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Abstract

Properties of the (n, n) icosahedral family of carbon fullerenes up to n = 10 (6000 atoms) have

been investigated through ab initio quantum-mechanical simulation by using a gaussian type basis

set of double zeta quality with polarization functions (84000 atomic orbitals for the largest case),

the hybrid B3LYP functional and the CRYSTAL14 code featuring generalization of symmetry

treatment. The geometry of giant fullerenes shows hybrid features, between a polyhedron and a

sphere; as n increases, it approaches to the former. Hexagon rings at face centres take a planar,

graphene-like configuration; the 12 pentagon rings at vertices impose however a severe structural

constraint to which hexagon rings at the edges must adapt smoothly, adopting a bent (rather than

sharp) transversal profile and an inward longitudinal curvature. HOMO and LUMO electronic

levels, as well as the band gap, are well described using power laws. The gap is predicted to become

zero for n ≥ 34 (69360 atoms). The atomic excess energy with respect to the ideal graphene sheet

goes to zero following a log (Nat)/Nat law, which is well described through the continuum elastic

theory applied to graphene; limits for the adopted model are briefly outlined. Compared to larger

fullerenes of the series, C60 shows unique features with respect to all the considered properties;

C240 presents minor structural and energetic peculiarities, too.

Keywords: (n,n) fullerenes, energy vs graphene, geometry, band gap, all electron Gaussian type basis set,

hybrid B3LYP functional, CRYSTAL code
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I. INTRODUCTION

Since the discovery of C60 in 19851, fullerenes have attracted major scientific interest

in many respects. In particular, surface functionalization2 and molecule trapping inside

the cage3 are opening the way to a wide range of applications for this class of materials,

including use in catalysis, photovoltaics, photodetection4–6. Recently, fullerenes have been

identified in deep space7, and multi-walled fullerenes have been proposed as possible sources

of cosmic spectroscopic features as well as intermediates to the formation of inter-stellar

nanodiamonds8,9.

In 1980 spheroidal carbon particles were observed10, that were later recognized to be giant

fullerene structures in the form of multi-walled fullerenes, showing either spherical or poly-

hedral shapes11,12. This finding raised the interest in the electronic structure calculations of

these systems, in order to understand their structure as well as their relative stability com-

pared to other carbon nanoforms13–21. However, this pathway turned out to be extremely

challenging, as the large number of atoms implied extremely high computational costs.

The first ab initio local density functional studies on C240 date back to the early 90s13,14;

specific expedients had to be adopted to make the calculations feasible, such as geome-

try optimization with empirical potentials13 or divide-and-conquer algorithms that by-pass

the Kohn-Sham equations14. In 1995, an ab initio Hartree-Fock optimization of C240 and

C540 was performed, by adopting a minimal STO-3G basis set17. In the same years, larger

fullerenes, up to 8640 atoms19, could be investigated by using low levels of theory, such

as MNDO18, Hückel15,16 and Tight Binding19; the study by Xu and Scuseria19 was first to

evaluate the relative stability of fullerenes compared to graphene. Ab initio studies with

more than 540 atoms and up to 2160 are very recent (2006)20, and have not gone beyond

the level of local density approximation.

Among the above mentioned studies, only four of them report about the use of icosahedral

symmetry to reduce the cost of the calculation13,15,17,20 and only three of them adopt a

publicly available code17,18,21. More notably, while discussing yet relevant geometrical as-

pects such as the sphere vs polyhedron shape, none of these investigations present a detailed
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analysis of the structure of fullerenes (relaxation from the as-folded icosahedron structure;

trends with large n). Finally, only in recent cases the relative stability compared to the

graphene sheet was investigated19–21 at the ab initio level, the limiting factors being either

the low level of adopted theory19 or the small number of investigated members20,21.

The first aim of the present study is to illustrate the scheme adopted for the automatic con-

struction of fullerenes within the public quantum-mechanical periodic code CRYSTAL1422,23.

Icosahedral, octahedral and tetrahedral fullerenes can be built starting from a two-

dimensional sheet, with no need for importing data generated by other codes. Correspond-

ing point symmetries are exploited all along the electronic structure calculation. While

there exist some publicly distributed utilities for the generation of fullerene structures, e.g.

Fullerene24 and CaGe25, the only other public code with exploitation of icosahedral sym-

metry seems to be the molecular program TURBOMOLE26.

The second aim is to present the results of an accurate, homogeneous and detailed computa-

tional study of the structure, electronics and energetics of icosahedral carbon fullerenes with

up to 6000 atoms; the graphene monosheet, treated at the same level of theory (exchange-

correlation density functional, basis set) is taken as a reference, and carbon nanotubes with

up to 1360 atoms are presented for cross-comparisons. Total energy calculations and geome-

try optimizations are carried out by using a level of theory higher than in any other previous

study, namely the hybrid Hartree-Fock / Density Functional B3LYP Hamiltonian27–29, and

an all electron Gaussian-type basis set. To the authors’ knowledge, the molecules investi-

gated in the present study are the largest ever simulated by means of density functional

electronic structure methods.

