitively, a constraint of the form x
R−→ y says that the individual represented by label x is related to the one denoted

by y by means of role R; a constraint y < x says that the individual denoted by y is “preferred” to the individual represented
by x with respect to the relation <; a constraint x : C says that the individual denoted by x is an instance of the concept C ,
i.e. it belongs to the extension C I . As we will define in Definition 13, the ABox of a knowledge base can be translated into
a set of constraints by replacing every membership assertion C(a) with the constraint a : C and every role aRb with the

constraint a
R−→ b.

Let us now separately analyze the two components of the calculus TABALC+T
min , starting with TABALC+T

PH1 .

5.1. The tableau calculus TABALC+T
PH1

Let us first define the basic notions of a tableau system in TABALC+T
PH1 :

Definition 11 (Tableau of TABALC+T
PH1). A tableau of TABALC+T

PH1 is a tree whose nodes are constraint systems, i.e., pairs
〈S|U 〉, where S is a set of constraints, whereas U contains formulas of the form C � DL , representing subsumption relations

JID:ARTINT AID:2679 /FLA [m3G; v 1.85; Prn:8/11/2012; 17:32] P.18 (1-38)

18 L. Giordano et al. / Artificial Intelligence ••• (••••) •••–•••
Fig. 1. The calculus TABALC+T
PH1 . To save space, we omit the rules (∀−) and (∃−), dual to (∃+) and (∀+), respectively.

C � D of the TBox. L is a list of labels.7 A branch is a sequence of nodes 〈S1|U1〉, 〈S2|U2〉, . . . , 〈Sn|Un〉, . . . , where each
node 〈Si |Ui〉 is obtained from its immediate predecessor 〈Si−1|Ui−1〉 by applying a rule of TABALC+T

PH1 (see Fig. 1), having
〈Si−1|Ui−1〉 as the premise and 〈Si |Ui〉 as one of its conclusions. A branch is closed if one of its nodes is an instance of
clash (either (Clash) or (Clash)� or (Clash)⊥), otherwise it is open. A tableau is closed if all its branches are closed.

In the following, we will often refer to the height of a tableau: intuitively, the height of a tableau corresponds to the
height of the tree of Definition 11. This is formally stated as follows:

Definition 12 (Height of a tableau). Given a tableau of TABALC+T
PH1 having 〈S|U 〉 as a root, we define its height h as follows:

• h = 0 if no rule is applied to 〈S|U 〉8;
• h = 1 + max{h1,h2, . . . ,hn} if a rule (R) ia applied to 〈S|U 〉 and h1,h2, . . . ,hn are the heights of the tableaux whose

roots are the conclusions of (R).

In order to check the satisfiability of a KB, we build the corresponding constraint system 〈S|U 〉, and we check its satisfi-
ability.

7 As we will discuss later, this list is used in order to ensure the termination of the tableau calculus.
8 In case of a closed tableau, this corresponds to the case in which 〈S|U 〉 is an instance either of (Clash) or of (Clash)⊥ or of (Clash)� .

JID:ARTINT AID:2679 /FLA [m3G; v 1.85; Prn:8/11/2012; 17:32] P.19 (1-38)

L. Giordano et al. / Artificial Intelligence ••• (••••) •••–••• 19
Definition 13 (Corresponding constraint system). Given a knowledge base KB = (TBox,ABox), we define its corresponding con-
straint system 〈S|U 〉 as follows:

• S = {a : C | C(a) ∈ ABox} ∪ {a R−→ b | aRb ∈ ABox};
• U = {C � D∅ | C � D ∈ TBox}.

Definition 14 (Model satisfying a constraint system). Let M = 〈�, I,<〉 be a model as defined in Definition 3. We define
a function α which assigns to each variable of V an element of �, and assigns every individual constant a ∈ O to aI ∈ �.
M satisfies a constraint F under α, written M |�α F , as follows:

• M |�α x : C if and only if α(x) ∈ C I ;

• M |�α x
R−→ y if and only if (α(x),α(y)) ∈ R I ;

• M |�α y < x if and only if α(y) < α(x).

A constraint system 〈S|U 〉 is satisfiable if there is a model M and a function α such that M satisfies every constraint
in S under α and that, for all C � DL ∈ U and for all x ∈ �, we have that if x ∈ C I then x ∈ D I .

Let us now show that:

Proposition 4. KB = (TBox,ABox) is satisfiable in an ALC + T model if and only if its corresponding constraint system 〈S|U 〉 is
satisfiable in the same model.

Proof. We show that a model M as in Definition 3 satisfies KB if and only if there is a function α such that 〈S|U 〉 is
satisfiable in M under α. We simply define α as follows: α assigns each individual constant a ∈ O to aI ∈ �. Let us first
consider the ABox and each formula belonging to it. By Definition 4, given C(a) ∈ ABox, we have that M |� C(a) iff aI ∈ C I .
By Definition 13 of the corresponding constraint system, we have that a : C ∈ S; since a is an individual constant occurring in
the ABox, we have that α(a) = aI , thus aI ∈ C I iff α(a) ∈ C I and, by Definition 14, iff M |�α a : C . In case M |� aRb, we have

that a
R−→ b ∈ S . M |� aRb iff (aI ,bI) ∈ R I iff (α(a),α(b)) ∈ R I iff M |�α a

R−→ b. Concerning the TBox, M |� C � D iff, for
each x ∈ �, if x ∈ C I then x ∈ D I , i.e. M |� C � D∅ . �

To verify the satisfiability of KB ∪ {¬F }, we use TABALC+T
PH1 to check the satisfiability of the constraint system 〈S|U 〉

obtained by adding the constraint corresponding to ¬F to S ′ , where 〈S ′|U 〉 is the corresponding constraint system of KB.
To this purpose, the rules of the calculus TABALC+T

PH1 are applied until either a contradiction is generated (clash) or a model
satisfying 〈S|U 〉 can be obtained from the resulting constraint system. As in the calculus proposed in [26], given a node
〈S|U 〉, for each subsumption C � DL ∈ U and for each label x that appears in the tableau, we add to S the constraint
x : ¬C
 D: we refer to this mechanism as subsumption expansion. As mentioned above, each subsumption C � D is equipped
with a list L of labels in which the subsumption has been expanded in the current branch. This is needed to avoid multiple
expansions of the same subsumption by using the same label, generating infinite branches.

Before introducing the rules of TABALC+T
PH1 we need some more definitions. First, as in [13], we define an ordering

relation ≺ to keep track of the temporal ordering of insertion of labels in the tableau, that is to say if y is introduced in the
tableau, then x ≺ y for all labels x that are already in the tableau. Moreover, we need to define the equivalence between two
labels: intuitively, two labels x and y are equivalent if they label the same set of extended concepts. This notion is stated
in the following definition, and it is used in order to apply the blocking machinery described in the following, based on the
fact that equivalent labels represent the same element in the model built by TABALC+T

PH1 .

Definition 15. Given a tableau node 〈S|U 〉 and a label x, we define

σ
(〈S|U 〉, x

) = {C | x : C ∈ S}
Furthermore, we say that two labels x and y are S-equivalent, written x ≡S y, if they label the same set of concepts, i.e.

σ
(〈S|U 〉, x

) = σ
(〈S|U 〉, y

)

Last, we define the set of formulas S M
x→y , that will be used in the rule (�−) when y < x, in order to introduce y : ¬C

and y : �¬C for each x : �¬C in the current branch:

Definition 16. Given a tableau node 〈S|U 〉 and two labels x and y, we define

S M
x→y = {y : ¬C, y : �¬C | x : �¬C ∈ S}

JID:ARTINT AID:2679 /FLA [m3G; v 1.85; Prn:8/11/2012; 17:32] P.20 (1-38)

20 L. Giordano et al. / Artificial Intelligence ••• (••••) •••–•••
The rules of TABALC+T
PH1 are presented in Fig. 1. Rules (∃+) and (�−) are called dynamic since they introduce a new

variable in their conclusions. The other rules are called static. A brief explanation of the rules follows:

• (Clash), (Clash)� and (Clash)⊥ are used to detect clashes, i.e. unsatisfiable constraint systems.
• Rules for
, �, ¬, and ∀ are similar to the corresponding ones in the tableau calculus for standard ALC [13]: as an ex-

ample, the rule (
+) is applied to a constraint system of the form 〈S, x : C
 D|U 〉 in order to deal with the constraint
x : C
 D introducing two branches in the tableau construction, to check the two conclusions obtained by adding the
constraints x : C and x : D , respectively. The side condition of the rules are the usual conditions needed to avoid multi-
ple applications on the same principal formula: concerning the example of (
+), it can be applied only if x : C /∈ S and
x : D /∈ S .

• The rules (T+) and (T−) are used to “translate” formulas of the form T(C) in the corresponding modal interpretation: for
(T+), this corresponds to introduce x : C ��¬C to a constraint system containing x : T(C), whereas for (T−) a branching
is introduced to add either x : ¬C or x : ¬�¬C in case x : ¬T(C) belongs to the constraint system.

• The rule (�) is used in order to check whether, for all x belonging to a branch, the inclusion relations of the TBox are
satisfied: given a label x and an inclusion C � DL ∈ U , the branching introduced by the rule ensures that either x : ¬C
holds or that x : D holds.

• The rule (�−), applied to a principal formula x : ¬�¬C (x is not a typical instance of the concept C , i.e. there exists
an element z which is a typical instance of C and is more normal than x), introduces the constraints z < x, z : C and
z : �¬C . A branching on the choice of the label z to use is introduced, since it can be either a “new” label y, not
occurring in the branch, or one of the labels v1, v2, . . . , vn already belonging to the branch.
We do not need any extra rule for the positive occurrences of the � operator, since these are taken into account by
the computation of S M

x→y of (�−). (∃+) deals with constraints of the form x : ∃R.C in a similar way. The additional
side conditions on (∃+) and (�−) are introduced in order to ensure a terminating proof search, by implementing
the standard blocking technique described below. Intuitively, they are applied to constraints x : ∃R.C and x : ¬�¬C ,
respectively, only if x is not blocked, i.e. if there is no label (witness) z, labeling the same concepts of x, such that the
rule has been already applied to z : ∃R.C (resp. z : ¬�¬C). This is formally stated in Definition 18 below.

• The (cut) rule ensures that, given any concept C ∈ LT , an open branch built by TABALC+T
PH1 contains either x : �¬C

or x : ¬�¬C for each label x: this is needed in order to allow TABALC+T
PH2 to check the minimality of the model

corresponding to the open branch, as we will discuss later.

All the rules of the calculus copy their principal formulas, i.e. the formulas to which the rules are applied, in all their
conclusions. As we will discuss later, for the rules (∃+), (∀−) and (�−) this is used in order to apply the blocking technique,
whereas for the rules (∃−), (∀+), (�), and (cut) this is needed in order to have a complete calculus. Rules for �,
, ¬, and T
also copy their principal formulas in their conclusions for uniformity sake.

In order to ensure the completeness of the calculus, the rules of TABALC+T
PH1 are applied with the following standard

strategy:

1. Apply a rule to a label x only if no rule is applicable to a label y such that y ≺ x.
2. Apply dynamic rules only if no static rule is applicable.

The calculus so obtained is sound and complete with respect to the semantics in Definition 14. In order to prove this,
we first define the notion of regular node:

Definition 17 (Regular node). A node 〈S|U 〉 of TABALC+T
PH1 is regular if and only if the following conditions hold:

• if x : �¬C ∈ S , then C ∈LT;
• if x : ¬�¬C ∈ S , then C ∈LT .

We can show that:

Lemma 6. Given an ALC + T KB, its corresponding constraint system 〈S|U 〉, and a set of concepts LT , the nodes of every tableau of
TABALC+T

PH1 having 〈S|U 〉 as a root are regular nodes.

Proof. Considering each rule of TABALC+T
PH1 , we can show that if the premise is a regular node, then the conclusions are

also regular nodes. The rules introducing boxed formulas are (T+), (T−), (cut), and (�−). (T+) and (T−) introduce (¬)�¬C
in their conclusions when applied to some formula (¬)T(C): we conclude that the conclusions are regular nodes, since
C ∈ LT by definition of LT (it contains at least all concepts in the scope of the T operator). By definition of the rule,
(cut) introduces (¬)�¬C in its conclusions by taking C ∈LT , and we are done. Concerning (�−), suppose an application to
a regular node 〈S, x : ¬�¬C |U 〉. Each conclusion has the form 〈S, x : ¬�¬C, y < x, y : C, y : �¬C, S M

x→y |U 〉, and we conclude

JID:ARTINT AID:2679 /FLA [m3G; v 1.85; Prn:8/11/2012; 17:32] P.21 (1-38)

L. Giordano et al. / Artificial Intelligence ••• (••••) •••–••• 21
as follows: C ∈LT , otherwise the premise would not be regular; if y : �¬D ∈ S M
x→y , then x : �¬D ∈ S and D ∈LT , otherwise

the premise would not be regular. �
From now on, by Lemma 6, we restrict our concern to regular nodes.
Furthermore, we introduce the notions of witness and of blocked label:

Definition 18 (Witness and blocked label). Given a constraint system 〈S|U 〉 and two labels x and y occurring in S , we say
that x is a witness of y if the following conditions hold:

1. x ≡S y;
2. x ≺ y;
3. there is no label z s.t. z ≺ x and z satisfies conditions 1 and 2, i.e., x is the least label satisfying conditions 1 and 2 w.r.t.

