
10 April 2024

AperTO - Archivio Istituzionale Open Access dell'Università di Torino

Original Citation:

Exchangeable Hoeffding-decomposition over finite sets: a characterization and counterexamples

Published version:

DOI:10.1016/j.jmva.2014.04.012

Terms of use:

Open Access

(Article begins on next page)

Anyone can freely access the full text of works made available as "Open Access". Works made available
under a Creative Commons license can be used according to the terms and conditions of said license. Use
of all other works requires consent of the right holder (author or publisher) if not exempted from copyright
protection by the applicable law.

Availability:

This is the author's manuscript

This version is available http://hdl.handle.net/2318/144722 since 2016-09-14T11:23:29Z



Exchangeable Hoeffding decompositions over finite sets:

a combinatorial characterization and counterexamples

Omar El-Dakkak1, Giovanni Peccati2, Igor Prünster3
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Abstract

We study Hoeffding decomposable exchangeable sequences with values in a finite set
D = {d1, . . . , dK}. We provide a new combinatorial characterization of Hoeffding
decomposability and use this result to show that, for every K ≥ 3, there exists a
class of neither Pólya nor i.i.d. D-valued exchangeable sequences that are Hoeffding
decomposable.

Key words: Exchangeability, Hoeffding decomposition, Pólya urn, urn sequence, weak
independence.

1 Introduction and framework

1.1 Overview

Let X[1,∞) := {Xn : n ≥ 1} be a sequence of random variables (r.v.) with values in some
Polish space. We say that X[1,∞) is Hoeffding-decomposable if every square-integrable
symmetric statistic of any n-subvector of X[1,∞), for every n ≥ 2, can be uniquely repre-
sented as an orthogonal sum of n U -statistics with degenerate kernels of increasing order.
The classic notion of ‘degeneracy’ that is needed in this context is formally introduced in
formula (1.8) below.

Since their discovery in the landmark paper by Hoeffding [12], Hoeffding decompositions
in the case of i.i.d. sequences have been successfully applied in a variety of frameworks, e.g.:
linear rank statistics (Hajek [11]), jackknife estimators (Karlin and Rinott [15]), covariance
analysis of symmetric statistics (Vitale [24]), convergence of U -processes (Arcones and Giné
[2]), asymptotic problems in geometric probability (Avram and Bertsimas [3]), Edgeworth
expansions (Bentkus, Götze and van Zwet [4]), and tail estimates for U -statistics (Major
[18]). See also Koroljuk and Borovskich [16] and references therein.

Outside the i.i.d. framework, Hoeffding decompositions have been notably applied to
study sampling without replacement from finite populations. The first analysis in this
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direction can be found in Zhao and Chen [25]. Bloznelis and Götze [7, 8] generalized these
results in order to characterize the asymptotic normality of symmetric statistics based on
sampling without replacement (when the size of the population diverges to infinity), as well
as to obtain explicit Edgeworth expansions. In Bloznelis [6], Hoeffding-type decompositions
are explicitly computed for statistics depending on extractions without replacement from
several distinct populations.

In Peccati [19, 20, 21] the theory of Hoeffding decompositions was extended to the
framework of general exchangeable (infinitely extendible) random sequences. In Peccati
[20] it was shown that the class of Hoeffding decomposable exchangeable sequences coin-
cides with the collection of weakly independent sequences, and that the class of weakly
independent (and, therefore, Hoeffding decomposable) sequences contains the family of
generalized Pólya urn sequences (see, e.g., Blackwell and MacQueen [5] or Pitman [22]).
The connection with Pólya urns was further exploited in Peccati [21], where Hoeffding-
type decompositions were used in order to establish several new spectral properties of
Ferguson-Dirichlet processes (Ferguson [10]), such as for instance a chaotic representation
property.

