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Abstract	  

European beech forests are of particular importance for biodiversity, although relatively little is 

known about how beech forest management impacts on invertebrate communities. In this paper 

we investigated the influence of beech forest management history [i.e. over-mature coppices 

(OC) and coppices in conversion to high forests (CCHF)], climatic, topographic and microhabitat 



characteristics on ground beetle diversity (measured as relative abundance, species richness, 

Shannon diversity and abundance of the endangered endemic species Carabus olympiae) in 

northern Italy.  The diversity of forest specialist carabids was higher in OC and in forest stands 

characterized by a higher mean temperature and lower relative humidity. Moreover, we detected 

a positive response of several diversity variables to coarse wood debris cover or volume, herb 

cover, and the standard deviation of tree diameter. Currently, OC seems to be a more favorable 

habitat for forest carabids, including Carabus olympiae, although succession over time can lead 

to a progressive homogenization of the vegetation structure, with negative consequences for the 

conservation of the forest carabid assemblage.	  

Based on our results, we suggest that the traditional management of beech coppice and its 

conversion to high forest be modified by including practices aimed at promoting structural and 

microhabitat diversity such as retention of large trees, creation of canopy gaps, retention of 

coarse wood debris and the preservation of ‘islands’ of older trees in the managed stands.	  

 

Keywords: Carabus olympiae, coppice, conversion to high forest, Fagus sylvatica, insect 

ecology, retention, ageing islands 

	  

	  

	  

	  

1. Introduction 



In Europe, Beech Fagus sylvatica forests are of particular importance for biodiversity. Annex 1 

of the "Habitats Directive" (92/43/EEC) lists eight habitat types characterized by beech forests as 

worthy of conservation. Current threats to beech forest ecosystems include climate change 

(Gessler et al., 2007; Di Filippo et al., 2012), increased likelihood of drought and fire damage 

(Piovesan et al., 2008; Ascoli et al., 2013), impact of tourism (Negro et al., 2009; Rolando et al., 

2013), habitat loss and fragmentation (Kunstler et al., 2007), grazing by domestic or wild 

ungulates (Vandenberghe et al., 2007; Olesen and Madsen, 2008) and changes in forest 

management (Mund and Schulze, 2006; Wagner et al., 2011).  

There are few studies concerning the effect of forest management on biodiversity in beech 

forests (e.g. Moning and Müller, 2009; Spiecker, 2003), and most of these focus on plant or 

mycorrhizal diversity (e.g. Van Calster et al., 2007; Bartha et al., 2008; Di Marino, 2008; Radtke 

et al., 2013).  However, such information is a necessary pre-requisite for management of this 

habitat given the various environmental pressures to which it is subject.  A case in point are the 

beech forests which characterize the landscape of many mountain areas in Italy (Nocentini, 

2009). Most beech forests are currently managed as coppice, i.e., by repeatedly cutting back 

shoots to ground level to stimulate vegetative growth and provide firewood on a short rotation 

basis (20 to 40 years). High forests where trees are regenerated by seed are rare. However, many 

coppices are now transitioning to a high-forest structure, due to either the abandonment of 

regular management, or silvicultural conversion by thinning (Nocentini, 2009), yet the impacts 

of such management changes on biodiversity are not as yet fully understood. 

Insects respond to stand structural complexity at different temporal and spatial scales, and they 

are strongly influenced by natural and anthropogenic disturbance (Kraus and Krumm, 2013). In 

particular, ground beetles (Coleoptera: Carabidae) cover a wide range of life histories and 



microhabitat requirements, and therefore they have been widely recommended as bioindicators 

of forest management (Rainio and Niemelä, 2003). They are relatively easy and cost-efficient to 

assess with standardized methods (i.e., pitfall trapping), and are sensitive to environmental 

factors such as temperature, humidity and vegetation structure (Stork,	  1990;	  Butterfield,	  1996;	  

Lövei	  and	  Sunderland,	  1996).  Furthermore, changes in carabid abundance and species richness 

can be useful tools to evaluate the effects of human disturbance in forest ecosystems (Brandmayr 

et al., 2009).  

