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Abstract. We revisit our study of general transport operator with general
force field and general invariant measure by considering, in the L1 setting,

the linear transport operator TH associated to a linear and positive boundary

operator H of unit norm. It is known that in this case an extension of TH
generates a substochastic (i.e. positive contraction) C0-semigroup (VH(t))t>0.

We show here that (VH(t))t>0 is the smallest substochastic C0-semigroup with

the above mentioned property and provides a representation of (VH(t))t>0 as
the sum of an expansion series similar to Dyson-Phillips series. We develop

an honesty theory for such boundary perturbations that allows to consider

the honesty of trajectories on subintervals J ⊆ [0,∞). New necessary and
sufficient conditions for a trajectory to be honest are given in terms of the

aforementioned series expansion.

1. Introduction. We investigate here the well-posedness (in the sense of semi-
group theory) in L1(Ω,dµ) of the general transport equation

∂tf(x, t) + F (x) · ∇xf(x, t) = 0 (x ∈ Ω, t > 0), (1.1a)

supplemented by the abstract boundary condition

f|Γ−(y, t) = H(f|Γ+
)(y, t), (y ∈ Γ−, t > 0), (1.1b)

and the initial condition

f(x, 0) = f0(x), (x ∈ Ω). (1.1c)

Here Ω is a sufficiently smooth open subset of RN endowed with a positive Radon
measure µ, Γ± are suitable boundaries of the phase space and the field F is globally
Lipschitz and divergence free with respect to µ, in the sense that µ is a measure
invariant by the (globally defined) flow associated to F . Our main concern here is
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the influence of the boundary conditions (1.1b) and we treat here the delicate case
of a boundary operator

H : L1
+ → L1

−

which is linear, positive, bounded (L1
± being suitable trace spaces corresponding to

the boundaries Γ±, see Section 2 for details) and of unit norm

‖H‖B(L1
+,L

1
−) = sup

f∈L1
+,‖f‖L1

+
=1

‖Hf‖L1
−

= 1. (1.2)

Our motivation for studying such a problem is the study of kinetic equation of
Vlasov-type for which the phase space Ω is a cylindrical domain Ω = D×RN ⊂ R2N

( D being a sufficiently smooth open subset of RN ) and the field F is given by

F (x) = (v,F(x, v)) for any x = (x, v) ∈ Ω (1.3)

where F : Ω→ RN is a time independent force field. The simplest (but already very
rich) example of such a kinetic equation is the so-called free-streaming equation for
which F = 0. Boundary conditions in such kinetic equations are usually modeled by
a boundary operator H which relates the incoming and outgoing boundary fluxes
of particles; the form of this operator depends on the gas-surface interaction (see
[13] for more details on such a topic).

The mathematical study of the aforementioned problem has already a long story
starting from the seminal paper [10] who considered the case in which µ is the
Lebesgue measure and the so-called ‘no re-entry’ boundary conditions (i.e. H = 0
in (1.1b)). More general fields and boundary conditions (but still mostly associated
with the Lebesgue measure) have been considered in [11]. The free-streaming case
(i.e. F (x, v) = (v, 0)) received much more attention, starting from [20], where
the free streaming transport operator associated to different boundary operators
H is deeply investigated (see also [17] for general boundary conditions). Recently,
transport operators associated to general external fields and general measures, with
general bounded boundary conditions have been thoroughly investigated by the
authors in collaboration with J. Banasiak in a series of papers [1, 2, 3] that contain
both a generalization of the theory developed in the free streaming case and some
new results. Summarizing the known results on this topic, one can say that the
transport operator associated to H, which shall be denoted by TH (see Section 2 for
a precise definition), is the generator of a strongly continuous semigroup when the
boundary operator H is a contraction (and also for some very peculiar multiplying
boundary conditions, [20, 17, 2, 3, 12]).

A very interesting and important case, both from the mathematical and physical
point of view, arises whenever H is a positive boundary operator of unit norm (see
(1.2)). In such a case, one can not state a priori that TH generates a C0-semigroup
in L1(Ω,dµ). Nevertheless, since for each r ∈ [0, 1) the operator Hr := rH is a
strict contraction, the transport operator THr

associated to Hr does generate a C0-
semigroup (Vr(t))t>0. These semigroups are substochastic, i. e. they are positive
contraction semigroups and one can show that the strong limit limr↗1− Vr(t) :=
VH(t) exists and defines a C0-semigroup in L1(Ω,dµ). Its generator A is then an
extension of TH and a natural question is to recognize if A = TH or not. For
conservative conditions, i.e. if

‖Hf‖L1
−

= ‖f‖L1
+

∀f ∈ L1
+ f > 0
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it is known that the semigroup (VH(t))t>0 is conservative if and only if A = TH .

On the contrary, whenever A ) TH a mass loss occurs, i.e. there exists nonnegative
f such that ‖VH(t)f‖ < ‖f‖ for some t > 0.

As first observed in [5], such a problem is very similar to what occurs in the so-
called substochastic theory of additive perturbations of semigroups, (see the mono-
graph [9]), where one is faced with the following problem: let (T,D(T )) be the gener-
ator of a substochastic C0-semigroup (GT (t))t>0 in X = L1(Σ,dν) (where (Σ, ν) is a
given measure space) and let (B,D(B)) be a non-negative linear operator in X such
that D(T ) ⊆ D(B) and

∫
Σ

(T +B)fdν 6 0 for all f ∈ D(T )+ = D(T ) ∩X+. Then
for any 0 < r < 1 operator (T + rB,D(T )) generates a C0- semigroup (Gr(t))t>0.
These semigroups are such that the strong limit lim

r↗1−
Gr(t) := GK(t) exists and

the family (GK(t))t>0 is a C0-semigroup generated by an extension K of T + B.
In the context of additive perturbations of substochastic semigroups a complete
characterization of K is given; it is shown that (GK(t))t>0 is the smallest (in the
lattice sense) C0-semigroup generated by an extension of T + B. Moreover GK(t)
can be written as the sum of a strongly convergent series of linear positive opera-
tors (Dyson-Phillips expansion series) and a satisfying honesty theory, dealing with
the mass carried by individual trajectories, has been developed [9, 6, 19]. Such a
honesty theory for additive perturbation has been based mainly on the so-called
resolvent approach (i.e. on the study of the resolvent of (λ − K)−1) and such a
resolvent approach has been applied to the boundary perturbation case in [5, 18].
Recently a new approach to honesty has been proposed, based now on the semi-
group approach and the fine properties of the Dyson-Phillips iterated [6]. Such an
approach is equivalent to the resolvent one but its main interest lies in the fact
that it is robust enough to be applied to other kind of problems in which the resol-
vent approach is more difficult to handle (e.g. for non-autonomous families [7] or
integrated semigroups [8]).

In the present paper we want to recognize that a fully similar study can be
carried out for the operator TH . Notice that several results concerning the transport
operator TH and the semigroup (VH(t))t>0 are already available in the literature.
A complete description of A is given in [2] where it is shown that A is an extension
of TH ; the study of conservative boundary conditions has been performed, in the
free-streaming case, in [5] and, for general force fields, in [2]. The general case of
boundary operators with unit norm has been handled with in [18] where a detailed
honesty theory has been performed. Nevertheless the obtained results are not so
satisfying as those obtained in the substochastic theory of additive perturbations
of semigroups. In particular the question of whether (VH(t))t>0 is the smallest
substochastic C0-semigroup generated by an extension of TH remains open and the
honesty theory performed in [2, 18] is based on the resolvent approach only.

The objective of the present paper is to fill this blank. In particular, the main
novelty of the paper lies in the following:

i) First, we prove that indeed the semigroup (VH(t))t>0 is the smallest (in the
lattice sense) substochastic C0-semigroup generated by an extension of TH .
This is the object of Theorem 3.3.

ii) Second, and more important, we develop a ‘semigroup approach’ to the honesty
theory of boundary perturbations, exploiting the recent results in [3] which
allow to provide a characterization of the semigroup (VH(t))t>0 as an expansion
series, similar to the Dyson-Phillips arising in the additive perturbation case
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(see Theorem 3.5). While the resolvent approach allows to establish necessary
and sufficient conditions for a trajectory to be honest (i. e. honest on [0,∞))
the new semigroup approach allows to establish more general necessary and
sufficient conditions for a trajectory to be honest on a subinterval J ⊆ [0,∞)
(see Theorem 4.3). Such honesty of trajectory on subinterval is reminiscent
from [19] and allows to get a more precise picture of the eventual “mass loss”
in the conservative case. We strongly believe that such a semigroup approach
has its own interest and that, as it occurs for additive perturbation [7], it could
hopefully be extended to deal with non-autonomous problems.

To be more precise, the contents of the paper are as follows. In Section 2 we
introduce the necessary notation and define the transport operator TH . This section
is mainly taken from the recent contributions [2, 3]. In Section 3 we establish the
most important properties of the semigroup (VH(t))t>0 and its generator, in partic-
ular showing that (VH(t))t>0 is the smallest substochastic C0-semigroup generated
by an extension of TH . In Section 4 we develop the honesty theory for boundary
perturbations, introducing first useful functionals and defining then the concept of
honesty of trajectories on subintervals J ⊆ [0,∞). We obtain also necessary and
sufficient conditions for the honesty in the spirit of [2, Section 6] and [18] not only
using the usual resolvent approach but also using the series approach introduced in
[6]. In Section 6 two well-known examples are revisited using our new approach,
that allows us to deduce new interesting properties.

2. Preliminaries. In the present section, we introduce the general mathematical
framework we shall consider in the sequel. The material from this section is mainly
taken from [1, 2] and we refer to these two contributions for further properties of
abstract transport operators. We begin with the rigorous definition of the transport
operator TH associated to bounded boundary operator H.