This paper is structured as follows. Section II presents the computational framework of the

calculations and illustrates the scheme for automatic generation of fullerenes. Section III de-

scribes the analysis of structure, electronic levels and energy of giant icosahedral fullerenes.

Section IV summarizes the main results.

Additional information is available as Supplementary Material; Figures and Tables in this

Section are labelled with the “S” prefix.
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II. METHOD

A. Computational Details

The CRYSTAL14 periodic ab initio code22,23 was used, featuring state-of-the-art full ex-

ploitation of symmetry. Maximum advantage is taken of the highly symmetric icosahedral

point group (Ih, 120 operators) at all stages of the electronic structure calculation, direct

transformations are performed between the bases of Atomic Orbitals (AOs) and Symmetry

Adapted Molecular Orbitals (SAMOs), and allocation of full matrices in the basis of AOs is

always avoided. Performance in terms of CPU time and memory allocations is discussed in

detail in Refs. 30–32. For the largest case here considered, a (10,10) fullerene, the number of

AOs is N = 84000, so that the size of a single N ×N matrix depasses 50 GBytes; however,

in the SAMO basis the largest dimension decreases to 3530, so that only 100 MBytes are

required for the allocation of matrices to be diagonalized. A complete SCF energy calcula-

tion for (10,10) runs on a single processor with 2 GB RAM in about 24 hours.

Calculations were performed with the B3LYP hybrid functional27–29, which has recently been

applied to the study of structural, vibrational and optical properties of semiconducting C

and BN nanotubes33–37 and graphene-derived sheets38. Carbon atoms were described using

a 6-31G(d)39 Gaussian-type basis set, consisting of 14 AOs per atom. The same basis set

has recently been adopted for the study of other carbon compounds with similar chemistry,

such as nanotubes34 and polyacetylene40,41.

The level of accuracy in evaluating the bielectronic Coulomb and Hartree-Fock exchange se-

ries is controlled by five parameters Ti (i = 1, ...5)22. T1 and T2 refer to the Coulomb series,

T3, T4 and T5 to the exchange ones: integrals are disregarded when the overlap between the

corresponding basis functions is below 10−Ti . More details on these truncation criteria can

be found in Refs.22,40. In this study the values of 8, 8, 8, 8, 20 were chosen. The threshold

on the SCF energy for geometry optimization was set to 10−8 Ha.

The DFT exchange-correlation contribution is evaluated by numerical integration over the

unit cell volume. In CRYSTAL, radial and angular points of the grid are generated through

Gauss-Legendre radial quadrature and Lebedev two-dimensional angular point distributions.

A (75,974)p grid was used, corresponding to a pruned grid with 75 radial and 974 angu-

lar points (XLGRID keyword in the CRYSTAL manual22). Accuracy of this grid can be
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estimated from the error on the integrated electronic charge density in the unit cell, that

amounts to less than 0.0003% for C60 (it gets smaller in the case of larger fullerenes).

Structures were optimized by using the total energy analytical energy gradients with re-

spect to atomic coordinates and unit cell parameters42–44, within a quasi-Newtonian scheme

combined with the BFGS algorithm for Hessian updating45–48. Convergence was checked

on both gradient components and nuclear displacements, for which default values22 were

chosen.

Reference calculations for graphene, corannulene and nanotubes were performed with the

same parameters as for fullerenes. For graphene the reciprocal space was sampled along

the 2 lattice vectors according to a sublattice with shrinking factor22 set to 56 according to

Ref. 38, corresponding to 290 independent ~k vectors in the irreducible part of the Brillouin

zone. For nanotubes, sampling of the reciprocal space along the unique lattice vector was

performed using a shrinking factor set to 40, corresponding to 21 independent ~k vectors34.

Manipulation and visualization of structures were performed with the Jmol 3D engine49,50.

Molecular drawings were rendered with the Inkscape program51 using input files prepared

with Jmol. Data analysis was performed using the LibreOffice suite52 and the Octave

environment53. Graphs were realized with the Gnuplot utility54.

B. Construction of fullerenes from a graphene monolayer

In the CRYSTAL14 code fullerenes are built automatically starting from any hexagonal

sheet, by using the FULLE keyword (a typical geometry input block is shown in Figure S1

in the Supplementary Information). The first required information are two integers, n1 and

n2, defining the components of the R vector in terms of the basis vectors ~a1 and ~a2 of the

hexagonal unit cell (see Figure 1). The scheme allows for different types of polyhedra with

diverse point groups to be constructed; these represent the third and second requested input

information, respectively. The choice of the polyhedron constrains the point group: I and

Ih (I and IH input options, respectively) are only compatible with icosahedron (ICOSA input

option); Th, O and Oh (TH, O and OH) with octahedron (OCTA); T and Td (T and TD) with

both tetrahedron (TETRA) and octahedron.