Most of the studies of carabid diversity in forest habitats have focused on the effects of habitat 

fragmentation (Davies	  and	  Margules,	  1998;	  Niemelä,	  2001;	  Koivula	  and	  Vermeulen,	  2005),	  edge	  

effects	   (Heliölä	   et	   al.,	   2001;	   Koivula	   et	   al.,	   2004;	   Negro	   et	   al.,	   2009), or forestry practices 

(Werner	   and	   Raffa,	   2000;	   Pearce	   and	   Venier,	   2006;	   Taboada	   et	   al.,	   2006).  The latter affect 

particularly large-sized and brachypterous (short or reduced wings) habitat specialists, which 

have limited dispersal capacity (Kotze and O’Hara, 2003).  Indeed, several authors have 

demonstrated that flight capability, and therefore dispersal ability, is a function of carabid wing 

form (Den Boer, 1970; Den Boer, 1990; Lovei and Sunderland, 1996; Gutierrez and Menendez, 

1997). For example, radio-telemetry in the same beech forest stands considered in this study has 

shown that the endangered Carabus olympiae has very low dispersal (Negro et al., 2008). 

We focused on a group of localized, medium and large-bodied brachypterous ground beetles 

inhabiting beech forests in the north western Italian Alps. The study site, located in the Sessera 

Valley, is part of Natura 2000 ecological network. In particular, the site houses Carabus 

olympiae, classified as a priority species in Annexes II and IV of the "Habitats Directive" 

(92/43/EEC) and considered Vulnerable according to the IUCN red list of Threatened species 

(http://www.iucnredlist.org/) .	  



In this study, we considered the response of forest carabid beetles to management history (i.e. 

coppice or coppice in conversion to high forest), habitat structure and micro-climate in beech 

forests in northern Italy, in order to understand the factors affecting their abundance and 

diversity, and hence to better inform management strategies for their conservation. The specific 

aims were: (1) to test whether two different management histories [i.e., over-mature coppice 

(OC) and coppice in conversion to high forests (CCHF)], in the same beech forest ecosystem, 

have different effects on realtive abundance, species richness, diversity and composition of forest 

carabid assemblages; (2) to assess which vegetation and stand structure parameters are more 

important in driving forest carabid abundance and diversity, and (3) to evaluate which are the 

best forest management practices, if any, for long-term conservation of the endemic species 

Carabus olympiae. 	  

 

2. Methods 

2.1 Study area	  

The study area was the Upper Sessera Valley (Fig. 1), about 108 km2 wide, located in north-east 

Piedmont, Italy (45°40’ N, 8°16’ E). It includes the upper part of the River Sessera basin, a 

mountainous catchment, from the valley bottom up to an elevation of 2556 m a.s.l. (average 

elevation: 1350 m). Annual rainfall is 1700 mm with two equinoctial maxima, and mean annual 

temperature is 7°C. Snow cover lasts about 5 months (November to March). 	  

Due to its position at the outer margins of the Alps, the Upper Sessera Valley provided a glacial 

refugium for many plant and animal genera, and is now a local hotspot for biodiversity. The most 

common land cover classes are pasture (dominated by graminaceous plants), shrubland (alpen 



rose Rhododendron ferrugineum L. and blueberry Vaccinium myrtillus L.), secondary forest on 

former pastures (birch Betula pendula L. and common hazel Corylus avellana L.), and beech 

(Fagus sylvatica L.) forest (belonging to the association Luzulo-Fagetum). Moreover, large 

portions of the site were afforested by conifer plantations (Norway spruce Picea abies (L.) Karst) 

and other conifers before World War II.	  

