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45b

With data samples collected with the BESIII detector operating at the BEPCII storage ring at center-of-
mass energies from 4.009 to 4.420 GeV, the process e™e™ — yX(3872) is observed for the first time with a
statistical significance of 6.3¢. The measured mass of the X(3872) is (3871.9 + 0.7, + 0.2,,) MeV/c?,
in agreement with previous measurements. Measurements of the product of the cross section olete™ —
yX(3872)] and the branching fraction B[X(3872) — n"z~J/y] at center-of-mass energies 4.009, 4.229,
4.260, and 4.360 GeV are reported. Our measurements are consistent with expectations for the radiative
transition process Y (4260) — yX(3872).
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The X(3872) was first observed 10 years ago by Belle
[1] in B* — K*ztn~J/y decays; it was subsequently
confirmed by several other experiments [2—-4]. Since its
discovery, the X(3872) has stimulated considerable inter-
est. Both BABAR and Belle observed the X(3872) — yJ/y
decay process, which ensures that the X(3872) is a C-even
state [5,6]. The CDF and LHCb experiments determined
the spin parity of the X(3872) to be J¥ = 1% [7,8], and
CDF also found that the z*z~ system was dominated by
the p°(770) resonance [9]. Because of the proximity of its
mass to the DD* mass threshold, the X(3872) has been
interpreted as a candidate for a hadronic molecule or a
tetraquark state [10]. Until now, the X(3872) was only
observed in B meson decays and hadron collisions. Since
the X(3872) is a 1™+ state, it should be able to be produced
through the radiative transition of an excited vector
charmonium or charmoniumlike states such as a y ora Y.

The puzzling Y(4260) [11] and Y(4360) [12] vector
charmoniumlike states have only been observed in final
states containing a charmonium meson and a z* 7~ pair, in
contrast to the y(4040) and w(4160) which dominantly
couple to open charm final states [13]. The observation
of the charged charmoniumlike state Z.(3900) [11,14],
which is clearly not a conventional charmonium state and
is produced recoiling against a z at the c.m. energy of
4.26 GeV, indicates that these two “exotic” states seem to
couple with each other. To better understand their nature, an
investigation of other decay processes, such as the radiative
transition of the Y(4260) and Y(4360) to lower lying
charmonium or charmoniumlike states is important [15].
The process Y (4260)/Y(4360) — yX(3872) is unique due
to the exotic feature of both the X(3872) and the Y (4260)
or Y(4360) resonances.

In this Letter, we report the first observation of the
process ete” — yX(3872) - ynta J/w, J/y - £1E
("¢~ =eTe or puT) in an analysis of data collected
with the BESIII detector operating at the BEPCII storage
ring [16] at ete™ center-of-mass (c.m.) energies from
/s =4.009 GeV to 4.420 GeV [17]. The c.m. energy is
measured with a precision of 1.0 MeV [18]. A GEANT4-
based Monte Carlo (MC) simulation software package
that includes the geometric description of the BESIII
detector and the detector response is used to optimize
the event selection criteria, determine the detection
efficiency, and estimate backgrounds. For the signal
process, we generate e e~ — yX(3872), with X(3872) —
#tn~J [y ateach c.m. energy. Initial state radiation (ISR) is
simulated with Kkmc [19], where the Born cross section
of efe” — yX(3872) between 3.90 and 4.42 GeV is
assumed to follow the eTe™ — xtn~J/y line shape
[11]. The maximum ISR photon energy corresponds to
the 3.9 GeV/c? production threshold of the yX(3872)
system. We generate X(3872) — p°J/y MC events with
p? — xt 7~ to model the 77z~ system and determine the
detection efficiency [9]. Here the p° and J/y are assumed

to be in a relative S wave. Final state radiation (FSR) is
handled with pHOTOS [20].

Events with four good charged tracks with net charge
zero are selected as described in Ref. [14]. Showers
identified as photon candidates must satisfy fiducial and
shower quality as well as timing requirement as described
in Ref. [21]. When there is more than one photon candidate,
the one with the largest energy is regarded as the radiative
photon. In order to improve the momentum and energy
resolution and reduce the background, the event is sub-
jected to a four-constraint (4C) kinematic fit to the
hypothesis eTe™ — yztn~ [T, that constrains total four
momentum of the measured particles to be equal to the
initial four-momentum of the colliding beams. The ¥ of the
kinematic fit is required to be less than 60. To reject
radiative Bhabha and radiative dimuon (ye®e™ /yutu™)
backgrounds associated with photon conversion, the
cosine of the opening angle of the pion candidates, is
required to be less than 0.98. This restriction removes
almost all the background events with an efficiency loss for
signal that is less than 1%. Background from e*e™ —
nJ/y with n = yata~/atn7° is rejected by requiring
M(yz*n~) > 0.6 GeV/c?, and its remaining contribution
is negligible [21,22].

