

AperTO - Archivio Istituzionale Open Access dell'Università di Torino

Acceptance and suitability of Cacyreus marshalli (Lepidoptera: Lycaenidae) as host for three indigenous parasitoids

inis is the author's manuscript	
Original Citation:	
Availability:	
This version is available http://hdl.handle.net/2318/146329	since 2016-07-04T15:23:27Z
Published version:	
DOI:10.1080/09583157.2013.832147	
Terms of use:	
Open Access	
Anyone can freely access the full text of works made available as under a Creative Commons license can be used according to the of all other works requires consent of the right holder (author or protection by the applicable law.	terms and conditions of said license. Use

(Article begins on next page)

UNIVERSITÀ DEGLI STUDI DI TORINO

This is an author version of the contribution published on:

Questa è la versione dell'autore dell'opera: [Biocontrol Science and Technology, 23:11,1342-1348, 2013 DOI: 10.1080/09583157.2013.832147]

The definitive version is available at:

La versione definitiva è disponibile alla URL: [http://www.tandfonline.com/doi/pdf/10.1080/09583157.2013.832147]

Biocontrol Science & Technology

Acceptance and suitability of Cacyreus marshalli (Lepidoptera: Lycaenidae) as host for three indigenous parasitoids

Journal:	Biocontrol Science & Technology
Manuscript ID:	CBST-2013-0145
Manuscript Type:	Short Communication
Date Submitted by the Author:	17-Apr-2013
Complete List of Authors:	Dindo, Maria Luisa; University of Bologna, Francati, Santolo; University of Bologna, Marchetti, Elisa; University of Bologna, Ferracini, Chiara; University of Torino, Quacchia, Ambra; University of Torino, Alma, Alberto; University of Torino,
Keywords:	Cacyreus marshalli, native natural enemies, Trichogramma brassicae, Exorista larvarum, Brachymeria tibialis, biological control

SCHOLARONE™ Manuscripts

URL: http://mc.manuscriptcentral.com/cbst

1	M.L. Dindo et al.
2	Biocontrol Science and Technology
3	
4	SHORT COMMUNICATION (no. Words 2230 except Title, Abstract, Tables and captions)
5	
6	
7	
8	
9	
10	Acceptance and suitability of Cacyreus marshalli (Lepidoptera: Lycaenidae) as host
11	for three indigenous parasitoids
12	Maria Luisa Dindo ^{a*} , Santolo Francati ^a , Elisa Marchetti ^a , Chiara Ferracini ^b , Ambra Quacchia ^b ,
13	Alberto Alma ^b
14	
15	^a DipSA - Dipartimento di Scienze Agrarie, Alma Mater Studiorum Università di Bologna, Bologna,
16	Italy; ^b DISAFA – Dipartimento di Scienze Agrarie, Forestali e Alimentari, Università di Torino,
17	Grugliasco (TO), Italy
18	
19	
20	* Corresponding author. Email: <u>marialuisa.dindo@unibo.it</u>

21	Abstract: Laboratory tests were conducted in Italy to evaluate the acceptance and suitability of
22	the alien butterfly Cacyreus marshalli Butler as host for three indigenous parasitoids,
23	Trichogramma brassicae (Bezdenko) Exorista larvarum (L.) and Brachymeria tibialis (Nees).
24	Only E. larvarum and B. tibialis showed potential to adapt to C. marshalli. Their
25	contribution to biological control appeared to be especially related to host mortality due
26	to incomplete parasitoid development.
27	
28	KeyWords: Cacyreus marshalli, native natural enemies, Trichogramma brassicae,
29	Exorista larvarum, Brachymeria tibialis, biological control
30	