2.1. Definition of the transport operator TH . In this paper we consider trans-
port operators associated to general external fields and general measures, according
to the theory developed in two recent contributions [1],[2]. More precisely, given a
smooth open subset Ω of RN , we consider a time independent globally Lipschitz
vector field F : RN → RN so that, for any x ∈ Ω, the Cauchy problem

dX

dt
(t) = F (X(t)), ∀t ∈ R ; X(0) = x ∈ Ω (2.1)

admits a unique global solution

(x, t) ∈ Ω× R 7−→ Φ(x, t) ∈ RN ,

that allows to define a flow (Tt)t∈R given by Tt = Φ(·, t). As in [1], we assume that
there exists a Radon measure µ over RN which is invariant under the flow (Tt)t∈R,
i.e.

µ(TtA) = µ(A) for any measurable subset A ⊂ RN and any t ∈ R. (2.2)

Of course, solutions to (2.1) do not necessarily belong to Ω for all times, leading
to the definition of stay times of the characteristic curves in Ω: for any x ∈ Ω,
define

τ±(x) = inf{s > 0 ; Φ(x,±s) /∈ Ω}, (2.3)
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with the convention that inf ∅ =∞. This allows to represent Ω as Ω = Ω± ∪Ω±∞
where

Ω± = {x ∈ Ω ; τ±(x) <∞}, and Ω±∞ = {x ∈ Ω ; τ±(x) =∞}.
Moreover, we define the incoming and outgoing boundaries as

Γ± := {y ∈ ∂Ω ;∃x ∈ Ω, τ±(x) <∞ and y = Φ(x,±τ±(x)) } . (2.4)

The definition of the stay time τ± extends then to Γ± by setting simply τ±(y) = 0
and τ∓(y) = τ+(x) + τ−(x) for any y ∈ Γ± with y = Φ(x,±τ±(x)). Notice that,
with the above definition, τ∓(y) is well defined (i.e. the definition does not depend
on the choice of x ∈ Ω±) and τ∓(y) is nothing but the length of the characteristic
curves having y as its left (respectively right) end-point. We finally set

Γ±∞ = {y ∈ Γ± ; τ∓(y) =∞}.
With such notations, one can prove (see [1, Section 2]) the existence of unique
positive Borel measures µ± on Γ± such that the measure µ on Ω± is identified to
the product measure of µ± with the Lebesgue measure on R (see [1, Proposition
2.10]). The construction of such measures allow to define the trace spaces

L1
± = L1(Γ±,dµ±)

with the usual norm. In the Banach space

X := L1(Ω,dµ)

endowed with its usual norm, we can define the maximal transport operator as
follows (see [1, Theorem 3.6])

Definition 2.1. Given f ∈ L1(Ω,dµ), f belongs to the domain D(Tmax) of Tmax if
and only if there exists g ∈ L1(Ω,dµ) and a representative f ] of f (i.e. f ](x) = f(x)
for µ-a.e. x ∈ Ω) such that, for µ-almost every x ∈ Ω and any −τ−(x) < t1 6 t2 <
τ+(x) one has

f ](Φ(x, t1))− f ](Φ(x, t2)) =

∫ t2

t1

g(Φ(x, s))ds. (2.5)

In this case, we set Tmaxf = g.

Remark 1. Notice that the above operator Tmax is well-defined, i.e. Tmaxf does
not depend on the representative f ]. Finally, we wish to emphasize the fact that
the domain D(Tmax) is precisely the set of functions f ∈ L1(Ω,dµ) that admit a
representative which is absolutely continuous along almost any characteristic curve.

With the above definition, each function f ∈ D(Tmax) is such that the limits

B+f(y) := lim
s→0+

f ](Φ(y,−s)) and B−f(y) := lim
s→0+

f ](Φ(y, s))

exist for almost µ±-every y ∈ Γ± [1, Proposition 3.16, Definition 3.17]. Notice
that the trace B±f of a given f ∈ D(Tmax) does not necessarily belong to L1

±.
Nevertheless one can prove the following [2, Theorem 3.1, Proposition 3.2, Corollary
2.1] :

Theorem 2.2. Define the following measures over Γ±:

dξ±(y) = min (τ∓(y), 1) dµ±(y), y ∈ Γ±.

Then, for any f ∈ D(Tmax), the trace B±f belongs to Y± := L1(Γ±,dξ±) with

‖B±f‖Y± 6 ‖f‖X + ‖Tmaxf‖X , f ∈ D(Tmax).
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Moreover

W :=
{
f ∈ D(Tmax) ; B−f ∈ L1

−
}

=
{
f ∈ D(Tmax) ; B+f ∈ L1

+

}
and the Green formula∫

Ω

Tmaxfdµ =

∫
Γ−

B−fdµ− −
∫

Γ+

B+f dµ+. (2.6)

holds for any f ∈ W .

We are then in position to define the transport operator associated to a bounded
boundary operator as follows:

Definition 2.3. For any bounded linear operator

H ∈ B(L1
+, L

1
−)

we define the transport operator (TH ,D(TH)) associated to the boundary condition
H as:

D(TH) = {f ∈ D(Tmax) ; B+f ∈ L1
+ and B−f = HB+f},

THf = Tmaxf ∀f ∈ D(TH).
(2.7)

2.2. Construction of the semigroup associated to boundary operator with
unit norm. We begin by introducing several notations, taken from [2]. For any
λ > 0 one defines the following operators{
Mλ : Y− −→ Y+

u 7−→ [Mλu] (y) = u(Φ(y,−τ−(y))) exp (−λτ−(y))χ{τ−(y)<∞}, y ∈ Γ+ ;{
Ξλ : Y− −→ X

u 7−→ [Ξλu] (x) = u(Φ(x,−τ−(x))) exp (−λτ−(x))χ{τ−(x)<∞}, x ∈ Ω ;
Gλ : X −→ L1

+

f 7−→ [Gλf ] (z) =

∫ τ−(z)

0

f(Φ(z,−s)) exp(−λs)ds, z ∈ Γ+ ;

and 
Cλ : X −→ X

f 7−→ [Cλf ] (x) =

∫ τ−(x)

0

f(Φ(x,−s)) exp(−λs)ds, x ∈ Ω

where χA denotes the characteristic function of a set A. One has the following where
T0 denotes the transport operator associated to the boundary operator H ≡ 0:

Lemma 2.4. For any λ > 0, the following hold:

1. Mλ ∈ B(Y−, Y+). Moreover, given u ∈ Y−, Mλu ∈ L1
+ if and only if u ∈ L1

−.
2. Ξλ ∈ B(Y−, X). Moreover, the range of Ξλ is a subset of D(Tmax) with

TmaxΞλu = λΞλu, B−Ξλu = u, B+Ξλu = Mλu, ∀u ∈ Y− (2.8)

3. Gλ ∈ B(X,L1
+). Moreover, Gλ is surjective.

4. Cλ ∈ B(X) with range included in D(T0). Moreover, Cλ = (λ− T0)−1 and

Gλf = B+Cλf for any f ∈ X.
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Notice that, if H ≡ 0, it is not difficult to check that (T0,D(T0)) is the generator
of a C0-semigroup (U0(t))t>0 given by

U0(t)f(x) = f(Φ(x,−t))χ{t<τ−(x)}(x), (x ∈ Ω, f ∈ X). (2.9)

In all the sequel, we shall assume that H : L1
+ → L1

− is a positive boundary
operator of unit norm, i.e.

H ∈ B(L1
+, L

1
−) ; Hf > 0 ∀f ∈ L1

+, f > 0 ;

‖H‖B(L1
+,L

1
−) = sup

‖f‖
L1
+

=1

‖Hf‖L1
−

= 1. (2.10)

Under such an assumption, for any 0 6 r < 1, the boundary operator Hr := rH is
dissipative with

‖Hr‖B(L1
+,L

1
−) = r < 1;

it is then well-known [2, Corollary 4.1] that the transport operator THr generates
a positive contraction semigroup (Vr(t))t>0 for any 0 6 r < 1. From [2, Theorem
6.2], one has the following:

Theorem 2.5. Let H satisfy Assumption 2.10. Then, for any t > 0 and any f ∈ X
the limit VH(t)f = limr↗1 Vr(t)f exists in X and defines a substochastic semigroup
(VH(t))t>0. If (A,D(A)) is the generator of (VH(t))t>0, then its resolvent is given
by

(λ−A)−1f = lim
r↗1

(λ− THr )−1f = Cλf +

∞∑
n=0

ΞλH(MλH)nGλf

for any f ∈ X, λ > 0, (2.11)

where the series converges in X. Moreover, A is an extension of TH ; more precisely

D(TH) ⊂ D(A) ⊂ D(Tmax) with Af = Tmaxf ∀f ∈ D(A)

and

D(TH) =
{
ϕ ∈ D(A) ; B+ϕ ∈ L1

+

}
=
{
ϕ ∈ D(A) ; B−ϕ ∈ L1

−
}

= D(A) ∩W

3. A new characterization of (VH(t))t>0. In this section, we present a new
characterization as well as practical expression of the semigroup (VH(t))t>0. Indeed
in the following Theorem 3.3 we are able to prove that (VH(t))t>0 is the smallest
substochastic C0-semigroup generated by an extension of TH , while in Theorem
3.5 we show that (VH(t))t>0 can be written as the sum of a strongly convergent
series. We first need to recall the definition of transport operator associated to
an unbounded boundary operator. Precisely, let us introduce E as the space of
elements (ψ+, ψ−) ∈ Y+ × Y− such that ψ+ −Mλψ− ∈ L1(Γ+,dµ+) for some/all
λ > 0. We equip E with the norm

‖(ψ+, ψ−)‖E := ‖ψ+‖Y+ + ‖ψ−‖Y− + ‖ψ+ −M1ψ−‖L1
+

that makes it a Banach space. Then, one has the following generalization of Defi-
nition 2.3:

Definition 3.1. Given a possibly unbounded operator K from Y+ to Y−, we denote
by D(K) its domain and G (K) its graph. If G (K) ⊂ E we can define the transport
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operator TK associated to the boundary operator K by TKf = Tmaxf for any f ∈
D(TK), where

D(TK) =

{
f ∈ D(Tmax) ; (B+f,B−f) ∈ G (K)

}
.