After imposing the above requirements, there are clear
J/w peaks in the #T#~ invariant mass distribution at each
c.m. energy data set. The J/y mass window to select signal
events is 3.08 < M(£+£7) < 3.12 GeV/c? (mass resolu-
tion is 6 MeV/ c?), while the sidebands are 3.0 <
M(£+¢7) <3.06 and 3.14 < M(£7¢7) < 3.20 GeV/c?,
which is three times as wide as the signal region.

The remaining backgrounds mainly come from eTe™ —
(rise) 7 Iy, ')y, and ntn T a2 /ntnatny.
MC simulation based on available measurements for
(yisg)7 7~ J/w [11], and cross sections measured from
the same data samples for n'J/w (f = yatn /atn 1)
shows a smooth, nonpeaking M (z"z~J/y) mass distribu-
tion in the X(3872) signal region, and indicates that
background from e*e~ — ata xt 7 (2°/y) is small and
can be estimated from the J/w mass sideband data.
Figure 1 shows the z"z~J/y invariant mass distributions
at /s =4.009, 4.229, 4.260, and 4.360 GeV. Here
M(zTnJ/w) = Mzt ¢T¢7) — M) + m(J/y)
is used to reduce the resolution effect of the lepton
pairs, and m(J/y) is the nominal mass of J/y [13].
There is a huge e"e™ — yry(3686) signal at each c.m.
energy data set. In addition, there is a narrow peak around
3872 MeV/c? in the 4.229 and 4.260 GeV data samples,
while there is no significant signal at the other energies.

The M(z"z~J/y) distribution (summed over all c.m.
energy data sets) is fitted to determine the mass and
X(3872) yield. We use a MC simulated signal histogram
convolved with a Gaussian function which represents the
resolution difference between data and MC simulation as
the signal shape, and a linear function for the background.
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FIG. 1 (color online). The "z~ J/y invariant mass distribu-
tions at /s = 4.009 (top left), 4.229 (top right), 4.260 (bottom
left), and 4.360 GeV (bottom right). Dots with error bars are
data, the green shaded histograms are normalized J/y sideband
events.

The ISR w(3686) signal is used to calibrate the absolute
mass scale and to extract the resolution difference between
data and MC simulation. The fit to the y(3686) results
in a mass shift of y,,3636) = —(0.34 & 0.04) MeV/c?, and
a standard deviation of the Gaussian resolution function of
o = (1.14 £ 0.07) MeV/c?. The resolution parameter of
the resolution Gaussian applied to the MC simulated signal
shape is fixed at 1.14 MeV/c? in the fit to the X(3872).
Figure 2 shows the fit result (with M[X(3872)];,,, =
3871.7 MeV/c? as input in MC simulation), which gives
,le(3872> = —(010 + 069) MCV/C2 and N[X(3872)] =
20.1+45. So, the measured mass of X(3872)
is M[X(3872)] = M[X(3872)}inpu + Hx(3872) — Hy(3686) =
(3871.9 & 0.7) MeV/c?, where the uncertainty includes
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FIG. 2 (color online).  Fit of the M (7" z~J /y) distribution with
a MC simulated histogram convolved with a Gaussian function
for signal and a linear background function. Dots with error bars
are data, the red curve shows the total fit result, while the blue
dashed curve shows the background contribution.

the statistical uncertainties from the fit and the mass
calibration. The limited statistics prevent us from measur-
ing the intrinsic width of the X(3872). From a fit with a
floating width we obtain I'[X(3872)] = (0.07)}) MeV, or
less than 2.4 MeV at the 90% confidence level (C.L.).
The statistical significance of X(3872) is 6.30, estimated
by comparing the difference of log-likelihood value
[A(—21In L) = 44.5] with and without the X (3872) signal
in the fit, and taking the change of the number of degrees of
freedom (Andf = 2) into consideration.

Figure 3 shows the angular distribution of the
radiative photon in the eTe™ c.m. frame and the 7'z~
invariant mass distribution, for the X(3872) signal events
(3.86 < M(ntn~J/y) < 3.88 GeV/c?) and normalized
sideband events (3.83 < M(z*z~J/y) < 3.86 0r3.88 <
M(ztnJ/y) < 391 GeV/c?). The data agree with MC
simulation assuming a pure FEl-transition between the
Y (4260) and the X(3872) for the polar angle distribution,
and the M(z*z~) distribution is consistent with the
CDF observation [9] of a dominant p°(770) resonance
contribution.

