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Magma-poor rifted margins are being increasingly recognized in present-day Atlantic-type systems.
However, findings of fossil areas floored by exhumed mantle or hyper-extended crust are comparatively
rare within orogenic belts that were originated through the inversion of pre-existing rifted margins. This
discrepancy may be due to the common reactivation of lithological contacts during subduction/orogeny,
potentially masking pre-orogenic relationships, and, most importantly, to the frequent lack of a pre-
orogenic layer-cake architecture, hindering retro-deformation of multiply deformed tectonic units. This
study outlines a methodology to detect sections of magma-poor, hyper-extended rifted margins without
a layer-cake architecture in multiply deformed/metamorphosed terrains. This approach is defined by com-
parison to well studied examples of fossil analogues preserved in weakly deformed parts of Alpine orogens.
In the latter domains, continental basement and hydrated peridotites were exhumed at the basin floor dur-
ing Jurassic rifting along long-offset detachment systems. Extensional geometries locally resulted in tecton-
ic sampling of laterally discontinuous slivers of allochthonous continental basement and pre-rift sediments
from the hangingwall blocks. Lithostratigraphic associations consisting of continental basement rocks direct-
ly juxtaposed with syn- to post-rift meta-sediments and/or serpentinized subcontinental mantle are widespread
within sections of Alpine-type orogenic belts that underwent high- to ultra-high-pressure metamorphism.
However, similar associations may arise from a variety of processes other than rift-related lithospheric thinning
in magma-poor environments, including subduction mélange dynamics or deposition of sedimentary mélanges
along convergent/divergent margins. The partial preservation of rift-related lithostratigraphic associations may
still be assessed, despite the lack of biostratigraphic evidence, by (1) the consistency of the lithostratigraphic archi-
tecture over large areas, despite pervasive Alpine deformation, which rules out chaotic mixing during subduction/
exhumation, (2) the presence of clasts of basement rocks in the neighboringmeta-sediments, indicating the orig-
inal proximity of the different lithologies, (3) evidence of brittle deformation in continental basement and ultra-
mafic rocks pre-dating Alpinemetamorphism, indicating that they were juxtaposed by fault activity prior to the
deposition of post-rift sediments, and (4) the similar Alpine tectono-metamorphic evolution of ophiolites, con-
tinental basement and meta-sediments.
A re-assessment of basement–cover relationships in the North-Western Alps following this approach, combined
with published studies on exhumedmantle domains sampled in the rest of theWestern Alps, indicates that sev-
eral tectono-metamorphic units from themost deformed/metamorphosedpart of the belt, between the Canavese
Line and the Penninic Front, sample hyper-extended lithosphere related to the Jurassic opening of the Western
Tethys. Relative platemotion during Cretaceous–Tertiary basin inversion was largely accommodated at the tran-
sition between areas flooredby hyper-extended crust or hydrated subcontinentalmantle and domains consisting
of thicker continental crust. As a result, distal margins were preferentially subducted, whereas the proximal
domains and the Briançonnais paleo-high underwent relatively minor deformation and metamorphism. The
high-pressure Alpine tectono-metamorphic units were probably detached from the downgoing lithosphere
along a hydration front that is typically observed in present-day distal margins. The recognition of preserved
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pre-Alpine relationships between continental basement, post-rift sediments and/or serpentinized ultramafic
rocks calls for a re-assessment of the relative role of subduction and rifting dynamics in establishing the
present-day orogen architecture.

© 2014 Elsevier B.V. All rights reserved.
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1. Introduction

The current knowledge of magma-poor rifted margin relies heavily
on research carried out in the last 50 years in present-day systems,
chiefly along the Atlantic Iberia–Newfoundland margins, and in fossil
analogs, mainly within the Alpine Tethys realm of Western Europe
(e.g. Elter, 1971, 1972; Lombardo and Pognante, 1982; Lemoine et al.,
1987; Lagabrielle and Cannat, 1990; see Bernoulli and Jenkyns, 2009;
Lagabrielle, 2009; Manatschal and Müntener, 2009; Péron-Pinvidic
and Manatschal, 2009; Mohn et al., 2010 for recent reviews). Studies
conducted since the 1960s in little deformed/metamorphosed
parts of the Alps–Apennines–Corsica orogenic system provided the
earliest accounts of the lithological composition and rift-related archi-
tecture of the Jurassic Tethys ocean (see Lagabrielle, 2009 for a historical
perspective). Pre-orogenic contacts between exhumed subcontinental
mantle or rift-related gabbros and the overlying volcano-sedimentary
cover sequenceswere first detected in the Ligurian units of the northern
Apennines (e.g. Passerini, 1965; Elter, 1972b). Documented sedimenta-
ry cover sequences typically consisted of pelagic sediments, locally
intercalated with ophiolitic breccias hosting clasts originated from
the underlying serpentinized peridotites and gabbros. Similar
lithostratigraphic associations were later recognized in the Piemonte
units of the Western Alps, despite pervasive Alpine deformation and
metamorphism at blueschist to eclogite facies conditions (e.g. Bearth,
1967; Dal Piaz, 1969; Lemoine et al., 1970; Dal Piaz, 1971; Elter, 1971;
Lagabrielle et al., 1982; Tricart and Lemoine, 1983; Lemoine and Polino,
1984: Deville et al., 1992), indicating that pre-orogenic relationships
could be preserved, at least locally, throughout subduction/exhumation.

Subsequent drilling offshore Iberia and field studies in the Eastern
Swiss Alps during the 90s helped refining this early picture, showing

that rift-related hyper-extensionmay result in lithostratigraphic associ-
ations displaying transitional features between the embryonic oceanic
crust previously described from the Alpine Tethys and typical continen-
tal crust, where continental basement is directly overlain by pre-, syn-
and post-rift sediments (Boillot et al., 1987; Whitmarsh et al., 2001;
Wilson et al., 2001; Manatschal, 2004; Tucholke and Sibuet, 2007).
These intermediate lithological associations, which are typical of
domains floored by severely extended continental crust and subconti-
nental mantle, can be up to 200 km wide along the Iberia–Newfound-
land conjugate margins (e.g. Péron-Pinvidic and Manatschal, 2009;
Fig. 1). Hyper-extended crust, located outboard relative to the proximal
margin, consists of continental basement with b10 km thick crust,
directly onlapped by syn- to post-tectonic sediments or by submarine
extrusive magmatic rocks. As the residual continental crust thins out
oceanward, the hyper-extended crust grades into a domain where
lower crustal rocks and subcontinental mantle can be exhumed at the
seafloor by downward-concave long-offset detachment faults. In this
area serpentinized mantle is locally overlain by slivers of continent-
derived blocks, referred to as ‘extensional allochthons’, often consisting
of upper crustal rocks and/or pre-tectonic sediments, originated from
the stretched and fragmented hanging wall. This kind of margin archi-
tecture is being increasingly recognized in present-day magma-poor
rifted margins, including the eastern Indian margin (Nemčok et al.,
2012), the South Atlantic (Unternehr et al., 2010), the southern
Australian margin (Espurt et al., 2012) and the late Jurassic to lower
Cretaceous Møre and Vøring margins, in the North Atlantic
(Osmundsen and Ebbing, 2008). Fossil hyper-extended crust and litho-
sphere characterized by extensional allochthons related to Jurassic
rifting have also been extensively detected in sections of Alpine moun-
tain belts that were only marginally affected by orogeny-related
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deformation and metamorphism (e.g. Froitzheim and Eberli, 1990;
Florineth and Froitzheim, 1994; Molli, 1996; Durand-Delga et al.,
1997; Manatschal, 2004; Masini et al., 2011; Mohn et al., 2012).

Notably, the high-pressure parts of several Alpine-type orogenic
belts also host tectono-metamorphic units with lithological associations
consisting of laterally discontinuous slivers of Paleozoic continental
basement juxtaposed against Jurassic meta-ophiolites and/or post-rift
meta-sedimentary rocks of presumed Jurassic to Cretaceous age. In the
North-Western Alps, these lithological associations have been ascribed
alternatively to multiple reactivation of subduction/exhumation-
related shear zones, juxtaposing continental and oceanic rocks
(e.g. Ballèvre and Merle, 1993; Lister and Forster, 2009), to pre-
orogenic rift-related extensional tectonics (e.g. Dal Piaz, 1999;
Beltrando et al., 2010a, 2012), or to chaotic mixing of originally un-
related rock types within a subduction channel (e.g. Polino et al.,
1990; Gerya et al., 2002). According to the latter view, hydration
of the mantle wedge lithosphere overlying a subducting plate
may feed a buoyancy-driven return flow towards the surface,
with different rock types from the downgoing lithosphere being
entrained in the newly formed low-viscosity channel (Gerya
et al., 2002).

Alternative processes that may lead to similar lithostratigraphic
associations include deposition of sedimentary mélanges along conver-
gent or divergent margins. In the Pyrenees, large olistholiths (N1 km2)
of well-preserved peridotites are found alongside conglomerates with
clasts of shelf sediments and,more rarely, of Paleozoic continental base-
ment and rift-related gabbros embedded into debris-flow deposits
(Lagabrielle and Bodinier, 2008; Jammes et al., 2009; Clerc et al.,
2012). These formations are interpreted as Albian post-rift sediments
deposited in basins floored by exhumed subcontinental mantle, later
inverted during the Pyrenean orogeny (Fig. 2d; e.g. Lagabrielle and
Bodinier, 2008; Clerc et al., 2012). In the northern Apennines, large
slivers of continental basement, variably serpentinized mantle, gabbro
and basalt, locally preservingMiddle Jurassic early post-rift sedimentary
cover rocks, are also found as slide blocks in Cretaceous sedimentary
mélanges of the External Ligurian Units (Molli, 1996; Marroni et al.,
1998). These sedimentary units are generally interpreted as syn-
orogenic deposits related to transpressional deformation affecting the
hyper-extended margin of the Adriatic plate (Fig. 2e; e.g. Marroni et al.,
2002).

Deciphering the relative contribution of the different tectono-
sedimentary processes listed above to the shaping of (ultra-)high-
pressure tectono-metamorphic units has important implications for
constraining subduction dynamics and the mechanisms controlling
the tectonic sampling of rock units from the downgoing lithosphere

and their subsequent exhumation to the surface. This task is complicat-
ed by subduction/exhumation processes, generally reworking lithologi-
cal contacts, masking original rock textures and erasing the
biostratigraphic record. Therefore, this paper is devoted to outlining a
methodology to detect remnants ofmagma-poor hyper-extended rifted
margins lacking a layer-cake architecture in highly deformed/metamor-
phosed terrains. The proposed approach is illustrated for the North-
Western Alps and Corsica case studies, where both hyper-extended
crustal domains (Ferrando et al., 2004; Gasco and Gattiglio, 2010;
Beltrando et al., 2013) and areas floored by exhumed mantle (e.g.
Lemoine et al., 1987; Dal Piaz, 1999; Beltrando et al., 2010a; Vitale
Brovarone et al., 2011a; Beltrando et al., 2012; Meresse et al., 2012;
Vitale Brovarone et al., 2013) have been identified. As similar
lithostratigraphic associations are being increasingly documented else-
where (e.g. Andersen et al., 2012; Skrzypek et al., 2012; Van Staal et al.,
2013), themethodology outlined heremight be applicable to several oro-
genic belts worldwide, with important implications for the understand-
ing of subduction/orogenic dynamics.

2. Jurassic paleogeography of the Alpine Tethys

Since the early 70s, a large number of studies were devoted to
constraining the pre-orogenic paleogeography of the area that was
later involved into the Alpine orogeny in Western Europe (see Frisch,
1979; Stampfli, 1993; Martin et al., 1994; Mohn et al., 2010; Masini
et al., 2013 for reviews). The resulting picture relies on information
combined from different parts of the Alpine belt that underwent rela-
tively minor Cretaceous to Tertiary reactivation. The generally accepted
view of the Jurassic paleogeography of this domain consists of twomain
continental masses, namely the Adriatic/African plate and the European
plate, separated by a Mesozoic oceanic basin, labeled Alpine Tethys
(Fig. 3). This basin was characterized by a main branch, known as
South Penninic (or Piemonte-Ligurian) basin, and a minor northerly
branch, the North Penninic (or Valaisan) basin (e.g. Sturani, 1975;
Trümpy, 1980; Lemoine, 1985). The two sub-basins, in the area that
later became part of the Western and Central Alps, were separated by
a continental high, the Briançonnais rise (e.g. Elter, 1972a; Trümpy,
1949; Lemoine, 1985). Several paleogeographic reconstructions suggest
that theWestern Tethys basin was highly fragmented by regional-scale
E–W trending transform faults (e.g. Beccaluva et al., 1984; Lemoine,
1985; Weissert and Bernoulli, 1985).