We then have the following

Lemma 3.2. Let K be an unbounded operator as in Definition 3.1. For any λ > 0,
the following are equivalent

1. (I −MλK) : D(K) 7→ L1
+ is bijective;

2. (λI − TK) : D(TK) 7→ X is bijective.

Proof. According to [2, Lemma 4.2], for any λ > 0 one has [I −MλK]D(K) = L1
+

if and only if [λI − TK]D(TK) = X. Therefore we have only to prove that, given
λ > 0, (I −MλK) : D(K) 7→ L1

+ is injective if and only if (λI − TK) : D(TK) 7→ X
is injective.

Assume now that (λI − TK) : D(TK) 7→ X is injective and let ψ ∈ D(K) be a
solution to (I−MλK)ψ = 0. Set f = ΞλKψ. One deduces from Lemma 2.4 (2) (with
u = Kψ) that f ∈ D(Tmax) with Tmaxf = λf , B−f = Kψ and B+f = MλKψ = ψ.
In other words, f ∈ D(TK) is a solution to the equation (λ−TK)f = 0 and therefore
f = 0. Since ψ = B+f , one gets ψ = 0 and (I −MλK) : D(K) 7→ L1

+ is injective.
Conversely, assume (I−MλK) : D(K) 7→ L1

+ to be injective and let f ∈ D(TK) be a
solution to (λ−TK)f = 0. According to [2, Theorem 3.2] (see also Lemma 2.4 (2)),
f ∈ D(Tmax) with B+f ∈ D(K), and f = ΞλKB+f . Setting then ψ = B+f , one has
ψ ∈ D(K) and (I−MλK)ψ = 0. By assumption, ψ = 0 and, since f = ΞλKψ, f = 0
and (λI − TK) : D(TK) 7→ X is injective. This proves the desired equivalence.

With this in hands, one can prove the following which somehow characterizes the
class of operators sharing the properties of the generator A (recall that, according
to Theorem 2.5, A satisfies the following properties (a)–(c)):

Proposition 1. Let A0 be the generator of a strongly continuous substochastic
semigroup (V (t))t>0 in X. Assume further that

(a) D(TH) ⊆ D(A0) ⊆ D(Tmax)
(b) A0f = Tmaxf for any f ∈ D(A0)
(c) D(TH) = {f ∈ D(A0) : B+f ∈ L1

+} = {f ∈ D(A0) : B−f ∈ L1
−}.

Then there exists a boundary linear operator H0 from Y+ to Y− with the following
properties:

(i) L1
+ = D(H) ⊆ D(H0) with H0ψ = Hψ for any ψ ∈ L1

+

(ii) A0 = TH0

(iii) for any λ > 0 the mapping (I −MλH0) : D(H0) 7→ L1
+ is bijective, and

(λ−A0)−1f = Cλf + ΞλH0(I −MλH0)−1Gλf. (3.1)

(iv) for any λ > 0, u ∈ L1
+, u > 0 one has

(I −MλH0)−1u > 0 H0(I −MλH0)−1u > 0 (3.2)

Proof. First of all observe that the trace mapping B+ : D(A0) → Y+ is injective.
Indeed let f ∈ D(A0) be such that B+f = 0. Then assumption (c) ensures that
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f ∈ D(TH), so that B−f = HB+f = 0. In particular, ‖(B+f,B−f)‖E = 0 and one
deduces from [2, Corollary 3.1] that f = 0. Let us now introduce the set

E0 := Range(B+|D(A0)) = {ψ ∈ Y+ : ∃g ∈ D(A0) such that ψ = B+g}

so that B+ : D(A0) → E0 ⊆ Y+ is bijective. This allows to define an unbounded
linear boundary operator H0 : D(H0)→ Y− as follows:

D(H0) = E0 and H0ψ = B−g ∀ψ ∈ E0

where g is the unique element of D(A0) such that B+g = ψ. Let us prove that H0

satisfies points (i)− (iv).
(i) Let h ∈ L1

+ and λ > 0 be given. Setting u = (I −MλH)h ∈ L1
+, by Lemma

2.4 (3), there exists g ∈ X such that Gλg = u. Setting thenf = Cλg + ΞλHh one
clearly has f ∈ D(Tmax). Moreover B+f = Gλg + MλHh = u + MλHh = h and
B−f = Hh = HB+f . In other words, f ∈ D(TH) ⊆ D(A0). Consequently, h ∈ E0

with H0h = Hh and (i) is proved.
(ii) To prove point (ii), it is enough to show that D(A0) = D(TH0

). From the
definition of H0 and the assumption D(A0) ⊆ D(Tmax), one sees that

D(A0) ⊆ {f ∈ D(Tmax) ; B+f ∈ D(H0) , B−f = H0B
+f} = D(TH0

).

Conversely, let f ∈ D(Tmax) with B+f ∈ D(H0) and B−f = H0B
+f . By definition

of H0 and since D(H0) = E0, there exists g ∈ D(A0) such that B+g = B+f and
B−g = H0B

+f = B−f . Set h = f − g. One has h ∈ D(Tmax) with B+h = B−h = 0
and again, we can invoke [2, Corollary 3.1] to state that h = 0, i.e. f = g ∈ D(A0),
proving the second inclusion.
(iii) Since A0 is the generator of a substochastic semigroup we can state that for
any λ > 0 and f ∈ X there exists a unique g ∈ D(A0) such that (λ − A0)g = f ,
with moreover g > 0 if f > 0. This means that for any λ > 0 and f ∈ X there exists
a unique g ∈ D(Tmax), such that B+g ∈ D(H0) with g solution to the boundary
value problem:

(λ− Tmax)g = f B−g = H0B
+g. (3.3)

From [2, Theorem 3.2], such a solution g is given by

g = Cλf + ΞλB
−g = Cλf + ΞλH0B

+g, (3.4)

and, in particular, u := B+g ∈ D(H0) satisfies (I −MλH0)u = Gλf. Since (λI −
TH0

) : D(TH0
) → X is bijective, one deduces from Lemma 3.2 that (I −MλH0) :

D(H0)→ L1
+ is bijective. Then, u = B+g = (I −MλH0)−1Gλf which, from (3.4),

shows that the solution to (3.3) becomes

g = Cλf + ΞλH0(I −MλH0)−1Gλf

which is nothing but (3.1).
(iv) Let now λ > 0 and u ∈ L1

+ with u > 0 be given. Consider then the function gλ
defined as follows:

gλ(x) =



(1 + λ)τ−(x) + 1

τ−(x) + τ+(x)
exp(−τ+(x))u(Φ(x, τ+(x)) if τ−(x) + τ+(x) <∞,

(1 + λ) exp(−τ+(x))u(Φ(x, τ+(x)) if τ−(x) =∞
and τ+(x) <∞,

0 if τ+(x) =∞.
One can check easily that gλ ∈ X, gλ > 0 with Gλgλ = u. Setting now

fλ = (λ−A0)−1gλ = Cλgλ + ΞλH0(I −MλH0)−1Gλgλ
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one sees that fλ is nonnegative, with

B+fλ = (I −MλH0)−1Gλgλ = (I −MλH0)−1u > 0

and B−fλ = H0(I −MλH0)−1Gλgλ = H0(I −MλH0)−1u > 0 which proves the
result.

The above Proposition allows to prove that (VH(t))t>0 is the smallest substochas-
tic semigroup generated by an extension of TH . More precisely we have

Theorem 3.3. Let (V (t))t>0 be a strongly continuous substochastic semigroup in X
with generator A0 which satisfies the conditions (a)-(c) of Proposition 1. Then, for
any t > 0 one has V (t) > VH(t), i.e. V (t)f > VH(t)f for any nonnegative f ∈ X.
In other words, (VH(t))t>0 is the smallest substochastic semigroup generated by an
extension of TH .

Proof. According to the previous Proposition 1, there exists an extension H0 of H
so that the generator A0 of the semigroup (V (t))t>0 coincides with the transport
operator TH0 , and formula (3.1) holds. Now, since H0h = Hh for any h ∈ L1

+, we
have, for 0 < r < 1 and Hr = rH:

(I −MλH0)−1− (I −MλHr)
−1 =

[
(I −MλH0)−1(I −MλHr)− I

]
(I −MλHr)

−1

= (I −MλH0)−1(I −MλHr − I +MλH0)(I −MλHr)
−1

= (1− r)(I −MλH0)−1MλH(I −MλHr)
−1

where we used that the range of (I−MλHr)
−1 is L1

+. One deduces easily from this
that

H0(I −MλH0)−1 −Hr(I −MλHr)
−1

= (1− r)
(
H0(I −MλH0)−1MλH(I −MλHr)

−1 +H(I −MλHr)
−1
)
.

Recalling that (λ− THr )−1f = Cλf + ΞλHr(I −MλHr)
−1Gλf (see [2, Eq. (4.6)]),

by virtue of (3.1) one has then, for any f ∈ X,

(λ−A0)−1f−(λ−THr
)−1f = ΞλH0(I−MλH0)−1Gλf−ΞλHr(I−MλHr)

−1Gλf

= (1− r)Ξλ
(
H0(I −MλH0)−1MλH(I −MλHr)

−1 +H(I −MλHr)
−1
)
Gλf.

If f > 0, according to Proposition 1 (iv), we get (λ − A0)−1f > (λ − THr )−1f for
any 0 < r < 1. This inequality together with (2.11) allow to state that (λ−A0)−1 >
(λ−A)−1 which gives the result according to the exponential formula.