In the study area, beech was traditionally coppiced to produce firewood and charcoal. Over the 

last decades, forest management has been progressively abandoned. The last harvest in privately 

owned coppice stands was carried out in 1960. The sprouts are 53 years old and most of the 

standards are about 80 years old. On the other hand, most coppices on public properties have 

been actively converted to high forest since the 1980s. The traditional treatment applied to 

coppice was the coppice with standard (an average of 100 standards per hectare) and the 

conversion has been applied with a gradual thinning of sprouts (Giannini and Piussi, 1976). This 

method requires a first thinning in an over-mature coppice, and 2-3 further thinnings before 

reaching the final step defined as “temporary high forest” (a forest that has the structure of a 

monolayered high forest, but that, at the same time, originated from sprouting). The application 

of a seeding cut (i.e. to provide growing space for the regeneration to establish and shelter for the 

young developing seedlings) on the temporary high forest represents the end of the conversion 

process, producing an even-aged high forest stand. Most of the CCHF plots are currently 

between the second and the third thinning and the trees are 70-75 years old, with some standards 

> 100 years old.	  

 

2.2 Sampling design 



Monitoring and conservation actions were carried out in a study area of 54 ha, including beech 

forest, afforestation, and shrubland. Among beech forests, 24% were publicly owned (CCHF) and 

76% were private (OC that have passed the traditional rotation period). Therefore, a stratified 

sampling design was used to select plots managed as OC and CCHF. A total of 31 plots, 

established at the nodes of a 100x100m grid overlayed by beech forest cover, were selected. The 

number of plots was set in relation to the area occupied by each management system, i.e., 10 in 

CCHF and 21 in OC stands (Fig. 1).	  

We used baited pitfall traps to sample the carabid community in the study area. Catches with 

pitfall traps can be used to estimate the density of carabid beetles (Baars, 1979), but as stressed 

by several authors (e.g. Niemela et al., 1993; Kinnunen et al., 2001), they are better adapted for 

comparing species richness, relative abundance and Shannon diversity between different habitats 

(Andorkó and Kádár, 2006; Máthé, 2006) or, as in our case, between different forest 

management systems (du Bus de Warnaffe and Lebrun, 2004).  

In each sampling plot, five pitfall traps were arranged according to a Latin square design, i.e., at 

the four vertices and at the center of a 20 m-wide square. Pitfall traps were placed at the end of 

May 2013 and emptied on average every four days (ranging from three to six) until the end of 

August (equal to 18 sampling periods). Each trap (7.5 cm diameter and 9 cm deep) was 

assembled with a double bottom in order to keep animals alive, and filled with 150 ml of vinegar 

as an attractant (van den Berghe, 1992). A flat stone was positioned 3 cm above each trap to 

prevent flooding. Identification of the carabids was carried out in the field following the 

nomenclature of Audisio and Vigna Taglianti (2004).	  

Thermo/Hygro Button 23 loggers (Maxim Integrated Products, Inc., Sunnyvale, CA, U.S.A.) 

were used to record temperature and relative humidity in each sampling point. The buttons were 



fixed to wooden poles (2 cm above the soil surface) and were sheltered from rain by means of a 

plastic roof. The data loggers measured the temperature and the relative humidity every 1 h and 

were run for the entire sampling period (about three months). In the lab, we computed mean, 

minimum, and maximum temperature and relative humidity for each of the 18 sampling periods. 	  

Topography was characterized by extracting the elevation, slope, and ‘southness’ (i.e., a 

linearization of aspect: Chang et al., 2004) from a 10-m gridded digital terrain model. Elevation 

was not considered in statistical analysis because differences among sampling points were very 

small (ranging from 1090 to 1450 m a.s.l.).	  

At each plot, forest and vegetation structure was described by measuring: species and diameter at 

130 cm height (DBH) of all living trees with DBH > 2.5 cm; diameter, length and decay class 

(Motta et al., 2006) of all standing dead trees (snags) with DBH > 2.5 cm; length and decay class 

of logs (diameter > 5 cm, length > 100 cm) and stumps (diameter at the ground level > 2.5 cm, 

height < 130 cm); and, canopy cover by means of two hemispherical photographs taken from the 

plot center at a height of 80 cm from the ground (digital camera set at 400 ISO and F8). The 

images were masked for terrain and automatically thresholded (Nobis and Hunziker, 2005). 