≺.

We say that y is blocked by x in 〈S|U 〉 if y has witness x.

By the strategy on the application of the rules described above and by Definition 18, we can prove the following lemma:

Lemma 7. In any constraint system 〈S|U 〉, if x is blocked, then it has exactly one witness.

Proof. The property immediately follows from the definition of a witness (Definition 18). �
As mentioned above, we apply a standard blocking technique to control the application of the rules (∃+) and (�−),

in order to ensure the termination of the calculus. Intuitively, we can apply (∃+) to a constraint system of the form
〈S, x : ∃R.C |U 〉 only if x is not blocked, i.e. it does not have any witness: indeed, in case x has a witness z, by the strat-
egy on the application of the rules described above the rule (∃+) has already been applied to some z : ∃R.C , and we do not
need a further application to x : ∃R.C . This is ensured by the side condition on the application of (∃+), namely if �z ≺ x
such that z ≡S,x:∃R.C x. The same blocking machinery is used to control the application of (�−), which can be applied only
if �z ≺ x such that z ≡S,x:¬�¬C x.

We also need the following definitions:

Definition 19 (Satisfiability of a branch). A branch B of a tableau of TABALC+T
PH1 is satisfiable w.r.t. ALC + T by a model M

if there is a mapping α from the labels in B to the domain of M such that for all constraint systems 〈S|U 〉 on B, M
satisfies under α (see Definition 14) every constraint in S and, for all C � DL ∈ U and for all x occurring in S , we have that
if α(x) ∈ C I then α(x) ∈ D I .

Definition 20 (Saturated branch). A branch B = 〈S0|U0〉, 〈S1|U1〉, . . . , 〈Si |Ui〉, . . . is saturated if the following conditions hold:

1. for all C � DL and for all labels x occurring in B, either x : ¬C or x : D belong to B;
2. if x : T(C) occurs in B, then x : C and x : �¬C occur in B;
3. if x : ¬T(C) occurs in B, then either x : ¬C or x : ¬�¬C occurs in B;
4. if x : �¬C and y < x occur in B, also y : ¬C and y : �¬C occur in B;
5. if x : ¬�¬C occurs in B, then either there is y such that y < x, y : C , y : �¬C , and S M

x→y occur in B or x is blocked by

a witness w , and y < w , y : C , y : �¬C , and S M
w→y occur in B;

6. if x : ∃R.C occurs in B, then either there is y such that x
R−→ y and y : C occur in B or x is blocked by a witness w , and

w
R−→ y and y : C occur in B;

7. if x : ∀R.C and x
R−→ y occur in B, also y : C occurs in B;

8. for x : ¬∀R.C and for x : ¬∃R.C the condition of saturation is defined symmetrically to points 6 and 7, respectively;
9. for the boolean rules the condition of saturation is defined in the usual way. For instance, if x : C � D occurs in B, so x : C

and x : D occur in B;
10. for all C ∈LT and for all labels x occurring in B, either x : ¬�¬C occurs in B or x : �¬C occurs in B.

By following the strategy on the order of application of the rules outlined above and by Lemma 7, we can prove that
any open branch can be expanded into an open saturated branch. However, it is worth noticing that, as a difference with
the tableau calculus for ALC + T presented in [26], as well as the one for the standard DL ALC introduced in [13], the
strategy on the order of application of the rules of TABALC+T

PH1 does not ensure that the labels are considered one at
a time, following the order ≺. Indeed, the rules (∃+) and (�−) reconsider labels already introduced in the branch in their
conclusions. When (�−) is applied to a formula x : ¬�¬C , a branching is introduced on the choice of the label used in the

JID:ARTINT AID:2679 /FLA [m3G; v 1.85; Prn:8/11/2012; 17:32] P.22 (1-38)

22 L. Giordano et al. / Artificial Intelligence ••• (••••) •••–•••
conclusion. In the leftmost conclusion, a “new” label y is used to add y : C , y : �¬C , S M
x→y . In all the other conclusions,

a label vi already present in the branch is chosen. Therefore, rules of TABALC+T
PH1 are furthermore applied to formulas

labeled with the “older” label vi . One may conjecture that this could lead to an incomplete calculus, in particular that
condition 4 of saturation above could be not fulfilled. We show in the proof of Proposition 5 below that this does not
happen. Intuitively, it could be the case that vi : �¬C is introduced by (�−), however a previous application of the same
rule to vi : ¬�¬D , introducing a new label u < vi , causes the loss of the propagation of the concepts ¬C and �¬C (u : ¬C
and u : �¬C should belong to a saturated branch). However, this cannot happen due to the order on the application of the
rules and, in particular, by virtue of the rule (cut): since (cut) is a static rule, it has been already applied by using label vi
before taking into account labels “younger” than vi . By Lemma 6, C ∈LT , therefore either vi : ¬�¬C or vi : �¬C have been
already introduced: in the former case, the branch is closed, otherwise u : ¬C and u : �¬C have been also introduced by
the application of (�−) introducing u (in the computation of S M

vi→u), ensuring the saturation of the branch.

Proposition 5. Any open branch B can be expanded by applying the rules of TABALC+T
PH1 into an open saturated branch.

Proof. As mentioned, let us analyze the case of condition 4. For the other conditions, the proof is standard and then left to
the reader. Suppose that x : �¬C and y < x belong to B. The relation y < x has been added to B by an application of the
rule (�−) to a node 〈S, x : ¬�¬D|U 〉. We show that x : �¬C was already in S before the application of (�−) to x : ¬�¬D .
Indeed, by the order on the application of the rules, if (�−) is going to be applied to introduce y < x, then all the static
rules have already been applied to formulas labeled by x, including the (cut) rule. By Lemma 6, we have that C ∈ LT , and
(cut) has been also applied to C by using the label x. Therefore, S contains either x : ¬�¬C or x : �¬C : the former case
cannot be, otherwise B would become closed when x : �¬C is introduced, then we are done. By the fact that x : �¬C ∈ S ,
we can conclude that y : C , y : �¬C belong to B, since they are introduced by the application of (�−) to 〈S, x : ¬�¬D|U 〉
(we have that {y : ¬C, y : �¬C} ⊆ S M

x→y). �
In order to show the completeness of TABALC+T

PH1 , given an open, saturated branch B, we explicitly add to B the relation
y < x, if x is blocked and w is the witness of x and y < w occurs in B.

Before proving the completeness, we prove the following lemmas:

Lemma 8. In any tableau built by TABALC+T
PH1 , there is no open saturated branch B containing an infinite descending chain of labels

· · · x2 < x1 < x0 .

Proof. The only way to obtain an infinite descending chain · · · x2 < x1 < x0 would be to have either (i) a loop or (ii) an in-
finite set of distinct labels. We can show that neither (i) nor (ii) can occur.

As far as (i) is concerned, suppose for a contradiction that there is a loop, that is to say there is an infinite descending
chain x < u < · · · < yi < · · · < y < x. We distinguish three cases:

• The relation x < u has been inserted in the branch by the rule (�−) in the leftmost conclusion of this rule: this cannot
be the case, since in the leftmost conclusion of the rule x is a new label.

• The relation x < u has been inserted in the branch by the rule (�−) not in the leftmost conclusion, i.e. by using x
occurring in B, x �= u: the relation y < x has been introduced by an application of (�−), then there is x : ¬�¬C in B
(the formula to which the (�−) rule is applied). Therefore, x : ¬�¬C belongs to B, as well as y : �¬C belongs to B.
Moreover, yi : �¬C belongs to B, for all yi , then also u : �¬C belongs to B. When (�−) is applied to introduce x < u,
the constraint x : �¬C is also added to B, since x : �¬C ∈ S M

u→x , which contradicts the hypothesis that B was open.
• The relation x < u has been explicitly inserted in the branch because u is blocked by some witness w , and x < w

occurs in B. Notice, however, that in this case: 1. x < w has been introduced by (�−) applied to some w : ¬�¬C ,
hence, x : �¬C occurs in B; 2. similarly to the previous case, it can be shown that also for all yi and for u, we have
that yi : �¬C and u : �¬C belong to B; 3. since w is a witness of u, also u : ¬�¬C occurs in the branch B, which
contradicts the hypothesis that B was open.

Concerning (ii), suppose there were an infinite descending chain · · · < xi < · · · < x0. Each relation must be generated by
a ¬�¬C that has not yet been used in the chain, either by an application of the rule (�−) to ¬�¬C in xi−1, or by
an application of the rule (�−) to ¬�¬C in the witness w of xi−1. Indeed, if ¬�¬C had been previously used in the chain,
say in introducing xi < xi−1, for each x j such that x j < · · · < xi , we have that x j : �¬C is in B, hence x j : ¬�¬C cannot be
in B, otherwise B would be closed, against the hypothesis. Notice however that, by Lemma 6, the only formulas ¬�¬C that
appear in the branch are such that C ∈LT . Since LT is finite, it follows that also the number of possible different ¬�¬C is
finite, and the infinite descending chain cannot be generated. �

Let us now show that all the rules of TABALC+T
PH1 are invertible. In order to do this, we first show that weakening is

admissible, namely:

JID:ARTINT AID:2679 /FLA [m3G; v 1.85; Prn:8/11/2012; 17:32] P.23 (1-38)

L. Giordano et al. / Artificial Intelligence ••• (••••) •••–••• 23
Lemma 9 (Admissibility of weakening). Given a constraint F and a constraint system 〈S|U 〉, if 〈S|U 〉 has a closed tableau in
TABALC+T

PH1 , then also 〈S, F |U 〉 has a closed tableau in TABALC+T
PH1 .

Proof. By induction on the height of the closed tableau for 〈S|U 〉, in the sense of Definition 12. For the base case, it is
easy to observe that, if 〈S|U 〉 is a clash, then also 〈S, F |U 〉 is a clash. As an example, consider the case of 〈S ′, x : ⊥|U 〉,
which is an instance of (Clash)⊥: obviously, also 〈S ′, x : ⊥, F |U 〉 is an instance of (Clash)⊥ . For the inductive step, we an-
alyze the first step in the tableau construction for 〈S|U 〉, by considering all the rules. We only show the most interesting
cases of (�−) and (�), the other cases are similar and left to the reader. Suppose that (�−) has been applied to
〈S ′, x : ¬�¬C |U 〉, by generating the conclusion 〈S ′, x : ¬�¬C, y < x, y : C, y : �¬C, S M

x→y |U 〉, where y does not occur in

S ′ , as well as the conclusions 〈S ′, x : ¬�¬C, vi < x, vi : C, vi : �¬C, S M
x→vi

|U 〉 for each vi occurring in S ′ . We can apply
the inductive hypothesis on each conclusion, to obtain a closed tableau for 〈S ′, x : ¬�¬C, y < x, y : C, y : �¬C, S M

x→y, F |U 〉
and for 〈S ′, x : ¬�¬C, vi < x, vi : C, vi : �¬C, S M

x→vi
, F |U 〉, from which we can conclude by an application of (�−) to ob-

tain a closed tableau also for 〈S ′, x : ¬�¬C, F |U 〉. Notice that, in case F contains the label y, we can replace y in the
tableau with a new label y′ wherever it occurs. For (�), consider a tableau starting with an application of such a rule
to 〈S|U ′, C � DL〉, whose conclusion is 〈S, x : ¬C
 D|U ′, C � DL,x〉 (with x /∈ L). By inductive hypothesis, we have a closed
tableau for 〈S, x : ¬C
 D, F |U ′, C � DL,x〉, from which we obtain a closed tableau for 〈S, F |U ′, C � DL〉 by an application
of (�). �

Now we can easily prove that the rules of TABALC+T
PH1 are invertible:

Lemma 10. Let (R) be a rule of the calculus TABALC+T
PH1 , let 〈S|U 〉 be its premise and let 〈S1|U1〉, 〈S2|U2〉, . . . , 〈Sn|Un〉 be its

conclusions. If 〈S|U 〉 has a closed tableau in TABALC+T
PH1 , then also 〈S1|U1〉, 〈S2|U2〉, . . . , 〈Sn|Un〉 have a closed tableau, i.e. the rules

of TABALC+T
PH1 are invertible.

Proof. It can be easily observed that all the rules of TABALC+T
PH1 copy their principal formulas in all their conclusions.