We recall now the recent result of the first author [3] about the construction of
a suitable strongly continuous family of bounded linear operators in X. First, let

D0 = {f ∈ D(Tmax) : B±f = 0}.
The subset D0 is dense in X (see [3, Proposition 1]). Remember that the semigroup
(U0(t))t>0 is defined through (2.9). Now, one introduces the following

Definition 3.4. For any t > 0, we define the family (Uk(t))k∈N by induction as
follows: if f ∈ D0, t > 0 and k > 1, one sets

Uk(t)f(x) =

{
H(B+Uk−1(t− τ−(x))f)(Φ(x,−τ−(x))) ∀x ∈ Ω, with τ−(x) 6 t,

0 ∀x ∈ Ω with τ−(x) > t.

(3.5)

Moreover, for t = 0, we set Uk(0)f = 0 for any k > 1 and any f ∈ X.
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Remark 2. In other words, if we put Ωt := {x ∈ Ω : x = Φ(y, s),y ∈ Γ−, 0 <
s < t ∧ τ+(y)}, then [Uk(t)f ](x) may be different from zero only for x ∈ Ωt, being
Uk(t)f(Φ(y, s)) = H(B+Uk−1(t− s)f)(y).

Remark 3. Notice that, given f ∈ D0 and t > 0, one has
(∫ t

0
Uk(s)fds

)
(x) = 0

for any x ∈ Ω with τ−(x) > t. In particular,

B+

(∫ t

0

Uk(s)fds

)
(z) = 0 ∀z ∈ Γ+ ; τ−(z) > t , k > 1. (3.6)

The properties of the family (Uk(t))t>0, for given k > 1, have been established
in [3]. In particular, for any f ∈ D0 and any t > 0, one has Uk(t)f ∈ X with

‖Uk(t)f‖X 6 ‖H‖kB(L1
+,L

1
−)‖f‖X = ‖f‖X ∀k > 1.

Since D0 is dense in X, one can extend Uk(t) in a bounded linear operator in X,
still denoted Uk(t) such that

‖Uk(t)‖B(X) 6 1.

Moreover, one has the following

Proposition 2. For any k > 1, the family (Uk(t))t>0 enjoys the following proper-
ties:

1. (Uk(t))t>0 is a strongly continuous family of operators in X.
2. For all f ∈ D0 and t > 0 one has Uk(t)f ∈ D(Tmax) with TmaxUk(t)f =

Uk(t)Tmaxf .
3. For all f ∈ D0 and t > 0 the traces B±Uk(t)f ∈ L1

± and the mappings
t 7→ B±Uk(t)f ∈ L1

± are continuous.

4. For any f ∈ X, t > 0 and s > 0 we have Uk(t+ s)f =
∑k
j=0 Uj(t)Uk−j(s)f .

5. For all f ∈ X and t > 0 one has
∫ t

0
Uk(s)fds ∈ D(Tmax) with

Tmax

∫ t

0

Uk(s)fds = Uk(t)f.

Moreover, B±
(∫ t

0
Uk(s)fds

)
∈ L1

± and

HB+

(∫ t

0

Uk−1(s)fds

)
= B−

(∫ t

0

Uk(s)fds

)
. (3.7)

6. For any f ∈ X and λ > 0, setting gk :=
∫∞

0
exp(−λt)Uk(t)fdt, one has

gk ∈ D(Tmax) with

Tmaxgk = λgk for k > 1, while Tmaxg0 = λg0 − f ;

and B+gk = (MλH)kGλf ∈ L1
+ for any k > 0 while B−g0 = 0 and B−gk =

HB+gk−1 if k > 1.
7. For any nonnegative f ∈ X and any t > 0 and n > 1 one has

n∑
k=0

‖Uk(t)f‖X = ‖f‖X −
∥∥∥∥B+

∫ t

0

Un(s)fds

∥∥∥∥
L1

+

+

n−1∑
k=0

[∥∥∥∥HB+

∫ t

0

Uk(s)fds

∥∥∥∥
L1
−

−
∥∥∥∥B+

∫ t

0

Uk(s)fds

∥∥∥∥
L1

+

]
.

(3.8)
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In particular,

n∑
k=0

‖Uk(t)f‖X 6 ‖f‖X −
∥∥∥∥B+

∫ t

0

Un(s)fds

∥∥∥∥
L1

+

6 ‖f‖X . (3.9)

The above listed properties allow to give a characterization of the semigroup
(VH(t))t>0 in terms of a strongly convergent expansion series, reminiscent to clas-
sical Dyson-Phillips expansion series for additive perturbation:

Theorem 3.5. For any f ∈ X and any t > 0, one has

VH(t)f =

∞∑
k=0

Uk(t)f. (3.10)

Proof. For any f ∈ X and any t > 0, set V (t)f =
∑∞
k=0 Uk(t)f. Notice that

the series is convergent in X and the family (V (t))t>0 defines a substochastic C0-
semigroup in X (see [3, Theorem 4.3] for details). Let us prove that V (t) = VH(t)
for all t > 0. Let f ∈ X and λ > 0 be fixed. Set, for any k > 1,

gk =

∫ ∞
0

exp(−λt)Uk(t)fdt.

Proposition 2 asserts that gk ∈ D(Tmax) and satisfies Tmaxgk = λgk for any k > 1.
According to [2, Theorem 2.1] we deduce that, for k > 1, gk = ΞλHB+gk−1 =
ΞλH(MλH)k−1Gλf . Summing this identity, we get that∫ ∞

0

exp(−λt)V (t)fdt =

∞∑
k=0

gk = Cλf +

∞∑
k=0

ΞλH(MλH)kGλf.

Since this last expression coincides with (λ−A)−1f , one deduces from the injectivity
of Laplace transform that V (t)f = VH(t)f for any t > 0.

An immediate consequence of the above Theorem 3.5 is given in the following

Corollary 1. For any f ∈ X and λ > 0, as n→∞, the sum

n∑
k=0

∫ ∞
0

exp(−λt)Uk(t)fdt

converges to (λ−A)−1f in the graph norm of A.

We end this section with a technical result that complements Proposition 2 and
shall be useful in the sequel

Lemma 3.6. Let f ∈ X be nonnegative and t > 0 be given. For any z ∈ Γ+ and
any k > 1 it holds[

B+

∫ t

0

Uk(s)fds

]
(z) 6

[
HB+

∫ t

0

Uk−1(s)fds

]
(Φ(z,−τ−(z)).

Proof. Let k > 1 and z ∈ Γ+ be given. If τ−(z) > t, one gets from (3.6) that

B+

(∫ t

0

Uk(s)fds

)
(z) = 0
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from which the conclusion clearly holds. Now, if τ−(z) 6 t, set y = Φ(z,−τ−(z)) ∈
Γ−. Since

∫ t
0
Uk(s)fds ∈ D(Tmax) with Tmax

∫ t
0
Uk(s)fds = Uk(t)f , one deduces

from Definition 2.1 (see also [1, Theorem 3.6]) that∫ t2

t1

[Uk(t)f ](Φ(y, s))ds =

[∫ t

0

Uk(s)fds

]
(Φ(y, t1))−

[∫ t

0

Uk(s)fds

]
(Φ(y, t2))

for any 0 < t1 < t2 < τ+(y) = τ−(z) 6 t. In particular, for nonnegative f we get[∫ t

0

Uk(s)fds

]
(Φ(y, t2)) 6

[∫ t

0

Uk(s)fds

]
(Φ(y, t1))

∀0 < t1 < t2 < τ+(y) = τ−(z) 6 t.

Letting t1 → 0+ and t2 → τ+(y) and since z = Φ(y, τ+(y)), we get[
B+

∫ t

0

Uk(s)fds

]
(z) 6

[
B−
(∫ t

0

Uk(s)fds

)]
(y).

Using now (3.7) and the fact that y = Φ(z,−τ−(z)) we get the conclusion.

4. Honesty theory.

4.1. On some functionals. For any f ∈ D(Tmax) we define

a(f) = −
∫

Ω

Tmaxfdµ.

while, for any f ∈ W , we set

a0(f) =

∫
Γ+

B+fdµ+ −
∫

Γ−

HB+fdµ−.

Clearly a : D(Tmax) → R is a linear functional with |a(f)| 6 ‖Tmaxf‖X for any
f ∈ D(Tmax). Here we are interested in the restriction of a to D(A), that we still
denote by a. Since A generates a positive contraction semigroup (VH(t))t>0 we have

a(f) = −
∫

Ω

Afdµ = lim
t→0+

t−1

∫
Ω

(f − VH(t)f) dµ > 0

∀f ∈ D(A)+ := D(A) ∩X+.

Hence a : D(A) → R is a positive linear functional. Furthermore a is continuous
in the graph norm of A and its restriction to D(TH) is equal to the restriction of a0

to D(TH). Indeed, according to Green’s formula (2.6) for all f ∈ D(TH) we have

a(f) =

∫
Γ+

B+fdµ+ −
∫

Γ−

B−fdµ− =

∫
Γ+

B+fdµ+ −
∫

Γ−

HB+fdµ− = a0(f).

This basic observation allows to formulate an equivalent to [6, Proposition 4.5]
in this boundary perturbation context. Precisely, one has

Proposition 3. For all f ∈ D(A) there exists

lim
t→0+

1

t

∞∑
k=0

a0

(∫ t

0

Uk(s)fds

)
=: â(f) (4.1)

with |â(f)| 6 2(‖f‖X + ‖Af‖X). Furthermore, if f ∈ D(A)+, then

0 6 â(f) 6 a(f) 6 ‖Tmaxf‖. (4.2)

The proof of Proposition 3 is based upon the following
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Lemma 4.1. For any f ∈ X and t > 0 one has∣∣∣∣∣
∞∑
k=0

a0

(∫ t

0

Uk(s)fds

)∣∣∣∣∣ 6 ‖f‖X . (4.3)

If f ∈ D(A) then one also has∣∣∣∣∣
∞∑
k=0

a0

(∫ t

0

Uk(s)fds

)∣∣∣∣∣ 6 2t (‖f‖X + ‖Tmaxf‖X) . (4.4)

Proof. For simplicity, for any fixed t > 0, we set

Gk(f) =

∫ t

0

Uk(s)fds ∀k > 1.