The Geranium Bronze Cacyreus marshalli Butler, native of South Africa, has established in
Italy and other European countries (Suffert 2012). In South Africa Apanteles sp., other unidentified
braconids and small tachinids were reported as larval parasitoids of C. marshalli (Clark and
Dickson, 1971). In Europe, two native parasitoids have been recorded as antagonists of this exotic
pest of cultivated geraniums, namely the hymenopteran Trichogramma evanescens Westwood in
Spain (Sarto i Monteys and Gabarra 1998) and the tachinid Aplomya confinis (Fallen) in Italy
(Vicidomini and Dindo 2006).
With the aim of enhancing knowledge on the associations between C. marshalli and
indigenous antagonists, laboratory tests were conducted to evaluate the acceptance and suitability of
this alien species as host for three polyphagous parasitoids of Lepidoptera, all widespread in Italy
and Europe (www.faunaeur.org accessed January 9 2013): the hymenopterous egg parasitoid
Trichogramma brassicae (Bezdenko), the tachinid larval parasitoid Exorista larvarum (L.) and the
hymenopterous pupal parasitoid Brachymeria tibialis (Walker).
Colonies of C. marshalli, maintained as described by Quacchia, Ferracini, Bonelli, Balletto,
colonies of c. marsham, mannamed as deserted by Quarenta, Fortubin, Bottom, Butterio,
and Alma (2008), and <i>Ephestia kuehniella</i> Zeller, used as control, were supplied by DISAFA.
and Alma (2008), and Ephestia kuehniella Zeller, used as control, were supplied by DISAFA.
and Alma (2008), and <i>Ephestia kuehniella</i> Zeller, used as control, were supplied by DISAFA. Batches of parasitized <i>E. kuehniella</i> eggs were supplied by Koppert Biological Systems (The
and Alma (2008), and <i>Ephestia kuehniella</i> Zeller, used as control, were supplied by DISAFA. Batches of parasitized <i>E. kuehniella</i> eggs were supplied by Koppert Biological Systems (The Netherlands).
and Alma (2008), and <i>Ephestia kuehniella</i> Zeller, used as control, were supplied by DISAFA. Batches of parasitized <i>E. kuehniella</i> eggs were supplied by Koppert Biological Systems (The Netherlands). Two experiments were carried out to test the acceptance and suitability of <i>C. marshalli</i> by <i>T.</i>
and Alma (2008), and <i>Ephestia kuehniella</i> Zeller, used as control, were supplied by DISAFA. Batches of parasitized <i>E. kuehniella</i> eggs were supplied by Koppert Biological Systems (The Netherlands). Two experiments were carried out to test the acceptance and suitability of <i>C. marshalli</i> by <i>T. brassicae. Cacyreus marshalli</i> eggs were obtained in the first experiment by releasing twenty
and Alma (2008), and <i>Ephestia kuehniella</i> Zeller, used as control, were supplied by DISAFA. Batches of parasitized <i>E. kuehniella</i> eggs were supplied by Koppert Biological Systems (The Netherlands). Two experiments were carried out to test the acceptance and suitability of <i>C. marshalli</i> by <i>T. brassicae</i> . <i>Cacyreus marshalli</i> eggs were obtained in the first experiment by releasing twenty newly-emerged adults in a cage containing two <i>P. zonale</i> potted plants. After 24 hrs portions of
and Alma (2008), and <i>Ephestia kuehniella</i> Zeller, used as control, were supplied by DISAFA. Batches of parasitized <i>E. kuehniella</i> eggs were supplied by Koppert Biological Systems (The Netherlands). Two experiments were carried out to test the acceptance and suitability of <i>C. marshalli</i> by <i>T. brassicae. Cacyreus marshalli</i> eggs were obtained in the first experiment by releasing twenty newly-emerged adults in a cage containing two <i>P. zonale</i> potted plants. After 24 hrs portions of leaves with eggs were cut off and exposed to twenty less than 24hrs-old mated and unfed <i>T.</i>
and Alma (2008), and <i>Ephestia kuehniella</i> Zeller, used as control, were supplied by DISAFA. Batches of parasitized <i>E. kuehniella</i> eggs were supplied by Koppert Biological Systems (The Netherlands). Two experiments were carried out to test the acceptance and suitability of <i>C. marshalli</i> by <i>T. brassicae</i> . <i>Cacyreus marshalli</i> eggs were obtained in the first experiment by releasing twenty newly-emerged adults in a cage containing two <i>P. zonale</i> potted plants. After 24 hrs portions of leaves with eggs were cut off and exposed to twenty less than 24hrs-old mated and unfed <i>T. brassicae</i> adults with no previous contact with a host egg. After 48 hrs the leaf portions were
and Alma (2008), and <i>Ephestia kuehniella</i> Zeller, used as control, were supplied by DISAFA. Batches of parasitized <i>E. kuehniella</i> eggs were supplied by Koppert Biological Systems (The Netherlands). Two experiments were carried out to test the acceptance and suitability of <i>C. marshalli</i> by <i>T. brassicae</i> . <i>Cacyreus marshalli</i> eggs were obtained in the first experiment by releasing twenty newly-emerged adults in a cage containing two <i>P. zonale</i> potted plants. After 24 hrs portions of leaves with eggs were cut off and exposed to twenty less than 24hrs-old mated and unfed <i>T. brassicae</i> adults with no previous contact with a host egg. After 48 hrs the leaf portions were individually isolated. Ten replicates (= 10 tubes with 5 eggs each for a total of 50 eggs) were carried