Therefore, if we have a closed tableau for the premise of a given rule (R), by weakening (Lemma 9 above) we have also
a closed tableau for each of its conclusions, and we are done. �

By Lemma 10, we have that in TABALC+T
PH1 the order of application of the rules is not relevant. Hence, no backtracking

is required in the tableau construction, and we can assume, without loss of generality, that a given constraint system 〈S|U 〉
has a unique tableau.

With the above propositions at hand, we can show that:

Theorem 5 (Soundness of TABALC+T
PH1). If the tableau for the constraint system corresponding to KB ∪ {¬F } is closed then

KB |�ALC+T F .

Proof. We first show that if the tableau for the constraint system corresponding to KB∪{¬F } is closed, then (∗) KB∪{¬F } is
unsatisfiable. By Proposition 4, KB ∪ {¬F } is satisfiable if and only if its corresponding constraint system 〈S|U 〉 is satisfiable
in the same model. We proceed by induction on the height of the closed tableau for 〈S|U 〉. For the base case, it is easy
to observe that if 〈S|U 〉 is an instance of either (Clash) or (Clash)⊥ or (Clash)� , then KB ∪ {¬F } is unsatisfiable. For the
inductive step, we consider each rule applied to the root 〈S|U 〉 of the closed tableau, and we show that KB ∪ {¬F } is
unsatisfiable assuming, by inductive hypothesis, that also the conclusions are unsatisfiable. We proceed by contraposition,
that is to say, by considering each rule of TABALC+T

PH1 , it can be shown that if the premise is satisfiable in an ALC + T
model, so is (at least) one of its conclusions. To save space, we only show the most interesting case: the (�−) rule. The
other cases are easy and then left to the reader. Suppose the premise 〈S, x : ¬�¬C |U 〉 is satisfiable, i.e. there is a model
M = 〈�, I,<〉 and a function α such that M |�α F for each F ∈ S . Moreover, we have that C I ⊆ D I for each C � DL ∈ U .
Finally, M |�α x : ¬�¬C , i.e. there exists a ∈ � such that a < I(x) and a ∈ C I . By Lemma 1, either a ∈ Min<(C I) or there is
b < I(x) such that b ∈ Min<(C I). Let c be such individual (a or b) which is preferred to I(x) and belongs to Min<(C I). We
have that c ∈ C I and c ∈ (�¬C)I . Since c < I(x), for all x : �¬D ∈ S , we have that c ∈ (¬D)I by Definition 5 and, since < is
transitive, c ∈ (�¬D)I . Let us define a function α′ such that α′(k) = α(k) for all k �= y, whereas α′(y) = c. We conclude that
the leftmost conclusion of (�−) is satisfiable in M via α′ , since y does not occur in S . Indeed, M |�α′ F for all F ∈ S and,
by definition of α′ , we have that M |�α′ y < x, y : C, y : �¬C, S M

x→y .
We can conclude by observing that, if KB �|�ALC+T F , then KB ∪ {¬F } is satisfiable in an ALC + T model. Given (∗),

we conclude that KB |�ALC+T F by contraposition. �
In the proof of the theorem and later in the paper we will use the notion of canonical model MB built from an open

branch B. The canonical model MB = 〈�B ,<′, I B〉 is defined as follows:

• �B = {x: x is a label appearing in B};

JID:ARTINT AID:2679 /FLA [m3G; v 1.85; Prn:8/11/2012; 17:32] P.24 (1-38)

24 L. Giordano et al. / Artificial Intelligence ••• (••••) •••–•••
• we first define <∗ as follows: <∗= {y <∗ x: either y < x occurs in B or x is blocked and w is the witness of x
(by Lemma 7 such w exists) and y < w occurs in B}. We define <′ as the transitive closure of relation <∗;

• I B is an interpretation function such that for all atomic concepts A, AI B = {x such that x : A occurs in B}. I B is then
extended to all concepts C in the standard way, according to the semantics of the operators. For role names R , R I B =
{(x, y) : either x

R−→ y occurs in B or x is blocked and w is the witness of x (by Lemma 7 such w exists) and w
R−→ y

occurs in B}.

Theorem 6 (Completeness of TABALC+T
PH1). If KB |�ALC+T F , then the tableau for the constraint system corresponding to KB ∪ {¬F }

is closed.

Proof. We show the contrapositive, that if the tableau is open, then the starting constraint system 〈S|U 〉 is satisfiable in
an ALC + T model, and by Proposition 4 KB ∪ {¬F } is satisfiable in the same model, hence KB |�ALC+T F . An open tableau
contains an open branch that by Proposition 5 can be expanded into an open saturated branch. From such a branch, call
it B, we define the canonical model MB = 〈�B ,<′, I B〉 as described above.

We can show that:

• <′ is irreflexive, transitive, and satisfies the Smoothness Condition. Irreflexivity follows from the fact that the relation <

is either introduced by rule (�−) between a label x already present in B and either a new label or a label different
from x, or it is explicitly added in case some x : ¬�¬C is on the branch and x is blocked. In this case, suppose for
a contradiction that x < x is added, this means that x is blocked by a witness w and x < w , thus w : ¬�¬C belongs
to B, as well as x < w, x : C, x : �¬C belong to B, but this contradicts the fact that B is open (both x : ¬�¬C and
x : �¬C occur). Transitivity follows from definition of <′ . The Smoothness Condition follows from transitivity of <′
together with the finiteness of chains of < deriving from Lemma 8.

• For all concepts C we have: (a) if x : C occurs in B, then x ∈ C I B
; (b) if x : ¬C occurs in B, then x ∈ (¬C)I B

. We reason by
induction on the complexity of C . If C is a boolean combination of concepts, the proof is simple and left to the reader.

– If C is ∃R.D , then by saturation, either x
R−→ y, y : C occur in B or w

R−→ y, y : C occur in B, for w witness of x.
In both cases, (x, y) ∈ R I B

by construction, and by inductive hypothesis y ∈ C I B
, hence (a) follows. (b) can be proven

similarly to case (a) in the following item.

– If C is ∀R.D , then by saturation, for all y s.t. x
R−→ y occurs in B, also y : D occurs in B. By construction, (x, y) ∈ R I B

and, by inductive hypothesis, y ∈ D I B
, hence (a) follows. (b) can be proven similarly to case (a) in the previous item.

– If C is �¬D and x : �¬D occurs in B, then, by saturation, for all y < x, we have that also y : ¬D occurs in B.
By definition of <′ , we have that y <′ x. By inductive hypothesis, y /∈ D I B

for all y <′ x, and we are done. If x : ¬�¬D
occurs in B, then by saturation and by definition of <′ there is y s.t. y <′ x, and y : D and y : �¬D occur in B.
By inductive hypothesis, y ∈ D I B

. It follows that x ∈ (¬�¬D)I B
.

– If C is T(D) and x : T(D) occurs in B, by saturation, both x : D and x : �¬D occur in B, hence by inductive hypothesis
x ∈ D I B

and x ∈ (�¬D)I B
, and by Proposition 1, x ∈ (T(D))I B

. If x : ¬T(D) occurs in B, then by saturation also either
x : ¬D occurs in B or x : ¬�¬D occurs in B. By inductive hypothesis either x /∈ D I B

or x /∈ (�¬D)I B
. In both cases,

we conclude that x ∈ (¬T(D))I B
.

• For all C � D ∈ U and all labels x, we want to show that either x ∈ (¬C)I B
or x ∈ D I B

, i.e., C I B ⊆ D I B
. By saturation,

either x : ¬C occurs in B or x : D occurs in B. The property follows by inductive hypothesis.

The above points allow us to conclude that MB satisfies the starting constraint system. �
The above theorem concerns satisfiability of KB ∪ {¬F } in any ALC + T model (as in Definition 4). However in order

to deal with entailment in ALC + Tmin we need something stronger: we need to restrict our attention to minimal models
of KB. Given LT , the following theorem shows that KB ∪ {¬F } is satisfiable in a minimal model of KB (i.e. KB �|�LT

min F) if and
only if the open tableau for the constraint system corresponding to KB ∪ {¬F } contains an open branch B such that MB

is a minimal model of KB. MB is the canonical model built from B as in the construction used in the proof of Theorem 6
above. With the following theorem, the problem of deciding whether KB �|�LT

min F amounts to deciding whether any possibly

open branch B of TABALC+T
PH1 gives rise to an MB which is a minimal model of KB. As we will see this is the purpose of

the second phase of the calculus (TABALC+T
PH2) introduced in the next subsection.

Theorem 7. Given LT , KB |�LT
min F if and only if there is no open branch B in the tableau built by TABALC+T

PH1 for the constraint system
corresponding to KB ∪ {¬F } such that MB is a minimal model of KB.

Proof. If direction. We show the contrapositive by proving that if KB �|�LT
min F , i.e. if KB ∪ {¬F } is satisfiable in a minimal

model of KB w.r.t. LT , then there is an open branch B such that MB is a minimal model of KB. The proof comprises three

JID:ARTINT AID:2679 /FLA [m3G; v 1.85; Prn:8/11/2012; 17:32] P.25 (1-38)

L. Giordano et al. / Artificial Intelligence ••• (••••) •••–••• 25
steps: (i) if KB �|�LT
min F , then there is an open saturated branch B for the constraint system corresponding to KB∪{¬F } which

is satisfiable in a minimal model of KB, call it M; (ii) the model M′ obtained from M by restricting its domain to the
elements denoted by the labels in B, and by renaming the elements of the domain with the names of the labels in B is also
a minimal model of KB that satisfies B; (iii) the canonical model MB for B is a minimal model of KB.

For (i), we show that the starting constraint system is satisfiable by M by an injective mapping (by the unique name
assumption in Definition 4), and that each rule preserves the property. For (ii), since B is saturated, by reasoning by induc-
tion on the complexity of the formulas, it can be proven that M′ (whose extension function and < coincide with those
in M when restricted to the domain in M′) satisfies KB. Furthermore, we can prove that M′ is a minimal model of KB. For
a contradiction, suppose it was not. Then, there would be M′′ , model of KB, with M′′ < M′ . Consider then M′′′ built by
adding to M′′ all the elements in M that are not in M′′ . The < relation and the extension function in M′′′ are defined as
in M′′ for the elements already present in M′′ . For the other elements, no < is introduced, and the extension function is
defined as for some fixed a in M′′ such that there is no b < a in M′′ (by the Smoothness Condition in M′′ such a exists).
It can be shown that M′′′ satisfies KB, and that M′′′ <M, which contradicts the minimality of M. It follows that also M′
must be minimal. We then obtain the M′ of (ii) by simply renaming its elements with the names of the labels of which
they are images. (iii) consider that M′ has the same domain as MB . Furthermore, by Definition 20, for all C ∈ LT and for
all labels x occurring in B, either x : ¬�¬C occurs in B or x : �¬C occurs in B. Therefore, in M′ and in MB , we have
that x ∈ (¬�¬C)I just in case x : ¬�¬C occurs in B. Hence, M′�− = MB �−

, and from the minimality of M′ we conclude
that MB is minimal too.

Only if direction. The contrapositive easily follows: since MB is a minimal model of KB in which F does not hold,
by Definition 8 we conclude that KB �|�LT

min F . �
Let us conclude this section by analyzing termination and complexity of TABALC+T

PH1 . In general, non-termination in la-
beled tableau calculi can be caused by two different reasons: 1. some rules copy their principal formula in the conclusion(s),
and can thus be reapplied over the same formula without any control; 2. dynamic rules may generate infinitely many la-
bels, creating infinite branches. Similarly to the calculus TALC+T for ALC + T [26], we adopt the standard loop-checking
machinery known as blocking to ensure termination.

Concerning the first source of non-termination (point 1), as mentioned above, all the rules copy their principal formu-
las in their conclusions. However, the side conditions on the application of the rules avoid multiple applications on the
same formula. Indeed, (�) can be applied to a constraint system 〈S|U , C � DL〉 by using the label x only if it has not
yet been applied to x in the current branch (i.e., x does not belong to L). Concerning (∀+), the rule can be applied to
〈S, x : ∀R.C, x

R−→ y|U 〉 only if y : C does not belong to S . When y : C is introduced in the branch, the rule will not further
apply to x : ∀R.C . Similarly for (∃+), (�−), and the rules for T, ¬, � and
.

Concerning the second source of non-termination (point 2), we can prove that we only need to adopt the standard loop-
checking machinery known as blocking, which ensures that the rules (∃+) and (�−) do not introduce infinitely many labels
on a branch. Thanks to the properties of �, no other additional machinery would be required to ensure termination. Indeed,
it can be shown that the interplay between rules (T−) and (�−) does not generate branches containing infinitely many
labels.

It is also worth noticing that the (cut) rule does not affect termination, since it is applied only to the finitely many
formulas belonging to LT .