According to Proposition 2 (5), Gk(f) ∈ D(Tmax) for any f ∈ X, k > 1 with
moreover B+Gk(f) ∈ L1

+, i.e. Gk(f) ∈ W . We begin with assuming f ∈ X+ and
t > 0. One can reformulate (3.8) as

n−1∑
k=0

a0 (Gk(f)) = ‖f‖X −
n∑
k=0

‖Uk(t)f‖X − ‖B+Gn(f)‖L1+ 6 ‖f‖X (4.5)

Therefore, we can see that (
∑n
k=0 a0 (Gk(f)))

n
is an increasing bounded sequence

whose limit satisfies
∞∑
k=0

a0 (Gk(f)) 6 ‖f‖X −
∞∑
k=0

‖Uk(t)f‖X . (4.6)

Now, for general f ∈ X, since Gk(f) ∈ W , we deduce from [2, Proposition 2.2]
that |Gk(f)| ∈ W and, since Uk(s) (0 < s < t, k > 0) is a positive operator, the
inequalities

|a0 (Gk(f))| 6 a0 (|Gk(f)|) 6 a0 (Gk(|f |)) ∀k > 1

hold. This, together with (4.6) yields (4.3). Before proving (4.4), one notices that
the right-hand side of (4.6) for f > 0 is∫

Ω

(
f −

∞∑
k=0

Uk(t)f

)
dµ =

∫
Ω

(f − VH(t)f) dµ = −
∫

Ω

A
(∫ t

0

VH(s)fds

)
dµ

where we used Theorem 3.5 and the well-know fact (see [16, Lemma 1.3, p. 50]) that,

for any C0-semigroup (VH(t)t>0 with generator A, one has
∫ t

0
VH(s)fds ∈ D(A)

with A
(∫ t

0
VH(s)fds

)
= VH(t)f − f for any t > 0 and any f ∈ X. Since moreover

VH(t)f − f =
∫ t

0
VH(s)Afds if f ∈ D(A), one gets

∞∑
k=0

a0

(∫ t

0

Uk(s)fds

)
6 a

(∫ t

0

VH(s)fds

)
= −

∫
Ω

(∫ t

0

VH(s)Afds

)
dµ ∀f ∈ D(A) ∩X+. (4.7)

Let us now fix f ∈ D(A) and set g := (I−A)f = g+−g−, where g+ and g− denote
respectively the positive and negative parts of g. Put also f±1 = (I−A)−1g± so that
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f = f+
1 − f

−
1 , where f±1 are belonging to D(A)+ (notice that f±1 do not necessarily

coincide with the positive and negative parts f± of f). One has

‖Af±1 ‖X 6 ‖f±1 ‖X + ‖g±‖X 6 2‖g±‖X .

Recalling that Af±1 = Tmaxf
±
1 and using formula (4.7) we get

∞∑
k=0

a0

(∫ t

0

Uk(s)f±1 ds

)
6 −

∫
Ω

(∫ t

0

VH(s)Af±1 ds

)
dµ

6
∫ t

0

‖VH(s)Tmaxf
±
1 ‖ds 6 t‖Tmaxf

±
1 ‖X 6 2t‖g±‖X

where we used that the semigroup (VH(t))t>0 is substochastic. Finally, noticing
that∣∣∣∣∣

∞∑
k=0

a0

(∫ t

0

Uk(s)fds

)∣∣∣∣∣ 6
∞∑
k=0

a0

(∫ t

0

Uk(s)f+
1 ds

)
+

∞∑
k=0

a0

(∫ t

0

Uk(s)f−1 ds

)
we obtain (4.4) since ‖g+‖X + ‖g−‖X = ‖g‖X 6 ‖f‖X + ‖Tmaxf‖X .

Proof of Proposition 3. Using Lemma 4.1 together with a repeated use of Proposi-
tion 2 (4), it is not difficult to resume the proof of [6, Proposition 4.5] to get the
result. Details are omitted.

As an immediate consequence of Proposition 3 we deduce the following

Corollary 2. For any f ∈ X, t > 0 and λ > 0 one has

â

(∫ t

0

VH(s)fds

)
=

∞∑
k=0

a0

(∫ t

0

Uk(s)fds

)
, (4.8)

and

â
(
(λ−A)−1f

)
=

∞∑
k=0

(∫
Γ+

(MλH)kGλfdµ+ −
∫

Γ−

H(MλH)kGλfdµ−

)
. (4.9)

Proof. Identity (4.8) is simply deduced from definition (4.1) and from the identity

∞∑
k=0

a0

(∫ t

0

Uk(s)fds

)
= lim
τ→0+

1

τ

∞∑
k=0

a0

(∫ τ

0

Uk(r)

(∫ t

0

VH(s)fds

)
dr

)
.

which is the equivalent of [6, Eq. (4.14)] in our context. Regarding (4.9), observe
that for any f ∈ X, and λ > 0 one has

(λ−A)−1f =

∫ ∞
0

exp(−λt)VH(t)fdt = λ

∫ ∞
0

exp(−λt)
(∫ t

0

VH(s)fds

)
dt.

Therefore, from (4.8),

â
(
(λ−A)−1f

)
= λ

∫ ∞
0

exp(−λt)â
(∫ t

0

VH(s)fds

)
dt

= λ

∫ ∞
0

exp(−λt)
∞∑
k=0

a0

(∫ t

0

Uk(s)fds

)
dt.
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Setting, gk =

∫ ∞
0

exp(−λt)Uk(t)fdt and φk(t) =

∫ t

0

Uk(s)fds, one deduces from

Proposition 2 (6) that, for any k > 1

λ

∫ ∞
0

exp(−λt)B+φk(t)dt = B+ gk = (MλH)kGλf,

and, recalling that a0(φk(t)) =

∫
Γ+

B+φk(t)dµ+ −
∫

Γ−

HB+φk(t)dµ− we get (4.9).

Remark 4. In the free-streaming context, the identity (4.9) shows that the func-
tional â coincides with the functional cλ defined in [18]. In particular, this shows
that the functional cλ of [18] does not depend on λ, answering the question left open
in [18, Remark 17]. Moreover, by Proposition 3, we see that the functionals cλ and
ĉ of [18] (corresponding respectively to our â and a) are positive functionals such
that cλ(ϕ) 6 ĉ(ϕ) for all ϕ ∈ D(A)+ which extends the result of [18, Remark 17]
valid only for ϕ ∈ (λ−A)−1X+.

Proposition 3 allows to define a third linear positive functional Θ : D(A) → R
by setting

Θ(f) = a(f)− â(f) for any f ∈ D(A).

Clearly, the functional Θ is continuous in the graph norm of D(A). Other properties
of Θ are stated here below.

Corollary 3. For any f ∈ X, t > 0 and λ > 0 one has

Θ

(∫ t

0

VH(s)fds

)
= lim
n→∞

∫
Γ+

B+

(∫ t

0

Un(s)fds

)
dµ+, (4.10)

and

Θ
(
(λ−A)−1f

)
= lim
n→∞

∫
Γ+

(MλH)nGλfdµ+. (4.11)

In particular, both the limits appearing in (4.10) and (4.11) exist and are finite for
any f ∈ X.

Proof. As in the proof of Corollary 2, for fixed f ∈ X, λ > 0 and t > 0 set

gk =

∫ ∞
0

exp(−λt)Uk(t)fdt and φk(t) =

∫ t

0

Uk(s)fds, k > 0.

Notice that φk(t) ∈ W for any t > 0 and any k > 1. One checks then easily thanks
to Proposition 2 (7) that, for any n > 1

n∑
k=0

a (φk(t)) =

n−1∑
k=0

a0 (φk(t)) +

∫
Γ+

B+φn(t)dµ+.

One deduces easily (4.10) from this last identity combined with (4.8) and the fact

that (
∑n
k=0 φk(t))

n
converges to

∫ t
0
VH(s)fds in the graph norm of A. In the same

way, noticing that for any n ∈ N one has

n∑
k=0

a (gk) =

n−1∑
k=0

a0 (gk) +

∫
Γ+

B+gndµ+,

one readily gets (4.11) using now (4.9) together with the fact that (
∑n
k=0 gk)

n

converges to (λ−A)−1f in the graph norm of A as n→∞ (see Corollary 1).
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The above results yield the following

Proposition 4. For any f ∈ D(TH) one has â(f) = a(f) = a0(f). Consequently,

Θ(f) = 0 ∀f ∈ D
(
TH
)
. (4.12)

Proof. By definition and since Θ is continuous over D(A) endowed with the graph
norm, it is enough to prove that â(f) = a(f) for any f ∈ D(TH). For any λ > 0,
since the operator Gλ : X → L1

+ is surjective, one deduces from (4.11) that the
limit limn→∞

∫
Γ+

(MλH)
n
hdµ+ exists and is finite for any h ∈ L1

+. Now, given f ∈
D(TH), set g = (λ−A)f . Since B+f ∈ L1

+ the limit limn→∞
∫

Γ+
(MλH)nB+fdµ+

exists and is finite while, from f = (λ−A)−1g one deduces that

n−1∑
k=0

(MλH)kGλg = B+f − (MλH)nB+f.

Therefore, the sequence

(
n−1∑
k=0

∫
Γ+

(MλH)kGλgdµ+

)
n

is converging. In particular,

lim
n→∞

∫
Γ+

(MλH)nGλgdµ+ = 0.

From (4.11), this limit coincides with Θ
(
(λ−A)−1g

)
= Θ(f) which shows the

result.

Now one proves that, somehow, (4.12) is a characterization of D(TH), at least
for nonnegative f :

Proposition 5. If f ∈ D(A)+ is such that Θ(f) = 0, then, f ∈ D( TH ).