The R vector is the side of the equilateral triangle (in pink in Figure 1), that constitutes a

face of the polyhedron on which the fullerene is built. Only the three atoms (the example
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refers to the (2,2) fullerene) in the irreducible portion (in dark pink) are required for the

construction of the fullerene, as the code uses symmetry. The new cartesian reference for the

fullerene is set so that the origin O coincides with the geometric center of the polyhedron,

the x axis is parallel to the R vector and the z axis is normal to the first-built triangular face.

The radii of the spheres inscribed and circumscribed to the polyhedron correspond to the

distances of the origin O from the triangle center and vertices, respectively. The symmetry

point group is built so that all rotation axes are concurrent in the origin O. All symmetry

operators are then applied to all irreducible atoms, generating the complete set of atoms.

In the case of icosahedral, octahedral and tetrahedral fullerenes, 20, 8 and 4 triangular faces

are generated, respectively.

Figures S2 and S3 in the Supplementary Information provide additional details on the proce-

dure. Further resources on the construction of fullerenes from a sheet, including animations

and more pictorial representations, can be found in the new CRYSTAL Web Tutorial on

fullerenes at www.crystal.unito.it → Tutorials → Fullerene systems.

C. General properties of icosahedral fullerenes

The (n, n) icosahedral fullerenes investigated in this study have point group symmetry

Ih, characterized by the identity operator plus 12 C5, 12 C2
5 , 20 C3, 15 C2 axes, i (inversion),

12 S10, 12 S3
10, 20 S6 axes and 15 σ (mirror planes), leading to a total of 120 symmetry

operators. For this series, it holds that n1 = n2 = n, where n1 and n2 have been defined in

Section II B above, and n ranges from 1 to 10.

For these fullerenes, simple functions of n can be derived that give the values for some

relevant quantities reported in Table I. In particular:

• Number of irreducible atoms nat:

nat =
n(n+ 1)

2
(1)

• Total number of atoms Nat:

Nat = 60 · n2 (2)

As each atom has 3 bonds shared with other atoms, i.e. accounting for 3/2 bonds, the

number of bonds is Nbond = 3/2 ·Nat = 90 · n2.
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• Number of hexagons Nhex:

Nhex = 30 · n2 − 10 (3)

Note that the number of pentagons Npent is independent of n and always equal to 12.

• Number of degrees of freedom NDOF :

NDOF =
n(3n+ 1)

2
(4)

This quantity indicates how many variables the energy gradient is a function of, and

is relevant in the algorithms for geometry optimization. For large n, NDOF tends to

3 · nat (for comparison, it equals 3 · (Nat − 2) if symmetry is not exploited).

The above formulas permit to compute also the ratio ρat = Nat/nat:

ρat =
Nat

nat

= 120
n

n+ 1
(5)

Atoms in fullerenes lie either on edges or on faces, with multiplicities (i.e. number of sym-

metry related atoms) of 60 or 120, respectively. For n = 1, ρat is equal to 60 (all atoms on

edges). With increasing n, the value of ρat increases and tends to 120 (atoms on faces much

more than atoms on edges); for n = 10 it is about 109. This ratio approximates the saving

factor in the SCF energy calculation due to symmetry exploitation31, as various steps of the

calculation can be performed on the subset of nat irreducible atoms, rather than on the full

set of Nat atoms.

III. RESULTS

A. Structure: radial distances

Atomic radial distances for the fullerene cages, as obtained from simulation, are given

in Table II and represented graphically in Figure 2. In the following, we will indicate as

“radius” the distance of the atoms from the cage centre.

The (1,1) fullerene is the only case where all atoms have the same radius, 3.544 Å (they lie on

a sphere). In all other cases both the minimum and maximum radii, rmin and rmax (see Table

II), grow linearly with n, ranging from 6.940 and 7.332 Å for (2,2), to 33.608 and 39.660 Å
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for (10,10); they correspond to atoms lying on face centres and vertices, respectively. The

average radius < r > (crosses in Figure 2) obeys the linear relation:

< r >= (3.489 · n+ 0.072) Å = [3.489 · (n+ 0.021)] Å (6)

As the intercept of this line is as small as 0.072 Å, its slope turns out to be quite close to the

radius of the smallest fullerene (n = 1, < r >= 3.544 Å), the deviation being 1.5%. Average

radii for large fullerenes could therefore be extrapolated with good accuracy using only the

value for (1,1). The difference between the maximum and minimum radii, ∆r, obviously

obeys a linear relation, too (diamonds in Figure 2); it is equal to 0 Å for the (1,1) fullerene,

increases to 0.392 Å for (2,2), and reaches 6.052 Å for (10,10). The ratio ρr = rmax/rmin

increases monotonically from 1 to 1.180.