Let us discuss termination in more detail. Without the side conditions on the rules (∃+) and (�−), the calculus
TABALC+T

PH1 does not ensure a terminating proof search. Indeed, given a constraint system 〈S|U 〉, it could be the case

that (∃+) is applied to a constraint x : ∃R.C ∈ S , introducing a new label y and the constraints x
R−→ y and y : C in the

leftmost conclusion. If an inclusion T(∃R.C) � D belongs to U , then (�) can be applied by using y, thus generating a branch
containing y : ¬T(∃R.C), to which (T−) can be applied introducing y : ¬�¬(∃R.C). An application of (�−) introduces a new
variable z and the constraint z : ∃R.C in the leftmost conclusion, to which (∃+) can be applied generating a new label u.
(�) can then be re-applied on T(∃R.C) � D by using u, incurring a loop. In order to avoid this source of non-termination,
we adopt the standard technique of blocking: the side condition of the (∃+) rule says that this rule can be applied to a node
〈S, x : ∃R.C |U 〉 only if x is not blocked. In other words, if there is a witness z of x, then (∃+) is not applicable, since the
condition and the strategy imply that the (∃+) rule has already been applied to z. In this case, we say that x is blocked by z.
The same for (�−).

As mentioned, another possible source of infinite branches could be determined by the interplay between rules (T−) and
(�−). However, even if we had no blocking on (�−) this could not occur, i.e., the interplay between these two rules does
not generate branches containing infinitely many labels. Intuitively, the application of (�−) to x : ¬�¬C adds y : �¬C to
the conclusion, so that (T−) can no longer consistently introduce y : ¬�¬C . This is due to the properties of � (no infinite
descending chains of < are allowed). More in detail, if (�) is applied to T(C) � D by using x, an application of (T−)

introduces a branch containing x : ¬�¬C ; when a new label y is generated by an application of (�−) on x : ¬�¬C , we have
that y : �¬C is added to the current constraint system. If (�) and (T−) are also applied to T(C) � D on the new label y,
then the conclusion where y : ¬�¬C is introduced is closed, by the presence of y : �¬C . By this fact, we would not need to
introduce any loop-checking machinery on the application of (�−). A detailed proof of termination of the calculus without

JID:ARTINT AID:2679 /FLA [m3G; v 1.85; Prn:8/11/2012; 17:32] P.26 (1-38)

26 L. Giordano et al. / Artificial Intelligence ••• (••••) •••–•••
blocking on (�−) can be found in [27]. However, in this paper we have introduced blocking also on (�−) for complexity
reasons.

In order to prove that the calculus TABALC+T
PH1 ensures termination in a rigorous way, we need the following lemma:

Lemma 11. Given a constraint system 〈S|U 〉, let n〈S|U 〉 be the number of extended concepts appearing in 〈S|U 〉, including also all the
concepts appearing as a substring of another concept. In any set of labels in S including more than 2n〈S|U 〉 labels there are at least two
labels x and y s.t. x ≡S y, i.e. there are at most 2n〈S|U 〉 non-blocked labels.

Proof. Since there are n〈S|U 〉 extended concepts, given a label x there cannot be more than 2n〈S|U 〉 different sets of constraints
x : C in S . As a consequence, in S there are at most 2n〈S|U 〉 non-blocked labels. �
Theorem 8 (Termination of TABALC+T

PH1). Let 〈S|U 〉 be a constraint system, then any tableau generated by TABALC+T
PH1 is finite.

Proof. First, we prove that only a finite number of labels can be introduced in a tableau. The only rules introducing a new
label are dynamic rules. However, these rules are applicable only to formulas whose label is not blocked. By Lemma 11,
there are at most 2n〈S|U 〉 non-blocked labels in 〈S|U 〉. Dynamic rules can be further applied to those 2n〈S|U 〉 non-blocked
labels, therefore obtaining at most m × 2n〈S|U 〉 labels, where m is the maximun number of labels directly generated by
an application of a dynamic rule from a label in S . When m × 2n〈S|U 〉 labels belong to the constraint system, dynamic rules
cannot be further applied.

Second, we prove that, since only a finite number of labels are introduced in a tableau, static rules can be applied only
a finite number of times. Let us consider all the rules:

• (∀+): the rule is applied to a constraint system of the form 〈S, x : ∀R.C, x
R−→ y|U 〉, to obtain a conclusion of the

form 〈S, x : ∀R.C, x
R−→ y, y : C |U 〉. However, the side condition on the application of the rule imposes that the rule is

applied if y : C /∈ S , therefore it is applied only once in a branch, for a given ∀R.C and for two labels x and y. Since
only a finite number of labels as well as a finite number of formulas ∀R.C are introduced in a tableau (for the formulas,
only (sub-)formulas of the initial KB or (sub-)formulas of LT or (sub-)formulas of the query), we can conclude that the
rule (∀+) is applied only a finite number of times.

• Rules (�+), (�−), (
+), (
−), (¬), (T+), (T−), (∃−): the application of these rules is restricted exactly as (∀+), then we
can conclude as we have done in the previous case.

• (cut): just observe that it is applied by introducing x : (¬)�¬C for all concepts C ∈ LT: since LT is finite, and we have
to consider a finite number of labels x, this rule is applied only a finite number of times.

• (�): we can reason analogously to what done for (cut), since (�) is applied to a finite set of subsumption relations
C � D ∈ U by using a finite number of labels. �

Since TABALC+T
PH1 is sound and complete (Theorem 5 and Theorem 6), and since a KB is satisfiable in an ALC+T model

iff its corresponding constraint system is satisfiable in the same model (Proposition 4), from Theorem 8 above it follows
that checking whether a given KB (TBox,ABox) is satisfiable is a decidable problem.

Furthermore, we can prove that, with the calculus TABALC+T
PH1 above, the satisfiability of a KB can be decided in nonde-

terministic exponential time in the size of the KB.

Theorem 9 (Complexity). Given a KB and a query F , checking whether KB ∪ {¬F } is satisfiable in an ALC + T model can be solved in
nondeterministic exponential time.

Proof. In order to check whether KB ∪ {¬F } is satisfiable w.r.t ALC + T, we build its corresponding constraint system 〈S|U 〉
and we try to build a tableau having 〈S|U 〉 as a root by means of the rules of TABALC+T

PH1 . We first show that the number
of labels generated on a branch is at most exponential in the size of KB ∪ {¬F }. Let n be the size of KB ∪ {¬F }. Given
a constraint system 〈S|U 〉, the number of extended concepts appearing in 〈S|U 〉, including also all the ones appearing as
a subformula of other concepts, is O (n). We have already shown in Lemma 11 that, as there are at most O (n) concepts,
there are at most O (2n) variables labeling distinct sets of concepts. Hence, there are O (2n) non-blocked variables in S .

Let m be the maximum number of direct successors of each variable x occurring in S , obtained by applying dynamic
rules. m is bound by the number of ∃R.C concepts (O (n)) plus the number of ¬∀R.C concepts (O (n)) plus the number
of ¬�¬C concepts (O (n)). Therefore, there are at most O (2n × m) variables in S , where m � 3n. The number of individual
constants in the ABox is bound by n too, and each individual constant has at most m direct successors. The number of labels
in S is then bound by (2n + n) × m � (2n + n) × 3n � (2n + 3n) × (2n + 3n) = (2n + 3n)2, and hence by O (22n).

For a given label x, the concepts labeled by x introduced in the branch (namely, all the possible subconcepts of the initial
constraint system, as well as all boxed subconcepts) are O (n). Hence, the labeled concepts introduced on the branch is O (n)

for each label, and the number of all labeled concepts on the branch is O (n × 22n). Since no rule deletes the principal
formula to which it is applied, a branch can contain at most an exponential number of applications of tableau rules.

JID:ARTINT AID:2679 /FLA [m3G; v 1.85; Prn:8/11/2012; 17:32] P.27 (1-38)

L. Giordano et al. / Artificial Intelligence ••• (••••) •••–••• 27
Fig. 2. The calculus TABALC+T
PH2 . To save space, we omit the rules (
+) and (
−).

The satisfiability of KB ∪ {¬F } can thus be solved by defining a procedure which nondeterministically generates an open
branch of TABALC+T

PH1 of exponential size (in the size of KB ∪ {¬F }). The problem is in NexpTime. �

5.2. The tableau calculus TABALC+T
PH2

Let us now introduce the calculus TABALC+T
PH2 which, for each open branch B built by TABALC+T

PH1 , verifies if MB is
a minimal model of the KB.

Definition 21. Given an open branch B of a tableau built from TABALC+T
PH1 , we define:

• D(B) as the set of labels occurring on B;
• B�− = {x : ¬�¬C | x : ¬�¬C occurs in B}.

A tableau of TABALC+T
PH2 is a tree whose nodes are triples of the form 〈S|U |K 〉, where 〈S|U 〉 is a constraint system,

whereas K contains formulas of the form x : ¬�¬C , with C ∈LT .
The basic idea of TABALC+T

PH2 is as follows. Given an open branch B built by TABALC+T
PH1 and corresponding to

a model MB of KB ∪ {¬F }, TABALC+T
PH2 checks whether MB is a minimal model of KB by trying to build a model of KB

which is preferred to MB . Starting from 〈S|U |B�−〉 where 〈S|U 〉 is the constraint system corresponding to the initial KB
TABALC+T

PH2 tries to build an open branch containing all and only the labels appearing on B, i.e. those in D(B), and contain-
ing less negated boxed formulas than B does. To this aim, first the dynamic rules use labels in D(B) instead of introducing
new ones in their conclusions. Second the negated boxed formulas used in B are stored in the additional set K of a tableau
node, initialized with B�−

. A branch built by TABALC+T
PH2 closes if it does not represent a model preferred to the candidate

model MB , and this happens if the branch contains a contradiction (Clash) or it contains at least all the negated boxed
formulas contained in B ((Clash)�− and (Clash)∅).

More in detail the rules of TABALC+T
PH2 are shown in Fig. 2. The rule (∃+) is applied to a constraint system containing

a formula x : ∃R.C ; it introduces x
R−→ y and y : C where y ∈ D(B), instead of y being a new label. The choice of the

label y introduces a branching in the tableau construction. The rule (�) is applied in the same way as in TABALC+T
PH1 to all

the labels of D(B) (and not only to those appearing in the branch). The rule (�−) is applied to a node 〈S, x : ¬�¬C |U |K 〉,
when x : ¬�¬C ∈ K , i.e. when the formula x : ¬�¬C also belongs to the open branch B. In this case, the rule introduces

JID:ARTINT AID:2679 /FLA [m3G; v 1.85; Prn:8/11/2012; 17:32] P.28 (1-38)

28 L. Giordano et al. / Artificial Intelligence ••• (••••) •••–•••
a branch on the choice of the individual vi ∈ D(B) which is preferred to x and is such that C and �¬C hold in vi . In case
a tableau node has the form 〈S, x : ¬�¬C |U |K 〉, and x : ¬�¬C /∈ B�−

, then TABALC+T
PH2 detects a clash, called (Clash)�− :

this corresponds to the situation in which x : ¬�¬C does not belong to B, while S, x : ¬�¬C is satisfiable in a model M
only if M contains x : ¬�¬C , and hence only if M is not preferred to the model represented by B.

The calculus TABALC+T
PH2 also contains the clash condition (Clash)∅ . Since each application of (�−) removes the principal

formula x : ¬�¬C from the set K , when K is empty all the negated boxed formulas occurring in B also belong to the current
branch. In this case, the model built by TABALC+T

PH2 satisfies the same set of negated boxed formulas (for all individuals)
as B and, thus, it is not preferred to the one represented by B.

We can now prove that:

Theorem 10 (Soundness and completeness of TABALC+T
PH2). Given a KB and a query F , let 〈S|U 〉 be the corresponding constraint

system of KB∪{¬F } and 〈S ′|U 〉 be the corresponding constraint system of KB. Given an open saturated branch B built by TABALC+T
PH1

for 〈S|U 〉, the canonical model MB built from B is a minimal model of KB iff the tableau in TABALC+T
PH2 for 〈S ′|U |B�−〉 is closed.