Subsequent studies have progressively refined this early picture,
showing that large areas of the South and North Penninic basins were
floored by partly serpentinized subcontinental mantle (e.g. Lemoine
et al., 1987; Lagabrielle and Cannat, 1990; Manatschal and Müntener,
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2009) and that thinned continental basement directly overlain by syn-
to post-rift sediments marked the transition from the proximal Adriatic
margin to the South Penninic basin (Fig. 1; e.g. Froitzheim and Eberli,
1990; Masini et al., 2011). The resulting paleogeography, largely
established in the little deformed Eastern Swiss Alps and in the
SouthernAlps (Figs. 3, 4 and 5), consists of anAdriatic/Apulian proximal
margin, preserved in the so-calledUpper Autroalpinenappes (e.g. Ortler
nappe) and in the Serie dei Laghi, grading outboard (to the west) into a
necking zone, preserved in the Middle Austroalpine nappes (Fig. 5;
Mohn et al., 2012). This domainwas followed to thewest by theAdriatic
hyper-extended domain, floored locally by exhumed crust and overlain
by extensional allochthons, now sampled in the Lower Austroalpine
nappes in the Eastern Swiss Alps [Err nappe (Froitzheim and Eberli,
1990; Manatschal and Nievergelt, 1997; Masini et al., 2011, 2013) and
Bernina nappe (Mohn et al., 2012)] and in the Canavese Zone in the
Southern Alps (Ferrando et al., 2004). The areas floored by exhumed
mantle belonging to the South Penninic basin are now best preserved
in the Forno/Malenco, Platta and Totalp units in the Eastern Swiss Alps
(Figs. 4 and 5). The Briançonnais rise, which separated the South
Penninic from the North Penninic basin (Frisch, 1979), is best preserved
in the Western Alps (Fig. 4). Remnants of the North Penninic basin are
now sampled in the Valaisan units, which locally preserve evidence of
rift-related exhumation of subcontinental mantle, as described in
the Tasna nappe, which crops out in the Engadine window (Fig. 4;
Florineth and Froitzheim, 1994; Manatschal et al., 2006). The proximal
European margin can then be seen throughout the Northern Alpine

foreland, in the so-called Helvetic–Dauphinois domain. Importantly,
the units that are now stacked in the Alpine belt should not be viewed
as originally being part of two conjugate margins, due to significant
syn-convergent strike slip kinematics, during closure of the Alpine
Tethys (e.g. Rosenbaum et al., 2002; Beltrando et al., 2010b).

3. Lithostratigraphic fingerprints of non-layer-cake, hyper-extended
crust and mantle in the Eastern Swiss Alps

The lithostratigraphic features and tectono-sedimentary evolution
of the areas floored by hyper-extended crust and exhumed mantle
have been described in detail in an extensive body of literature
(e.g. Decandia and Elter, 1972; Marroni et al., 1998; Mohn et al.,
2010; Masini et al., 2011). Only the key aspects that are relevant for
the recognition of similar domains in highly deformed/metamorphosed
nappe stacks are highlighted here and in Figs. 6 and 7. These aspects
involve the assessment of the internal coherence of multiply deformed
units, which is unlikely to arise by chaotic sedimentary and tectonic
processes, and the stratigraphic evidence suggesting original proximity
of different rock types prior to the Alpine orogeny.

3.1. Rift-related geometry: where is the (layer) cake?

The geometry of magma-poor rifted margins is not characterized by
a layer-cake configuration, since several lithological bodies terminate
laterally (Fig. 6a; see also references on present-day margins listed in
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section 1). When dealing with multiply deformed metamorphic ter-
rains, this pre-orogenic complexity needs to be taken into account. In
the well-exposed Tasna nappe, in the Eastern Swiss Alps (Figs. 4 and
6b), exhumed subcontinental mantle is directly overlain by slivers of
continental basement rocks, consisting of Paleozoic continental meta-
gabbros, which are overlain by migmatites intruded by Paleozoic gran-
itoids. Continental basement tapers out laterally, where the footwall of
the extensional system is directly onlapped by post-rift sediments,
consisting of dark shales (Florineth and Froitzheim, 1994; Manatschal
et al., 2006). Similar features are observed in areas floored by hyper-
extended crust, where exhumed continental basement can be overlain
directly by laterally discontinuous extensional allochthons of pre-rift
sediments, continental basement or a combination of the two (Fig. 6a
and c; e.g. Iberian rifted margin drilling results in Whitmarsh and
Wallace, 2001). The presence of allochthonous slivers may result in
local topography, controlling the geometry and lithological composition
of locally-sourced coarse-grained syn-tectonic sediments (Masini et al.,
2012). As a result, syn-tectonic sedimentary bodies typically display
abrupt lateral terminations and marked lithological variations, as clasts
may alternatively originate from continental basement or platform
sediments (Fig. 6a;Masini et al., 2011). In the Tasna nappe, laterally dis-
continuous lenses of syn-tectonic breccia, consisting of continental
basement clasts in a dark shale matrix, are locally found resting directly
onto exhumed continental basement (Manatschal et al., 2006).

These observations indicate that allochthonous material (hanging
wall blocks) and syn-tectonic sediments should not be used as reference
horizons when trying to assess the coherency of multiply deformed
metamorphic terrains, since their abrupt lateral terminations might be

erroneously interpreted as resulting from orogeny-related tectonics. In
this context, field mapping should rely on the detection of key planar
surfaces, which are expected to have been continuous prior to orogeny.
Inmagma-poor riftedmargins, thesemarker horizons correspond to the
top of the exhumed basement (red lines in Fig. 6) and the base of the
first post-tectonic sediments, either syn- or post-rift in age (blue and
orange lines, respectively, in Fig. 6). Therefore, the top of the exhumed
serpentinized mantle should be used as reference horizon in domains
floored by mantle lithosphere. It should be noted that this surface is
not necessarily completely flat, due to the documented presence of
post-detachment high-angle normal faults (e.g. Manatschal et al., 2011)
and/or corrugations on the detachment surface (e.g. Tucholke et al.,
1998; MacLeod et al., 2009; Masini et al., 2012). In the areas floored by
hyper-extended crust the basal marker horizon corresponds to the top
of the exhumed continental basement.

Asmentioned above, a secondmarker horizon shouldbe chosenwith-
in the post-tectonic sedimentary sequence, which seals the allochthons
and/or syn-tectonic sediments [note that post-tectonic sediments,
in the context of the evolving margin, may be both syn- and post-rift
(for terminology see Masini et al., 2013)]. The marker layer should lie
as close as possible to the base of thepost-tectonic sedimentary sequence.
The choice will depend on the availability of lithologically distinctive
horizons, which are known to be broadly synchronous over the margin
that is being investigated. In the Alpine Tethys realm a good marker
layer for thedistal Adriaticmargin and the SouthPenninic basin is provid-
ed by the early post-rift Mn-rich radiolarian cherts deposited directly on
exhumed subcontinental mantle in the late Middle to early Late Jurassic
(Figs. 7a and b; Weissert and Bernoulli, 1985). In case of marked rift-
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related topography or sediment-starved environments, younger post-rift
sediments can be found onlapping top-basement surfaces or pre- to syn-
rift lithologies residing along local highs (Fig. 6a). In this context, the sur-
face of onlap unconformity may be chosen as marker horizon.

Therefore, as apparent from this brief review, the exhumed subconti-
nental mantle and continental basement can be alternatively overlain by
continental allochthons, syn-tectonic sediments, post-tectonic sediments
and, further oceanward, also by MOR-type submarine lava flows. The
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Fig. 6. (a) Key lithostratigraphic features of hyper-extended domains as determined from studies of present-day margins and fossil examples cropping out in Eastern Switzerland. Note
that basement-cover relationships depicted in detail in the upper diagram apply to domains floored by hyper-extended crust and mantle lithosphere alike. Field examples are shown
in (b) and (c). An allochthonous sliver of Paleozoic basement resting above serpentinized sub-continental mantle is well preserved in the Tasna nappe, in the Engadine window (b).
Note the post-tectonic sediments sealing the exhumation surface and the ultramafics-ultramafic–allochthon pair. In the Bernina unit (Lower Austroalpine units, Swiss Alps) in Val da
Fein (b), continental basement is exhumed by a low-angle detachment fault and directly overlain by discontinuous slivers of Triassic dolostone. Late-syn-rift sediments seal the
exhumation surface. The marker horizons that should be used as reference horizons for mapping of multiply deformed terrains are indicated.
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most continuous reference layers correspond to the exhumation surface
of the lower plate and to the base of the post-tectonic sediments. The
distance between the two surfaces, in the Alpine Tethys realm, which
was sediment-starved during hyper-thinning and exhumation, may
reach up to 1 km, when thick packages of syn-rift sediments or thick
allochthons are present (Fig. 7a; Masini et al., 2011). At a regional scale
these marker horizons converge oceanwards, until they eventually
overlap (Fig. 6). Furthermore, in the absence of interleaving allochthons
and syn-tectonic sediments, the two surfaces overlap (Fig. 6a and b;
e.g. Molli, 1996).

3.2. Basement reworking into the overlying sediments

Stratigraphic observations from well-preserved hyper-extended
margins can further support the original proximity of extensional
allocthons in the hanging wall of detachment systems with the associat-
ed syn- to post-tectonic sediments. Supra-detachment sedimentary pro-
cesses commonly result in reworking of all crustal and mantle rocks
exposed along detachment systems, as indicated by the occurrence of
rock-fall, debris-flow or turbiditic deposits, sealing the top-basement
detachment fault plane (e.g. Alps: Masini et al., 2011, 2012; Iberia: ODP
Site 1068 in Wilson et al., 2001, see their Fig. 17). The base of these
syn-tectonic deposits generally consists of coarse and poorly-sorted
breccias. Clasts include fault rocks (cataclastic/altered basement and
indurated black gouges), continental basement rocks, pre-rift sediments
and, in the areas floored by exhumed mantle lithosphere, even mantle
rocks (Figs. 7e and f; Desmurs et al., 2001). Clast composition is generally
closely related to the lithological composition of the neighboring
exhumed basement. In the proximity of extensional allochthons, clasts
of footwall basement are progressively replaced by elements derived
from the allochthons, which provide hanging wall derived syn-tectonic
deposits (Fig. 6a; e.g. Masini et al., 2011). Further away from the
allochthons, clasts are sourced from footwall lithologies including fault
rocks (cataclastic basement, black gouges), continental or mantle base-
ment rocks (Figs. 7e and f; Desmurs et al., 2001). Downsection, these
breccias become progressively more massive and less polymictic, grad-
ing into the so-called “tectono-sedimentary breccia layer” (Manatschal
et al., 2006). This layer spans the base of the sedimentary succession
and the top of the tectonized, exhumed basement lying directly under-
neath, corresponding with the damage zone of the detachment fault.
Since the base of these syn-tectonic deposits is often deformed, the
transition between tectono-sedimentary breccia and the underlying
basement, representing the exhumed footwall of the fault (Fig. 7c), is
generally rather difficult to locate precisely and is generally better
defined as a zone rather than as a plane. Clasts of fault rocks into the
syn-tectonic sediments indicate that the fault plane is locally eroded, fur-
ther hindering the precise recognition of the base of the sedimentary
succession overlying exhumed surfaces. Following subduction/
orogeny-related deformation and metamorphism, the more oligomict
facies of the syn-tectonic sedimentary breccia may be difficult to
distinguish from the underlying exhumed basement (e.g. reconstituted
granites in Masini et al., 2011; cfr. Fig. 7c and d with Fig. 7e and f). Only
the larger clasts (or “exotic” lithologic clasts) can generally be distin-
guished in these meta-breccias, providing evidence for a sedimentary
origin of the deposit (see below).

In the Lower Austroalpine nappes of the Eastern Swiss Alps, syn-
tectonic sediments are laterally discontinuous and taper out moving
away from their source area. In this domain, coarse breccias grade
upsection into finer turbiditic deposits (interbeds of litharenites, silt-
stones and shales) overlain by pelagic shales. Onlapping relationships
with the underlying sedimentary and basement rocks indicate that
these pelagic deposits postdate local exhumation and do not show
evidence for rift-related deformation. Clasts of exhumed basement
and extensional allochthon lithologies can still be found in clastic or
pelagic post-tectonic sediments, suggesting episodic sedimentary
inputs from local highs (Fig. 7g and h). In the Alps, this latter feature is

related to the overall sediment-starved environment that characterized
the South Penninic basin until post-rift time (Wilson et al., 2001).