We can compare rmin and rmax with the values for two ideal situations: a sphere with

radius < r >, and an icosahedron as obtained from the construction described in Section

II B; the latter is characterized by a minimum radial distance rp,min at face centres and

a maximum radial distance rp,max at vertices. All these quantities are shown in Figure

2. The corresponding differences can be defined (see also Figure S4 in the Supplementary

Information): δ<r>,min = rmin− < r > and δ<r>,max = rmax− < r > for the sphere, and

δp,min = rmin − rp,min and δp,max = rmax − rp,max for the polyhedron. In the case of (1,1) all

differences are 0, as this fullerene is a perfect icosahedron with all atoms lying on a sphere.

Radii of the (2,2) fullerene are as close to the sphere as to the polyhedron ones (Figure 2 and

Figure S4). From n = 3 on, fullerene radii are always closer to the polyhedron rather than to

the sphere case. In comparison with the average sphere, differences can be as large as 4.69 Å

in modulus in the case of (10,10), indicating a significant divergence of the series of fullerenes

from sphericity. Looking at the polyhedron case, δp,max has an almost constant value, ≈

-0.21 Å, suggesting that the fullerene vertices have almost the same radial distance as in the

corresponding icosahedra. On the other hand, the difference δp,min increases linearly with

n, from 0.40 Å in (3,3) to 1.30 Å in (10,10). This indicates that the fullerene faces have a

slightly but increasingly larger radius compared to the icosahedron, and gives evidence for

a modest yet not negligible deviation from the polyhedral shape.
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B. Structure: curvature profiles

Figure 3 shows the structure of the (5,5) fullerene, taken as a reference in this discussion;

a path has been drawn along the cage, that includes the three types of rotation axes (C2,

C5 and C3 in green, yellow and pink, respectively). The green portion of the path coincides

with an edge of the triangular face, the red one is perpendicular to it. Figure 4 shows a

section of this path for all the (n, n) fullerenes studied here. Angles α, β and γ between

rotation axes have fixed values imposed by the icosahedral point group symmetry (31.7◦,

37.4◦ and 20.9◦, respectively). Let us analyze the components of these angular values along

the path (right side of Figure 4); we will start our discussion from n = 2, as for (1,1) angles

are constrained to α, β and γ values.

Pentagons at fullerene vertices (in yellow in Figure 4) are the regions with largest component

angles all along the series. Indeed, the largest contributions to α and β are concentrated

within the first two angles close to the C5 axis along the green and red paths, respectively.

Values for the first-closest angles are 25.9◦ and 26.6◦ for n = 2, and 27.8◦ and 28.2◦ for

n = 3; for subsequent fullerenes, they are very similar to these latter values (reaching 28.2◦

and 28.6◦ for n = 10). Note that (2,2) shows the smallest values for these angles, i.e. its

structure has the smallest curvature around pentagons. As a reference, corannulene C20H10

can be considered as the prototype for a single, “independent”, mechanically unconstrained

pentagonal vertex; it is made up of a pentagon ring surrounded by five hexagon rings sat-

urated with hydrogens. In this molecule, angles close to the pentagon measure 22.4◦ and

21.7◦, respectively; (2,2) is therefore the fullerene whose curvature at vertices comes closest

to this prototypal case. The second-closest angle along the green path (edge) is 5.8◦ for

n = 2, 4.7◦ for n = 3; from n = 4 on it does not change much, going from 5.3◦ to 5.6◦

(n = 10). The second-closest angle along the red path (face) is 10.7◦ for n = 2, due to

proximity with the C3 axis; it is converged for larger n, going from 5.1◦ (n = 3) to 5.2◦

(n = 10).

Fullerene edges (green paths in Figure 4) show a nearly planar section from (3,3) on; except

for an angle of 1.5◦ for n = 4, all angles are smaller than 1.1◦. Notably these small angles

are negative in sign, implying that edges have a slight inward curvature, which increases

with n. Note that also edge angles close to the C2 axis are small.

The red path goes along a fullerene face; two sub-regions can be identified, namely between
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C5 and C3 axes (from vertex to face centre), and between C3 and C2 axes (from face centre

to edge centre). In the former case, the profile is practically planar from n = 4 on, when

an angle smaller than 1◦ first appears. For larger n and with the exception of angles close

to either C5 or C3 axes, the largest angle in this sub-region is 1.1◦. In this case, angles are

generally positive in sign, indicating a very slight outward curvature.

The second sub-region of the red path, from face centre to edge centre, has a peculiarity:

it is the only case where non-negligible components of the macroscopic angle (γ) are dis-

tributed all along the path, rather than being concentrated close to the axes, so that even

for n = 10 the smallest absolute angular value is as large as 2.5◦. The unique angle for

n = 2 coincides with γ, 20.9◦; for n = 3 values are 11.8◦ and 18.1◦, for n = 4, their value

is 8.2◦ and 12.7◦. The first fullerene with no angles larger than 10◦ is n = 6; finally, for

n = 10, they are 2.5◦, 3.5◦, 4.4◦, 5.1◦ and 5.4◦. Note that angular values decrease from

C2 (transversal edge angles) to C3 (face centre angles). Relatively large values are found

also for the first angle just past the C3 axis (10.7◦ for n = 2, 4.0◦ for n = 3, until 1.7◦ for

n = 10); these angles prosecute the decreasing trend which has just been pointed out. The

peculiarity of this sub-region indicates the tendency for edges to have a smooth transversal

(outward) curvature penetrating into the fullerene faces; this configuration is preferred to

sharp-angled, polyhedron-like edges.