Proof. First, given an open branch B built from TABALC+T
PH1 , by Theorem 6 and Proposition 4, MB = 〈�B ,<′, I B〉 is a model

of KB. In order to show the soundness (if direction), we show that if the tableau in TABALC+T
PH2 for 〈S ′|U |B�−〉 is closed,

then MB is a minimal model of KB. We show the contrapositive, that if MB was not minimal (i.e. if there was a model
M = 〈�,<, I〉 of KB s.t. M <LT MB) then there would be an open branch in TABALC+T

PH2 for 〈S ′|U |B�−〉 by showing
that: (i) 〈S ′|U 〉 would be satisfiable in M under the identity function i, (ii) each rule of the calculus preserves the sat-
isfiability in M under i, and (iii) no clash condition is satisfiable in such a model under i. (i) M is a model of KB, and
for all individual constants a in the ABox aI = a (since aI = aI B

and aI B = a); by Proposition 4 it can be easily shown that
also (i) holds. (ii) can be easily proven for all the rules. To save space, we only consider rules (�−) and (∃+). The other
rules are easy and then left to the reader. (�−): suppose the premise 〈S, x : ¬�¬C |U |K , x : ¬�¬C〉 is satisfiable in M
under i, i.e. x ∈ ¬�¬C I . Then there must be vi < x in M with vi ∈ � = �B =D(B) such that vi ∈ C I , vi ∈ �¬C I , vi ∈ ¬C ′ I ,
vi ∈ �¬C ′ I for all the formulas vi : ¬C ′ , vi : �¬C ′ in S M

x→vi
. It immediately follows that the conclusion of (�−) contain-

ing 〈S, vi : C I , vi : �¬C I , S M
x→vi

, x : ¬�¬C |U |K 〉 is satisfiable in M under i. (∃+): suppose the premise 〈S, x : ∃R.|U |K 〉 is
satisfiable in M under i, i.e. x ∈ ∃R.C I . Then there is vi ∈ � = D(B) s.t. (x, vi) ∈ R I , and vi ∈ C I . The conclusion of the
rule containing 〈S, x

R−→ vi, vi : C |U |K 〉 is therefore satisfiable in M under i. (iii) clearly holds for (Clash), (Clash)⊥ and
(Clash)� . For (Clash)∅: if K = ∅, this means that rule �− (the only that removes formulas x : ¬�¬C from K) has been
applied to all x : ¬�¬C in B�−

, and all x : ¬�¬C in B�−
are in S . However in this case the constraint system 〈S|U |K 〉 in

(Clash)∅ is not satisfiable in M since by hypothesis M�− ⊂ MB�−
. Last (iii) holds for (Clash)�− , otherwise there would

be a ¬�¬C s.t. M |�i x : ¬�¬C , i.e. x ∈ (¬�¬C)I in M but x : ¬�¬C does not belong to B�−
, i.e. x /∈ (¬�¬C)I B

in MB ,

which contradicts that M�− ⊂MB�−
.

We now consider the completeness (only if direction). By hypothesis, MB is a minimal model for KB. We want to show
that the tableau in TABALC+T

PH2 for 〈S ′|U |B�−〉 is closed. For a contradiction, suppose that the tableau was open, with

an open branch B′ . It can be easily shown that the canonical model MB ′
built from B′ would be a model of KB which is

preferred to MB . Indeed, the domain of MB coincides with that of MB ′
(which is D(B)). Furthermore, MB ′�−

LT
⊂MB�−

LT
,

since the negated box formulas that hold in these canonical models are those that explicitly appear on the branch (by (cut)
for all C ∈ LT , for all labels x, either x : �¬C ∈ B′ or x : ¬�¬C ∈ B′), and B′�− ⊂ B�−

, otherwise by (Clash)∅ B′ would
be closed. However, this contradicts the minimality of MB . This contradiction forces us to conclude that there cannot be
an open B′ in TABALC+T

PH2 , and that the tableau must be closed. �
TABALC+T

PH2 always terminates. Intuitively, termination is ensured by the fact that dynamic rules make use of labels
belonging to D(B), which is finite, rather than introducing “new” labels in the tableau.

Theorem 11 (Termination of TABALC+T
PH2). Let 〈S ′|U |B�−〉 be a constraint system starting from an open branch B built by

TABALC+T
PH1 , then any tableau generated by TABALC+T

PH2 is finite.

Proof. Only a finite number of labels can occur on the tableau built by TABALC+T
PH2 , namely only those in D(B) which

is finite. Moreover, the side conditions on the application of the rules (∀+), (�), (�−), and (cut), copying their principal
formulas in their conclusion(s), avoid the uncontrolled application of the same rules. �
Definition 22. Let KB be a knowledge base whose corresponding constraint system is 〈S|U 〉. Let F be a query and let S ′ be
the set of constraints obtained by adding to S the constraint corresponding to ¬F . The calculus TABALC+T

min checks whether
a query F can be minimally entailed from a KB by means of the following procedure:

JID:ARTINT AID:2679 /FLA [m3G; v 1.85; Prn:8/11/2012; 17:32] P.29 (1-38)

L. Giordano et al. / Artificial Intelligence ••• (••••) •••–••• 29
• the calculus TABALC+T
PH1 is applied to 〈S ′|U 〉;

• if, for each branch B built by TABALC+T
PH1 , either:

(i) B is closed or
(ii) the tableau built by the calculus TABALC+T

PH2 for 〈S|U |B�−〉 is open,
then the procedure says YES

else the procedure says NO.

The following theorem shows that the overall procedure is sound and complete.

Theorem 12 (Soundness and completeness of TABALC+T
min). TABALC+T

min is a sound and complete decision procedure for verifying if

KB |�LT
min F .

Proof. (Soundness) We show that if the procedure outputs YES, then KB |�LT
min F holds. If the procedure outputs YES, then

for all branches generated by TABALC+T
PH1 either they are closed or (ii) holds. If all branches generated by TABALC+T

PH1

are closed then, by Theorem 5 we have that KB |�ALC+T F , then we conclude that KB |�LT
min F . Consider now all open

branches B generated by TABALC+T
PH1 . Since the procedure outputs YES, then (ii) must hold for all B, i.e. the tableau built

by TABALC+T
PH2 for 〈S|U |B�−〉 is open. In this case, by Theorem 10, for all B, MB is not a minimal model of KB and, by

Theorem 7, KB |�LT
min F holds.

(Completeness) We show that if KB |�LT
min F holds then the procedure outputs YES. First of all if all branches generated

by TABALC+T
PH1 are closed, (i) holds for all branches and then the procedure outputs YES. Suppose now there are open

branches B generated by TABALC+T
PH1 . Since KB |�LT

min F , by Theorem 7, MB is not a minimal model of KB and by Theorem 10

the tableau in TABALC+T
PH2 for 〈S ′|U |B�−〉 is open, hence (ii) holds and the procedure outputs YES. �

We provide an upper bound on the complexity of the procedure for computing the minimal entailment KB |�LT
min F :

Theorem 13 (Complexity of TABALC+T
min). The problem of deciding whether KB |�LT

min F is in co-NExp
NP.

Proof. We first consider the complementary problem: KB �|�LT
min F . This problem can be solved according to the procedure

in Definition 22: by nondeterministically generating (NExp) an open branch of exponential length in the size of KB in
TABALC+T

PH1 (a model MB of KB ∪ {¬F }), and then by calling an NP oracle which verifies that MB is a minimal model
of KB. In fact, the verification that MB is not a minimal model of the KB can be done by an NP algorithm which non-
deterministically generates a branch in TABALC+T

PH2 (of polynomial size in the size of MB), representing a model MB ′

of KB preferred to MB . Hence, the problem of verifying that KB �|�LT
min F is in NExp

NP, and the problem of deciding whether

KB |�LT
min F is in co-NExp

NP. �
By the above results, observe that if a formula is satisfiable in a minimal model, then there is a tableau in TABALC+T

min
containing a finite branch which is open in phase 1 and whose corresponding tableau in phase 2 is closed. By the above
construction this branch provides a finite minimal model of the formula. Therefore, we obtain the following theorem:

Theorem 14 (Finite model property of ALC + Tmin). The logic ALC + Tmin has the finite model property.

The above result on complexity of minimal entailment implicitly provides an upper bound on the size of a minimal
model of a KB satisfiable in ALC + T.

As an example, let a KB contain the following formulas:

TBox

T(C) � ¬P

ABox

C(a)

D(a)

We adopt the calculus TABALC+T
min in order to show that

KB |�LT ¬P (a)
min

JID:ARTINT AID:2679 /FLA [m3G; v 1.85; Prn:8/11/2012; 17:32] P.30 (1-38)

30 L. Giordano et al. / Artificial Intelligence ••• (••••) •••–•••
Fig. 3. A tableau in TABALC+T
PH1 used in order to check whether KB |�LT

min ¬P (a), where KB = T(C) � ¬P , C(a), D(a) (phase 1).

with LT = {C}. First, the calculus TABALC+T
PH1 is applied to the corresponding constraint system of KB ∪ {¬¬P (a)}, namely

to the root
〈
a : C,a : D,a : ¬¬P

∣∣T(C) � ¬P∅〉

The tableau built by TABALC+T
PH1 is shown in Fig. 3. The tableau contains only one open branch, say B, evidenced in light

grey. We now apply the procedure TABALC+T
PH2 to B: the root of the tableau is initialized with 〈S|U |K 〉, where 〈S|U 〉 is the

corresponding constraint system of KB, and K = {a : ¬�¬C}, i.e. we start the tableau with

〈a : C,a : D|T(C) � ¬P∅|a : ¬�¬C〉
The tableau built by TABALC+T

PH2 is shown in Fig. 4. It contains (at least) one open branch (again, the one evidenced in light

grey). Therefore, the tableau TABALC+T
PH2 for B is open, whence B is closed. Thus the whole procedure TABALC+T

min verifies

that KB |�LT
min ¬P (a).

6. Other reasoning problems

In previous sections we have focused on the problem of minimal entailment in ALC + Tmin . In this section we show
how the other well-known reasoning problems in DLs can be reduced to minimal entailment. We also provide complexity
upper bounds for such problems.

Given the main reasoning problems that can be found in the DLs literature [2], we define the corresponding reasoning
problems in ALC + Tmin:

Definition 23 (Reasoning problems). Given a KB = (TBox,ABox) and a set LT , we define the following reasoning problems:

• Instance checking: given an individual constant a occurring in ABox and an extended concept C , we say that a is an in-
stance of C with respect to KB if in all minimal models of KB with respect to LT , it holds that aI ∈ C I .

• Subsumption: given two extended concepts C and D , we say that C is subsumed by D (C � D) with respect to KB if in
all minimal models of KB with respect to LT , it holds that C I ⊆ D I .

• Concept satisfiability: given an extended concept C , we say that C is satisfiable with respect to KB if there exists a mini-
mal model of KB with respect to LT in which C I �= ∅.

JID:ARTINT AID:2679 /FLA [m3G; v 1.85; Prn:8/11/2012; 17:32] P.31 (1-38)

L. Giordano et al. / Artificial Intelligence ••• (••••) •••–••• 31
Fig. 4. A tableau in TABALC+T
PH2 used in order to check whether KB |�LT

min ¬P (a), where KB = T(C) � ¬P , C(a), D(a) (phase 2).

• KB satisfiability in ALC + Tmin: KB is satisfiable in ALC + Tmin if there exists a minimal model of KB with respect to LT .

The first three reasoning problems above can be reduced to minimal entailment as follows:

• Instance checking: it can be easily observed that it corresponds to minimal entailment. Indeed, given an individual
constant a occurring in ABox and an extended concept C , checking whether a is an instance of C with respect to KB
corresponds to checking whether KB |�LT

min C(a).
• Subsumption: we show that C � D with respect to KB if and only if

– either O is empty and KB |�LT
min ∀R.(¬C
 D)(c), where c is a new individual constant

– or O is not empty (let a ∈O) and KB |�LT
min ∀R.(¬C
 D)(a),

where R is a role not occurring in the KB.
First, it can be easily observed that if C I ⊆ D I in all minimal models of KB with respect to LT , then for all possible
values of cI , and R I , cI ∈ ∀R.(¬C
 D)I (respectively aI ∈ ∀R.(¬C
 D)I). Hence KB |�LT

min ∀R.(¬C
 D)(c) and KB |�LT
min∀R.(¬C
 D)(a). On the other hand, we proceed by contraposition. If C �� D with respect to KB, then there is a minimal

model M of KB and a domain element y such that y ∈ (C � ¬D)I . If O = ∅, from M we can easily build a model M′
by extending I such that cI = y and (cI , y) ∈ R I . Since neither R nor c occur in the KB, this extension of I is well
behaved, and since O = ∅, I satisfies the unique name assumption. Furthermore, since M is a minimal model of KB
with respect to LT , also M′ is. Indeed, the boxed formulas holding in the two models are the same. Furthermore,
M′ does not satisfy ∀R.(¬C
 D)(c), hence we conclude that KB �|�LT

min ∀R.(¬C
 D)(c). If O �= ∅ we build M′ by letting
(aI , y) ∈ R I , and we reason in the same way.

• Concept satisfiability: we can easily observe that checking whether a concept C is satisfiable with respect to KB corre-
sponds to verifying that C is not subsumed by ⊥ with respect to KB. Given the above reduction of subsumption to
minimal entailment, we can reduce concept satisfiability as follows9:
– either O is empty and KB �|�LT

min ∀R.(¬C)(c), where R and c do not occur in KB

– or O is not empty (let a ∈O) and KB �|�LT
min ∀R.(¬C)(a).