4. The recognition of remnants of rifted margins in highly
deformed/metamorphosed terrains: the principles of
metamorphic lithostratigraphy

In the high-pressure/low-temperature part of orogenic belts, the
assessment of the pre-orogenic relationship between different rock
types may be complicated by tectonic reworking of primary lithological
contacts and pervasive recrystallization, masking the original rock
textures. Furthermore, the unambiguous reconstruction of the pre-
metamorphic stratigraphy is often hampered by the lack of preserved
fossils within meta-sedimentary rocks, except for some notable excep-
tions (e.g. Marthaler et al., 1986; Cavargna-Sani et al., 2010; Galster
et al., 2010). Techniques from metamorphic petrology and structural
geology are inherently inadequate to test whether material points that
are now juxtaposed were already located in the same relative position
before orogeny. Metamorphic mineral fabrics that can be correlated
across lithological boundaries are normally formed at a relatively late
stage in the tectono-metamorphic evolution, generally during exhuma-
tion (e.g. Reddy et al., 1999, 2003). As a result earlier slip, resulting in the
tectonic juxtaposition of originally unrelated rock types, cannot be
teased out with structural analysis alone. Such limitations can occasion-
ally be overcome comparing the Pressure–Temperature–time (PTt) his-
tory of neighboring lithologies, as demonstration of attainment of
different PT conditions at a given time by different rocks is evidence of
juxtaposition by subduction-related dynamics (e.g. Federico et al., 2007)
or by later tectonic events. However, these comparisons are normally
possible for the high pressure to exhumation path only, since prograde
mineral assemblages are only rarely preserved in high-pressure units.
Furthermore, metamorphic recrystallization is generally episodic and
ithologies with different bulk rock compositions may re-equilibrate at
variable stages of a specific PT evolution, resulting in seemingly different
PT histories (e.g. Proyer, 2003).

On the other hand, meta-sedimentary cover sequences are some-
times attributed to the neighboring continental basement exclusively
based on their similaritieswith less deformed/metamorphosed sections
or on the lateral continuity and consistency of the meta-sedimentary
sequence (e.g. Galster et al., 2012). This approachmay also lead to erro-
neous results in cases when meta-sedimentary sequences are tectoni-
cally detached from their substrate along weak layers over large areas
(e.g. Sartori andMarthaler, 1994). The pitfalls involved in the techniques
outlined above can be overcome with a multi-disciplinary approach,
combining lithostratigraphic, sedimentological and (occasionally) pale-
ontological observations, which are typical of classic studies from
the Piemonte units of the western Alps (e.g. Lemoine et al., 1970;
Lagabrielle et al., 1984; Tricart and Lemoine, 1991), with structural,
petrographic and geochronological studies (i.e. Spalla et al., 2005;
Forster and Lister, 2008), in the light of the most recent discoveries on
the architecture of hyper-extended margins. The pre-subduction/
orogeny lithostratigraphy of domains that underwent multiple stages
of deformation andmetamorphism can be reconstructed provided that:

(1) the tectononometamorphic unit is characterized by coherent
lithostratigraphy over a large area. Therefore, key pre-orogenic
marker horizons should be traceable continuously across the
orogeny-related macro-structures. As shown in the previous
section, the choice and recognition of these markers are critical
for the evaluation of the internal coherency of units originated
from magma-poor rifted margins, where several lithological
bodies terminate laterally as a result of rift-related tectonics
(Figs. 1b, 3 and 6).

(2) the original proximity of the different rock types can be inferred,
mainly based on the presence of clasts comparable to the base-
ment lithologies within the associated meta-sediments.

96 M. Beltrando et al. / Earth-Science Reviews 131 (2014) 88–115



Author's personal copy

(3) the different rock types recorded a similar subduction/orogeny-
related Pressure–Temperature–time evolution and share the
deformation history (PTtd) starting from the oldest fabric or
structure that can be correlated across lithologies.

In many case studies, orogeny-related deformation results in sig-
nificant reworking of pre-orogenic contacts, disrupting the internal
coherence of tectono-metamorphic units. In these circumstances,
the consistency of the lithostratigraphy (i.e. showing constant patterns
over wide areas), combined with (2) and (3) might still allow an origin
fromhyper-extendedmargins to be proposed, as shown in Section 6.1.2
for the Piemonte units. Recent applications of thismethodology to high-
pressure tectono-metamorphic units of the North-Western Alps and
Corsica are illustrated in the following sections.

5. Tectono-metamorphic evolution of the Western Alps

The Western Alps formed starting from the Late Cretaceous in
response to the northward drift of the Adriatic plate, followed by colli-
sion with the European plate in the late Eocene–Oligocene. Extensive
reviews of the tectono-metamorphic evolution of the high-pressure
part of the belt, between the Insubric Line and the Penninic Front,

can be found in Rosenbaum and Lister (2005), Bousquet et al.
(2008), Beltrando et al. (2010b) and Dal Piaz (2010). Only the key
features are recalled here (Figs. 4, 8).

The Insubric Line separates the Canavese Zone, whichwas originally
part of the distal Adriatic margin (Ferrando et al., 2004) and underwent
Alpine metamorphism at anchizonal conditions, from the Sesia Zone.
The latter consists largely of Paleozoic continental basement recording
Alpine metamorphism at blueschist to eclogite facies conditions (Dal
Piaz et al., 1972; Compagnoni et al., 1977). The Sesia Zone is traditionally
subdivided into Eclogitic Micaschist Complex, which experienced
P N 1.8 GPa (Konrad-Schmolke et al., 2011), Second Dioritic–Kinzigitic
Zone and Gneiss Minuti Complex, where only blueschist facies meta-
morphic assemblages have been reported (Fig. 4). The Sesia Zone,
together with the more westernly located continental basement units
of the Pillonet, Mt. Mary and Dent Blanche nappe system (Fig. 4),
occupies the highest structural positionwithin the present-day tectonic
pile. The Sesia Zone is bounded to thewest and south by the underlying
ophiolitic units of the Piemonte zone and Lanzomassif (e.g. Kienast and
Pognante, 1988; De Giusti et al., 2004; Bucher et al., 2005; Groppo et al.,
2009). Based on Alpinemetamorphic grade, the Piemonte units are gen-
erally subdivided into eclogitic and blueschist Piemonte units, which in
the North-Western Alps are separated by a complex Alpine shear zone
(e.g. Reddy et al., 2003), labeled Piemonte Movement Zone (Beltrando
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et al., 2010b; Fig. 8). The eclogitic Piemonte units are underlain by the
Internal Crystalline nappes (Monte Rosa, Gran Paradiso and Dora
Maira), which underwent Alpine metamorphism at eclogite facies con-
ditions (Fig. 8). Further to the west, the Briançonnais nappe system
underwent relatively minor Alpine deformation and metamorphism,
ranging from blueschist to anchizonal facies conditions (Cigolini, 1992;
Desmons et al., 1999; Ganne et al., 2003; Malusà et al., 2005; Sartori
et al., 2006). In contrast, the underlying and more north-westernly
located ophiolite-bearing Valaisan units preserve local evidence of high-
pressure metamorphism at P ≥ 1.5 GPa (Cannic et al., 1996; Bousquet
et al., 2002), prior to a renewed sharp decrease of recordedmetamorphic
pressure in the Helvetic–Dauphinoise domain (Fig. 8).

An extensive geochronological dataset indicates that the onset of
metamorphism and deformation is progressively younger from the
more easterly to the more westernly units (e.g. Bocquet, 1974; Frey
et al., 1974; Hunziker, 1974; Hunziker et al., 1992; Duchêne et al.,
1997; Rubatto et al., 1998; Rosenbaum and Lister, 2005; Beltrando
et al., 2010b). The earliest high-pressure metamorphism has been
dated at ca. 79 Ma in the Eclogitic Micaschist Complex (U–Pb on zircon
and allanite; Rubatto et al., 2011) and at 75–73 Ma in the Pillonet unit
(40Ar/39Ar and Rb–Sr on high-Si white micas coexisting with sodic
amphiboles; Cortiana et al., 1998). A significant age gap is observed
between the latest HP metamorphic stages in the Sesia Zone, at
t N 69 Ma [U–Pb on zircon (Rubatto et al., 1998, 2011); Rb–Sr on
white mica (Babist et al., 2006)], and the recorded onset of HP meta-
morphism in the underlying eclogitic Piemonte units, at ca. 48–44 Ma
(e.g. Duchêne et al., 1997; Rubatto et al., 1998; Dal Piaz et al., 2001;
Lapen et al., 2003; Beltrando et al., 2009). Note that intermediate ages
in the 62–55 Ma range have locally been estimated from the calcschists
belonging to the blueschist Piemonte unit in the south-western Alps
[40Ar/39Ar and K/Ar on white mica (Takeshita et al., 1994; Agard et al.,
2002)]. These ages might alternatively result from incomplete resetting
of pre-Alpine mineral reservoirs (Takeshita et al., 1994) or might be
recording Cretaceous accretionary prism dynamics (Agard et al.,
2002). A broadly continuous younging towards more westerly (or
structurally lower) units is then apparent, from44 to 35 Ma in the Inter-
nal Crystalline nappes (e.g. Tilton et al., 1991; Duchêne et al., 1997;
Gebauer et al., 1997; Rubatto and Hermann, 2001; Meffan-Main et al.,
2004; Lapen et al., 2007; Gabudianu Radulescu et al., 2009; Rosenbaum
et al., 2012) to ca. 42–32 Ma for the eastern edge of the Briançonnais
nappe system [40Ar/39Ar on white mica (Ganne, 2003; Strzerzynski
et al., 2012)] to ca. 33 Ma for exhumation-related fabrics in the Punta
Rossa unit, in the Valaisan nappe system [40Ar/39Ar on white mica
(Cannic, 1996)]. Deformation and metamorphism then affected the
External Crystalline massifs, in the Helvetic–Dauphinois domain, with
ductile shear zone formation at ca. 29.5 ± 0.9 Ma in the Mont Blanc
massif (Th–Pb on allanite; Cenki-Tok et al., 2014), ca. 33.6 ± 0.6 in
the Argentera massif (40Ar/39Ar on wm; Sanchez et al., 2011) and ca.
34–30 Ma in the Pelvoux massif (40Ar/39Ar on wm; Simon-Labric
et al., 2009), recording the early stages of widespread continent–
continent collision. The interplay between margin geometry and Adria–
Europe relative movement vector was likely responsible for significant
variations in the timing of onset of collision in the different parts of the
Western Alps.

6. Basement–cover relationships in the Western Alps

A wealth of studies of the different Mesozoic meta-sedimentary
cover sequenceswas carried out in the high-pressure part of theWestern
Alps (e.g. Ellenberger, 1958; Debenedetti, 1965; Michard and Vialon,
1966; Lemoine et al., 1970; Elter, 1972a; Sturani, 1975; Polino and Dal
Piaz, 1978; Dal Piaz et al., 1979a; Bearth and Schwander, 1981; Caby,
1981; De Wever et al., 1987; Sartori, 1987; Gouffon, 1993; Sartori and
Marthaler, 1994; Venturini, 1995; Tumiati, 2005). Comparatively less
attention has been paid to the relationship between meta-sediments
and associated basement rocks, which was alternatively assumed as

primary (e.g. Elter, 1971; Deville et al., 1992) or tectonic (e.g. Polino
et al., 1990). Despite the important lithostratigraphic studies performed
in the Piemonte units of the Cottian Alps in the 70s, 80s and early
90s (e.g. Lemoine et al., 1970; Lagabrielle et al., 1982; Deville et al.,
1992), the study of basement–cover relationships was largely aban-
doned in HP terrains in the 90s, under the assumption that the sedi-
mentary cover would be invariably detached from the underlying
basement as a result of multi-stage subduction-related deformation
(Polino et al., 1990 and references therein). Therefore, as usual for highly
deformed/metamorphosed terrains, a distinction has been drawn tradi-
tionally between ‘continental’ (Sesia Zone, Internal Crystalline nappes
and Briançonnais nappe system) and ‘oceanic’ units (Lanzo massif,
Piemonte Zone, Valaisan nappe system). However, as shown in this re-
view, such a priori distinction, in the axial zone of the North-Western
Alps, resulted in the overlooking of pre-Alpine relationships between
rock types that were considered exclusive of ‘typical’ oceanic or conti-
nental origin.