Canopy cover was computed as the ratio of (1 - sky pixels) to the total number of pixels, and 

averaged between the two images; species and height of regenerating trees (DBH < 2.5 cm and 

height > 10 cm). 	  

Additionally, the following variables were measured: percent cover of each plant species (Braun-

Blanquet, 1932); percent cover of the regeneration layer, shrubs, herbs, bare soil, and litter; fine 

(branches, twigs, logs with diameter <5cm, FWD) and coarse woody debris (logs with DBH>5 

cm, CWD); rocks in four size classes (<10 cm, 10-40 cm, 40-100 cm, and > 100 cm in mean 

diameter) within a concentric 5m radius circular plot; and, species and number of seedlings 



(height < 10 cm) within four 1x1m  square subplots, located at the outer edge of the regeneration 

plot along four orthogonal directions.	  

 

2.3 Data analysis 

We computed standard forest structure descriptors for each plot, i.e., tree density, basal area, 

quadratic mean diameter (QMD), and relative beech abundance in the total basal area. Tree size 

heterogeneity was assessed by computing the range, standard deviation, skewness, and kurtosis 

of the DBH distribution of live trees. The volume of CWD (standing dead trees, logs and stumps) 

was computed by applying National Forest Inventory yield tables for beech (Castellani et al., 

1984) in the case of standing dead trees, and Smalian’s formula (Bruce and Schumacher, 1950) 

for logs and stumps. Vegetation structural parameters were compared between coppice and high 

forest by means of Kruskal-Wallis two-sample tests, with a correction for multiple comparisons 

(Benjamini and Hochberg, 1995).	  

Characteristic carabid species in OC and CCHF were identified by means of the Indicator Value 

(IndVal) procedure (Dufrêne and Legendre, 1997). This method identifies quantitatively the 

characteristic species of each forest management system, and generates a significance value (p) 

for the strength of association using a randomized resampling technique. The IndVal of a species 

is expressed as a product of the specificity and fidelity measures. In our study, it reaches a 

maximum (100) when all individuals of a species are found within a single management system 

(high specificity), and when the species occurs at all plots of that type (high fidelity) (Dufrêne 

and Legendre, 1997). IndVal was calculated by means of the R package labdsv (Roberts, 2013). 

 



2.3.1 Effect of macrohabitat variables  

For each sampling point and sampling period we pooled data because of equal sampling effort 

across points (i.e. no pitfall trap was lost). The effects of forest management history, topographic 

and climatic variables were therefore run on a matrix with 558 observations (i.e. 31 points x 18 

periods). Afterwards we computed relative abundance (N), species richness (S), relative 

abundance of the endemic species Carabus olympiae (CO_N), and Shannon diversity (i.e., the 

exponential of the Shannon-Weaver index - Shannon entropy; Jost, 2006) for each observation.	  

To test for differences in relative abundance and diversity (N, S, CO_N and H’) between 

management systems, we used Generalized Additive Mixed Models (GAMMs) (Equation 1). We 

specified management system, mean temperature, mean humidity, aspect and southness as fixed 

factors. Sampling plot was specified as a random factor to account for repeated measures of the 

same plots over successive visits. Visual inspection of scatter plots suggested highly non-linear 

seasonal trends, so sampling period was fitted with a smoother. The GAMM models were 

compared to linear mixed models (GLMMs), and were found to provide a much better fit (ΔAIC 

> 2, Burnham and Anderson, 2002), hence justifying their use. 	  

The optimal degree of smoothing was identified by cross-validation, and a gamma value of 1.4 

was specified in order to minimise overfitting (Zuur et al., 2009) and provide a more 

conservative estimated degrees of freedom (edf). The higher the edf, the more non-linear is the 

smoothing spline (a GAMM with edf = 1 is a straight line). A log-transformed offset term was 

included to account for the variable number of hours in which the traps were active for each 

sampling period. 