Proof. The proof is inspired by the analogous result for additive perturbation [19,
Proposition 1.6]. Let f ∈ D(A)+ be given such that Θ(f) = 0, i.e. â(f) = a(f).
Since λ(λ−A)−1f → f in the graph norm of D(A) as λ→∞, we get that

lim
λ→∞

Θ
(
λ(λ−A)−1f

)
= Θ(f) = 0.

Now, since

Θ
(
λ(λ−A)−1f

)
= lim
n→∞

λ

∫
Γ+

(MλH)
n
Gλfdµ+

we see that, for any ε > 0 we can find λ > 1 and N > 1 such that

‖λ(λ−A)−1Tmaxf − Tmaxf‖X < ε ; ‖λ(λ−A)−1f − f‖X < ε

and

∫
Γ+

(MλH)
n
Gλfdµ+ <

ε

λ
∀n > N. (4.13)

For such λ > 1 and N > 1, we construct a sequence (ϕn) in W with the following
properties

B−ϕn = 0; B+ϕn = (MλH)nGλf ; ‖ϕn‖X 6 ‖(MλH)nGλf‖L1
+

and ‖Tmaxϕn‖X 6 ‖(MλH)nGλf‖L1
+
.

The existence of such a sequence is ensured by [2, Proposition 2.3]. Then, for any
n > 1, we set

un = Cλf +

n−1∑
k=0

ΞλH(MλH)kGλf − ϕn.
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Clearly, un ∈ D(Tmax) for any n > 1 with

Tmaxun = λ

(
Cλf +

n−1∑
n=0

ΞλH(MλH)nGλf

)
− f − Tmaxϕn;

B+un =

n−1∑
k=0

(MλH)kGλf and B−un =

n−1∑
k=0

H(MλH)kGλf = HB+un

i.e. un ∈ D(TH) for all n > 1. Considering that

(λ−A)−1f = Cλf +

∞∑
k=0

ΞλH(MλH)kGλf,

we can choose n > N such that∥∥∥∥∥(λ−A)−1f − Cλf −
n−1∑
k=0

ΞλH(MλH)kGλf

∥∥∥∥∥
X

<
ε

λ2
.

With such choice, since λ(λ−A)−1Tmaxf = λ2(λ−A)−1f − λf , we check that

‖λun − f‖X 6 ‖λ(un − (λ−A)−1f)‖X + ‖λ(λ−A)−1f − f‖X < 4ε

and ‖λTmaxun − Tmaxf‖X < 4ε.

Since λun ∈ D(TH), this shows that f ∈ D( TH ).

4.2. Honesty criteria. Here we want to improve the honesty theory developed
in [18]. First of all we adapt the definition of honesty, established in the additive
perturbation framework in [19, 6].

Definition 4.2. Let f ∈ X+ be given. Let J ⊆ [0,∞) be an interval. Then, the
trajectory (VH(t)f)t>0 is said to be honest on J if

‖VH(t)f‖X = ‖VH(s)f‖X − â

(∫ t

s

VH(r)fdr

)
, ∀ s, t ∈ J, s 6 t.

The trajectory is said to be honest if it is honest on [0,∞). The whole C0-semigroup
(VH(t))t>0 will be said honest if all the trajectories are honest.

In the following, we establish thanks to the representation series (3.10) an ap-
proach to honesty on subinterval J ⊆ [0,∞) which is completely new in the context
of boundary perturbation. The proof is inspired by the recent similar results ob-
tained in the additive perturbation framework thanks to Dyson-Phillips series (see
the concept of so-called ‘mild honesty’ in [6, Section 4]). More precisely, we have
the following honesty criteria, analogous to [6, Theorem 4.8]:

Theorem 4.3. Given f ∈ X+ and J ⊆ [0,∞), the following statements are equiv-
alent

1) the trajectory (VH(t)f)t>0 is honest on J ;

2) lim
n→∞

∥∥∥∥B+

∫ t

s

Un(r)fdr

∥∥∥∥
L1

+

= 0 for any s, t ∈ J, s 6 t;

3)

∫ t

s

VH(r)fdr ∈ D(TH ) for any s, t ∈ J, s 6 t;



TRANSPORT SEMIGROUP 2757

4) the set

(
B+

∫ t

s

Un(r)fdr

)
n

is relatively weakly compact in L1
+ for any s, t ∈

J, s 6 t.

Proof. Let f ∈ X+, J ⊆ [0,∞) and s, t ∈ J, s 6 t be given. Recall that

a

(∫ t

s

VH(r)fdr

)
= ‖VH(s)f‖X − ‖VH(t)f‖X .

so that, according to Definition 4.2, the trajectory (VH(t)f)t>0 is honest on J if
and only if

Θ

(∫ t

s

VH(r)fdr

)
= 0 ∀s, t ∈ J, s 6 t.

According to (4.10), this is equivalent to 2), i.e. 1) ⇔ 2). Since moreover∫ t

s

VH(r)fdr ∈ D(A)+,

statements 1) and 3) are equivalent by virtue of Corollary 4.12 and Proposition

5. Clearly 2) implies 4). Assume now that the set
(
B+
∫ t
s
Un(r)fdr

)
n

is rela-

tively weakly compact in L1
+. Let us show that limn→∞ ‖B+

∫ t
s
Un(r)fdr‖L1

+
= 0.

According to (4.10), the limit

lim
n→∞

∥∥∥∥B+

∫ t

s

Un(r)fdr

∥∥∥∥
L1

+

:= `(s, t)

exists. By Theorem 2.2, we also have∥∥∥∥B+

∫ t

s

Un(r)fdr

∥∥∥∥
Y+

6

∥∥∥∥∫ t

s

Un(r)fdr

∥∥∥∥
X

+

∥∥∥∥Tmax

∫ t

s

Un(r)fdr

∥∥∥∥
X

=

∥∥∥∥∫ t

s

Un(r)fdr

∥∥∥∥
X

+ ‖Un(t)f‖X − ‖Un(s)f‖X ,

and, since the series
∑
n

∫ t
s
Un(r)fdr,

∑
n Un(s)f and

∑
n Un(t)f are converging

(towards
∫ t
s
VH(r)fdr, VH(s)f and VH(t)f respectively), one deduces that the right-

hand-side is converging to 0 as n→∞ and

lim
n→∞

∥∥∥∥B+

∫ t

s

Un(r)fdr

∥∥∥∥
Y+

= 0. (4.14)

Now, by assumption 4), there exists a subsequence
(
B+
∫ t
s
Unk

(r)fdr
)
k

which con-

verges weakly to, say, gs,t ∈ L1
+. For any i ∈ N we set Γi,+ = {z ∈ Γ+ : τ−(z) > 1

i }
and denote by χi the characteristic function of the set Γi,+. Then for any i ∈ N,
the limit

lim
k→∞

∫
Γi,+

B+

∫ t

s

Unk
(r)fdrdµ+ = lim

k→∞

∫
Γ+

χi(z)

(
B+

∫ t

s

Unk
(r)fdr

)
(z)dµ+(z)

=

∫
Γi,+

gs,tdµ+.

Thus, from (4.14),

lim
k→∞

∫
Γi,+

B+

∫ t

s

Unk
(r)fdr dξ+ = 0 ∀i ∈ N.
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Since, for any fixed i ∈ N and any z ∈ Γi,+ one has dξ+(z) > 1
i dµ+(z) so that∫

Γi,+

gs,tdµ+ = 0.

Since gs,t is nonnegative on Γ+ =
⋃∞
i=1 Γi,+, we deduce that gs,t(z) = 0 for µ+-

almost every z ∈ Γ+. In other words, the unique possible weak limit is gs,t = 0 and
therefore `(s, t) = 0, i.e. 2) holds.

Remark 5. We deduce directly from the above, with J = [0,∞) that the C0-

semigroup (VH(t))t>0 is honest if and only if limn→∞ ‖B+
∫ t

0
Un(s)fds‖L1

+
= 0 for

any f ∈ X and t > 0.

Remark 6. Recall that in [19], in the free-streaming case, the defect function
[0,∞) 3 t → ηf (t) has been defined, for each fixed f ∈ (λ − A)−1X+, by ηf (t) :=

‖VH(t)f‖− ‖f‖+ cλ(
∫ t

0
VH(s)fds). We have already observed (see Remark 4) that

cλ of [19] corresponds to our functional â. Hence the defect function can be defined
for each fixed f ∈ X+, as

ηf (t) = −Θ

(∫ t

0

VH(s)fds

)
= − lim

n→∞

∥∥∥∥B+

∫ t

0

Un(s)fds

∥∥∥∥
L1

+

.

Such a representation of ηf allows to deduce immediately that the mapping t →
ηf (t) is nonpositive and nonincreasing. Moreover, if the trajectory (VH(t)f)t>0 is
not honest then there exists t0 > 0 such that ηf (t) = 0 for 0 6 t 6 t0 and ηf (t) < 0
for all t > t0. Setting g = VH(t0)f ∈ X+. Then for any t > 0 one has

ηf (t+ t0) = −Θ

(∫ t+t0

0

VH(s)fds

)
= −Θ

(∫ t0

0

VH(s)fds

)
−Θ

(∫ t+t0

t0

VH(s)fds

)
= −Θ

(∫ t

0

VH(s)gds

)
= ηg(t) < 0,

i.e., with the terminology of [19], the trajectory (VH(t)g)t>0 is immediately dishon-
est.

For any subinterval J ⊆ [0,∞) we denote by

XJ := {f ∈ X+ ; (VH(t)f)t>0 is honest on J }
and, whenever J = [0,∞), we simply denote Xh = X[0,∞) the set of initial positive
data giving rise to honest trajectories. Moreover, arguing exactly as in [6, Propo-
sition 3.13], one sees that Xh is invariant under (VH(t))t>0. Moreover, arguing
exactly as in [19, Proposition 2.4], one has

Proposition 6. For any subinterval J ⊆ [0,∞), one has X̂J := span(XJ) =
XJ − XJ is a closed lattice ideal of X whose positive cone is XJ . In particular,

X̂h = span(Xh) is a closed lattice ideal in X which is invariant under (VH(t))t>0

and (X̂h)+ = Xh.