As summarized in this section, the different types of basement–
cover relationships observed in the Sesia Zone, Piemonte units and
Valaisan units of the North-Western Alps display the typical features
of rift-related hyper-extended crust and exhumed mantle. As this con-
tribution is aimed at illustrating the methodology to tackle the study
of sections of magma-poor rifted margins lacking a layer-cake starting
geometry within orogenic belts, only selected Alpine examples are
discussed. Furthermore, a well-studied example from Alpine Corsica
will be reviewed. A review of basement–cover relationships of all Alpine
nappes is beyond the scope of this contribution. It is also worth noting
that the recognition of pre-Alpine basement–cover relationships of the
kind described here, in specific parts of the Western Alps, might be
beyond the resolution of themethodology proposed here, due to exten-
sive Alpine deformation and relative displacement of different rock
types.

In this section, basement–cover relationships within Alpine
tectono-metamorphic units are discussed without reference to
their pre-orogenic relative position. As field mapping strategies, in
deformed magma-poor rifted margins, are dictated by the nature of
the lower plate of the detachment system, a distinction has been
drawn between areas with ‘regionally exhumed continental basement’
and areaswith ‘regionally exhumed serpentinizedmantle’. In Section 7,
the lithostratigraphic information from the tectono-metamorphic units
will be discussed in the context of the pre-Alpine architecture of the
Adriatic and European margins.

6.1. Regionally exhumed serpentinized mantle juxtaposed with continental
basement in the North-Western Alps

In the North-Western Alps, serpentinized ultramafic rocks crop out
extensively in the Lanzomassif (e.g. Boudier, 1978) and in the Piemonte
units (e.g. Elter, 1971; De Giusti et al., 2004; Li et al., 2004; Dal Piaz et al.,
2010). Relatively minor occurrences are located in the Valaisan units
(e.g. Beltrando et al., 2012 and references therein), in the Canavese Zone
(Beltrando et al., in press), along the Periadriatic Line (e.g. Ferrando
et al., 2004) and in the Sesia Zone [Rocca Canavese Zone (Pognante,
1989); Eclogitic Micaschist Complex (Ferraris and Compagnoni, 2003);
Second Dioritic–Kinzigitic Zone (Dal Piaz et al., 1971)]. As shown in the
following sections, the majority of these bodies were exhumed at the
bottom of the Jurassic Tethys, where it was juxtaposed against slivers of
continental basement of variable size by major extensional faults.

6.1.1. Punta Rossa unit (Valaisan units)
The Punta Rossa unit, which is part of the Valaisan units, provides

the best-preserved example in the Western Alps of a rift-related
lithostratigraphic section typical of a hyper-extended domain floored
by exhumed mantle lithosphere (Fig. 9; see Beltrando et al., 2012 for
a detailed decription of this domain). This inference is based on
lithostratigraphic, structural, petrographic and geochronological
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Fig. 9. Punta Rossa unit (Valaisan units). (a) Geological cross sections (modified after Beltrando et al., 2012). Note that basement allochthons consist of different rock types and that
allochthons and coarse clastics, of presumed syn-tectonic deposition, are laterally discontinuous. If lithological differences in basement are discarded and key horizons identified, the
large scale folds are more easily identified. In the Punta Rossa unit, serpentinized mantle peridotites are directly in contact with Paleozoic basement, including meta-leucogranites (b;
UTM WGS84 32N: 332734E; 5064201N) or polymictic breccias (c; UTM WGS84 32N: 333393E; 5062515N). Clasts of leucogranites are found occasionally in the post-tectonic gray
micaschists (d; UTM WGS84 32N: 333563E; 5062645N) Monomictic breccias developed at the expense of serpentinized peridotites (e; UTM WGS84 32N: 333324E; 5062516N) and
meta-leucogranites (f; note the angular polymineralic clasts; UTMWGS84 32N: 332687E; 5064217N) can be interepreted as pre-metamorphic fault rocks. Estimates of the PT evolution
of the different lithologies are hampered by extensive late-stage re-equilibration at greenschist facies conditions. Despite these limitations, all lithologies preserve evidence of
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Bousquet et al., 2002; 3 = Cannic et al., 1996; 4 = Beltrando et al., 2012. All these observations allow retro-deforming the present-day Punta Rossa unit into a pre-orogenic scenario
(h). Retro-deformation is performed using the red and orange lines as markers.
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evidence combined as outlined in Section 4, indicating original proxim-
ity of the different rock types found in the area as well as a common
Alpine tectono-metamorphic evolution, preserving the original coher-
ency of this unit. In the heavily folded Punta Rossa unit, serpentinized
ultramafic rocks, ranging in size from a fewm2 to nearly 0.5 km2 are al-
ternatively juxtaposedwith thin slivers of continental basement orwith
clast-supported polymictic meta-breccias (Fig. 9a–c). The clast compo-
sition of the meta-breccia mirrors the different types of continental
basement found in the area, namely Permian leucogranites (Fig. 9b;
Beltrando et al., 2007a) and Carboniferous gabbros and diorites intru-
sive in micaschists (Masson et al., 2008). Detailed field mapping
shows that continental basement slivers and meta-polymictic breccias
display marked thickness variations and abrupt lateral terminations
(Fig. 9a). The discontinuous distribution of these rock types is at odds
with the lateral continuity of top of the ultramafic rocks and the bottom
of the pelagic gray micaschists overlying the breccias. These two sur-
faces can be followed throughout the area, across the observed Alpine
structures (Fig. 9a; Beltrando et al., 2012). Lithostratigraphic observa-
tions show that the clast composition of the polymictic meta-breccia
is largely controlled by the type of basement found directly in contact,
indicating original proximity of Paleozoic basement and sediments at
the time of deposition. Furthermore, the matrix/clast ratio in the sedi-
mentary meta-breccia increases progressively from the contact with
the basement to the overlying gray micaschists, providing a useful indi-
cator of original stratigraphic polarity (Beltrando et al., 2012). Clasts of
Permian granitoids are locally found also in the fine-grained gray
micaschist overlying the polygenic breccia (Fig. 9d). These observations
indicate that Paleozoic continental basement and serpentinized mantle
peridotites were both exposed at the bottom of the Valaisan basin,
where they underwent partial reworking in the sedimentary cover.
The lateral continuity of specific marker horizons across Alpine folds in-
dicates that the Punta Rossa unit preserves a coherent pre-Alpine
lithostratigraphic section, despite the lateral discontinuity of Paleozoic
basement slivers and meta-breccias (see Beltrando et al., 2012 for
details; compare Fig. 9h with Fig. 6b). Furthermore, pre-metamorphic
monomictic breccias are occasionally observed along the interface
between serpentinized ultramafic rocks and meta-leucogranites (Fig.
9e and f), where sub-cm polymineralic clasts are wrapped around by
Alpine fabrics developed within an originally finer-grained matrix.
These rock types, which are never observed in the meta-sediments,
may be interpreted as resulting from pre-metamorphic cataclastic
deformation in the context of rifting.

Studies of the tectono-metamorphic evolution of the different rock
types found within the Punta Rossa unit provide further support to
this view, showing that ultramafic rocks, Paleozoic continental base-
ment andMesozoic meta-sediments share the same deformation histo-
ry, starting from the oldest metamorphic mineral fabric that can
be correlated across the different lithologies (Loprieno et al., 2011;
Beltrando et al., 2012). This deformation event, which led to isoclinal
folding associated with a pervasive axial plane cleavage, was developed
relatively late in the tectono-metamorphic evolution of this area,
along the exhumation path (Loprieno et al., 2011; Beltrando et al.,
2012). 40Ar/39Ar geochronology on white mica from meta-granitoids
and graymicaschists yielded identical ages of ca. 33–34 Ma for thismin-
eral fabric (samples V93-02 and V94-58 in Cannic, 1996). This
deformationf/metamorphic event, followed bymulti-stage deformation
and metamorphism at greenschist facies conditions, resulted in exten-
sive re-equilibration of the pre-existing high-pressure mineral assem-
blages (Bousquet et al., 2002; Loprieno et al., 2011;), thus limiting
comparisons of the pre-34 Ma metamorphic evolution among the
different rock types (Fig. 9g). Rare relict mineral assemblages in
meta-pelites consisting of carpholite + phengite + chlorite indicate re-
equilibration at P = 1.5–1.7 GPa and T = 350–400 °C (Bousquet et al.,
2002). These conditions are supported by Tmax estimates by Raman
Spectroscopy on Carbonaceous Material (RSCM) at ~400 °C (Beltrando
et al., 2012). Furthermore, rare relict jadeite has been reported from

peraluminous meta-granitoids found in the basement allochthons of
the Punta Rossa unit (Saliot, 1979). In Ca-poor meta-granitoids, jadeite
stabilization at T = 400 °C occurs at P N 0.8 GPa through the reaction
albite = quartz + jadeite (e.g. Bucher and Frey, 2002), thus providing
only a minimum estimate to the actual pressure experienced. Meta-
mafic rocks, instead, are generally pervasively re-equilibrated at
greenschist facies conditions during the last stages of deformation
and metamorphism and preserve only rare relicts of pre-existing
glaucophane. However, metamorphic conditions comparable to those
proposed for the meta-pelites of the Punta Rossa unit have been esti-
mated in Carboniferous meta-gabbros belonging to the neighboring
Hermite unit (Cannic et al., 1996), which is lithologically similar to the
Punta Rossa unit and underwent the same tectono-metamorphic evolu-
tion (Beltrando et al., 2012).

The combined lithostratigraphic, structural and petrographic obser-
vations summarized here indicate that serpentinized ultramafic rocks,
Paleozoic basement and syn- to post-rift sediments were deformed
coherently during the Alpine orogeny and that multiple evidence of
original proximity of the different rock types are found.While structural
analysis shows that the different rock types shared the same deforma-
tion history starting from the oldest structure/mineral fabric that can
be correlated across lithological boundaries, comparisons of their earlier
PTt evolution are limited by pervasive recrystallization at greenschists
facies conditions and/or poorly diagnostic mineral assemblages.

6.1.2. Piemonte units
The Piemonte units (Fig. 10) provide a vivid illustration of the dif-

ficulties related to the recognition of domains floored by hyper-
extended lithosphere associated with continent-derived basement
and sediments in areas that underwent pervasive deformation, poly-
phase metamorphism and frequent reactivation of pre-Alpine con-
tacts during subduction/orogeny-related shearing. The presence of
hydrated mantle peridotites exhumed at the seafloor has long been
recognized within in the high-pressure Piemonte units (Franchi
et al., 1908; Bearth, 1967; Dal Piaz, 1969, 1971; Elter, 1971; Bigi
et al., 1990; Tartarotti et al., 1998; De Giusti et al., 2004), based on
the frequent similarities with the lithostratigraphy of the nearly
underformed/unmetamorphosed ophiolitic units found in the Apennines
(e.g. Decandia and Elter, 1972; Abbate et al., 1994) and of present-day
margins (e.g. Lemoine et al., 1987; see Lagabrielle, 2009 for a review).
In the Piemonte units of the North-Western Alps, serpentinized
ultramafic rocks, locally preserving evidence of seafloor hydration
(e.g. Li et al., 2004; Fontana et al., 2008), may be capped by Mn-rich
metacherts (Figs. 10 and 11a; Dal Piaz, 1969; Dal Piaz et al., 1979a;
Castello, 1981; Baldelli et al., 1983;) or, more commonly, by fault-
related ophicalcites (Fig. 10; e.g. Driesner, 1993; Dal Piaz et al.,
2010). Sedimentary ophicalcites and polymictic breccias, with clasts
of meta-mafic rocks, ultramafics and rare dolostone also occur (Dal
Piaz, 1999 and references therein; Fig. 11b–d). Preserved contacts
between metabasalt/serpentinites and metacherts have been docu-
mented in several areas, including the part of the eclogitic Piemonte
units located in the northernmost-Western Alps, commonly labeled
Zermatt–Saas Zone (Bearth, 1967; Dal Piaz et al., 1979a,b; Bearth and
Schwander, 1981), in its southern continuation, in the Avic massif
(Fig. 10; Dal Piaz and Nervo, 1971; Martin-Vernizzi, 1982; Castelli,
1985; Tartarotti et al., 1998; Martin et al., 2008), and in the overlying
blueschist Piemonte units, locally labeled Combin Zone (e.g. Dal Piaz,
1969; Dal Piaz et al., 1979b; Caby, 1981; Baldelli et al., 1983; Dal
Piaz, 1999). Metacherts are locally followed upwards by pure mar-
bles and, more commonly, by abundant calcschists, as also documented
in the South-Western Alps (e.g. Lemoine et al., 1970; Deville et al., 1992;
Fudral, 1998; Tricart and Schwartz, 2006).