(1) 

 	  

 For the only categorical fixed factor in the models (i.e. management history), CCHF was chosen 

as the reference category. GAMMs were run using the R packages mgcv and MASS (Venables 

and Ripley, 2002; Wood, 2011).	  

 

2.3.2 Effect of vegetation and structural variables  

In order to identify which vegetation and/or structural variables were driving carabid relative 

abundance and diversity (and so which may have explained overall differences tested for above), 

we fitted a series of generalized linear models (GLM) to each of the response variables (N, S, 

CO_N and H’). Vegetation structure was measured only once for each sampling point, therefore 

GLMs were run on a matrix with 31 observations (i.e. the sampling 31 points), and response 

variables were calculated over the whole period. Predictors were selected by running a 

regression-based Random Forest, an ensemble machine learning method which extends 

classification and regression trees (Breiman, 2001). Random Forests have been successfully 

applied for variable reduction in datasets with high dimensionality and correlated predictors 

(Genuer et al., 2010). We used the randomForest package for R (Liaw and Wiener, 2002), with 

the following settings: number of trees to build = 999, minimum size of terminal nodes = 3, size 

of predictor subset = ⅓ (number of original predictors). For each dependent variable, we fitted a 

random forest and computed the permutation importance index (incMSE) associated with each 

predictor, i.e., the percent increase in mean square error of a tree in the random forest when the 

values of that predictor are randomly permuted. Predictors with incMSE >0 were retained and 



entered in to GLMs; each GLM was fitted with a stepwise algorithm using 99 maximum 

iterations. We assessed a model’s explanatory power by the percent deviance explained, and 

effect size and direction of each predictor by its standardized regression coefficient.	  

For count data (both in GAMMs and in GLMs), on the basis of the outcomes of an 

overdispersion test (via the qcc package for R, Scrucca, 2004), we chose a Poisson error 

distribution for R and a negative binomial error distribution for N and CO_N. H’, being a 

continuous response variable that has always positive values, was modeled by a Gamma 

distribution with a log link function (McIntyre and Lavorel, 1994; Zuur et al., 2009). Note that 

the estimate of relative abundance will likely overestimate true abundance as it is possibile that 

some individuals were caught on successive occasions.  Nevertheless, given that sampling effort 

was constant across plots, pooling all visits provides a relative measure of abundance between 

sites. We constructed variograms to assess the degree of spatial autocorrelation in the data.  

There was no strong evidence of spatial autocorrelation (Appendix I), hence this was not 

considered further.	  

All analyses were carried out using the R statistical framework, version 3.0.2 (R Core Team, 

2014).	  

	  

	  

	  

3. Results	  

 



3.1 Vegetation and structure of OC and CCHF	  

 

Despite the two different forest management histories, most beech forests had a high 

compositional (beech > 80%) and structural homogeneity, full canopy cover (> 85%), and very 

limited regeneration, understory or herbaceous layers (soil cover by strata: 0.5%, 4%, and 3% on 

average) (Table 1). Only two variables were significantly different, OC stands having higher tree 

density and lower QMD than CCHF (Table 1). CWD was higher in OC stands, but not 

significantly so after correction for multiple comparisons. Most variables, however, had a similar 

range of variability between management systems and a large coefficient of variation within each 

(25 to 540%, except canopy cover, % beech and QMD), indicating that micro-environmental 

conditions can assume different characteristics regardless of forest management.	  

 

3.2 Ground beetle assemblage and effect of macrohabitat variables 	  

A total of 13 species (3073 individuals) of three sub-families (Carabinae, Pterostichinae and 

Platyninae) were collected during the eighteen sampling periods. All trapped species were 

medium and large-bodied predators and, except macropterous Platynus complanatus, they were 

brachypterous (Brandmayr et al., 2005). Five species preferred OC to CCHF: C. olympiae 

(IndVal = 14.1; p<0.01), C. depressus (25.8; p<0.001), P. flavofemoratus (33.1; p<0.001), P. 

spinolae (26.9; p<0.01), and P. appeninus (30.2; p<0.001). A. exaratus (37.6; p<0.05) and A. 

continuus (7.1; p<0.001) preferred CCHF.	  