The above reductions can be adopted to use the calculus TABALC+T
min to deal with different reasoning problems. For

instance, if we want to check whether a concept C is satisfiable with respect to a given KB, we can start the calculus on
the constraint system corresponding to KB ∪ {¬∀R.(¬C)(c)} (if O is empty) or to KB ∪ {¬∀R.(¬C)(a)} (if O is not empty,
and a is any element in O) and see whether the calculus outputs NO. Moreover, by the above reductions we can obtain the
following complexity upper bounds for the respective reasoning problems, namely:

9 Corresponding to the reduction of subsumption C � ⊥ to minimal entailment.

JID:ARTINT AID:2679 /FLA [m3G; v 1.85; Prn:8/11/2012; 17:32] P.32 (1-38)

32 L. Giordano et al. / Artificial Intelligence ••• (••••) •••–•••
Theorem 15 (Complexity of reasoning problems in ALC + Tmin). The problem of instance checking and the problem of subsumption
in ALC + Tmin are in co-NExp

NP. The problem of concept satisfiability in ALC + Tmin is in NExp
NP.

Let us now conclude this section by taking into account the problem of KB satisfiability. First of all, we can prove the
following theorem:

Theorem 16. Given a KB, if there exists a model M satisfying KB in the sense of Definition 4, then there exists also a model M′ which
is a minimal model of KB in the sense of Definition 7.

Proof. The theorem immediately follows the fact that ALC + Tmin has the finite model property (Theorem 14). Since there
are finitely many finite models, and since the preference relation <LT among models of Definition 7 obviously does not
allow loops, then there exists a minimal such model. �

By Theorem 16, we immediately observe that the problem of checking whether a KB is satisfiable can be reduced to
checking whether KB has a model, that is to say the problem of checking the satisfiability of a KB in ALC + T, which is
known to be EXPTIME complete [26]. Therefore, we can conclude that:

Theorem 17 (Complexity of KB satisfiability in ALC + Tmin). The problem of KB satisfiability in ALC + Tmin is EXPTIME complete.

7. Related works

Several non-monotonic extensions of DLs have been proposed in the literature. In Section 4 we have already discussed
about the extensions of DLs with circumscription. In the following Section 7.1, we try to summarize the other main ap-
proaches proposed in the literature, leaving to Section 5.1 in [26] for a more detailed discussion. We start with approaches
based on default logic [49]. In Section 7.2 we discuss on the alternative of adopting the rational logic R (rather than the
Preferential P) in order to define the semantics of the typicality operator T.

7.1. Non-monotonic extensions of DLs in the literature

7.1.1. DLs and default logic
The work [3] proposes an extension of DL with Reiter’s default logic. Intuitively, in this setting, a KB comprises, in addi-

tion to TBox and ABox, a finite set of default rules whose prerequisites, justifications, and consequents are concepts. Default
rules are used in order to formalize prototypical properties. It is shown that, when default rules are only applied to individ-
uals explicitly mentioned in the ABox, methods by Junker and Konolige [39] and by Schwind and Risch [51] can be applied
in order to compute all the extensions. However, the same authors have pointed out that this integration may lead to both
semantical and computational difficulties, both caused by an unsatisfactory treatment of open defaults via Skolemization.
Skolemization of the ABox and of the consequents of default rules is needed in order to capture some intuitive inferences.
The treatment of open defaults via Skolemization may also lead to an undecidable default consequence relation, even if the
underlying logic is decidable. For this reason, [3] proposes a restricted semantics for open default theories, in which default
rules are only applied to individuals explicitly mentioned in the ABox.

The extension of DLs with Reiter’s defaults, even if restricted to explicitly mentioned individuals, inherits from general
default logic the difficulty of modeling inheritance with exceptions giving precedence to more specific defaults in a direct
way. This behavior appears to be more problematic in a DL framework where the emphasis lies on the hierarchical organi-
zation of the concepts. To attack this problem, one has to impose priorities on default application or to find a smarter (but
ad hoc) encoding of defaults giving priority to more specific information. This has motivated the study of extensions of DLs
with prioritized defaults [52,4]. To give a brief account, in [52] the author introduces an extension of DLs to perform default
inheritance reasoning, a kind of default reasoning specifically tailored to reason in presence of a taxonomy of concepts.
Specificity is handled by defining, for a given KB = (TBox,ABox) and an individual constant a occurring in the ABox, a pref-
erence relation over atomic concepts. The problem of specificity ia also addressed in [4]. As a difference with [52], priorities
between defaults are induced by the position of their prerequisites in the concept hierarchy of the TBox, then the specificity
is not determined by the defaults. A method for computing extensions is also proposed. However, as for the proposal in [3],
in order to avoid semantical and computational difficulties due to the treatment of open defaults via Skolemization, all
these approaches adopt a semantics in which defaults are only applied to individuals explicitly mentioned in the ABox, thus
introducing an asymmetric treatment of domain elements.

7.1.2. DLs with epistemic operators
An alternative approach is undertaken in [21], where Description Logics of minimal knowledge and negation as failure are

proposed by augmenting DLs with two epistemic operators, K and A, interpreted according to Lifschitz’s non-monotonic logic
MKNF [44,45]. In particular, [21] studies the extension of ALC , called ALCKNF , which allows to capture Reiter’s default
logic, integrity constraints, procedural rules as well as role and concept closure. The paper provides a sound, complete and

JID:ARTINT AID:2679 /FLA [m3G; v 1.85; Prn:8/11/2012; 17:32] P.33 (1-38)

L. Giordano et al. / Artificial Intelligence ••• (••••) •••–••• 33
terminating tableau calculus for checking satisfiability of simple ALCKNF KBs, where in a simple KB the occurrences of
the operator K within the scope of quantifiers are limited. The calculus uses triple exponential time in the size of the KB.
For MKNF-DLs without quantifying-in (i.e., with no occurrences of epistemic operators in the scope of quantifiers), a general
deductive method can be defined (see [20]), which is parametric with respect to the underlying DL. The authors prove that
the problem of instance checking in a MKNF-DL without quantifying-in is decidable if and only if the problem of instance
checking in the underlying DL is decidable. In particular, for the logic ALCKNF without quantifying-in the problem of
instance checking is EXPTIME-complete as in the non-modal case. [40] extends the work in [21] by providing a translation
of an ALCKNF KB to an equivalent flat KB and by defining a simplified tableau algorithm for flat KBs, which includes
an optimized minimality check.

In both [21] and [20], the domain of epistemic interpretations is assumed to be countably-infinite and to be the same for
all interpretations. Although this assumption restricts the semantics of first-order MKNF, nevertheless it allows an encoding
of prerequisite-free defaults with an open semantics. [21] also provides an encoding of closed defaults by translating them
into simple ALCKNF inclusions. [47] introduces the formalism of MKNF+ knowledge bases, which allows for a flexible
integration of DLs and Answer Set Programming. The semantics of the formalisms, based on the logic of MKNF, overcomes
the discrepancy between the open world assumption of DLs and the closed world assumption of rules.

A recent line of research on integrating DLs and logic programming rules introduces further non-monotonic extensions of
DLs via negation-as-failure. Some approaches [22] introduce a loosely coupled integration of logic programs and DLs where
the interpretations of terminological knowledge are not restricted, while logic program variables range over the set of
constant symbols. Therefore this approach is similar to the classical extensions of DLs based on defaults: the non-monotonic
inferences induced by program rules are limited to named individuals only. A common limitation of the non-monotonic
extensions of DLs based on minimal knowledge and negation as failure (including the integrations of DLs and rules) is that
they provide no support for specificity nor priorities.

7.1.3. DLs with circumscription
Circumscribed knowledge bases as presented in [10] are described above in Section 4. In [10] the authors provide de-

cidability and complexity results based on theoretical analysis. They show that reasoning is decidable under the restriction
that only concepts can be circumscribed, whereas roles have to vary during circumscription. This also holds for expressive
DLs such as ALCIO and ALCQO. Allowing roles to be fixed during minimization leads to an undecidability results even
in the extension of basic ALC .

In [5], the authors analyze the complexity of reasoning with circumscribed KBs by focusing their attention on low-
complexity DLs. In detail, it is shown that reasoning in circumscribed DL-liteR [15,16], as well as in left local fragment
of EL⊥ [1], is in the second level of the polynomial hierarchy, whereas reasoning in general circumscribed EL KBs remains
ExpTime-hard. Further results are provided in [8], in particular matching lower complexity bounds are given. Moreover, the
proposed framework is extended to more general queries, as well as to defeasible inclusions C �n D , where C is a compound
concept. A generalization of specificity-based priorities introduced in [5] is also allowed by means of explicit priorities over
defeasible inclusions. Finally, the left local fragment under consideration is obtained by means of a weaker restriction,
namely a more liberal use of existential restrictions and terminologies is allowed. Furthermore, in [6] a fragment of EL⊥
has been identified for which the complexity of circumscribed KBs is polynomial. In [7] such extension is generalized to the
logic EL++ without role composition.

As in our approach, the extension of DLs with circumscription avoids the restriction of reasoning about elements explic-
itly mentioned in the ABox. [42] defines a variant of circumscribed knowledge bases [10] for extending DLs with local closed
world capabilities, to provide a knowledge representation language combining open and closed world reasoning. In this
approach, the extensions of minimized predicates can only contain the domain elements representing individual constants
explicitly mentioned in the ABox. Decidability of the language can be proved also for expressive DLs, even when minimiza-
tion of roles is allowed.

Other early approaches to non-monotonic extensions of DLs are based on circumscription. A non-monotonic semantics
based on circumscription is applied to a frame system in [11], however decidability and complexity of reasoning tasks are
not provided. Circumscription has been also applied to a fragment of the DL ALE in [14]. This approach is similar to the
one proposed in [10], however only non-prioritized circumscription is considered. Complexity results are also provided,
namely it is shown that reasoning in the proposed non-monotonic ALE is in Π

p
2 .

7.1.4. Relation with rational closure and KLM
In [17] a non-monotonic extension of ALC is proposed. This approach is based on the application of Lehmann and

Magidor’s rational closure [43] to ALC , intuitively by the introduction of a consequence relation |∼ among concepts and of
a consequence relation � among an unfoldable KB and assertions. The authors show that such consequence relations are
rational. It is also shown that such relations inherit the same computational complexity of the underlying DL. In a subse-
quent work [18], the authors introduce an approach based on the combination of rational closure and Defeasible Inheritance
Networks (INs), in order to tackle the main weaknesses of both of them: on the one hand, rational closure has limited
inference capabilities, for instance it does not allow an exceptional class not to inherit any of the typical properties of its
superclasses; on the other hand, INs present some controversial logical properties. More precisely, the authors introduce
a reasoning mechanism for INs relying on a procedure for rational closure; such a mechanism is then adopted in order

JID:ARTINT AID:2679 /FLA [m3G; v 1.85; Prn:8/11/2012; 17:32] P.34 (1-38)

34 L. Giordano et al. / Artificial Intelligence ••• (••••) •••–•••
to define a boolean extension of INs, called Boolean defeasible Inheritance Networks (BINs). BINs are then used as the base
to develop a defeasible propositional logic, which is also applied to the case of defeasible inheritance-based Description
Logics. In this respect, as we have done in this work, the authors focus on the basic ALC , and show that the resulting
non-monotonic DL is characterized by all the desired logical properties of rational closure. The proposed mechanism only
requires the existence of a decision procedure of classical entailment: therefore, it can be implemented on the top of existing
propositional SAT solvers as well as DL reasoners.

An approach similar to the one of ALC + T is proposed in [12]. Such an approach is based on the fact that some
individuals in the domain are more typical than others, namely x is more typical than y if x � y, where the relation � is
modular as in KLM rational logic R. A defeasible inclusion C �D D holds if the most preferred (typical) Cs with respect to �
are also Ds.

We have already mentioned that the semantics of the typicality operator T of Definition 1 is strongly related with the
semantics of non-monotonic entailment in KLM preferential logic P. In Section 5.2 of [26] a precise relation between KLM
logic P and the Description Logic ALC+T is provided. In [30], a non-monotonic extension of logic P called Pmin is proposed.
Pmin is based on the same idea of the non-monotonic logic ALC + Tmin presented here, that is to say a minimal model
approach based on the restriction to models that contain as little as possible of atypical (or non minimal) worlds. More in
detail, given a modal interpretation of a minimal A-world as A ∧�¬A, the intuition is that preferred, or minimal models are
those that minimize the number of worlds where ¬�¬A holds, that is of A-worlds which are not minimal. Furthermore,
in [30] a decision procedure for checking satisfiability and validity in Pmin is provided. This decision procedure has the
form of a tableau calculus, with a two-step construction, similar to the procedure TABALC+T

min presented in Section 5. This
procedure is used to determine an upper bound of the complexity of Pmin , in particular it is shown that checking entailment
for Pmin is in Π2, thus it has the same complexity as standard non-monotonic (skeptical) mechanisms.