In the eclogitic Piemonte units of the North-Western Alps, the
lithologies listed above are often juxtaposed with two types of ‘exotic’
rocks types, consisting either of Paleozoic continental basement or
shelf sediments (Figs. 10 and 11e). The continental basement slivers
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consist of high-pressure metamorphic rocks, often preserving evidence
of pre-Alpine metamorphism at granulite to amphibolite facies condi-
tions (Etirol-Levaz, Emilius, Verres, Tour Ponton, Glacier-Rafray, Acque
Rosse slivers), and of intrusives of mafic and acidic composition
(e.g. Dal Piaz and Nervo, 1971; Beltrando et al., 2010a). Details on
the lithological composition and tectono-metamorphic evolution of
each sliver can be found in an extensive body of literature [Acque Rosse
slice (Paganelli et al., 1995; Beltrando, 2007); Tour Ponton (Nervo and
Polino, 1976); Glacier-Refray (Dal Piaz and Nervo, 1971; Dal Piaz et al.,
1979b); Santanel (Battiston et al., 1987); Verres (Lardeaux and Spalla,
1991; Dal Piaz, 2011); Emilius (e.g. Dal Piaz et al., 1983; Pennacchioni,
1996); Chatillon (Dal Piaz and Martin, 1986; Rolfo et al., 2004);
Grun-Vollon (Biino and Compagnoni, 1988; Dal Piaz, 2011); Perriere
(Conte et al., 1997); Etirol-Levaz (Ballèvre et al., 1986; Dal Piaz et al.,
2001; Beltrando et al., 2010a)]. These slivers were traditionally grouped
under the common label of ‘Lower Austroalpine units’ (Ballèvre et al.,

1986) or “eclogitic lower Austroalpine outliers” (Dal Piaz, 1999). They
rest along or in close proximity with the contact between the eclogitic
Piemonte units and the overlying blueschist Piemonte units. The unex-
pected juxtaposition of these continent-derived lithologies with typical
ophiolitic rocks, already noted by Hermann (1937), was generally
ascribed to complex subduction/orogenic dynamics. Processes consid-
ered typical of ‘subduction channel’ or ‘serpentinite channel’ (Gerya
et al., 2002; Bousquet, 2008), or the multi-stage reactivation of the
tectonic interface between continent- and ocean-derived nappes
(e.g. Gosso et al., 1979; Ballèvre and Merle, 1993; Forster et al.,
2004) have been repeatedly proposed. However, Dal Piaz (1999)
pointed out the lithostratigraphic similarities between the Platta
nappe, in the Eastern Swiss Alps, and the eclogitic Piemonte units.
Marked similarities between the Alpine Pressure–Temperature–time–
deformation history of several continental slivers and of the neighboring
ophiolitic rocks in eclogitic Piemonteunits emerged through later studies,

AUSTROALPINE

Briançonnais

Continental basement allochthons

Gneiss Minuti Complex (GMC)

Eclogitic Micaschist Complex

PIEMONTE UNITS

Predominant calcschists

Predominant serpentinite

Internal Crystalline nappes

Quaternary sediments

2 DK-Valpelline 

Arolla, Mont Mary and Pillonet units

Pre-rift silicoclastic sediments and dolostone 
(Permian to Middle Jurassic?) + calcschists

Mesozoic meta-sediments (Roisan Zone)

Predominant meta-basalt and meta-gabbro

Calcschists at GMC-Piemonte units 
interface, partly GMC cover Mn-rich metachert

Metasedimentary breccia with dolostone 
clasts

Ophicalcitic breccia

Fig. 10. Lithotectonic map of the lower and central Aosta Valley (see Fig. 4 for map location). Dotted area indicates blueschist Piemonte units (locally referred to as ‘Combin Zone’).
Main outcrops of Mn-rich metacherts, ophicalcites and dolomite-bearing breccias resting in contact with serpentinites are also indicated. Main continental slices: A = Acque Rosse
slice; C = Chatillon slice; E = Monte Emilius slice; EL = Etirol-Levaz slice; G = Grun slice; GR = Glacier-Refray slice; T = Tour Ponton slice; S = Santanel slice; V = Verres slice; Vo:
Vollon slice; P = Pancherot–Cime Bianche units; F = Fasceau de Cogne.
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providing a valuable test to this early intuition (Fig. 11g; Dal Piaz et al.,
2001; Beltrando, 2007; Dal Piaz et al., 2010). More specifically, in the
eclogitic Piemonte units located to the south of the Aosta-Ranzola fault,
the Acque Rosse continental basement slivers and the associated
ophiolitic mafic rocks underwent the same Alpine evolution starting
from the oldest metamorphic mineral assemblages and fabrics that
could be detected (Fig. 11g). This evolution involved eclogite faciesmeta-
morphism at ca. 44–48 Ma, followed by exhumation to greenschist facies
conditions at ca. 42 Ma and subsequent isoclinal folding at t b 36.5 Ma,
prior to final exhumation to near-surface conditions (Beltrando,
2007; Beltrando et al., 2007b, 2008, 2009). Further to the north, the
Emilius and Glacier-Refray continental basement slivers, demonstrably

underwent a PTt evolution similar to the interlayered eclogitic ophiolites
of the Avic massif (Dal Piaz et al., 2001, 2010).

Original proximity of continental basement slivers and ophiolites is
also suggested by the Middle to Upper Jurassic zircons commonly
found in the Etirol-Levaz slice (Fig. 11e; Beltrando et al., 2010a) and in
the Acque Rosse slice (Beltando, unpubl), recording melt infiltration
during the intrusion of mafic melts in the underlying ultramafic rocks.
Furthermore, extensive pre-Alpine interaction of the Emilius basement
sliver with marine fluids is indicated by highly saline fluid inclusions in
eclogites (Scambelluri et al., 1998). Clasts of lithologies that could be
readily attributed to Paleozoic basement (i.e. micaschists and meta-
granitoids) are rarely found within the meta-sediments associated
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with continental basement slivers (Fig. 11f). The wealth of studies cited
above allow the conclusion that the eclogitic Piemonte units, at least in
the North-Western Alps (Zermatt–Saas Zone sensu stricto and its south-
ern continuation, labeled Mont Avic massif) largely consist
of lithostratigraphic associations typical of areas floored by hyper-
extended lithosphere, as already argued for less deformed parts of the
Central and Eastern Alpine belt (see Manatschal and Müntener, 2009
for a review). Therefore, the so-called ‘lower Austroalpine units’ should
not be viewed any longer as independent tectono-metamorphic units,
but rather as extensional allochthons that underwent a common
evolution with the serpentinized ultramafics, metabasalts and meta-
sediments starting from the Middle to Late Jurassic (Dal Piaz, 1999;
Dal Piaz et al., 2001; Beltrando et al., 2010a).

Another group of ‘exotic’ rock types consists of laterally discontinu-
ous pre-rift limestone, dolostone and siliciclastic deposits that are char-
acteristically found both along the tectonic interface between eclogite
and blueschist Piemonte units and within the lower part of the latter
(Bucher et al., 2005, BlattMatterhorn). Thesemeta-sedimentary succes-
sions (Fig. 10) have been grouped in the Pancherot–Cime Bianche unit,
to the north of the Aosta–Ranzola fault (Dal Piaz, 1999 and references
therein), Frilihorn unit (Sartori, 1987; Sartori et al., 2006), Faisceau de
Cogne and Faisceau de Prariond, between the Aosta–Ranzola fault and
the Gran Paradiso massif (Elter, 1971, 1972) and Gazzo–Isoverde Unit,
in the Voltri massif (e.g. Marini, 1998; Fig. 4). In all these localities,
dolostones are capped by mono- or polymictic breccias followed by
calcschists. The type of pre-rift dolostone and the composition of the
breccia, with clasts of Permian to Triassic meta-sediments, has tradi-
tionally led to its paleogeographic attribution to the Triassic platform
and Jurassic escarpment (pre-Piedmont domain, e.g. Elter, 1972a) sepa-
rating the Briançonnais rise from the South Penninic basin, character-
ized by abundant coarse clastic sedimentation supplied by the
continental shelf. However, the recent discovery of ophiolitic detritus
within the breccia in the Pancherot–Cime Bianche unit (Gasco and
Gattiglio, 2011) casts some doubts on this original interpretation, sug-
gesting that these slivers, at the end of the rifting process, may have
been located at the bottom of the Western Tethys, possibly as exten-
sional allochthons. This interpretation is strengthened by the rare find-
ings of shelf carbonate clasts within ophicalcites resting on top of
serpentinized ultramafics in the eclogitic Piemonte units (Fig. 11c–d;
Dal Piaz, 1999).

Therefore, a large number of observations suggest that serpentinized
subcontinental mantle, gabbros and basalts were already juxtaposed
with continental basement and pre-rift shelf deposits at the end of
the Jurassic rifting. Importantly, primary Jurassic contacts have com-
monly been extensively reworked during the Alpine orogeny (e.g.
Gosso et al., 1979; Polino et al., 1990; Reddy et al., 2003; Pleuger
et al., 2007) and no coherent section consisting of serpentinized ultra-
mafics, continental basement and syn- to post-rift sediments of the
type described in the Punta Rossa unit has been detected, yet. Howev-
er, coherent sections comprising exhumed mantle, ophicalcites and
early post-rift sediments, without extensional allochthons, have
already been described from different parts of the blueschist and
eclogitic Piemonte units throughout the Western Alps (e.g. Lemoine,
1980; Tricart and Lemoine, 1983; Lagabrielle et al., 1984; Tricart and
Lemoine, 1991; Lagabrielle and Lemoine, 1997; Angiboust et al.,
2011). Lateral transitions from ophicalcites to continental allochthons to
early post-rift meta-sediments overlying serpentinites or meta-gabbros
are found locally (e.g. on the western side of Valtournenche; Fig. 10).
However, the presence of intervening shear zones (often polyphase)
prevents assessing whether the present-day geometry arose from minor
deformation of a Jurassic area floored by mantle rocks or from the
subduction-related assembly of different sections of the hyper-extended
margin. Despite these difficulties, the observations listed above still
allow concluding that the different rock types found in the eclogitic
Piemonte unit were already located in close proximitywithin the Jurassic
Tethys.

6.1.3. Lanzo massif
The Lanzo massif records multi-stage lithospheric thinning, with

progressive exhumation of mantle peridotites from garnet-facies
conditions followed by melt infiltration at plagioclase facies conditions,
intrusion of gabbroic and basaltic dykes in theMiddle Jurassic and brittle
extensional tectonics (e.g. Piccardo et al., 2007; Kaczmarek and
Müntener, 2008; Kaczmarek et al., 2008; Piccardo et al., 2010). Recent
studies showed that the serpentinized carapace rimming the otherwise
well-preserved Lanzo peridotiteswas formed throughoceanfloor hydra-
tion of the mantle rocks (Debret et al., 2013). Middle to Upper Jurassic
exhumation to the seafloor is also indicated by relatively poor exposures
of a Mesozoic sedimentary cover, consisting of meta-ophicarbonate,
metabasalt, calcschist, quartzite, and monometamorphic gneiss locally
resting upon serpentinized mantle in the central and northern Lanzo
massif (Pelletier and Müntener, 2006). Further occurrences of rift-
related contacts between meta-sediments and ophiolitic basement
have been reported from the western margins of the Lanzo massif
(Lagabrielle et al., 1989). However, this poorly exposed area is located
along a major late-Alpine brittle–ductile movement zone characterized
by predominant strike slip kinematics (Balestro et al., 2009), preventing
the unambiguous attribution of specific outcrops to the Lanzo Massif or
to the neighboring Piemonte units. Slivers of continental basement of
variable size, recording pre-Alpine granulite facies metamorphism and
located at the interface between serpentinized ultramafic rocks and
Mesozoic meta-sediments, have been interpreted as rift-related exten-
sional allochthons (Pelletier and Müntener, 2006). Their presence,
together with the abundance of paragneisses potentially originated
from arkose among the Mesozoic meta-sediments, are taken as evi-
dence that the Lanzo massif was adjacent a continental margin
(Pelletier and Müntener, 2006).

Maximum metamorphic conditions of P N 2.0 GPa and T = 550–
620 °C are recorded in kyanite–chloritoid–talc bearing meta-gabbros
of the Lanzo ultramafics, as opposed to estimates of P = 0.9–1.3 GPa
and T = 500 ± 50 °C for extensional allochthons and meta-sediments
(Pelletier and Müntener, 2006). This discrepancy has been attributed
to extensive post-eclogitic re-equilibration of the latter two rock types
during a late-stage metamorphic evolution, as indicated by petrographic
observations (Pelletier and Müntener, 2006).