57	each of the three cages (100, 1,000 and 50,000, respectively). As control, ten replicates of five 72 h-
58	old E. kuehniella eggs, distributed on a sticky strip, were performed. Each of these strips was
59	exposed to twenty <i>T. brassicae</i> as described above. The eggs were checked daily and the parasitism
60	rate and percentage of emergence for each treatment were estimated.
61	Exorista larvarum and B. tibialis were maintained on the factitious lepidopterous host
62	Galleria mellonella (L.) as described by Dindo, Farneti and Baronio (2001) and Dindo, Marchetti
63	and Baronio(2007). Females had already oviposited on/in G. mellonella larvae/pupae before the
64	test. The acceptance and suitability of C. marshalli and G. mellonella (maintained as control) by
65	the two parasitoids were tested under no-choice conditions.
66	For E. larvarum, 60 last instar larvae of each lepidopterous species (Mellini, Gardenghi and
67	Coulibaly 1994), were individually placed in a plexiglass cage containing about 25 parasitoid adult
68	females and 25 adult males, which had emerged 5-6 days before (Dindo et al. 2007). Cacyreus
69	marshalli and G. mellonella larvae were, respectively, 0.93 ± 0.06 cm and 2.4 ± 0.03 cm long
70	(mean±SE) when they were tested. The larvae were removed from the cage after 2 hrs and were
71	individually transferred into Petri dishes with food until death, parasitoid puparium formation or
72	host emergence. Each host larva was considered as a replicate. The larvae were deemed to have
73	been "accepted" when at least one E. larvarum egg was found on their body. The results were
74	evaluated in terms of the following traits: number and percentage of accepted larvae, eggs/accepted
75	larva, number and percentage of suitable larvae (i.e. accepted larvae from which puparia formed),
76	number and percentage (based on puparia) of emerged flies, number and percentage of dead larvae
77	over accepted larvae, weights of the newly-formed puparia, development times from egg to
78	puparium and from puparium to adult emergence.
79	For B. tibialis, C. marshalli or G. mellonella 2-day old pupae were individually exposed to
80	about 10 parasitoid females and 10 males of mixed ages. The host pupae were removed from the
81	cage as soon as a female pierced their body with the ovipositor and were considered as non-
82	accepted if no ovipositor insertion was detected within 2 hrs. Upon removal from the cage, all

pupae were individually kept in plastic Petri dishes until death, parasitoid or host emergence.
Twenty-five pupae of each species were tested, each being considered as a replicate. Mean (±SE)
pupal length was 0.8 ± 0.02 cm for <i>C. marshalli</i> and 1.5 ± 0.2 cm for <i>G. mellonella</i> . The number and
percentage of accepted and suitable pupae (=accepted pupae leading to the emergence of a
parasitoid adult) were calculated. The newly-emerged adults were sexed and their weights (in mg)
and development times from egg to adult (in days) were separately recorded for males and females.
The experiments with the three parasitoids were carried out at 26±1°C, 65±5% RH, L16:D8
photoperiod.
Trichogramma brassicae did not parasitize the eggs of the lycaenid, invariably failing to
exhibit interest in the hosts. For this reason, no statistical analysis was performed. In the second
experiment oviposition by C. marshalli occurred on all the tested plants. In particular 219, 421, and
630 eggs were recorded on the <i>P. zonale</i> plants exposed to 50, 100, and 200 <i>C. marshalli</i> adults,
respectively. In both experiments no parasitism of C. marshalli eggs ever occurred, while in the
control the parasitism rate by T. brassicae recorded on the factitious host E. kuehniella eggs reached
a mean value of 92%, with a mean percentage of emergence of 89%. Thus, the commercially
produced <i>T. brassicae</i> strain evaluated in this study did not prove a good candidate for use against
C. marshalli. On the contrary, Groussier, Tabone, Coste, and Rizzo (2006) reported good parasitism
of C. marshalli by Trichogramma spp., especially T. chilonis Ishii. In view of such positive results
and given that many <i>Trichogramma</i> species are commonly used as biocontrol agents of various
lepidopteran pests (Babendreier, Kuske, and Bigler 2003), the potential of other species different
from <i>T. brassicae</i> and their role as to host acceptance and suitability deserve further investigation.
Conversely, although the mature larvae of C. marshalli were considerably undersized
compared to the recorded host species of E. larvarum, including G. mellonella (Cerretti and
Tschorsnig 2010), successful parasitism of the lycaenid occurred in the laboratory, but at very low
rates (Table 1). Cacyreus marshalli larvae were poorly accepted by female flies, possibly due to
different factors including their low mobility, an important cue for host acceptance by E. larvarum