7.2. Rational vs. preferential DLs

The family of KLM logics contains other interesting members, notably the stronger logic R, known as Rational Preferential
Logic. This system is obtained by adding to P the axiom/rule of rational monotonicity:

A |∼ C ∧ ¬(A |∼ ¬B) → (
(A ∧ B) |∼ C

)

That is to say, from A |∼ C we can conclude (A ∧ B) |∼ C unless we can derive A |∼ ¬B . For a discussion and a justification of
this property we refer to the literature [43]. The semantics of rational logic R is well-understood: the rational monotonicity
principle corresponds to the additional property of modularity of the preference relation. In [31,32], we have investigated
the properties characterizing the semantics of the T operator in ALC+T as compared with the properties that would result
for T if we adopted the stronger logic of non-monotonic entailment R. More precisely, we have added to the conditions
for fT in Definition 1 the following condition of Rational Monotonicity:

(fT − 6) if fT(S) ∩ R �= ∅, then fT(S ∩ R) ⊆ fT(S)

obtaining a stronger DL based on Rational Entailment. (fT − 6) forces again a form of monotonicity: if there is a typical S
having the property R , then all typical S and Rs inherit the properties of typical Ss. We call ALC + TR the logic resulting
from the addition of (fT − 6) to the properties (fT − 1) − (fT − 5). As for the logic ALC + T, the semantics of ALC + TR
can be formulated in terms of possible world structures 〈�, I,<〉 in which < is modular, i.e. for each x, y, z, if x < y, then
either z < y or x < z.

In [32] it is shown that the following facts hold in ALC + TR:

(i) ¬(T(A) � B � ⊥) implies T(A � B) � T(A)

(ii) ¬(T(A) � B � ⊥) implies T(B) � A � T(A)

Both properties allow us to draw conclusions from the simple fact that there is one individual that (1) is a typical instance
of the concept A and that (2) is an instance of concept B . From (i), we derive that all typical A and Bs are typical As.
From (ii) we derive something about typical Bs, even if A and B are unrelated properties. In particular, we derive that
typical Bs that are also instances of concept A are typical As.

More in detail, from (ii) we derive the following counterintuitive example, where from an empty TBox and an ABox
containing the following facts:

(a) T(Brilliant)(john)

(b) Writer(john)

(c) ¬T(Writer)(john)

we can then conclude that

(d) T(Writer) � ¬Brilliant

JID:ARTINT AID:2679 /FLA [m3G; v 1.85; Prn:8/11/2012; 17:32] P.35 (1-38)

L. Giordano et al. / Artificial Intelligence ••• (••••) •••–••• 35
Indeed, from the ABox we can first obtain that T(Brilliant) � Writer �� T(Writer), then, by making the contrapositive of (ii),
we get T(Writer) � Brilliant � ⊥, from which we can immediately conclude (d) T(Writer) � ¬Brilliant.

As a further example, given the following ABox:

T(Graduated)(andras)

SoccerPlayer(andras)

T(SoccerPlayer)(lilian)

Graduated(lilian)

and an empty TBox, we can get that:

T(SoccerPlayer)(andras)

which does not make sense given that lilian is a different person not related to andras, hence we do not want to use lilian’s
properties to make inferences about andras.

In our opinion, some of the inferences in ALC + TR are rather arbitrary (or, at least, controversial) and counterintuitive,
therefore we believe that the logic R is too strong and unsuitable to reason about typicality.

In [32] we have also shown that the logic ALC + TR is equivalent to the logic for defeasible subsumptions in DLs
proposed by [12], when considered with ALC as the underlying DL. The properties of � in [12] correspond to those of <

in ALC + TR . At a syntactic level the two logics differ, so that in [12] one finds the defeasible inclusions C �D D instead of
T(C) � D of ALC + TR . However, the intuition in the two cases is similar: the inclusion holds if the most preferred (typical)
Cs are also Ds. Indeed, in [32] it is shown that the logic of preferential subsumption can be translated into ALC + TR by
replacing C �D D with T(C) � D . The approach in [12], therefore, inherits the above criticisms for extensions of DLs that
use R.

8. Conclusions and further research

In this work, we have proposed ALC+Tmin , a non-monotonic extension of ALC for reasoning about prototypical proper-
ties in Description Logic framework. The extension is obtained by adding first a typicality operator, originally defined in [26],
to ALC . The typicality operator is characterized by a set of postulates which are essentially the same of KLM preferential
logic P. This extension, called ALC + T, provides a monotonic extension of ALC that enjoys a simple modal semantics. One
advantage of the use of a typicality operator is that we can express prototypical properties easily and directly in the form
“the most typical instances of concept C are instances of concept P ” (corresponding to T(C) � P). However, ALC + T is not
sufficient to perform defeasible reasoning. For this reason, in the present work we have developed a preferential semantics,
called ALC + Tmin . This non-monotonic extension of ALC + T allows to perform defeasible reasoning in particular in the
context of inheritance with exceptions. We have then developed a procedure for deciding query-entailment in ALC + Tmin .
The procedure has the form of a two-phase tableau calculus for generating ALC + Tmin minimal models. The procedure is
sound, complete, and terminating, whereby giving a decision procedure for deciding ALC + Tmin entailment in co-NExp

NP.
We have also considered other reasoning problems in DLs, namely instance checking, subsumption, concept satisfiability
and KB satisfiability. For the first three problems, we show that they can be reduced to minimal entailment. This allows to
obtain complexity upper bounds for such problems, namely that instance checking and subsumption for ALC + Tmin are
in co-NExp

NP and that concept satisfiability for ALC + Tmin is in NExp
NP. Concerning KB satisfiability, we show that it is

EXPTIME complete.
We plan to extend the work presented in this paper in several directions. First of all, the tableau procedure we have

described in Section 5 can be optimized in many ways. For instance, we guess that the calculus TABALC+T
PH1 , dealing with

the monotonic logic ALC + T, can be made more efficient by applying standard techniques such as caching, in order to
obtain an ExpTime decision procedure for ALC + T.

From the point of view of knowledge representation, a limit of our logic is the inability to handle inheritance of multiple
properties in case of exceptions as in the example:

T(Student) � ¬HasIncome

T(Student) � ∃Owns.LibraryCard

PhDStudent � Student

T(PhDStudent) � HasIncome

Our semantics does not support the inference

T(PhDStudent) � ∃Owns.LibraryCard

that is, PhD students typically own a library card, as we might want to conclude (since having an income has nothing
to do with owning a library card). The reason why our semantics fails to support this inference is that the first two

JID:ARTINT AID:2679 /FLA [m3G; v 1.85; Prn:8/11/2012; 17:32] P.36 (1-38)

36 L. Giordano et al. / Artificial Intelligence ••• (••••) •••–•••
inclusions are obviously equivalent to the single one T(Student) � ¬HasIncome � ∃Owns.LibraryCard which is contradicted
by T(PhDStudent) � HasIncome. As already mentioned in the Introduction, to handle this type of inferences we would need
a tighter semantics where the truth of T(C) � P is no longer a function of T(C) and P or a smarter (and less direct)
encoding of the knowledge. This problem is perhaps better addressed by probabilistic extensions of Description Logics such
as [37].

KLM logics, which are at the basis of our semantics, are related to probabilistic reasoning. In [37], the notion of con-
ditional constraint allows typicality assertions to be expressed (with a specified interval of probability values). In order to
perform defeasible reasoning, a notion of minimal entailment is introduced based on a lexicographic preference relation on
probabilistic interpretations. We plan to compare in detail this probabilistic approach to ours in further research.

We aim to extend our minimal model semantics to other Description Logics, taking into account both more expressive
and less expressive DLs. Concerning low-complexity DLs, preliminary results are given in [35], where we have considered the
minimal model semantics applied to the low complexity logics DL-liteR and EL⊥ . We have studied the complexity of the
resulting logics EL⊥Tmin and DL-liteR Tmin . For EL⊥ , we have shown that its extension EL⊥Tmin is unfortunately ExpTime-
hard. However, we have shown that the complexity decreases to Π

p
2 for the fragment of Left Local EL⊥ KBs. We have also

obtained the same complexity upper bound Π
p
2 for the logic DL-liteR Tmin . These results match the complexity upper bounds

of the same fragments in circumscribed KBs [5]. Concerning more expressive DLs, we intend to study in a systematic way
how the T operator and the minimal model semantics can be applied to extensions of ALC , including number restrictions,
inverse roles and role hierarchies. Some preliminary results concerning the logics ALCN and ALCQ, extending ALC with
(qualified) number restrictions, have been introduced in [50].

Last, we intend to explore alternative notions of preference among models, which possibly generalize the notion con-
sidered in this paper. Preliminary results in this direction are contained in [36], where we define a general framework for
non-monotonic reasoning based on a different notion of minimal model. We show that, under certain conditions, this se-
mantics can capture the well-known construction of rational closure. As mentioned above, a non-monotonic extension of DL
based on rational closure has been studied in [18]. We thus think that the minimal model semantics proposed in [36] may
be of interest to define useful non-monotonic DLs, corresponding to rational closure and possible variants.

Acknowledgements

We are grateful to the anonymous referees for their careful reading and constructive criticisms, which greatly helped us
to improve the final version of our work. We also want to thank Piero Bonatti for his helpful comments and his stimulating
suggestions.

Laura Giordano and Gian Luca Pozzato have been partially supported by the project MIUR PRIN08 “LoDeN: Logiche Descrit-
tive Nonmonotone: Complessitá e implementazioni”.

References

[1] F. Baader, S. Brandt, C. Lutz, Pushing the EL envelope, in: L. Kaelbling, A. Saffiotti (Eds.), Proceedings of the 19th International Joint Conference on
Artificial Intelligence (IJCAI 2005), Edinburgh, Scotland, UK, Professional Book Center, 2005, pp. 364–369.

[2] F. Baader, D. Calvanese, D. McGuinness, D. Nardi, P. Patel-Schneider, The Description Logic Handbook – Theory, Implementation, and Applications,
2nd edition, Cambridge, 2007.

[3] F. Baader, B. Hollunder, Embedding defaults into terminological knowledge representation formalisms, Journal of Automated Reasoning (JAR) 14 (1)
(1995) 149–180.

[4] F. Baader, B. Hollunder, Priorities on defaults with prerequisites, and their application in treating specificity in terminological default logic, Journal of
Automated Reasoning (JAR) 15 (1) (1995) 41–68.

[5] P. Bonatti, M. Faella, L. Sauro, Defeasible inclusions in low-complexity DLs: Preliminary notes, in: C. Boutilier (Ed.), Proceedings of the 21st International
Joint Conference on Artificial Intelligence (IJCAI 2009), Pasadena, California, USA, Morgan Kaufmann, 2009, pp. 696–701.

[6] P. Bonatti, M. Faella, L. Sauro, EL with default attributes and overriding, in: P. Patel-Schneider, Y. Pan, P. Hitzler, P. Mika, L. Zhang, J.Z. Pan, I. Horrocks,
B. Glimm (Eds.), 9th International Semantic Web Conference (ISWC 2010), Shanghai, China, in: Lecture Notes in Computer Science (LNCS), vol. 6496,
Springer, 2010, pp. 64–79.

[7] P.A. Bonatti, M. Faella, L. Sauro, Adding default attributes to EL++, in: W. Burgard, D. Roth (Eds.), Proceedings of the Twenty-Fifth AAAI Conference on
Artificial Intelligence (AAAI 2011), San Francisco, California, USA, AAAI Press, 2011.

[8] P.A. Bonatti, M. Faella, L. Sauro, On the complexity of EL with defeasible inclusions, in: T. Walsh (Ed.), Proceedings of the 22nd International Joint
Conference on Artificial Intelligence (IJCAI 2011), Barcelona, Spain, Morgan Kaufmann, 2011, pp. 762–767.

[9] P.A. Bonatti, C. Lutz, F. Wolter, Description logics with circumscription, in: P. Doherty, J. Mylopoulos, C.A. Welty (Eds.), Proceedings of the Tenth
International Conference on Principles of Knowledge Representation and Reasoning (KR 2006), Lake District of the United Kingdom, AAAI Press, 2006,
pp. 400–410.

[10] P.A. Bonatti, C. Lutz, F. Wolter, The complexity of circumscription in DLs, Journal of Artificial Intelligence Research (JAIR) 35 (2009) 717–773.
[11] G. Brewka, The logic of inheritance in frame systems, in: J. McDermott (Ed.), Proceedings of the 10th International Joint Conference on Artificial

Intelligence (IJCAI 1987), Milan, Italy, Morgan Kaufmann, 1987, pp. 483–488.
[12] K. Britz, J. Heidema, T. Meyer, Semantic preferential subsumption, in: G. Brewka, J. Lang (Eds.), Principles of Knowledge Representation and Reasoning:

Proceedings of the Eleventh International Conference (KR 2008), Sidney, Australia, AAAI Press, 2008, pp. 476–484.
[13] M. Buchheit, F.M. Donini, A. Schaerf, Decidable reasoning in terminological knowledge representation systems, Journal of Artificial Intelligence Research

(JAIR) 1 (1993) 109–138.
[14] M. Cadoli, F. Donini, M. Schaerf, Closed world reasoning in hybrid systems, in: Proceedings of the 6th International Symposium on Methodologies for

Intelligent Systems (ISMIS-90), North-Holland, 1990, pp. 474–481.