6.2. Regionally exhumed serpentinized mantle in Alpine Corsica

Themetaophiolite-rich tectono-metamorphic units in AlpineCorsica
have invariably been attributed to the South Penninic basin (e.g. Dal
Piaz, 1974; Beccaluva et al., 1984; Rossi et al., 1994; Lahondère, 1996;
Marroni and Pandolfi, 2007; Molli, 2008). The widespread occurrence
of siliciclastic deposits in close association with supra-ophiolitic sedi-
ments (e.g. Santo Pietro di Tenda formation, Caron and Delcey, 1979)
led several authors to suggest that the ophiolitic units originated from
a section of the Tethyan basin located in a proximal position with
respect to continental margins (e.g. Caron and Delcey, 1979; Vitale
Brovarone et al., 2011a, 2013 for a recent review). Similarly to the
Western Alps, the units that underwent Alpine metamorphism at
blueschist to eclogite facies conditions are typically characterized by
the direct juxtaposition of Paleozoic continental basement, Jurassic
ophiolites and Mesozoic meta-sediments. This lithological association
has been alteratively attributed to subduction dynamics, based on the
frequent reactivation of lithological interfaces (e.g. Mattauer et al.,
1981; Péquignot and Potdevin, 1984; Jolivet et al., 1990; Fournier
et al., 1991), rift-related tectonics (e.g. Lahondère, 1996; Vitale
Brovarone et al., 2011a; Meresse et al., 2012) or tectono-sedimentary
processes (olistostromes, Lahondère, 1996). However, recent studies
provided detailed evidence of the preservation of sections of hyper-
extended lithosphere both in the blueschist facies Serra di Pigno unit
(Meresse et al., 2012) and in the eclogite facies San Petrone unit
(Vitale Brovarone et al., 2011a).
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The San Petrone unit consists of a complex lithological association
comprising serpentinized ultramafic rocks, metavolcanics, slivers of
continental basement and Mesozoic meta-sediments (Fig. 12a). A
thick serpentinite sliver forms the core of a large recumbent antiform
(Fig. 12b). On its upper limb, the serpentinite is alternatively overlain
by (i) slivers of continental basement (orthogneiss–paragneiss dissected
by metaigneous dykes) preserving relicts of pre-Alpine granulite facies
metamorphism, dated at ca. 290 Ma (U–Pb on zircon; Martin et al.,
2011; Vitale Brovarone et al., 2011a) (Fig. 12c), (ii) metavolcanics
(meta-pillows and basaltic meta-breccias) and (iii) meta-sediments,
consisting of manganese-rich metacherts, marbles and calcschists
(Fig. 12e). Pre-metamorphic brittle deformation affected both the
serpentinized ultramafic rocks, which are locally capped by ophicalcites,

and the continental basement slivers, where angular polymineralic clasts
are wrapped around by a lawsonite-bearing HP foliation (Fig. 12d and
Vitale Brovarone et al., 2011a). No evidence of brittle deformation is
observed either in the meta-sediments or in the meta-pillowed basalts
lying above this contact. Mesozoic meta-sediments are never found
between the serpentized ultramafics and the overlying continental
slivers or metabasalts, indicating that the latter were most likely
emplacement onto exhumed mantle rocks prior to sediment deposition.
Importantly, Mn-rich quartzites are scattered along the base of themeta-
sedimentary pile, alternatively in contact with continental basement,
metabasalts and serpentinized ultramafics (Fig. 12a). As discussed in
Section 6.1.2 these meta-sediments, which are also locally interbedded
with metavolcanics, are interpreted as the metamorphic equivalent of
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Late Jurassic radiolarian cherts by analogy with other Tethyan supra-
ophiolitic suites. Metacherts form a discontinuous layer, with lateral
thickness variations attributed to ocean floor morphology (Vitale
Brovarone et al., 2011a,b). Metacherts are overlain bymarbles containing
both continental basement and ophiolitic clasts ranging in size froma few
cm to several dm (Fig. 12f; Péquignot and Potdevin, 1984; Vitale
Brovarone et al., 2011a). Clast lithology is closely tied to the presence of
continental basement allochthons or metabasalts nearby. The meta-
sedimentary sequence preserved in the San Petrone area terminates
upward with calcschists.

Studies of the tectono-metamorphic evolution of the different lithol-
ogies found in the San Petrone unit indicate that they underwent a com-
mon polyphase deformation history (Péquignot and Potdevin, 1984;
Vitale Brovarone et al., 2011a). Strain gradients towards themain litho-
logical contacts are locally observed, but the general lack of shear sense
indicators is suggestive of an origin through dominant flattening defor-
mation, without significant relative lateral displacement. Importantly,
the limited extent of exhumation-related re-equilibration allows com-
parisons of the maximum PT conditions recorded by the different rock
types foundwithin this unit. Meta-gabbros included in the serpentinized
ultramafic rocks (Vitale Brovarone et al., in press), meta-pillowed basalts
(Vitale Brovarone et al., 2011c) and mafic rocks within a continental
basement sliver (Vitale Brovarone et al., 2011a) all record maximum
PT conditions in the 490–530 °C range at ca. 2.3 GPa, within the
lawsonite–eclogite stability field. In the meta-sediments, where
application of standard thermobarometry is hampered by more per-
vasive re-equilibration during exhumation, peak-T estimated by
means of Raman Spectroscopy of Carbonaceous Material (RSCM)
provide comparable T estimates of ca. 500–530 °C (Vitale
Brovarone et al., 2011a, 2013). Geochronological studies also provid-
ed evidence that the HP re-equilibration was attained at the same
time in the different rock types (Fig. 12g). U–Pb geochronology of
Alpine zircon rims formed in equilibrium with HP assemblages in a con-
tinental basement sliver yielded an age of 34.4 ± 0.8 Ma (Martin et al.,
2011), while Lu–Hf estimates in meta-gabbros and metabasalts yielded
ages in the 34–35 Ma range (Vitale Brovarone and Herwartz, 2013).

Therefore, the combined lithostratigraphic and tectono-metamorphic
studies from the San Petrone unit indicate that the ultramafics-
continental basement pair was juxtaposed by fault activity prior to
the effusion of pillowed lavas and the deposition of typical pelagic
Mn-rich radiolarian cherts (Fig. 12h). Partial reworking of the
ophiolitic and continental rocks into the overlying sediments was es-
pecially efficient in the topographic lows. Despite pervasive subduction/
exhumation-related deformation, the rift-related lithostratigraphy was
deformed coherently during the Alpine cycle and marker horizons,
including the top of the serpentinites and the base of the post-tectonic
meta-sediments, can be followed for several kilometers across the axial
planes of Alpine folds. Studies of the PTtd evolution of the different
rock types further indicate that they shared the same evolution starting
from the oldest mineral assemblages preserved, which were formed at
lawsonite–eclogite facies conditions.

6.3. Regionally exhumed continental basement in the Western Alps

In the Western Alps, evidence of extensive continental basement
exhumation at the floor of the most distal margin of the Jurassic
Tethys is preserved both in the Canavese Zone (Elter et al., 1966;
Ferrando et al., 2004; Beltrando et al., in press.) and in the Sesia Zone
(Pognante et al., 1987).

6.3.1. Canavese Zone
The Canavese Zone, which underwent minor Alpine deformation/

metamorphism, has traditionally been interpreted as the distal Adriatic
margin in the Southern Alps, equivalent to the Err–Bernina domain in
the Eastern Swiss Alps (Elter et al., 1966; Sturani, 1975; Ferrando
et al., 2004). In this domain, high-grademigmatitic gneisses are directly

overlain by Middle to Late Jurassic radiolarian cherts, with the local
presence of a polymictic breccia (Ferrando et al., 2004). At the southern
end of the Canavese Zone extensional deformation led to widespread
brittle deformation in the continental basement, which consists of
banded amphibolites, migmatitic gneiss and associated anatectic
granitoids (Beltrando et al., in press). Cataclasites and fault gouges are
more frequent towards the contact with the sediments, indicating
top-basement brittle deformation (Fig. 13a). Based on these observa-
tions as well as on the relatively low- to moderate-angular discordance
between sedimentary layering and top-basement surface, the occur-
rence of a Jurassic low-angle detachment fault was proposed in analogy
with the Eastern Swiss Alps (Ferrando et al., 2004). The overlying supra-
detachment basin is characterized by syn-rift polymictic breccias
(Figs. 13b and 13c), which record the first exhumation of basement
rocks along the low-angle detachment fault, followed upsection by
interlayered arkose and pelites, with a fining–thinning upward evolu-
tion. These deposits have been attributed to the Pliensbachian to
Bajocian, based on their similarities with sedimentary formations of
the Eastern Swiss Alps (Ferrando et al., 2004). This basin was then
sealed by the Radiolarian Formation, marking the onset of post-rift
sedimentation.

Pre-rift Triassic dolomite pods, a few tens of meters in size, now
largely or totally removed by quarrying, are found throughout the
area (Beltrando et al., in press). Poor outcropping conditions do not
allow the assessment of the original relationships between continental
basement, Jurassic syn- to post-rift sediments and these pre-rift
dolostones. However, the dolomite clasts observed in the polymictic
breccia (Fig. 13c) suggests the presence of dolomitic source rocks near-
by. This pre-rift sedimentary cover may have been dismembered and
delaminated by low-angle detachment faulting, forming extensional
allochthons (see Fig. 6c for comparison).

6.3.2. Sesia Zone
The Sesia Zone is defined as the tectonic domain consisting predom-

inantly of continental basement rocks that underwent early Alpine
metamorphism at blueschist to eclogite facies conditions, located be-
tween the Insubric Line, the Piemonte units and the Lanzo massif
(Compagnoni et al., 1977; Bigi et al., 1990). Based on Alpine metamor-
phism, presence of major bounding shear zones and type of pre-
Alpine basement, the Sesia Zone is generally subdivided into three
major units, labeled Eclogitic Micaschist Complex (EMC), Second
Dioritic–Kinzigitic Zone (2DK), Gneiss Minuti Complex (GM) and the
minor Rocca Canavese Unit (Dal Piaz et al., 1972; Compagnoni et al.,
1977; Pognante, 1989). Rare Mesozoic meta-sediments have so far
been observed only in the EMC (Venturini et al., 1994) and GM (Gosso
et al., 1979; Minnigh, 1979; Pognante et al., 1987). As shown below,
the occasional preservation of pre-Alpine relationships between conti-
nental basement and post-rift sediments calls for a re-assessment of
both the original nomenclature and the lateral extent of the more
westernly located tectono-metamorphic unit of the Sesia Zone.

6.3.2.1. External Sesia Zone. The westernmost unit of the Sesia Zone has
traditionally been labeled Gneiss Minuti Complex (Compagnoni et al.,
1977 and refs. therein). Originally, this term was adopted to indicate
a tectonic unit consisting predominantly of Permian granitoids intruded
in a pre-existing basement, then affected by pervasive Alpine re-
equilibration under blueschist to greenschist facies conditions (Dal
Piaz et al., 1972; Compagnoni et al., 1977; Cortiana et al., 1998). The
GneissMinuted Complex has alternativey been considered as separated
from the EMC by an Alpine ‘transition zone’ (Dal Piaz et al., 1972)
or shear zone (Williams and Compagnoni, 1983; Venturini, 1995) or
as originally intrusive into the EMC (Spalla et al., 1991; Babist et al.,
2006). Studies carried out in the south-western part of the Sesia Zone
showed that the orthogneisses are locally directly in contact with
micaschists, carbonate-bearing schists and Mn-rich quartzites,
interpreted as Mn-bearing metacherts of probable Middle Jurassic
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age (Minnigh, 1979; Pognante et al., 1987). Differently from Paleozoic
metacherts associated with continental basement granitoids and
impure marbles in the Dent Blanche nappe system (Manzotti et al.,
2012), the metacherts described here lack any evidence of pre-Alpine
metamorphism and are typically associated with micaschists and
meta-marls similar to the so-called calcschists of the Piemonte units
(Pognante et al., 1987). As a result, Pognante et al. (1987) suggested
that the Sesia Zone might have been located along the distal Adriatic
margin, where continental basement was directly onlapped by post-
rift sediments. New observations on the basement–calcschists interface
further to the north (Figs. 10, 13d and e) indicate that this relationship is
muchmore common than previously recognized, suggesting that conti-
nental basement might have been regionally exposed at the bottom of
the Western Tethys, in the Jurassic. Typical Mn-rich metacherts crop
out in the Aosta Valley, at the western termination of the Gneiss Minuti
Complex, at the contact with the underlying calcschists, which are gen-
erally attributed to the blueschist Piemonte unit (Fig. 13d and e). The
preservation of such a distinctive lithology, which could be easily
excised by orogeny-related deformation, due to the originally limited
thickness, indicates that the calcschists represent, at least in parts of
this area, the sedimentary cover originally deposited over the Paleozoic
granitoids. Importantly, calcschists associated with Paleozoic basement
host thick micaschist layers and, more rarely, dm-sized meta-granitoid
clasts (Fig. 13f; Gasco and Gattiglio, 2010), indicating a significant
terrigenous input, hinting at original proximity of exhumed base-
ment rocks. In specific circumstances, transitional contacts between
leucocratic gneisses and calcschists over a thickness of 10 cm have
been interpreted as primary sedimentary contacts between altered/
re-sedimented basement and calcschists or as gradual transitions
between meta-arkose layers and calcschists (Gasco and Gattiglio,
2010). These observations suggest that the protoliths of the Gneiss
Minuti Complex were regionally exhumed at the bottom of the