and other <i>Exorista</i> species (Stireman 2002; Depalo, Dindo, and Eizaguirre 2012). Suitability to E.
larvarum was also lower for C. marshalli compared to G. mellonella (Table 1) and, similarly to
parasitoid size and development times (reported in Table 2), it was probably affected by host size
In this regard, Baronio, Dindo, Campadelli, and Sighinolfi (2002) showed that the development and
size of E. larvarum were affected both by the amount of food and the vital space available to
larvae. Independently of puparium formation, most of the accepted C. marshalli larvae died, at a not
significantly different rate compared to G. mellonella, while the non-accepted ones pupated and
emerged as adults (Table 1). As the number of flies obtained from the Geranium Bronze was very
low, the puparium-to-adult development times were not subjected to statistical analysis. These
times (means \pm SE) were 8.9 \pm 0.2 and 9.5 \pm 0.5 days for the flies respectively obtained from G .
mellonella (n= 36) and C. marshalli (n=2), that is slightly longer in the latter host species.
All G. mellonella and 52% C. marshalli pupae were accepted by B. tibialis females.
Separate 2x2 contingency tables were used to test the independence of host species and number of
accepted and suitable pupae. The difference in host acceptance was significant (Yates corrected $\chi 2$
=13.27; df=1; P= 0.0003), but the effect of pupal size on this parameter is doubtful since the
recorded hosts of B. tibialis also include species of similar sizes as C. marshalli (Noyes 2012). The
percentage of suitable pupae found for C. marshalli (=53.8) was lower compared to that recorded
for G. mellonella (= 84), but the difference was not significant (Yates corrected χ 2 =2.61; df=1; P=
0.11). All the accepted pupae of both host species died, whether successfully parasitized or not,
while the non-accepted ones (only C. marshalli) emerged as adults. All B. tibialis which emerged
from C. marshalli (=7) were males and, as expected, they were significantly undersized
(weight=3.8±0.3 mg) compared to those (=15) obtained from <i>G. mellonella</i> (weight=8.4±0.1 mg)
(one-way ANOVA, F= 340.96, df =1, 20; P= 0.0000001). Male development times in <i>C. marshalli</i>
(=14.9 \pm 0.4 days) and G. mellonella (=15.7 \pm 0.3 days) were not significantly different (Kruskall-
Wallis test H= 1.46: N= 22: P= 0.23). The mean weights and development times of the six R