JID:ARTINT AID:2679 /FLA [m3G; v 1.85; Prn:8/11/2012; 17:32] P.37 (1-38)

L. Giordano et al. / Artificial Intelligence ••• (••••) •••–••• 37
[15] D. Calvanese, G.D. Giacomo, D. Lembo, M. Lenzerini, R. Rosati, DL-Lite: Tractable description logics for ontologies, in: M. Veloso, S. Kambhampati
(Eds.), Proceedings of the 20th National Conference on Artificial Intelligence and the 17th Innovative Applications of Artificial Intelligence Conference,
Pittsburgh, Pennsylvania, USA, AAAI Press/The MIT Press, 2005, pp. 602–607.

[16] D. Calvanese, G.D. Giacomo, D. Lembo, M. Lenzerini, R. Rosati, Tractable reasoning and efficient query answering in description logics: The DL-Lite
family, Journal of Automated Reasoning (JAR) 39 (3) (2007) 385–429.

[17] G. Casini, U. Straccia, Rational closure for defeasible description logics, in: T. Janhunen, I. Niemelä (Eds.), Proceedings of the 12th European Conference
on Logics in Artificial Intelligence (JELIA 2010), Helsinki, Finland, in: Lecture Notes in Artificial Intelligence (LNAI), vol. 6341, Springer, 2010, pp. 77–90.

[18] G. Casini, U. Straccia, Defeasible inheritance-based description logics, in: T. Walsh (Ed.), Proceedings of the 22nd International Joint Conference on
Artificial Intelligence (IJCAI 2011), Barcelona, Spain, Morgan Kaufmann, 2011, pp. 813–818.

[19] F.M. Donini, M. Lenzerini, D. Nardi, W. Nutt, A. Schaerf, An epistemic operator for description logics, Artificial Intelligence 100 (1–2) (1998) 225–274.
[20] F.M. Donini, D. Nardi, R. Rosati, Autoepistemic description logics, in: M. Georgeff, M. Pollack (Eds.), Proceedings of the 15th International Joint Confer-

ence on Artificial Intelligence (IJCAI 1997), vol. 1, Nagoya, Japan, Morgan Kaufmann, 1997, pp. 136–141.
[21] F.M. Donini, D. Nardi, R. Rosati, Description logics of minimal knowledge and negation as failure, ACM Transactions on Computational Logic (ToCL) 3 (2)

(2002) 177–225.
[22] T. Eiter, T. Lukasiewicz, R. Schindlauer, H. Tompits, Combining answer set programming with description logics for the semantic web, in: D. Dubois, C.

Welty, M. Williams (Eds.), Principles of Knowledge Representation and Reasoning: Proceedings of the 9th International Conference (KR 2004), Whistler,
Canada, AAAI Press, 2004, pp. 141–151.

[23] D.W. Etherington, R. Reiter, On inheritance hierarchies with exceptions, in: AAAI, 1983, pp. 104–108.
[24] S.E. Fahlman, D.S. Touretzky, W. van Roggen, Cancellation in a parallel semantic network, in: P.J. Hayes (Ed.), Proceedings of the 7th International Joint

Conference on Artificial Intelligence (IJCAI 1981), Vancouver, BC, Canada, William Kaufmann, 1981, pp. 257–263.
[25] L. Giordano, V. Gliozzi, N. Olivetti, G.L. Pozzato, Reasoning about typicality in preferential description logics, in: S. Hólldobler, C. Lutz, H. Wansing

(Eds.), Proceedings of the 11th European Conference on Logics in Artificial Intelligence (JELIA 2008), in: Lecture Notes in Artificial Intelligence (LNAI),
vol. 5293, Dresden, Germany, Springer-Verlag, 2008, pp. 192–205.

[26] L. Giordano, V. Gliozzi, N. Olivetti, G.L. Pozzato, ALC + T : A preferential extension of Description Logics, Fundamenta Informaticae 96 (2009) 1–32.
[27] L. Giordano, V. Gliozzi, N. Olivetti, G.L. Pozzato, On extending description logics for reasoning about typicality: A first step, TR Dip. di Informatica, 2009,

http://www.di.unito.it/~pozzato/tr09.pdf.
[28] L. Giordano, V. Gliozzi, N. Olivetti, G.L. Pozzato, Prototypical reasoning with low complexity description logics: Preliminary results, in: F. Lin, T. Schaub,

E. Erdem (Eds.), Proceedings of 10th International Conference on Logic Programming and Nonmonotonic Reasoning (LPNMR 2009), Potsdam, Germany,
in: Lecture Notes in Artificial Intelligence (LNAI), vol. 5753, Springer-Verlag, 2009, pp. 430–436.

[29] L. Giordano, V. Gliozzi, N. Olivetti, G.L. Pozzato, Reasoning about typicality with low complexity description logics: The logic EL+⊥
T, in: R. Serra, R.

Cucchiara (Eds.), AI*IA 2009: Emergent Perspectives in Artificial Intelligence: XI Conference of the Italian Association for Artificial Intelligence, Reggio
Emilia, Italy, in: Lecture Notes in Artificial Intelligence (LNAI), vol. 5883, Springer-Verlag, 2009, pp. 62–71.

[30] L. Giordano, V. Gliozzi, N. Olivetti, G.L. Pozzato, A nonmonotonic extension of KLM preferential logic P, in: C.G. Fermüller, A. Voronkov (Eds.), Proceed-
ings of the 17th Conference on Logic for Programming, Artificial Intelligence, and Reasoning (LPAR 2010), Yogyakarta, Indonesia, in: ARCoSS Lecture
Notes in Computer Science (LNCS), vol. 6397, Springer-Verlag, 2010, pp. 317–332.

[31] L. Giordano, V. Gliozzi, N. Olivetti, G.L. Pozzato, Preferential vs rational description logics: Which one for reasoning about typicality? in: H. Coelho,
R. Studer, M. Wooldridge (Eds.), Proceedings of the 19th European Conference on Artificial Intelligence (ECAI 2010), Lisbon, Portugal, in: Frontiers in
Artificial Intelligence and Applications, vol. 215, IOS Press, 2010, pp. 1069–1070 (short paper).

[32] L. Giordano, V. Gliozzi, N. Olivetti, G.L. Pozzato, Reasoning about typicality in preferential description logics: Preferential vs rational entailment, in:
W. Faber, N. Leone (Eds.), Proceedings of the 25th Convegno Italiano di Logica Computazionale (CILC 2010), in: CEUR Workshop Proceedings, CEUR-
WS.org, vol. 598, Rende (CS), Italy, July 2010, pp. 1–15.

[33] L. Giordano, V. Gliozzi, N. Olivetti, G.L. Pozzato, A tableau calculus for a nonmonotonic extension of EL⊥ , in: K. Brünnler, G. Metcalfe (Eds.), Proceedings
of TABLEAUX 2011 (20th International Conference on Automated Reasoning with Analytic Tableaux and Related Methods), Bern, Switzerland, in: LNAI,
vol. 6793, Springer-Verlag, 2011, pp. 180–195.

[34] L. Giordano, V. Gliozzi, N. Olivetti, G.L. Pozzato, A tableau calculus for a nonmonotonic extension of the Description Logic DL − Litecore , in: R. Pirrone,
F. Sorbello (Eds.), AI*IA 2011: Artificial Intelligence Around Man and Beyond, XIIth International Conference of the Italian Association for Artificial
Intelligence, Palermo, Italy, in: LNAI, vol. 6934, Springer-Verlag, 2011, pp. 164–176.

[35] L. Giordano, V. Gliozzi, N. Olivetti, G.L. Pozzato, Reasoning about typicality in low complexity DLs: The logics EL⊥Tmin and DL-liteR Tmin , in: T. Walsh
(Ed.), Proceedings of the 22nd International Joint Conference on Artificial Intelligence (IJCAI 2011), Barcelona, Spain, Morgan Kaufmann, 2011, pp. 894–
899.

[36] L. Giordano, V. Gliozzi, N. Olivetti, G.L. Pozzato, A minimal model semantics for nonmonotonic reasoning, in: L. Fariñas del Cerro, J.M. Andreas Herzig
(Eds.), Logics in Artificial Intelligence, 13th European Conference (JELIA 2012), Toulouse, France, in: LNAI, vol. 7519, Springer-Verlag, 2012, pp. 228–241.

[37] R. Giugno, T. Lukasiewicz, P-SHOQ(D): A probabilistic extension of SHOQ(D) for probabilistic ontologies in the semantic web, in: S. Flesca, S. Greco,
N. Leone, G. Ianni (Eds.), Proceedings of 8th European Conference on Logics in Artificial Intelligence (JELIA 2002), in: Lecture Notes in Artificial Intelli-
gence (LNAI), vol. 2424, Springer-Verlag, 2002, pp. 86–97.

[38] S. Grimm, P. Hitzler, A preferential tableaux calculus for circumscriptive ALCO, in: A. Polleres, T. Swift (Eds.), Proceedings of the 3rd International
Conference on Web Reasoning and Rule Systems (RR 2009), Chantilly, VA, USA, in: Lecture Notes in Computer Science (LNCS), vol. 5837, Springer,
2009, pp. 40–54.

[39] U. Junker, K. Konolige, Computing the extensions of autoepistemic and default logics with a truth maintenance system, in: AAAI, 1990, pp. 278–283.
[40] P. Ke, U. Sattler, Next steps for description logics of minimal knowledge and negation as failure, in: F. Baader, C. Lutz, B. Motik (Eds.), Proceedings

of the 21st International Workshop on Description Logics (DL2008), in: CEUR Workshop Proceedings, CEUR-WS.org, vol. 353, Dresden, Germany, May
2008.

[41] S. Kraus, D. Lehmann, M. Magidor, Nonmonotonic reasoning, preferential models and cumulative logics, Artificial Intelligence 44 (1–2) (1990) 167–207.
[42] A.A. Krisnadhi, K. Sengupta, P. Hitzler, Local closed world semantics: Keep it simple, stupid! in: Proceedings of the 24th International Workshop on

Description Logics (DL 2011), in: CEUR Workshop Proceedings, vol. 745, Barcelona, Spain, July 2011.
[43] D. Lehmann, M. Magidor, What does a conditional knowledge base entail? Artificial Intelligence 55 (1) (1992) 1–60.
[44] V. Lifschitz, Nonmonotonic databases and epistemic queries, in: J. Mylopoulos, R. Reiter (Eds.), Proceedings of the 12th International Joint Conference

on Artificial Intelligence (IJCAI 1991), Sidney, Australia, Morgan Kaufmann, 1991, pp. 381–386.
[45] V. Lifschitz, Minimal belief and negation as failure, Artificial Intelligence 70 (1–2) (1994) 53–72.
[46] J. McCarthy, Applications of circumscription to formalizing common-sense knowledge, Artificial Intelligence 28 (1) (1986) 89–116.
[47] B. Motik, R. Rosati, Reconciling description logics and rules, Journal of the ACM 57 (5) (2010).
[48] D. Nute, Topics in Conditional Logic, Reidel, Dordrecht, 1980.
[49] R. Reiter, A logic for default reasoning, Artificial Intelligence 13 (1–2) (1980) 81–132.
[50] D. Rognone, Non monotonic extensions of DLs: Reasoning about typicality with number restrictions, Master’s thesis, Università degli Studi di Torino,

2009.

http://www.di.unito.it/~pozzato/tr09.pdf

JID:ARTINT AID:2679 /FLA [m3G; v 1.85; Prn:8/11/2012; 17:32] P.38 (1-38)

38 L. Giordano et al. / Artificial Intelligence ••• (••••) •••–•••
[51] C. Schwind, V. Risch, A tableau-based characterisation for default logic, in: ECSQARU, 1991, pp. 310–317.
[52] U. Straccia, Default inheritance reasoning in hybrid kl-one-style logics, in: R. Bajcsy (Ed.), Proceedings of the 13th International Joint Conference on

Artificial Intelligence (IJCAI 1993), Chambéry, France, Morgan Kaufmann, 1993, pp. 676–681.

	A non-monotonic Description Logic for reasoning about typicality
	1 Introduction
	2 The logic ALC+T
	3 The logic ALC+Tmin
	4 ALC+Tmin and circumscribed knowledge bases
	4.1 Similarities
	4.2 Differences
	4.3 Formal relation between circumscribed KBs and ALC+Tmin
	4.4 A mapping between circumscribed DLs and ALC+Tmin with nominals

	5 A tableaux calculus for ALC+Tmin
	5.1 The tableau calculus T-ABPH1ALC+T
	5.2 The tableau calculus T-ABPH2ALC+T

	6 Other reasoning problems
	7 Related works
	7.1 Non-monotonic extensions of DLs in the literature
	7.1.1 DLs and default logic
	7.1.2 DLs with epistemic operators
	7.1.3 DLs with circumscription
	7.1.4 Relation with rational closure and KLM

	7.2 Rational vs. preferential DLs

	8 Conclusions and further research
	Acknowledgements
	References