Alpine Tethys, where they were locally overlain by Mn-rich cherts
and calcschists, occasionally reworking the underlying continental
basement. Alpine deformation, culminating in early metamorphism
of the similar and neighboring Pillonet klippe at ca. 75–73 Ma
(Cortiana et al., 1998) and later greenschist facies metamorphism
at ca. 38 Ma (Inger et al., 1996; Inger and Ramsbotham, 1997) result-
ed in different final geometries of this basement–cover interface.
According to the views presented here, the exhumation surface is
regionally overturned along the Aosta Valley (Fig. 13d). Detailed
mapping along the more southerly located Orco Valley, instead,
reveals that the Paleozoic basement/Mesozoic meta-sediment inter-
face is deformed by all folding stages detected in the field (Gasco and
Gattiglio, 2010). Importantly, the three fold generations that have
been recognized were entirely developed along the exhumation
path of this tectono-metamorphic unit (Gasco et al., 2009), providing
further evidence that structural analyses alone cannot univocally
prove/disprove earlier juxtaposition during early-subduction dynamics.

Therefore, the calcschists located at the interface between the Sesia
Zone and the Piemonte units to the south of the Aosta–Ranzola fault,
should be considered, at least partly, as the autochthonous sedimentary
cover of the Gneiss Minuti Complex (Fig. 10). As a result, we suggest
that the lithostratigraphic unit consisting of GMC and its Mesozoic sed-
imentary cover should be labeled ‘External Sesia Zone’ hereafter, even
though the exact location of its western termination is presently
unknown. Our observations indicate that major Alpine shearing was
accommodated within the calcschists, located in-between the pre-
served basement exhumation surface and the eclogitic Piemonte unit,
to the west, rather than along the calcschists–continental basement
interface, which was previously considered to mark a major nappe
boundary between Sesia Zone and Piemonte units (e.g.Gosso et al.,
1979; Inger and Ramsbotham, 1997; Babist et al., 2006; Gasco et al.,
2009). Indeed, along the full length of the contact between external
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Sesia Zone and Piemonte units, extensive multi-stage Alpine shearing
(e.g.Wheeler and Butler, 1993; Bistacchi et al., 2001) generally prevents
the unambiguous attribution of intervening calcschists to either
tectono-stratigraphic units (Fig. 10).

7. Rift-related hyper-extension and exhumation of subcontinental
mantle in the Western Alps: first-order implications for the
evolution of convergent plate margins

As apparent from this review of the lithostratigraphic and tectono-
metamorphic evolution of several tectonic units from the North-
Western Alps and Corsica, several lithological associations that have tra-
ditionally been considered the result of subduction/orogenic dynamics
acting upon ‘typical’ continental and oceanic lithosphere were rather
established by pre-orogenic tectonics and variably reworked during
the Adria–Europe convergence. Thesefindings, combinedwith awealth
of existing studies from the rest of the Western Alps, where exhumed
mantle overlain by pelagic sediments or clastic layers rich in ophiolitic
detritus has long been recognized, have important implications for the
understanding of themechanisms responsible for the tectonic sampling
and subsequent exhumation of tectono-metamorphic units in (U)HP
orogenic belts, as discussed in Section 7.2.

These findings also suggest that the most deformed-metamorphosed
part of the Western Alps was formed at the expense of distal rifted
margins. Therefore, it appears that distal rifted margins are more easily
deformed than proximal margins and the architecture and rheological
stratification of hyper-extended domains controls the tectono-
metamorphic evolution of the internal parts of the belt during tectonic
inversion (see Section 7.3).

7.1. The origin of “anomalous” lithological associations in (U)HP terrains

Lithological associations consisiting of serpentinized mantle lith-
osphere, meta-sediments and continental basement are common
within Alpine-type orogens and other orogenic belts worldwide.
Interestingly, the mechanisms that have been proposed to establish
similar lithostratigraphic associations, which are generally referred
to as ‘mélanges’, are somewhat related to the extent of orogeny-
related metamorphic re-equilibration and deformation. A range of
tectono-sedimentary processes, including rift-related hyper-extension
in magma-poor environments (e.g. Manatschal, 2004; Fig. 1) or the de-
position of syn-rift (Lagabrielle and Bodinier, 2008; Clerc et al., 2012;
Fig. 2d) or syn-orogenic (Marroni et al., 2002; Fig. 2e) sedimentary
deposits have been proposed for tectono-stratigraphic units within lit-
tle deformed/metamorphosed sections of orogenic belts. However,
these mechanisms are largely set aside in the study of high-pressure
metamorphic terrains, apart for some notable exceptions (e.g. Dal
Piaz, 1999). Studies in high-pressure orogenic belts have generally
favored an origin through complex subduction dynamics, invoking
mechanical mixing within serpentinite or sedimentary channels
(Fig. 2c; e.g. Cloos and Shreve, 1988; Gerya et al., 2002; Bousquet,
2008). The emphasis on orogeny/subduction-related deformation is,
at least in part, justified by the extensive exhumation-related reworking
of the majority of high-pressure metamorphic units commonly
observed worldwide.

In this contribution we argue that an origin through rift-related tec-
tonics in magma-poor environments should also be taken into account,
when approaching the study of (U)HP units characterized by ‘anoma-
lous’ lithological associations. The set of key observations than enable
the recognition of hyper-extended domains in (U)HP metamorphic
units is defined based on existing lithostratigraphic studies of little
deformed/metamorphosed examples from the Eastern Swiss Alps,
combined with traditional PTtd studies. This methodology, which is
illustrated through an extensive review of the PTtd evolution and litho-
stratigraphy of the main Alpine tectono-metamorphic units, indicates
that lithological associations consisting of continental basement,

serpentinized mantle, meta-mafic rocks and different types of meta-
sediments can also originate through rift-related hyper-extension.
Therefore, several (U)HP tectono-metamorphic units from theWestern
Alps and Corsica sample remnants of Jurassic hyper-extended margins
thatwere variably reworked during subduction/orogeny. Thesefindings
call for cautionwhen approaching the study of hyper-extendedmargins
preserved in orogenic belts, as the possible lack of a pre-orogenic layer-
cake geometry must be taken into account (cfr. Figs. 6, 9 and 11). As a
result, the presence of discontinuous lithological units consisting of
thin slices of hydrated continental basement, pre-rift sediments and
syn-rift sediments should not be taken per se as indicative of complex
orogenic dynamics. Similarly, the presence of regional contacts between
continental basement and post-rift sediments, as documented for the
External Sesia Zone and the Canavese Zone (Figs. 10, 13d and e) is not
necessarily related to orogenic dynamics leading to the excision of the
pre- and syn-rift cover or to sampling of middle to lower crustal rocks
from the hanging wall of subduction systems (e.g. Polino et al., 1990;
Stöckhert and Gerya, 2005). Indeed, the potential preservation of the
marker horizons that are typical of hyper-extended magma-poor mar-
gins should be tested, beforemaking inferences on subduction/orogenic
dynamics. However, as shown for the Piemonte unit case study, it is
important to note that complex pre-orogenic lithostratigraphic asso-
ciations may indeed undergo extensive orogeny-related reworking,
often resulting in slip being accommodated along the main litholog-
ical interfaces. Despite these limitations potentially disrupting the
internal coherence of specific sections of magma-poor rifted margins,
lithostratigraphic observations might still allow the original proximity
among the different rock types to be inferred.

7.2. Implication for subduction/exhumation dynamics

The discovery that several lithological associations were established
during rift-related tectonics calls for a re-assessment of the relative role
of rift- and subduction/orogeny-related tectonics in establishing the
present-day architecture of the Alpine belt. Most importantly, these
findings help constraining the size of Alpine tectono-metamorphic
units, allowing important inferences on the mechanisms controlling
the tectonic sampling of fragments of the downgoing lithosphere and
their subsequent exhumation to the surface. Indeed, the size of Alpine
tectonic units has been the subject of a long-standing debate, which is
best illustrated for the eclogitic Piemonte units in the North-Western
Alps, commonly labeled Zermatt–Saas Zone (Fig. 10). The unexpected
presence of slivers of Paleozoic continental basement associated with
ophiolites led some authors to propose that the present-day lithostra-
tigraphy of the Zermatt–Saas Zone resulted from ‘serpentinite channel’
dynamics, where hydration of mantle wedge peridotites drives the
buoyant return flow of originally unrelated rock types within a subduc-
tion mélange (Gerya et al., 2002; Bousquet, 2008). The unambiguous
evidence of multi-stage Alpine shearing, especially in the upper part of
the Zermatt–Saas Zone (Dal Piag and Ernst, 1978; Wheeler and Butler,
1993; Reddy et al., 1999, 2003; Forster et al., 2004; Pleuger et al.,
2007), has been indicated as responsible for significant exhumation-
related shuffling of the tectono-metamorphic stack, leading to tectonic
sampling of originally unrelated slivers of continental basement
(Ballèvre and Merle, 1993; Lister and Forster, 2009). At the other end
of the spectrum, the Zermatt–Saas Zone has been regarded as a coherent
sliver of Tethyan lithosphere, based on the relative homogeneity of the
recorded high-pressure conditions throughout a vast area (Angiboust
et al., 2009). An alternative interpretation suggests that the Zermatt–
Saas Zone consists of at least three lithotectonic units, characterized
by different groups of lithological associations, separated by major
shear zones (Dal Piaz, 1999, 2004). While a solution to this debate still
lies beyond the resolution of the existing data set, here we only wish
to highlight how different approaches can result in widely different in-
terpretations. Importantly, the recognition of the rift-related juxtaposi-
tion between Paleozoic basement and ophiolites discussed in this paper
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does not rule out a significant role for Alpine multi-stage shuffling in
establishing the final architecture observed in the field (e.g. Reddy
et al., 2003). However,we suggest that at least part of the apparent com-
plexity of multi-stage Alpine movement zones is due to partial tectonic
reworking of complex rift-related lithological associations.

However, observations from neighboring areas shed light on the
potential thickness of Alpine tectono-metamorphic units, which in
the Zermatt–Saas Zone might be masked by relatively second-order
exhumation-related shear zones. In the ultramafic Avic massif (Fig. 10),
which mostly lacks continental allochthons, the characteristic layers of
ophicalcites extensively capping serpentinized peridotites provide
a good marker to estimate the thickness of individual slivers to ca.
1.5 km. Estimates of several hundred meters can be provided from the
Punta Rossa unit, in the Valaisan units and the San Petrone unit, in Alpine
Corsica, which escaped significant exhumation-related shearing. The
thickness of the Punta Rossa unit can be calculated from the base of the
preserved ultramafics to the youngest stratigraphic marker available,
located in the Mesozoic cover, at the transition between Marmontains
quartzite and the St. Christophe calcschists (Beltrando et al., 2012). The
resulting value, obtained by retro-deforming rigidly all the folds observed
in the field, amounts to N600 m. This is only a crude estimate of original
nappe thickness, as it ignores the possible existence of undetected
isoclinal folds and of significant flattening/thickening of the original
sequence during deformation. These values are in line with recent esti-
mates proposed for theMonvisomassif, which is also part of the eclogitic
Piemonte units, where individual tectono-metamorphic units preserving
a coherent section of Tethyan ocean floor, ranging in thickness from ca.
300 m to ca. 1.1 km, can be followed for more than 10 km along

strike (Angiboust et al., 2011). Therefore, the literature data from
the Western Alps and Corsica reviewed here indicates that Alpine (U)
HP tectono-metamorphic units originated from tectonic sampling from
the downgoing lithosphere, which largely consisted of hyper-extended
crust and exhumed mantle domains (Fig. 2b). The original thickness of
the newly formed tectono-metamorphic units probably amounted to
several hundreds of meters. As shown in this review of the different tec-
tonic domains from theWestern Alps and Corsica, this original thickness
may be preserved during exhumation or significantly diminished by
exhumation-related tectonic shuffling.