We recall now that a positive semigroup (T (t))t>0 in X is said to be irreducible

if there is no trivial closed ideal of X (i.e. different from X and {0}) which is
invariant under T (t) for all t > 0. We have then the following to be compared to
[18, Theorem 19 & Remark 20]:
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Proposition 7. Let g ∈ X+, g 6= 0 such that the trajectory (VH(t)g)t>0 is honest.

1. If (VH(t))t>0 is irreducible then the whole semigroup (VH(t))t>0 is honest.
2. If g is quasi-interior then the whole semigroup (VH(t))t>0 is honest.

Proof. Let g 6= 0 such that (VH(t)g)t>0 is honest be given.

(1) One has then X̂h 6= {0}. Since X̂h is an ideal invariant under (VH(t))t>0, if

(VH(t))t>0 is irreducible, this shows that necessarily X̂h = X and, in particular,
X+ = Xh.

(2) If g is quasi-interior, since g ∈ X̂h one has X̂h = X and the conclusion follows.

We have the following practical criterion extending [18, Theorem 21 & Corollary
23]

Proposition 8. Assume that there exists some quasi-interior h ∈ L1
+ such that

H h(Φ(z,−τ−(z)))χ{τ−(z)<∞} 6 h(z) for almost every z ∈ Γ+. (4.15)

Then, the whole semigroup (VH(t))t>0 is honest.

Proof. Let h ∈ L1
+ satisfying the above assumption be given. Define then

f(x) =


τ−(x)

τ−(x) + τ+(x)
exp(−τ+(x))h(Φ(x, τ+(x)) if τ−(x) + τ+(x) <∞,

exp(−τ+(x))h(Φ(x, τ+(x)) if τ−(x) =∞ and τ+(x) <∞,

and f chosen freely on Ω+∞ in such a way that f ∈ X is quasi-interior. One sees
easily (see [2, Proposition 2.3] for details) that B+f = h. Moreover, since τ±(xt) =
τ±(x)± t and Φ(xt, τ+(xt)) = Φ(x, τ+(x)) for any x ∈ Ω, t > 0, xt = Φ(x,−t), one
checks easily that, for any x ∈ Ω+, it holds

U0(t)f(x) =
τ−(x)− t

τ−(x) + τ+(x)
exp(−t− τ+(x))h(Φ(x, τ+(x))χ{t<τ−(x)}

if x ∈ Ω+ ∩Ω−, while

U0(t)f(x) = exp(−t− τ+(x))h(Φ(x, τ+(x))

whenever x ∈ Ω+ ∩Ω−∞. Therefore, one sees that for any t > 0, U0(t)f(x) 6 f(x)
for almost every x ∈ Ω+. Let t > 0 be fixed. According to Lemma 3.6, one has[

B+

∫ t

0

U1(s)fds

]
(z) 6

[
HB+

∫ t

0

U0(s)fds

]
(Φ(z,−τ−(z)) ∀z ∈ Γ+.

Since U0(s)f 6 f on Ω+ we get[
B+

∫ t

0

U1(s)fds

]
(z) 6 t

[
H B+f

]
(Φ(z,−τ−(z)) = tH h(Φ(z,−τ−(z))) ∀z ∈ Γ+.

From (4.15), one gets therefore[
B+

∫ t

0

U1(s)fds

]
(z)χ{τ−(z)<∞} 6 th(z) for a. e. z ∈ Γ+.

Recalling that
[
B+
∫ t

0
U1(s)fds

]
(z) = 0 if τ−(z) > t, we get therefore that[

B+

∫ t

0

U1(s)fds

]
(z) 6 th(z) for a. e. z ∈ Γ+.
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Using repeatedly Lemma 3.6 together with (4.15) we get that

B+

∫ t

0

Un(s)fds 6 th ∀t > 0, n > 1.

This shows that, for any t > 0, the family
(
B+
∫ t
s
Un(r)fdr

)
n

is equi-integrable

and thus relatively weakly compact in L1
+ and, according to Theorem 4.3, the

trajectory (VH(t)f)t>0 is honest. Since f is quasi-interior, Proposition 7 yields the
conclusion.

Besides the semigroup approach that we developed in the previous lines, it is also
possible to develop a resolvent approach to honesty, as the one developed in [18] for
the free-streaming case and in [5] for conservative boundary conditions. Such an
approach provides necessary and sufficient conditions for a trajectory to be honest
which are different from the one listed above. They can be seen as the analogue of
[6, Theorem 3.5 & Theorem 3.11] which are established in the additive perturbation
framework. Since we decided to mainly focus on the semigroup approach, we only
state the result for the sake of completeness but omit the details of the proof which
can be adapted without major difficulty from [18] and [6]:

Theorem 4.4. Given f ∈ X+, the following statements are equivalent

1) the trajectory (VH(t)f)t>0 is honest;
2) Θ

(
(λ−A)−1f

)
= 0 for all λ > 0;

3) limn→∞ ‖(MλH)nGλf‖L1
+

= 0 for some λ > 0;

4) (λ−A)−1f ∈ D(TH ) for some λ > 0;
5) the set ((MλH)nGλf))n is relatively weakly compact in L1

+ for some λ > 0.

In particular, the whole C0-semigroup (VH(t))t>0 is honest if and only if A = TH .

Remark 7. Notice that, if one of the equivalent conditions 2)–5) holds true of some
λ > 0 then it can be proved that it holds true for any λ > 0 (see [9] for details).

Remark 8. It is possible to provide sufficient conditions for a trajectory to be
honest which are reminiscent to those given in [19, Proposition 2.6]. Namely,

1. given f ∈ X+, if there exists λ > 0 such that (MλH)Gλf 6 Gλf , then the
trajectory (VH(t)f)t>0 is honest;

2. if g ∈ D(TH) is such that THg 6 λg for some λ > 0, then g ∈ X+ and the
trajectory (VH(t)g)t>0 is honest.

5. Some examples. We illustrate here our approach by two examples. These two
examples are dealing with the free-streaming equation conservative boundary and,
as so, have already been dealt with in our previous contribution [5]. The scope
here is to show that our new approach, based upon the semigroup representation
(3.10), allows not only to recover, by different means, the results of [5], but also to
characterize, in both examples, new interesting properties.

5.1. An instructive one dimensional example revisited. We revisit here a
one-dimensional example introduced in [20, Example 4.12, p. 76]. This example has
been revisited recently in both [5, 18]. Given two real nondecreasing real sequences
(ak)k>0 and (bk)k>0 with

ak < bk < ak+1 ∀k > 0, lim
k→∞

ak =∞
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set

Ω =

∞⋃
k=0

(ak, bk) =:

∞⋃
k=0

Ik.

We assume then µ to be the Lebesgue measure on R and consider the constant field
F : R → R given by F (x) = 1 for all x ∈ R. In such a case, the flow Φ(x, t) is
given by

Φ(x, t) = x+ t for any x, t ∈ R,

and

Γ− = {ak, k ∈ N}, Γ+ = {bk, k ∈ N}, τ−(x) = x− ak ∀ak < x < bk, k ∈ N.

The measures dµ± are then the counting measures over Γ±. We define then H ∈
B(L1

+, L
1
−) by

Hψ(ak) =

{
0 if k = 0,

bk−1 if k > 0
(5.1)

for any ψ ∈ L1
+. It is clear that H is a positive boundary operator with unit norm.

We then explicit the strongly family of operators {(Uk(t))t>0 ; k ∈ N} as defined in
Definition 3.4. To this aim for any k ∈ N, set ∆k = bk − ak. For f ∈ D0 and t > 0
one easily sees that

U0(t)f(x) =

{
f(x− t) if 0 < t < x− ak,
0 otherwise,

(5.2)

which yields

B+U0(t)f(bk) =

{
f(bk − t) if 0 < t < ∆k,

0 otherwise.
(5.3)

By induction one can easily show that for n > 1, k > 0, ak < x < bk one has

Un(t)f(x) =


f(bk−n − ak + x+

∑k−1
j=k−n+1 ∆j − t)

if k > n and x− ak +
∑k−1
j=k−n+1 ∆j < t < x− ak +

∑k−1
j=k−n ∆j ,

0 otherwise

(5.4)
so that

B+Un(t)f(bk) =


f(bk−n +

∑k
j=k−n+1 ∆j − t)

if k > n and
∑k
j=k−n+1 ∆j < t <

∑k
j=k−n ∆j ,

0 otherwise.

(5.5)

Because of this we have for all f ∈ X

B+

(∫ t

0

Un(s)fds

)
(bk) =


∫ bk−n

ak−n∨(bk−n+
∑k

j=k−n+1 ∆j−t)
f(s)ds

if k > n and t >
∑k
j=k−n+1 ∆j ,

0 otherwise.

(5.6)

Now we are able to prove the following where (VH(t))t>0 is the C0-semigroup con-
structed through Theorem 2.5 and given by VH(t) =

∑∞
n=0 Un(t) (t > 0):
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Proposition 9. The C0-semigroup (VH(t))t>0 is honest if and only if

∆ :=

∞∑
k=0

(bk − ak) =∞ (5.7)

If ∆ <∞, define

Jk :=

[ ∞∑
j=k+1

∆j ,

∞∑
j=k

∆j

]
⊂ [0,∞) for any k ∈ N.

Then, given f ∈ X+, the trajectory (VH(t)f)t>0 is honest on Jk if and only if∫ bk

ak

f(s)ds = 0 which is equivalent to f(s) = 0 for almost every s ∈ Ik.

Remark 9. The first part of the Proposition is a well-known fact, first proven in
[20] and revisited recently in [5, 18]. The second part, on the contrary, is new to
our knowledge and provides a criterion for ‘local’ honesty.