134	tibialis females that emerged from G. mellonella pupae were 13.8±0.1 mg and 15.7±0.2 days,
135	respectively.
136	The results obtained in the present study suggest that both E. larvarum and B. tibialis have
137	potential to adapt to C. marshalli in nature. Their contribution to biological control appeared,
138	however, to be especially related to host mortality due to incomplete parasitoid development and
139	did not seem to be sufficient to decrease the populations of the target insect pest. A more effective
140	strategy could be represented by classical biological control, with detection and importation of
141	parasitoids of the Geranium Bronze from South Africa to the countries of introduction. A rather
142	recent example of promising classical biological control in Italy is represented by the importation of
143	Torymus sinensis Kamijo against Dryocosmus kuriphilus Yasumatsu (Quacchia, Moriya, Bosio,
144	Scapin, and Alma 2008). This strategy is not however to be considered as alternative, but rather
145	complementary to the exploitation of indigenous natural enemies. The parasitism of invading novel
146	hosts by native natural enemies has already been reported for a number of various alien insect pests,
147	including D. kuriphilus itself (Quacchia et al., 2012), and Tuta absoluta (Meyrick) (Ferracini et al.
148	2012). In this context, indigenous natural enemies, including <i>E. larvarum</i> and <i>B. tibialis</i> , may also
149	play a role in the control of the Geranium Bronze in the countries of introduction.
150	Acknowledgments
151	This research was conducted with the support of the Italian Ministry of Education and Research (PRIN 2008:
152	"New associations between native parasitoids and exotic insects recently introduced in Italy").
153	
154	
155	References
156	
157	Babendreier, D., Kuske, S., and Bigler, F. (2003), 'Non-target Host Acceptance and Parasitism by
158	Trichogramma brassicae Bezdenko (Hymenoptera: Trichogrammatidae) in the Laboratory',
159	Biological Control, 26, 128-138.

160	
161	Baronio, P., Dindo, M.L., Campadelli, G., and Sighinolfi, L. (2002), 'Intraspecific Weight
162	Variability in Tachinid Flies: Response of <i>Pseudogonia rufifrons</i> to two Host Species with
163	Different Size and of Exorista larvarum to Variations in Vital Space', Bulletin of Insectology, 55,
164	55-61.
165	
166	Cerretti, P., and Tschorsnig, H.P. (2010), 'Annotated Host Catalogue for the Tachinidae (Diptera)
167	of Italy', Stuttgarter Beiträge zur Naturkunde, Neue Serie, 3, 305-340.
168	
169	Clark, G.C., and Dickson, C.G.C. (1971), Life Histories of the South African Lycaenid Butterflies,
170	Cape Town, South Africa: Purnell.
171	
172	Depalo, L., Dindo, M.L., and Eizaguirre, M. (2012), 'Host Location and Suitability of the
173	Armyworm Larvae of Mythimna unipuncta for the Tachinid Parasitoid Exorista larvarum',
174	BioControl, 57, 471-479.
175	
176	Dindo, M.L., Farneti, R., and Baronio, P. (2001), 'Rearing of the Pupal Parasitoid Brachymeria
177	intermedia on Veal Homogenate-Based Artificial Diets: Evaluation of Factors Affecting
178	Effectiveness', Entomologia Experimentalis et Applicata, 100, 53-61.
179	
180	Dindo, M.L., Marchetti, E., and Baronio, P. (2007), 'In Vitro Rearing of the Parasitoid Exorista
181	larvarum (L.) (Diptera: Tachinidae) from Eggs Laid out of Host', Journal of Economic
182	Entomology, 100, 26-30.
183	
184	Fauna Europaea, www.faunaeur.org.
185	

186	Ferracini, C., Ingegno, B.L., Navone, P., Ferrari, E., Mosti, M., Tavella, L., and Alma, A. (2012),
187	'Adaptation of Indigenous Larval Parasitoids to <i>Tuta absoluta</i> (Lepidoptera: Gelechiidae) in Italy',
188	Journal of Economic Entomology, 105, 1311-1319.
189	
190	Groussier, G., Tabone, E., Coste, E., and Rizzo, B. (2006), 'Mise en Place d'une Lutte Biologique
191	contre Cacyreus marshalli Butler, à l'Aide des Trichogrammes', in 3° Conférence Internationale
192	sur les Moyens de Lutte Alternatifs de Protection des Cultures, Lille (FR), 13-15 mars 2006, AFPF
193	pp. 626-634.
194	
195	Mellini, E., Gardenghi, G., and Coulibaly, A.K. (1994), 'Caratteristiche Anatomiche ed Istologiche
196	dell'Apparato Genitale Femminile di Exorista larvarum L., Parassitoide Deponente Uova
197	Macrotipiche sull'Ospite. (Studi sui Ditteri Tachinidi. LIX Contributo)', Bollettino dell'Istituto di
198	Entomologia "Guido Grandi" dell'Università di Bologna, 48, 45-58.
199	
200	Noyes, J.S. (2012), Universal Chalcidoidea Database. World Wide Web electronic publication.
201	http://www.nhm.ac.uk/chalcidoids.
202	
203	Quacchia, A., Ferracini, C., Bonelli, S., Balletto, E., and Alma, A. (2008), 'Can the Geranium
204	Bronze, Cacyreus marshalli, Become a Threat for European Biodiversity?', Biodiversity and
205	Conservation, 17, 1429-1437.
206	
207	Quacchia, A., Moriya, S., Bosio, G., Scapin, I., and Alma, A. (2008), 'Rearing, Release and
208	Settlement Prospect in Italy of <i>Torymus sinensis</i> , the biological control agent of the chestnut gall
209	wasp Dryocosmus kuriphilus', BioControl, 53, 829-839.
210	