Management system affected realtive abundance, species richness, relative abundance of 

C.olympiae and Shannon diversity: all dependent variables were significantly higher in OC 



stands than in CCHF (Table 2, Fig. 2). Relative abundance and species richness responded 

positively to mean temperature and negatively to mean relative humidity, whereas relative 

abundance of C.olympiae was positively related to humidity. All response variables were 

negatively associated with slope, while southness had a negative effect only on relative 

abundance.	  

The smoother for sampling period was significant for all dependent variables (P<0.001, Table 1).  

The models fitted to relative abundance, species richness and Shannon diversity showed a non-

linear decreasing trend. The smoothing curve for the relative abundance of C.olympiae showed a 

different shape with a clear peak in the central part of the sampling season (Fig. 3). 	  

 

3.3 Effect of vegetation and structural variables  

After variable reduction by random forest (Fig. 4), we entered seven predictors in the GLM for 

Carabus olympiae relative abundance (i.e., CWD volume, QMD, tree density, canopy cover, 

bare soil, FWD and CWD cover), six for species richness (beech abundance, DBH standard 

deviation, DBH range, regeneration density, CWD volume and CWD cover), four for realtive 

abundance (DBH standard deviation, regeneration density, herb cover, and regeneration cover), 

and nine for Shannon diversity (CWD volume, QMD, basal area, tree density, rocks, bare soil, 

CWD, herb cover, and management system).	  

Relative abundance, Shannon diversity and relative abundance of C.olympiae were strongly 

influenced by several vegetation and forest structural variables; deviance explained was 44.8%, 

55.7%, and 34.8%, respectively. Conversely, no variables could explain carabid species richness.  	  

Volume or cover of CWD played an important role in forest carabid diversity, having a strong 

positive effect on realtive abundance, Shannon diversity and relative abundance of C.olympiae 



(Table 3). Relative carabid abundance was also associated with higher tree size variability and 

herb cover. Carabus olympiae relative abundance was negatively affected by bare soil cover and 

positively by canopy cover. Finally, Shannon diversity was negatively associated with QMD 

(Table 3). 	  

 

 

4. Discussion 

4.1 Vegetation and structure of OC and CCHF 

OC stands had significantly higher density, significantly lower QMD, and higher CWD and tree 

size variability than CCHF, due to their different management histories. In OC, stems sprouted in 

1960 have undergone intense light competition, which has produced, together with the retention 

of larger seed trees, a higher size differentiation, and greater competition-induced mortality. 

Cconversion to high forest is carried out by selecting the best stems on each stump, so tree sizes 

in CCHF were much more uniform, tree density was lower, and mortality did not occur. Other 

microhabitat variables, however, had a similar range of variability between management systems 

and a large coefficient of variation within each, indicating that micro-environmental conditions 

can assume different characteristics regardless of forest management.	  

 

4.2 Microclimate and topography 	  

The occurrence of ground beetles may depend on microclimatic factors such as humidity 

(Epstein and Kulman, 1990, Niemelä et al, 1992) and air temperature (Thiele, 1997). Usually, 

forest species prefer cooler and moister sites, characterized by small fluctuations over time 



(Pearce and Venier, 2006). These conditions occur in stands characterized by limited natural or 

anthropogenic disturbance, where a closed canopy moderates ground surface conditions. Within 

this microclimatic framework, we have unexpectedly found that relative abundance and species 

richness responded positively to mean temperature and negatively to mean relative humidity. 

Conversely, Carabus olympiae relative abundance increased with mean humidity.  

Mean humidity and temperature could be used as indirect measures of habitat complexity. Lower 

percentages of canopy cover cause an increase in mean temperature and a decrease in mean 

humidity, but can also promote the growth of grasses and shrubs that are important for providing 

hunting and foraging niches and protection from predator and disseccation. 