Proof. Thanks to formula (5.6) we can state that for all f ∈ X+, n > 1 and t > 0∥∥∥∥B+

∫ t

0

Un(s)fds

∥∥∥∥
L1

+

=

∞∑
k=0

[∫ bk

ak∨(bk+
∑k+n

j=k+1 ∆j−t)
f(s)ds

]
χ{t>

∑k+n
j=k+1 ∆j}

6
∞∑
k=0

∫ bk

ak

f(s)ds = ‖f‖X .
(5.8)

Assume first that ∆ = +∞. In such a case for any f ∈ X+, k ∈ N we have:

lim
n→∞

[∫ bk

ak∨(bk+
∑k+n

j=k+1 ∆j−t)
f(s)ds

]
χ{t>

∑k+n
j=k+1 ∆j} = 0

which, thanks to the dominated convergence theorem yields

lim
n→∞

∥∥∥∥B+

∫ t

0

Un(s)fds

∥∥∥∥
L1

+

= 0.

By virtue of Corollary 5 the trajectory (VH(t)f)t>0 is then honest. Since f ∈ X+

is arbitrary, the semigroup itself is honest.
Now consider the case ∆ < +∞. In such a case, given k0 ∈ N, let t ∈ Jk0 ⊆

[0,∆] ⊆ [0,∞). It is easy to see that

lim
n→∞

[∫ bk

ak∨(bk+
∑k+n

j=k+1 ∆j−t)
f(s)ds

]
χ{t>

∑k+n
j=k+1 ∆j}

=


0 if k = 0, . . . , k0 − 1 > 0,∫ bk

ak

f(s)ds ifk > k0 + 1,

while

lim
n→∞

[∫ bk0

ak0
∨(bk0

+
∑k0+n

j=k0+1 ∆j−t)
f(s)ds

]
χ{t>

∑k0+n

j=k0+1 ∆j}

=

∫ bk0

(bk0
+
∑∞

j=k0+1 ∆j−t)
f(s)ds.
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Then, from the dominated convergence theorem and (5.8)) we get

lim
n→∞

∥∥∥∥B+

∫ t

0

Un(s)fds

∥∥∥∥
L1

+

=

∫ bk0

(bk0
+
∑∞

j=k0+1 ∆j−t)
f(s)ds+

∞∑
k=k0+1

∫ bk

ak

f(s)ds.

Therefore, for any t1, t2 ∈ Jk0 with t1 < t2 one has

lim
n→∞

∥∥∥∥B+

∫ t2

t1

Un(s)fds

∥∥∥∥
L1

+

=

∫ (bk0
+
∑∞

j=k0+1 ∆j−t1)

(bk0
+
∑∞

j=k0+1 ∆j−t2)

f(s)ds 6
∫ bk0

ak0

f(s)ds

where the last inequality is an identity if t1 =
∑∞
j=k0+1 ∆j and t2 =

∑∞
j=k0

∆j .

Using Corollary 5 again, this shows that the trajectory (VH(t)f)t>0 is honest on

Jk0 if and only if
∫ bk0

ak0
f(s)ds = 0 and, being f nonnegative, this is equivalent to

f(s) = 0 for almost every s ∈ Ik0 .

Remark 10. As an immediate consequence of the obtained result we can state the
following: if ∆ < ∞, then no trajectory (VH(t)f)t>0 (f ∈ X+) is honest on an
interval J ⊇ [0,∆].

Remark 11. Finally observe that, in case ∆ < +∞, for all f ∈ X and t > ∆ one
has VH(t)f ≡ 0. Indeed for t > ∆ one has U0(t)f ≡ 0. Furthermore for any n > 1,

k > 0, one has t >
∑k+n
j=k ∆j . This implies Un(t)f(x) = 0 for all n > 1, f ∈ D0 and

x ∈ Ω which gives the result.

5.2. Kinetic equation with specular reflections. In this second example, we
consider the physically relevant case of free-streaming semigroup associated to spec-
ular reflections. Such a model, as well-known [3], is strongly related to the so-called
billiard flow which is a well-known dynamical system studies in ergodic theory [14].
We do not provide here any new honesty criterion but show how the result we ob-
tained before yields possibly new property of the billiard flow. More precisely, we
consider now a transport equation in RN with N = 2d, d ∈ N and consider then

Ω = D × Rd (5.9)

where D is a smooth open bounded and convex subset of Rd. Any x ∈ Ω can
be written x = (x, v), with x ∈ D, v ∈ Rd and consider the measure dµ(x) =
dx ⊗ d%(v), where d% is a positive Radon measure on Rd with support V . We
assume for simplicity that V and d% to be orthogonally invariant. Assume the field
F : x ∈ RN → RN to be given by F (x) = (v, 0) for all x = (x, v) ∈ Rd × Rd.
Classically, the associated flow is given by Φ(x, t) = (x+vt, v) for all x = (x, v) and
t ∈ R. In this case,

Γ± = {y = (x, v) ∈ ∂D × V ; ±v · n(x) > 0} , dµ±(y) = |v · n(x)|d%(v)dσ(x)
(5.10)

where n(x) denotes the outward normal unit vector at x ∈ ∂D and dσ(·) is the
Lebesgue surface measure on ∂D. We consider here the boundary operator H to
be associated by the specular reflection, i.e.

Hψ(y) = ψ(x, v − 2(v · n(x))n(x)), ψ ∈ L1
+, y = (x, v) ∈ Γ−.

It is known that H is a positive and conservative operator, i.e. ‖Hψ‖L1
−

= ‖ψ‖L1
+

for any nonnegative ψ ∈ L1
+. In particular, H has unit norm. As in the previous
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example, let us characterize the families (Uk(t))t>0, k ∈ N. Observe that for x =

(x, v) ∈ D × V we can define the sequence of rebound times:

t1(x) = τ−(x), t2(x) = t1(x) + τ−(x1) . . .

tk(x) = tk−1(x) + τ−(xk−1) =

k−1∑
j=1

τ−(xj)

where , setting x0 = x, x0 = x, v0 = v, one has, for any j = 1, . . . , k:

xj = (xj , vj) ∈ Γ+, with xj = xj−1 − τ−(xj−1)vj−1,∈ ∂D,
vj = vj−1 − 2(vj−1 · n(xj−1))n(xj−1).

With this notations, setting also t0 = 0, we have for any f ∈ D0, k > 0, x =
(x, v) ∈ Ω

Uk(t)f(x) = f(xk − (t− tk(x))vk, vk)χ{tk(x)6t<tk+1(x)}.

Recall that VH(t) =
∑
k Uk(t) and, since for a given t > 0 and a given x ∈ Ω, there

exists a unique k ∈ N such that t ∈ [tk(x), tk+1(x)], one has VH(t)f(x) = Uk(t)f(x)
(of course, such k depends on x). This implies that, for any t > 0,

VH(t)f = f ◦ ϑt

where {ϑt; t ∈ R} is the one-parameter group of transformations on D × V corre-
sponding to the so-called billiard flow [14] (see also [4]). The following is taken from
[20, 5] and is proven through the resolvent approach:

Proposition 10. Assume that dσ(∂D) < ∞. If there exists some nonnegative
ψ ∈ L1(V,d%(v)) with ψ(v) = ψ(|v|) for any v ∈ V and∫

V

(1 + |v|)ψ(|v|)d%(v) <∞

then the semigroup (VH(t))t>0 is honest.

Proof. The proof follows from Proposition 8 since, as in [18, Corollary 2.3], the
mapping h(x, v) = ψ(|v|) provides a quasi-interior element of L1

+ satisfying (4.15).

Remark 12. From Remark 5 we deduce that for any t > 0 and f ∈ X+

lim
k→∞

∥∥∥∥B+

∫ t

0

Uk(s)fds

∥∥∥∥
L1

+

= 0,

i.e.

lim
k→∞

∫
Γ+

(∫ t∧tk+1(x)

tk(x)

f(xk − vk(s− tk(x))vk, vk)ds

)
χ{tk(x)<t}dµ+(x) = 0.

We have not been able to find such a property of the billiard flow in the literature.
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5.3. Kinetic equations with Maxwell-like boundary conditions. We con-
sider here, as a final example, the case of the free-streaming semigroup associated
to Maxwell-like boundary conditions which is particularly relevant in the kinetic
theory of gases [13]. For such a model, the mathematical framework is the one
described in the previous paragraph, in particular Ω is given by (5.9) and Γ± are
described by (5.10). The boundary operator is given by

Hψ(x, v) = α(x)ψ(x, v − 2(v · n(x))n(x))+

(1− α(x))M(v)

∫
{w∈V ;w·n(x)>0}

ψ(x,w)|w · n(x)|dw, (x, v) ∈ Γ− (5.11)

where, for simplicity V = Rd endowed with the Lebesgue measure, the so-called
accommodation coefficient α : ∂D → R is measurable and 0 6 α(x) 6 1 for dσ-
almost every x ∈ ∂D (where dσ is the Lebesgue measure over ∂D). The distribution
M is the Maxwell distribution

M(v) = Cd exp

(
−|v|

2

θ

)
v ∈ V

where θ > 0 is the temperature of the surface ∂D (assumed here to be constant for
simplicity) while Cd > 0 is a normalisation constant such that∫

{v=(v1,...,vd)∈V ,v1>0}
M(v)v1dv = 1.

This boundary operator models the fact that, when hitting the boundary ∂D a
fraction α(·) of particles undergoes a specular reflection while the remaining fraction
1−α(x) is diffused with the Maxwellian distribution M of the wall ∂D (see [13] for
more details). Then, one has the following:

Proposition 11. Let H be given by (5.11). If dσ(∂D) < ∞ then the semigroup
(VH(t))t>0 is honest.

Proof. Again, the proof follows from Proposition 8. Indeed, one checks as in [5,
Proposition 5.8] that the mapping h(x, v) = M(v) provides a quasi-interior element
of L1

+ satisfying (4.15).
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