211	Quacchia, A., Ferracini, C., Nicholls, J.A., Piazza, E., Saladini, M.A., Tota, F., Melika, G., and
212	Alma, A. (2012), 'Chalcid Parasitoid Community Associated with the Invading Pest, <i>Dryocosmus</i>
213	kuriphilus in North-Western Italy', Insect Conservation and Diversity, doi: 10.1111/j.1752-
214	4598.2012.00192.x.
215	
216	Sarto i Monteys, V., and Gabarra, R. (1998), 'Un Himenòpter Parasitoid d'Ous del Barrinador del
217	Gerani', Catalunya Rural y Agrària, 46, 24-26.
218	
219	Stireman, J.O. (2002), 'Host Location and Selection Cues in a Generalist Tachinid Parasitoid',
220	Entomologia Experimentalis et Applicata, 103, 23–34.
221	
222	Suffert, M. (2012), Re-evaluation of EPPO-listed pests, EPPO Bulletin, 42, 181-184.
223	
224	Vicidomini, S., and Dindo, M.L. (2006), 'Prima Segnalazione Europea di Cacyreus marshalli da
225	Parte di un Tachinide Indigeno', Annali del Museo Civico di Rovereto, 22, 21
226	
227	

rigure captions
Table 1. Acceptance and suitability of Cacyreus marshalli and Galleria mellonella by Exorista
larvarum: the 2x2 contingency tables for testing the independence of host species and number of
A) accepted larvae, B) suitable larvae (= accepted larvae from which puparia formed), C) dead
larvae (on accepted larvae); D) puparia which let a fly adult emerge. Yates corrected χ2 values are
given (sample size < 100). Original number of larvae = 60 per species.
Table 2. Acceptance and suitability of Cacyreus marshalli vs. Galleria mellonella by Exorista
larvarum: parasitoid eggs per accepted larva, puparial weights and development times from egg to
puparium. Means±SE. Number of replicates (n) is given in parenthesis above the means. Means in a
column followed by the same letter are not significantly different, $P > 0.05$; Kruskall-Wallis test.

TABLE 1

Parameter		Host species			
		Galleria	Cacyreus	χ2 (df=1)	P
		mellonella	marshalli		
	Accepted	60 (100)	36 (60)		0.00001*
	larvae (%)	00 (100)	30 (00)		
A)	Non-			27.55	
	accepted	0 (0)	24 (40)		
	larvae (%)				
	Suitable	16 (76 7)	13 (36.1)	13.96	0.0002*
D)	larvae (%)	46 (76.7)	13 (30.1)		
B)	Unsuitable	14 (23.3)	23 (63.9)		
	larvae (%)				
	Dead larvae	58 (96.7)	30 (83.3)	3.64	0.06
C)	(%)				
	Live larvae	2 (3.3)	6 (16.7)		
	(%)	2 (3.3)	0 (10.7)		

TABLE 2

Host species	Eggs/accepted	Puparial weight	Time from egg to	
	larva (no.)	(mg)	puparium (days)	
Galleria mellonella	(60)	(72)	(72)	
	38.6±3.6a	30.2±1.6a	8.1±0.1a	
Cacyreus marshalli	(36)	(13)	(13)	
	2.4±0.3b	9.1±0.9b	8.2±0.6a	
Н	64.9	28.4	0.15	
N	96	85	85	
P	0.00001	0.0001	0.69	