As an overall trend, faces grow plane-wise in the centre and towards vertices, as in poly-

hedra. On the other hand, edges with smooth, curved transversal profiles are preferred to

sharp edges, unlike in polyhedra. For increasing n, face features dominate over edge ones,

so that fullerenes resemble polyhedra rather than spheres (see also Section III A above).

C. Structure: atomic displacements compared to ideal polyhedra

The left side of Figure 4 compares the fullerene profiles with those of ideal graphene-like

triangular faces. While the inward bending of the edges has already been commented, the

other remarkable aspect is the raising of the faces (compare red and black, straight, paths);

this is a consequence of the outward curvature observed above along the red path. Real

and polyhedral, “graphene-faced”, fullerenes are compared in a more quantitative manner

in Figure 5, where the corresponding atomic displacements are rendered through a color

scale. The largest differences (red in the scale) are found for face centres, which show a rigid
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raising along the out-of-face coordinate of 0.5, 0.9 and 1.3 Å in the cases of n = 4, 7 and

10, respectively. As just pointed out above, this raising is related to the outward curvature

along the red path, which produces an increasing displacement going from edges and vertices

(blue in the scale) to the face centres. If we consider only the “in-face” components of the

relative displacements (Figure S5 in the Supplementary Information), regions with non-zero

values are identified along the fullerene edges. Displacements are far smaller compared to

the raising of face centres, their maximum value being about 0.1 Å in the case of n = 10.

These displacements are responsible for the transversal smoothing of the edges, which has

been discussed in Section III B.

D. Structure: bond lengths

The distribution of C-C bond lengths along the series is represented in Figure 6. The most

abundant length value is 1.452 Å for n = 1 and 1.446 Å for n = 2; from n = 3 on, it is always

comprised between 1.420 and 1.426 Å, i.e. very close to the C-C bond length in graphene,

1.422 Å. The minimum value is 1.392 Å for n = 1; it decreases to 1.384 Å for n = 2, and

then increases monotonically until 1.389 Å (n = 10); this value always corresponds to bonds

with one atom belonging to a pentagon (see below). The maximum value is 1.452, 1.446 and

1.438 Å for n = 1, 2 and 3, respectively; it remains nearly unaltered from n = 4 to n = 10,

going from 1.433 to 1.432 Å. Starting from bonds with one atom belonging to a pentagon

and moving far from the pentagon along the edge, the longest bond is the first one for n =

1,2,5÷10; it is the third along the same path for n = 3,4, instead.

The (1,1) fullerene has only two length values: 1.392 Å for hexagon-only bonds and 1.452 Å

for pentagon-hexagon shared bonds. For all other fullerenes, bonds can be classified in three

types. The first includes bonds in pentagons, whose unique value is 1.425, 1.421 and 1.421

Å for n = 2, 3 and 10, respectively; this value is always very close to the C-C bond length

in graphene. The second includes bonds with one atom belonging to a pentagon, with a

unique value of 1.384, 1.386 and 1.389 Å (n = 2, 3 and 10); this is always the shortest C-C

distance in the structure. The third type includes all other C-C bonds (hexagons), with

values ranging from 1.422 to 1.446 Å for n = 2, from 1.410 to 1.438 Å for n = 3, and from

1.416 to 1.432 Å for n = 10.

As a final remark on structural features, we note that in the previous literature14,17–19,21 there
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has been a long discussion concerning the either spherical or faceted shape of giant fullerenes,

with a final general agreement on the latter hypothesis. The present study confirms this view,

while enriching it in qualitative description and quantitative structural details. The most

remarkable aspects concern the fullerene edges, with their longitudinal inward curvature

and transversal smooth profile, and the first two fullerenes of the series, exhibiting unique

characteristics in terms of radial distances, angular values and bond lengths.

E. Electronic levels

Diagrams of the electronic eigenvalues are shown in Figure 7; the x and y axes correspond

to energy, in eV, and degeneracy, respectively. HOMO and LUMO energies always have a

degeneracy of 5 and 3, respectively; this qualitative finding agrees with previous Hückel15,16,

HF17 and LDA13 studies. Using Eq. (2), it turns out that a (n, n) fullerene has 180 · n2

occupied Molecular Orbitals. Symmetry analysis shows that there are 48 · n2 degenerate

occupied energy levels; two thirds of them, i.e. 32 · n2, correspond to valence levels.