The occurrence of ground beetles may also depend on topographic features (Negro et al., 2007). 

In particular, carabid diversity was negatively associated with slope, as found by Thiele (1977) 

and Lövei and Sunderland (1996). In our study area, beech forests characterized by steep slopes 

had low structural variability, due to the lower amount of coarse wood debris and leaf litter that 

are removed by gravity and surface runoff water (Johnson and Lewis, 1995). Therefore, we 

believe a lack of shelters and the reduced presence of favorable microhabitats reduces the 

diversity of carabids.	  

 

4.3 Management systems	  

Much research has found that ground beetles respond to different forest management systems 

(Werner and Raffa, 2000; du Bus de Warnaffe and Lebrun, 2004; Pearce and Venier, 2006). In 

this study, the diversity of forest specialist carabids was higher in OC. The last harvest of 

coppice stands in our study site was carried out more than 50 years ago, whereas conversion to 

high forests occurred about 20 years ago. It may therefore appear that, irrespective of the 



management type, the long period of absence of forest management has enhanced ground beetle 

diversity. The five species (C. olympiae, C. depressus, P. flavofemoratus, P. spinolae and P. 

appeninus) that significantly selected OC stands (IndVal analysis) are wingless with low 

dispersal power which may prevent them from quickly recolonizing recently harvested stands 

(Niemela et al., 1993; Spence et al., 1996).	  

The cessation of silvicultural disturbances may benefit forest specialist carabids (du Bus de 

Warnaffe and Lebr, 2004; Toigo et al., 2013), as well as other animal groups such as birds 

(Laiolo et al., 2004) and amphibians (Hicks and Pearson, 2003). When abandonment of forest 

management results in more heterogeneous light conditions on the ground, open-habitat species 

may also be favored (Toigo et al., 2013). However, in our case, canopy cover was very high, 

both in OC and in CCHF (89% on average). This has hindered the colonization by species that 

select neighboring open areas (Negro et al., 2013) which could disfavour typical forest species 

by competition (du Bus de Warnaffe and Lebr, 2004). 	  

 

 

 

4.4 Structural Variables	  

Carabids are strongly sensitive to changes in forest heterogeneity and respond to structural 

variables (Taboada et al., 2010). Microhabitat complexity was a powerful predictor of the total 

abundance of pitfall-trapped beetles. We detected a positive response of several diversity 

variables to CWD cover or volume, herb cover, and standard deviation of tree diameter 

distribution. In a similar study, coarse woody debris, snag volume, gap area, understory 



vegetation and forest floor depth were all critical in structuring beetle communities (Latty et al., 

2006). 	  

Volume or cover of coarse woody debris had a strong positive effect on N, CO_N and H’. CWD 

volume ha-1, in particular, was about twice as large in OC stands (11 m3 on average) than in 

CCHF stands (6.8 m3), although the difference was not significant after correcting for multiple 

comparisons. Woody debris, such as branches, logs, and twigs, is a major habitat feature on 

forest floors (Jonsson et al., 2005). In mature or restored forests, it provides a set of microsites 

that offer food and habitat resources to several arthropods, such as saproxylic organisms 

(Siitonen, 2001; Komonen et al., 2014), soil mites (Johnston and Crossley, 1993) and carabids 

(Hanula et al., 2009). In particular, it is an important resource for many ground beetle species as 

an overwintering site, and for ovipositioning and larval development (Larochelle and Lariviere, 

2003; Bousquet, 2010). In fact, in sampling points characterized by higher levels of CWD, we 

also trapped seven Carabus olympiae in the third instar larval stage. 	  

Shannon diversity was negatively associated with mean tree diameter, which was significantly 

larger in CCHF. A more diverse array of tree sizes and a mosaic of patches covered by trees and 

herbs may provide a greater number of potential ecological niches, for both carabids and their 

prey (e.g., snails: Müller et al., 2005), than in less complex forests (Klopfer and MacArthur, 

1960; Day and Carthy, 1988). This, together with CWD, may partly contribute to explaining why 

the diversity of ground beetles was lower in CCHF.	  