The product of the Born-order cross section times
the branching fraction of X(3872) - zfa J/y is
calculated using o®[eTe™ — yX(3872)] x B[X(3872) —
rtaJ/w] = N/ L (1 + 8)eB, where N° is the num-
ber of observed events obtained from the fit to the
M(ztz~J/w) distribution, L, is integrated luminosity,
€ is the detection efficiency, B is the branching fraction of
J/w — £7¢7 and (1 4 §) is the radiative correction factor,
which depends on the line shape of ete™ — yX(3872).
Since we observe large cross sections at /s = 4.229 and
4.260 GeV, we assume the eTe™ — yX(3872) cross section
follows that of ete™ — z7zn~J/y over the full energy
range of interest and use the ete™ — n"x~J/y line-shape
from published results [11] as input in the calculation of the
efficiency and radiative correction factor. The results of
these studies at different energies (/s = 4.009, 4.229,
4.260, and 4.360 GeV) are listed in Table I. For the
4.009 and 4.360 GeV data, where the X(3872) signal is
not statistically significant, upper limits for production
yield at 90% C.L. are also given. As a validation, the
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FIG. 3 (color online). The cosé distribution of the radiative
photon in e*e™ c.m. frame (left) and the M (z*x~) distribution
(right). Dots with error bars are data in the X(3872) signal region,
the green shaded histograms are normalized X(3872) sideband
events, and the red open histogram in the left panel is the result
from a MC simulation that assumes a pure E1 transition.
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TABLE . The number of X(3872) events (N°b%), radiative correction factor (1 + &), detection efficiency (¢), measured Born cross
section o®[ete™ — yX(3872)] times B[X(3872) — nta~J/w] (6 - B, where the first uncertainties are statistical and the second

systematic), measured ISR y(3686) cross section (™R

, where the first uncertainties are statistical and the second systematic), and

predicted ISR (3686) cross section (¢FP with uncertainties from resonant parameters) from QED [23] using resonant parameters in
PDG [13] as input at different energies. For 4.009 and 4.360 GeV, the upper limits of observed events (N"P) and cross section times

branching fraction (6" - 5) are given at the 90% C.L.

Vs (GeV) Nobs NP e (%) 146 o8 - B (pb) " - B (pb) o™R (pb) %P (pb)
4.009 0.0£0.5 <14 28.7 0.861 0.00 £ 0.04 £ 0.01 <0.11 719 £30 £ 47 735+ 13
4.229 9.6 £3.1 e 344 0.799 0.27 £0.09 £0.02 e 404 £ 14 £ 27 408 £7
4.260 87+£3.0 33.1 0.814 0.33+£0.12£0.02 378 £ 16 £25 382+7
4.360 1.7£14 <5.1 232 1.023 0.11 +£0.09 £ 0.01 < 0.36 308 £ 17 £20 316 £5

measured ISR y/(3686) cross section at each energy,
together with the corresponding QED prediction [23] are
also listed in Table I, where there is good agreement.

We fit the energy-dependent cross section with
a Y(4260) resonance (parameters fixed to PDG [13]
values), a linear continuum, or a El-transition phase space
(x E;) term. Figure 4 shows all the fit results, which give
y*/ndf =0.49/3 (C.L. = 92%), 5.5/2 (C.L. = 6%), and
8.7/3 (C.L. = 3%) for a Y(4260) resonance, linear con-
tinuum, and phase space distribution, respectively. The
Y (4260) resonance describes the data better than the other
two options.

The systematic uncertainty in the X(3872) mass meas-
urement include those from the absolute mass scale and the
parametrization of the X(3872) signal and background
shapes. Since we use ISR y(3686) events to calibrate the
fit, the systematic uncertainty from the mass scale is
estimated to be 0.1 MeV/c? (including statistical uncer-
tainties of the MC samples used in the calibration pro-
cedure). In the X (3872) mass fit, a MC simulated histogram
with a zero width is used to parameterize the signal shape.
We replace this histogram with a simulated X(3872)

0.6
—4— data
0.5 — Y(4260)
----- Phase Space

0.4 --- Linear
0.3

0.2

-
-
-

0.1

6B(yX(3872) —»yr'n /) (pb)

Pt

4 4.1 4.2 4.3 4.4 4.5

FIG. 4 (color online). The fit to o®[eTe™ — yX(3872)] x
B[X(3872) - zn"z~J/y] with a ¥Y(4260) resonance (red solid
curve), a linear continuum (blue dashed curve), or a E'1-transition
phase space term (red dotted-dashed curve). Dots with error bars
are data.

resonance with a width of 1.2 MeV [13] (the upper limit
of the X(3872) width at 90% C.L.) and repeat the fit; the
change in mass for this new fit is taken as the systematic
uncertainty due to the signal parametrization, which is
0.1 MeV/c?. Likewise, changes measured with a back-
ground shape from MC-simulated (yisr)z"72J/y and
n'J/w events indicate a systematic uncertainty associated
with the background shape of 0.1 MeV/c? in mass. By
summing the contributions from all sources assuming that
they are independent, we obtain a total systematic uncer-
tainty of 0.2 MeV/c? for the X(3872) mass measurement.