Let us now concentrate on the behavior of the HOMO/LUMO levels and of the band gap

with increasing n; data are reported in Table II and plotted in Figure 8 (note that the x

axis reports 1/n). Values of EHOMO and ELUMO as a function of n are very well described

by means of power laws, which imply log-log linear behaviors, provided that data for (1,1)

are excluded; we will come back to this aspect later. Best-fits with three parameters provide

the following expressions:

EHOMO =
(
−3.45− 2.41 · n−0.53

)
eV (7)

ELUMO =
(
−3.85 + 1.33 · n−1.14

)
eV (8)

Note that ELUMO has a dependence quite close to n−1, whereas for EHOMO the exponent

for n is close to −1
2

(inverse square root).

The electronic band gap Egap is as large as 2.711 eV for (1,1); it equals 1.888 eV for (2,2),

and drops down to 0.420 eV at (10,10). A quite satisfactory fit, again excluding (1,1), is

obtained by combining the two previous ones (Egap = ELUMO − EHOMO):

Egap =
(
−0.40 + 1.33 · n−1.14 + 2.41 · n−0.53

)
eV (9)

For n ≥ 23 the predicted gap is smaller than 0.1 eV; when n ≥ 34, the band gap is expected

to become zero. Similar power laws for the three quantities were proposed in Ref. 16; the
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values of the fitting parameters are rather different, which is likely related to the rather

different level of approximation adopted in that study (π electrons only, Hückel theory).

Figure 8 shows that HOMO and LUMO levels of the smallest fullerene are higher and

lower, respectively, than the fitted values, which in turn results in an electronic gap smaller

than expected. A possible reason for this anomalous behavior is the occurrence of only

one symmetry irreducible atom in (1,1), which forbids differentiation between atoms (and

molecular orbitals) related to pentagon rings and those related to hexagon rings.

F. Stability compared to graphene

Table II reports the excess energy per atom ∆Eat of (n, n) fullerenes (in meV/atom),

where the ideal, planar graphene sheet is taken as a reference. This quantity is as large as

412.7 meV/atom for (1,1), drops down to 154.8 and 91.0 meV/atom for (2,2) and (3,3), and

reaches 13.4 meV/atom for (10,10). A convenient graphical representation is given in Figure

9; it involves the excess energy per molecule ∆Emol, which equals ∆Eat ·Nat, as a function

of the logarithm of the number of atoms Nat. This view highlights the logarithmic behavior

of the molecular excess energy, which implies that the atomic excess energy goes to zero like

log (Nat)/Nat.

A simple model can be found in the literature55–57 that permits to describe the observed

behavior in the framework of elastic continuum theory of graphene. A quantity necessary

for this description is the bending modulus (or flexural rigidity) D of graphene; it has the

dimension of an energy and can be defined as the amount required to bend a graphene sheet

having unit area into a cylindrical tube with unit curvature. In order to compute D, we shall

consider carbon nanotubes, and note that their bending energy ∆Earea (irrespective of the

rolling direction) has a linear dependence on the square of the tube curvature, k2 = 1/r2,

the proportionality factor being equal to D/258,59. We here consider a large set of (n, 0)

nanotubes with n ranging from 8 to 340 (Table S1 and Figure S6 in the Supplementary In-

formation). If we took into account tubes with small radii (i.e. large curvatures), D would

be overestimated by as much as 10%, as the corresponding bending energies deviate from

the simple linear behavior (Figure S6). By disregarding smaller tubes and fitting the data

for n = 200÷ 340, we find a well converged value D = 1.61 eV for the bending modulus of

graphene. Previous ab initio studies give 1.49 eV (Ref. 60, LDA level, and Ref. 61, GGA)
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and 1.52 eV (Ref. 62, LDA); differences with respect to the present result might be due to

the adopted functionals. Calculations with various empirical force-fields yield even smaller

values: 1.02 eV (Ref. 56), 0.86 and 1.09 eV (Ref. 57).

Now, let us turn back to the elastic continuum model for fullerenes. It describes an icosahe-

dral fullerene as a superposition of 12 conical frusta, whose smaller bases are located at the

icosahedron vertices. A single frustum can be obtained by taking a graphene sheet, cutting

out a 60◦ wedge starting from an hexagon centre, and joining the cut edges together. The

resulting fivefold ring represents a “disclination” in the ideal graphene sheet, and an expres-

sion for its elastic energy can be easily derived56,57; the final formula for the entire fullerene

includes a factor of 12:

∆Emol = 12E5 +
11π

5
D log

Nat

60
(10)

here E5 is related to the energy of a pentagonal disclination (carbon pentagon plus neighbor-

hoods); most important, D is the bending modulus of graphene. Figure 9 clearly indicates

that fullerenes from (3,3) on strictly follow the proposed logarithmic law.

A best-fit of energy data for fullerenes with n = 3÷10 gives well converged parameter values

of 1.88 eV for the bending energy D and 1.74 eV for the disclination energy. The value for

D is 17 % larger than the one obtained above from the set of nanotubes. The origin of this

discrepancy lies on the approximations inherent to the elastic model at the basis of Eq. (10).