Comparisonswith seismic reflection and refraction studies along the
Lusigal 12 and CAM144 profiles, off the Iberia margin (Beslier, 1996;
Chian et al., 1999), calibrated with drillhole data from ODP Legs 149
and 173 (Sawyer et al., 1994; Whitmarsh et al., 1998), provide impor-
tant insights on the nature of the potential décollement horizon along
which specific sections of rifted continental margins can be tectonically
sampled (Fig. 14). A downward increase in seismic velocities has been
documented in hyper-extended domains, where it has been related to
progressive hydration of exhumed ultramafics and continental base-
ment during rift-related brittle tectonics and hydrothermal circulation.
The rheological barriers resulting from decreasing basement alteration
may provide key décollement horizons, along which the overlying
altered basement and sediments can be detached from the downgoing
plate during basin inversion. In the CAM144 section, seismic velocity
attenuation indicates that important rheological barriers should be
placed at 0.5–2 km under the basin floor. These estimates, correspond
to the thickness of several Alpine tectono-metamorphic units.
Therefore, we suggest that different sections of hyper-extended
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margins are preferentially detached from the downgoing lithosphere
along a rift-related rheological barrier resulting from downward-
fading hydration. Local morphology is likely to exert an important
role, too, with topographic highs probably being more likely to be
sampled during subduction and accreted to the evolving accretion-
ary prism or orogenic wedge (e.g., Polino et al., 1990; Manatschal
et al., 2006, 2011).

7.3. Rift inheritance and tectono-metamorphic evolution

The observations reviewed in the previous sections indicate that
several tectono-metamorphic units that underwent an Alpine tectono-
metamorphic overprint at (U)HP conditions in the Western Alps and
Corsica originated from areas floored by hyper-extended crust and
exhumed mantle, related to Jurassic rifting. The recognition of pre-
orogenic lithostratigraphic associations within the main Alpine
tectono-metamorphic units provides new constraints on their paleo-
geographic positions (Fig. 15), shedding light on the relationship
between PTt evolution and rift-related margin architecture. As
discussed in this section, the regionally most significant gaps in the
recorded Alpine metamorphic pressure, which correspond to the
Insubric Line, Piemonte Movement Zone and Basal Briançonnais
Movement Zone (Fig. 8) may be related to (and partly explained by)
the complex rift structure.

Although a complete review of basement–cover relationships from
all Western Alpine tectono-metamorphic units is still beyond the
existing dataset, it is immediately apparent that the relative position
of the tectono-metamorphic units demonstrably sampling areas
floored by regionally exhumed continental basement and subcontinen-
tal mantle is analogous to the one documented in the less deformed/
metamorphosed Eastern Swiss Alps (cfr. Figs. 3, 5 and 15). This analogy
allows extending the generally acceptedpre-convergencemargin archi-
tecture (Fig. 3) to the areas that were later involved in Western Alpine
subduction (Fig. 15). The proposed scenario is in accordancewith sever-
al published paleogeographic reconstructions (e.g. Dal Piaz et al., 1972;
Lemoine, 1985; Froitzheim andManatschal, 1996;Dal Piaz, 1999; Babist
et al., 2006), which rely heavily on the stacking order and on the age
of Alpine high-pressure metamorphism. Importantly, the approach
adopted here provides additional lithostratigraphic constraints. This
reconstruction should not be considered as the only possible pre-
orogenic restoration, although observations of high-quality reflection
seismic sections from present-day magma-poor rifted margins show
similar architectures. Most importantly, the width of the former mar-
gins is difficult to constrain, since the absolute amount of relative dis-
placement between the Western Alpine tectono-metamorphic units
cannot be estimated, due to the widespread exhumation-related over-
print of the main tectonic contacts.

As apparent from Fig. 15, the proximal Adriatic margin, preserved in
the Southern Alps, grades westward into the Canavese and Sesia Zone,
with lithostratigraphic features typical of areas floored by hyper-
extended crust (e.g. Ferrando et al., 2004; Babist et al., 2006). Localman-
tle windows within this thinned crust are preserved in the southern
part of the Canavese Zone (Beltrando et al., in press). The Sesia Zone
is then juxtaposed with the Piemonte units, which, similarly to the
South Penninic units of the Eastern Swiss Alps (Figs. 3 and 5) preserve
a lithostratigraphy characteristic of areas floored by exhumed mantle
lithosphere, with frequent continental basement allochthons (e.g. Dal
Piaz, 1999; Beltrando et al., 2010a). The Briançonnais rise separated
the South Penninic basin from the more westernly located Valaisan
basin, consisting of hyper-extended crust with windows of exhumed
mantle, as sampled in the Punta Rossa unit (Beltrando et al., 2012). The
latter gives way to the west to the Helvetic basement and cover units,
derived from the proximal European margin (Loprieno et al., 2011).

The improved understanding of the margin architecture has a num-
ber of implications for the role of rift inheritance and hyper-extension
during tectonic inversion, a topic that is attracting increasing attention
(e.g. Lundin and Doré, 2011; Lester et al., 2013; McIntosh et al., 2013).
As pointed out by Lundin and Doré (2011), hyper-extension rift-
related processes may lead to significant weakening of the pre-
orogenic lithosphere, thus playing a critical role on the reactivation
and inversion of rifted margins. Recent studies of the transition
between the Eastern and Central Alps (Mohn et al., 2011) confirm
this view, pointing out a major gap in Alpine metamorphic grade
and deformation style within the inverted distal margin of the
Adriatic plate (Fig. 8). This observation was interpreted to indicate
that the Late Cretaceous plate motion of the Adriatic plate, in this
area, was largely accommodated by a deformation zone that nucleated
within the distal Adriatic margin, outboard with respect to the Adriatic
necking zone. A similar scenario can be proposed for the Western Alps,
where a major gap in metamorphic grade and deformation style is
observed across the Canavese Zone, which marks the transition
between the proximal part of the Adriatic margin and the distal conti-
nental margin units sampled in the Sesia Zone (Figs. 8 and 15). This
tectono-stratigraphic unit separates the Ivrea Zone, which locally
underwent Alpine re-equilibration at sub-greenschist facies conditions,
from the Eclogitic Micaschist Complex (Sesia Zone), which underwent
Alpine metamorphism at P N 1.8 GPa starting from ca. 80 Ma (Rubatto
et al., 2011). Strike slip deformation within the Canavese Zone at ca.
75–60 Ma (Zingg et al., 1976), combinedwith plate kinematic consider-
ations (Rosenbaum et al., 2002), indicate that this Late Cretaceous
metamorphic evolution took place along a left-lateral deformation
zone nearly parallel to the inherited Jurassic structural trends and to
the Adriatic movement vector (Beltrando et al., 2010b). The first-
order correlation between Alpine metamorphic/deformation history
and rift-related paleogeography, already noted in Dal Piaz et al.
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(1972), indicates that early deformation probably nucleated at the tran-
sition between proximal and distal Adriatic margin (Fig. 15). This defor-
mation zone, referred to as ‘Insubric Movement Zone’, was later re-
activated during several stages of the Alpine evolution, including
right-lateral shearing, up to the Miocene (Schmid et al., 1989; Pleuger
et al., 2012).

A secondmajor pressure gap is located at the transition between the
eclogitic and blueschist Piemonte units, which in the North-Western
Alps corresponds to the well studied Piemonte Movement Zone
(Fig. 8; e.g. Reddy et al., 2003; Forster et al., 2004). The Zermatt–
Saas Zone, which is part of the eclogitic Piemonte units, underwent
high-pressure metamorphism at ca. 48–44 Ma, immediately before
the onset of Alpine metamorphism of the Briançonnais tectonic
units. Beltrando et al. (2010a) proposed that exhumation of the
eclogitic Piemonte units in the footwall of the Piemonte Movement
Zone was possibly related to the arrival of the Briançonnais micro-
block at the trench. In that scenario, thick continental crust would
have resisted subduction, as indicated by the lower pressure meta-
morphism recorded by the Briançonnais nappe stack (Fig. 8), poten-
tially favoring the exumation of the just-subducted areas floored by
exhumed subcontinental mantle, located in a more distal position
(Fig. 3 in Beltrando et al., 2010a).

A third regionally significant pressure gap preserved in theWestern
Alps is located along the Frontal/Basal Briançonnais Thrust (Fig. 8). This
multi-stage movement zone, referred to as ‘Briançonnais Movement
Zone’ hereafter, accommodated both extensional and shortening
deformation (e.g. Cannic et al., 1996; Freeman et al., 1998). It separates
the so-called Zone Houillèr, which underwent low grade Alpine meta-
morphism (P = 0.6 ± 0.2 GPa and T = 280–300 °C; Lanari et al.,
2012), from the underlying Valaisan nappe system, which underwent
Alpine metamorphism up to P = 1.5–1.7 GPa and T = 350–400 °C
(Fig. 8; Bousquet et al., 2002). Stratigraphic considerations in the
Houillèr Zone and in the rest of the Briançonnais nappe system have
long been interpreted to indicate that they were originally part of a
continental ribbon partly detached from the proximal Europeanmargin
(Fig. 15). On the other hand, the Punta Rossa unit, which crops out only
a few hundreds of meters underneath the Basal Briançonnais Thrust,
preserves evidence of exhumed subcontinental mantle (Fig. 10;
Beltrando et al., 2012). Furthermore, the other sub-units described
from the rest of the Valaisan units document the transition from the
proximal European margin to the North Penninic trough (Loprieno
et al., 2011). These considerations indicate that the North Penninic
hyper-extended margin was preferentially underthrusted beneath the
Briançonnais micro-block, under a cool thermal regime, thus reaching
significantly higher pressure at low-T (Figs. 8 and 15). Significantly,
the extent of this pressure gap decreases southward and vanishes
where the Valaisan basin tapered out originally (Bigi et al., 1990), as
indicated by marked similarities between the sedimentary cover of
the Briançonnais nappe system and Helvetic–Dauphinois domain.
This observation suggests that significant underthrusting, in the
south-western Alps was hampered by the widespread presence of
normal continental crust.

Thesefirst-order considerations based on combined lithostratigraphic,
paleogeographic and tectono-metamorphic observations indicate that
lateral variations in the crustal and lithospheric architecture control
the fate of different sections of magma-poor rifted margins during
plate convergence. The main deformation zones, where most of the
plate convergence is accommodated and significant tectonic burial is
achieved, are likely to nucleate along lateral gradients in the crustal
thickness, corresponding both to the transition between proximal
and distal margins and to the transition between micro-blocks and
hyper-extended lithosphere (Fig. 15). Therefore, areas floored by
hyper-extended crust and exhumed mantle are likely to undergo a
greater amount of tectonic burial with respet to proximal domains
and continental micro-blocks, which generally rest in the hanging
wall of these movement zones.

8. Conclusions

This study outlines and discusses the methodology allowing the
detection of sections of magma-poor rifted margins lacking a layer-
cake architecture within highly deformed/metamorphosed orogenic
belts. This tool is mainly aimed at testing the overall consistency/coher-
ency of the lithostratigraphy and the available evidence for original
proximity of the different rock types. In this context, the recognition of
key marker horizons that can be followed throughout the study areas
plays an important role in distinguishing between rift-related
lithostratigraphic sections and chaotic subduction or sedimentary
mélanges. These marker horizons correspond to the top-basement sur-
face and to the base of the post-rift sediments. Importantly, all litholog-
ical units located in-between these two surfaces are likely to terminate
laterally as a result of rift-related thinning, potentially leading to com-
plex outcroppingpatterns followingmulti-stage deformation andmeta-
morphism. These criteria should be used in conjuction with the more
widely adopted comparison of PTtd paths followed by different rock
types, as the latter approach might be insufficient to assess the internal
coherence of tectono-metamorphic units. The methodology outlined in
this paper, applied to the North-Western Alps, indicates that several
major tectono-metamorphic units originated from domains floored
by hyper-extended crust and lithosphere bounding the Western
Tethys. Basement–cover relationships comparable to those observed
in the little deformed equivalents preserved in the Eastern Swiss
Alps are found locally. More commonly, convergent margin dynamics
resulted in variable Alpine reworking of the Jurassic contacts, as hyper-
extended lithosphere is significantly more prone to accommodating
deformation than proximal margins.
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