Carabus olympiae relative abundance was negatively related to bare soil cover. Bare ground, 

defined as exposed soil deprived of vegetation, is not considered a suitable habitat (Fry and 

Lonsdale, 1991; Key, 2000) for many insect groups. Often, it is the result of the erosive action of 



rainwater, which is particularly strong on steeper slopes, that leads to a reduction of vegetation 

and microhabitat complexity (Fayt et al., 2006). 	  

The previous results can be used to formulate management recommendations to maintain carabid 

diversity in beech stands of Northern Italy. Currently, abandoned coppices are a more favorable 

habitat. However, succession will lead to more homogenous stand structures, due to the natural 

tendency of beech to form closed and monolayered canopies. Since coppicing beyond rotation 

age (30 years) has not been allowed in the region since 2011, because beech is known to lose the 

capability to regenerate vegetatively after 40 years (Hofmann, 1963), this dynamic could be 

avoided by silvicultural interventions aimed at increasing structural and microhabitat diversity. 

Conversion to high forest should therefore be carried out by avoiding traditional gradual thinning 

and: 1) retaining large trees or whole stumps in order to favor tree size differentiation (Barbalat 

and Getaz, 1999) and the creation of future large snags (Motta et al., Submitted); 2) creating 

canopy gaps in order to maintain a mosaic of patches covered by trees, herbs, and shrubs as a 

consequence of varying light conditions on the ground; 3) releasing standing dead trees and 

woody debris of all sizes (e.g. > 20 m3 ha-1: Brunet et al., 2010; Paillet et al., 2010).	  

Nevertheless, any intervention of forest management can result in strong local impacts on 

carabid assemblages due to tree-cutting and logging. Gunnarsson et al. (2004) found that 

extensive logging residue removal leads to impoverished species richness of Coleoptera at a 

local scale due to the reduction of microhabitat complexity. For this reason, the establishment of 

some small ageing stands, managed as strict reserves, where any kind of human intervention is 

banned, should provide refuges for specialized forest carabid species characterized by low 

vagility (Kotze and O’Hara, 2003).	  



More research needs to be carried out to elucidate the tradeoffs between positive and negative 

impacts of silvicultural interventions on carabid diversity, i.e., mechanical disturbance as 

opposed to the opportunity of regulating the mosaic of patches and producing woody debris of 

multiple decay classes. 
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Table captions	  

 

Table 1: Descriptive statistics of vegetation and structure in over-mature coppices (OC; N = 21 

sampling plots ) and coppices in conversion to high forests (CCHF; N = 10 sampling plots). 	  

p: significance of a two-sample Kruskal-Wallis test, corrected for multiple comparisons 

(Benjamini and Hochberg, 1995).	  



 

Table 2: Coefficients for GAMM of Carabus olympiae relative abundance and carabid diversity 

indices (n= 558 = 31 plots x 18 sampling peiods). For the categorical fixed factor (i.e. 

management system) CCHF was chosen as the reference category.	  

 

Table 3: Standardized regression coefficients from GLM of Carabus olympiae abundance and 

carabid diversity indices (n= 31 plots).	  

Figure captions	  

 

Fig. 1 Study area (geographical reference system: UTM WGS 1984, zone 32N) and location of 

sampling plots [black circles: over-mature coppices (OC), black triangles: coppices in conversion 

to high forests (CCHF)].	  

 

Fig. 2 Carabus olympiae relative abundance and carabid diversity indices as a function of forest 

management system.	  

 

Fig. 3 GAMM smoothing plots for Carabus olympiae relative abundance and carabid diversity 

indices.	  

 



Fig. 4 Standardized variable importance scores (incMSE) from Random Forest regression for 

Carabus olympiae relative abundance and carabid diversity indices. 	  
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