The most relevant is the assumption of circular rotational symmetry of the disclination55; in-

stead, the 12 conical frusta have joined bases, which gives each disclination a five-fold, rather

than circular, rotational symmetry; this keeps the logarithmic behavior, but is expected to

increase the coefficient55,56. We can give a measure of how much fullerenes from our ab initio

simulations have disclinations deviating from the circular symmetry assumed in the elastic

model: actually, this is related to the fullerene being rather dissimilar from a sphere, which

is indeed what results from the discussion on structure in Sections III A and III B above.

A second discrepancy from the model is that the centres of fullerene faces are not covered

by the cones57; however, this affects excess energies to a little extent, as face centres are

almost flat (thus similar to graphene). We could find only one study in the literature with a

quantitative comparison between excess energies of carbon nanotubes and fullerenes56: the

authors performed empirical force-field calculations, and found out a smaller discrepancy

than ours, around 6 %. Another empirical study compares energies for the two types of

structure without giving any quantitative detail on the observed discrepancies57.
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Finally, Figure 9 shows that energy for (1,1) is 4 eV/molecule larger than the value ob-

tained with the logarithmic law; the reason for a larger excess energy of (1,1) compared to

larger fullerenes is the same as for the observed anomalies in the electronic properties (see

Section III E above): (1,1) has only one irreducible atom, and thus a reduced capability

of relaxing in a proper way the structure of both hexagon and pentagon rings. The (2,2)

fullerene is 1.7 eV/molecule more stable than expected from the logarithmic law, which is

a discrepancy smaller than for (1,1); inclusion of its energy in the best-fit would result in

small variations to the parameter values (they would be 1.93 and 1.62 eV). This additional

stability compared to larger fullerenes (discussed, in other terms, in Ref. 63) reasonably

arises from a smaller mechanical stress at vertex regions, which for the relatively small (2,2)

fullerene still represent a relevant portion of the entire structure. Indeed, discussion in Sec-

tion III B pointed out that (2,2) has the smallest curvature at vertices of the whole series,

which makes it the closest fullerene to the corannulene molecule; the latter represents a

mechanically unconstrained prototype for the pentagonal vertex region. Notably, force-field

studies in the literature concerning the energetics of large fullerenes56,57 present energies for

(1,1) that are in remarkable agreement with the logarithmic law from the elastic theory; the

present electronic structure calculations show that this is not the case. This suggests that

the description of (1,1) fullerene using empirical force-fields may result in artifacts when

comparing it to larger fullerenes.

IV. CONCLUSIONS

We have presented a comprehensive ab initio study on the properties of large carbon

icosahedral fullerenes with up to 6000 atoms. Calculations were made feasible thanks to the

implementation of fullerene symmetry and to the improved exploitation of symmetry along

all steps of the electronic structure calculation in the public code CRYSTAL14.

A detailed and accurate analysis has been carried out on the structural properties of

fullerenes. As shown in previous studies, large cages show features that are intermedi-

ate between those of a polyhedron and those of a sphere, yet closer to the former. Novel

qualitative and quantitative details have been added to this picture; the most relevant ones

concern (a) the shape of fullerene edges, with longitudinal inward curvature and transversal

smooth (rather than sharp) profile, and (b) the unique characteristics exhibited by the first
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two fullerenes of the series, C60 and C240.

The smallest fullerene of the series, C60, also shows unique electronic and energetic prop-

erties compared to larger structures: higher HOMO level, smaller band gap, higher excess

energy. All these features are the consequence of C60 having only one symmetry irreducible

atom, which does not permit its molecular orbitals to properly accomodate both pentagon

and hexagon rings.

Excess energy of large fullerenes with respect to the graphene sheet excellently fits a log-

arithmic law that can be interpreted in terms of continuum elastic theory; this is shown

here at the ab initio level for the first time. The observed discrepancy between the fitted

value of the bending modulus of graphene and an independent value (inferred from accu-

rate nanotube calculations) highlights the approximations in the elastic model adopted for

fullerenes, in particular the assumption of circular rotational symmetry. C240 shows an

excess energy slightly smaller than that expected from the logarithmic law; this additional

stability is related to a smaller mechanical strain at the pentagonal vertex regions.
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FIG. 1: Construction of the triangular face of the icosahedral (2,2) fullerene from

graphene. R = 2 · ~a1 + 2 · ~a2 is the side of face (see text). A γ = 60◦ reference is assumed

for the hexagonal two-dimensional lattice. The irreducible portion of the triangle is in dark

pink; carbon atoms are shown in green; some symmetry operators are sketched: rotation

axes and mirror planes (the latter in blue).
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FIG. 2: Radii of the (n, n) fullerenes as a function of n (in Å). rmin and rmax are the

minimum and maximum radial distances; ∆r is their difference, < r > is the average value

over all atoms. Also the minimum (rp,min) and maximum (rp,max) distances in the as-built

polyhedral fullerene are reported (the former is slightly lower than rmin; the latter nearly

coincides with rmax).
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FIG. 3: The (5,5) fullerene structure; it is used as a reference for Figure 4. Pentagons and