The systematic uncertainty in the cross section measure-
ment mainly comes from efficiencies, signal parametriza-
tion, background shape, radiative correction, and luminosity
measurement. The luminosity is measured using Bhabha
events, with an uncertainty of 1.0%. The uncertainty of
tracking efficiency for high momenta leptons is 1.0% per
track. Pions have momentum ranges from 0.1 to 0.6 GeV/c
at /s = 4.260 GeV, and with a small change with different
c.m. energies. The momentum-weighted uncertainty is also
estimated to be 1.0% per track. In this analysis, the radiative
photons have energies that several hundreds of MeV.
Studies with a sample of J/w — pr events show that the
uncertainty in the reconstruction efficiency for photons in
this energy range is less than 1.0%.

The number of X(3872) signal events is obtained
through a fit to the M(ztz~J/y) distribution. In the
nominal fit, a simulated histogram with zero width
convolved with a Gaussian function is used to parameterize
the X(3872) signal. When a MC-simulated signal shape
with I'[X(3872)] = 1.2 MeV [13] is used, the difference in
the X(3872) signal yield, is 4.0%; this is taken as the
systematic uncertainty due to signal parametrization.
Changing the background shape from a linear term to
the expected shape from the dominant background source
7' J /w results in a 0.2% difference in the X(3872) yields.
The ete™ — ntx~J/y line shape affects the radiative
correction factor and detection efficiency. Using the mea-
surements from BESIII, Belle, and BABAR [11] as inputs,
the maximum difference in (1 + 6)e is 0.6%, which is taken
as the systematic uncertainty. The uncertainty from the
kinematic fit is estimated with the very pure ISR y(3686)
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sample, and the efficiency difference between data and MC
simulation is found to be 1.5%. The systematic uncertainty
for the J/y mass window is also estimated using the ISR
w(3686) events, and the efficiency difference between data
and MC simulation is found to be (0.8 +0.8)%. We
conservatively take 1.6% as the systematic uncertainty
due to J/y mass window. The uncertainty in the branching
fraction of J/w — £7¢~ is taken from Ref. [13]. The
efficiencies for other selection criteria, the trigger simu-
lation, the event start time determination, and the final-
state-radiation simulation are quite high (> 99%), and their
systematic uncertainties are estimated to be less than 1%.
Assuming all the systematic uncertainty sources are inde-
pendent, we add all of them in quadrature, and the total
systematic uncertainty is estimated to be 6.5%.

In summary, we report the first observation of the
process ete” — yX(3872). The measured mass of the
X(3872), M[X(3872)] = (3871.9 +0.7 £ 0.2) MeV/c?,
agrees well with previous measurements [13]. The pro-
duction rate 6®[eTe™ — yX(3872)]|B[X(3872) = ntn~J /y]
is measured to be (0.27 £0.09 £0.02) pb at /s =
4.229 GeV, (0.33 +0.12 £+ 0.02) pb at \/s=4.260GeV,
less than 0.11 pb at /s = 4.009 GeV, and less than 0.36 pb
at /s =4.360 GeV at the 90% C.L. Here the first
uncertainties are statistical and the second systematic.
(For the upper limits, the efficiency has been lowered by
a factor of (1 — o).

These observations strongly support the existence of the
radiative transition process Y(4260) — yX(3872). While
the measured cross sections at around 4.260 GeV are an
order of magnitude higher than the NRQCD calculation of
continuum production [24], the resonant contribution with
Y (4260) line shape provides a better description of the data
than either a linear continuum or a El-transition phase
space distribution. The Y(4260) — yX(3872) could be
another previously unseen decay mode of the Y(4260)
resonance. This, together with the previously reported
transitions to the charged charmoniumlike state
Z.(3900) (which is manifestly exotic) [11,14], suggest
that there might be some commonality in the nature of these
three different states. This may be a clue that can facilitate a
better theoretical interpretation of them. As an example, the
measured relative large yX(3872) production rate near
4.260 GeV is similar to the model dependent calculations
in Ref. [15] where the Y (4260) is taken as a DD molecule.

Combining with the ete™ — z7n~J/y cross section
measurement at /s = 4.260 GeV from BESII [14], we
obtain o8[ete” — yX(3872)|B[X(3872) = xtaJ/y]/
ol(ete - ntnJ/y) = (52+£19)x 1073, under the
assumption that the X(3872) is produced only from
the Y(4260) radiative decays and the z*z~J/y is only
from the Y(4260) hadronic decays. If we take
B[X(3872)—ntnJ/y]|=5% [25], then R=(cP[eTe™ —
¥X(3872)]/68(ete”—atn"J/w))=0.1, or equivalently,
(B[Y(4260) —>yX(3872)]/B(Y(4260) >zt z~J/w))=0.1.
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