C5 axes are in yellow; hexagons lying on the C3 axes at the face centers are in pink, as well

as the C3 axes; fullerene edges and C2 axes are in green. The angle between C2 and C5

axes is denoted as α; the angles between C5 and C3 axes and C3 and C2 axes are called β

and γ, respectively. A path around the fullerene is defined; it is in red when it crosses a

triangular face and in green when it follows an edge. Points along the path are

emphasized, that are used in Figure 4; in the green portion of the path they correspond to

carbon atoms; in the red portion they correspond to the middle of C-C bonds, instead.
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FIG. 4: Sections of (n, n) fullerenes, showing the paths described in Figure 3. All angles

are in degrees. Two-, five- and three- fold rotation axes and the corresponding angles α, β

and γ are constant along the whole fullerene series. Right side: components of α, β and γ

along the path, corresponding to angles between the normals of two consecutive segments

of the path (see inset on top). Left side: path profiles compared to the profiles of the ideal

graphene sheet (black lines).
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FIG. 5: Three-dimensional structures of (n, n) fullerenes (n = 1 not shown). For each face,

atomic positions have been compared to the case of an ideally flat graphene triangle;

relative displacements are rendered by means of a color scale (values in Å). The graphene

triangle is taken so that its z coordinate corresponds to the radius of the inscribed sphere

to the ideal polyhedral fullerene, and its central hexagon is in-plane aligned with the

central hexagon of the fullerene face.
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populations of bonds are normalized, so that for each fullerene their total equals one. The
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population of bond length near 1.45 Å (not fully shown) is 0.667.
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(n, n) (1,1) (2,2) (3,3) (4,4) (5,5) (6,6) (7,7) (8,8) (9,9) (10,10)

nat 1 3 6 10 15 21 28 36 45 55

Nat 60 240 540 960 1500 2160 2940 3840 4860 6000

Nhex 20 110 260 470 740 1070 1460 1910 2420 2990

NDOF 2 7 15 26 40 57 77 100 126 155

NAO 840 3360 7560 13440 21000 30240 41160 53760 68040 84000

ρat 60 80 90 96 100 102.8571 105 106.6667 108 109.0909

TABLE I: Parameters for (n, n) fullerenes with n = 1÷ 10. nat, Nat and Nhex are the

number of irreducible atoms, the number of atoms and the number of hexagons,

respectively. NDOF and NAO are the number of internal degrees of freedom and the

number of atomic orbitals, respectively. ρat is the ratio Nat/nat.

(n, n) (1,1) (2,2) (3,3) (4,4) (5,5) (6,6) (7,7) (8,8) (9,9) (10,10)

< r > 3.544 7.070 10.548 14.027 17.511 21.002 24.491 27.983 31.475 34.968

rmin 3.544 6.940 10.215 13.528 16.864 20.217 23.562 26.912 30.260 33.608

rmax 3.544 7.332 11.342 15.378 19.420 23.464 27.512 31.560 35.610 39.660

∆r 0 0.392 1.127 1.850 2.556 3.247 3.950 4.648 5.350 6.052

ρr 1 1.056 1.110 1.137 1.152 1.161 1.168 1.173 1.177 1.180

Egap 2.711 1.888 1.340 1.030 0.833 0.698 0.599 0.525 0.467 0.420

EHOMO -5.673 -5.124 -4.808 -4.609 -4.474 -4.378 -4.307 -4.251 -4.207 -4.171

ELUMO -2.962 -3.236 -3.468 -3.579 -3.641 -3.681 -3.707 -3.726 -3.740 -3.751

∆Eat 412.71 154.83 91.04 59.31 41.82 31.21 24.27 19.48 16.01 13.42

TABLE II: Properties of (n, n) fullerenes with n = 1÷ 10. < r > [Å] is the average radial

distance over all atoms; rmin and rmax [Å] are the minimum and maximum radial

distances, ∆r [Å] and ρr are their difference and ratio, respectively. Egap is the energy

band gap [eV]. EHOMO and ELUMO are the energy levels [eV] of the Highest Occupied

(HOMO) and Lowest Unoccupied (LUMO) Molecular Orbitals, respectively. ∆Eat is the

excess energy per atom [meV/atom] with respect to the graphene sheet. The total energy

of graphene is -1036.61114 eV/atom.
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18 D. Bakowies, M. Bühl, and W. Thiel. Can Large Fullerenes Be Spherical? J. Am. Chem. Soc.,

117:10113–10118, 1995.

19 C.H. Xu and G.E. Scuseria. An O(N) tight-binding study of carbon clusters up to C8640: the

geometrical shape of the giant icosahedral fullerenes. Chem. Phys. Lett., 262:219–226, 1996.

20 B.I. Dunlap and R.R. Zope. Efficient quantum-chemical geometry optimization and the struc-

ture of large icosahedral fullerenes. Chem. Phys. Lett., 422:451–454, 2006.
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