In El-Dakkak and Peccati [9] the results established in Peccati [20] were enriched and
completed in two directions. On the one hand, it was proved that a (non deterministic) in-
finite exchangeable sequence with values in {0, 1} is Hoeffding decomposable if and only if
it is either a Pólya sequence or i.i.d.. This result connects de facto the seemingly unrelated
notions of a Hoeffding decomposable sequence and of an urn process, a concept thoroughly
studied in Hill, Lane and Sudderth [13]. For the sake of completeness, it is worth recall-
ing that, following [13], an exchangeable sequence X[1,∞) will be termed deterministic if
P[Xk = X1, ∀k ≥ 2] = 1. On the other hand, and using different techniques, a partial
characterization of Hoeffding decomposable exchangeable sequences with values in a finite
set with more than two elements was obtained. While not being as exhaustive as the one
in the two-color case, this characterization was used to prove that Pólya urns are the only
Hoeffding decomposable sequences within a large class of exchangeable sequences. Such a
family of exchangeable sequences is defined in terms of their directing (or de Finetti) mea-
sure, which is obtained by normalizing vectors of infinitely divisible (positive) independent
r.v. (see Regazzini, Lijoi and Prünster [23] and James, Lijoi and Prünster [14]). See Lijoi
and Prünster [17] for an overview of their use in Bayesian Statistics.

Therefore, the analysis carried out in El-Dakkak and Peccati [9] left the following question
unanswered:

Problem A: Are Pólya and i.i.d. sequences the only infinite non deterministic
Hoeffding decomposable sequences with values in a finite set with ≥ 3 elements?

We shall give a negative answer to Problem A. This is surprising given the above mentioned
positive characterization might somehow lead to conjecture the opposite and, hence, makes
the present result even more remarkable. In fact, the negative answer is obtained by explic-
itly building a class of neither Pólya nor i.i.d. yet Hoeffding decomposable exchangeable
sequences with values in a finite set with strictly more than two elements. A precise state-
ment is given in Theorem 2.3. Interestingly, this class turns out to be a generalization of
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a counterexample appearing in Hill, Lane and Sudderth [13, p.1591], showing that, unlike
in the two-color case (see Theorem 1.5), there exist non-deterministic exchangeable 3-color
urn processes that are neither Pólya nor i.i.d. sequences. Our fundamental tool is a new
combinatorial characterization, stated in Theorem 3.4, of the system of predictive prob-
abilities associated with Hoeffding-decomposable exchangeable sequences taking values in
an arbitrary finite set. This characterization, which is of independent interest, represents
a generalization of a crucial combinatorial statement proved in El-Dakkak and Peccati [9,
Proposition 4].

In what follows, we recall some well-known facts concerning key notions and concepts
to be used in the sequel: exchangeability (Section 1.2), Hoeffding decomposability (Sec-
tion 1.3), weak independence (Section 1.4) and urn processes (Section 1.5). Comprehensive
accounts on these can be found in, e.g., [1, 20, 9, 13].

Remark 1.1 Every exchangeable sequence {X1, X2, ...} considered in this paper is as-
sumed to take values in some finite set D. In particular, every r.v. of the type F =
ρ(X1, ..., Xn), with n ≥ 1 and ρ any real-valued function on Dn, is automatically bounded.

1.2 Exchangeability

For every n ≥ 2, we denote by Sn the group of all permutations of the set [n] = {1, ..., n} .
A vector (X1, ..., Xn) of D-valued r.v. is said to be exchangeable if, for all xn = (x1, ..., xn) ∈
Dn and all π ∈ Sn,

P (X1 = x1, ..., Xn = xn) = P
(
X1 = xπ(1), ..., Xn = xπ(n)

)
.

A D-valued infinite sequence X[1,∞) is exchangeable if every n-subvector of X[1,∞) is
exchangeable. Let ΠD denote the set of all probability measures on D. By the de
Finetti representation theorem (see, e.g, [1]), an infinite sequence X[1,∞) with values in
D = {d1, ..., dK} is exchangeable if and only if there exists a unique probability measure
γ on ΠD (called directing or the de Finetti measure associated with the sequence X[1,∞))
such that, for all n ≥ 2 and all (x1, ..., xn) ∈ Dn,

P (X1 = x1, ..., Xn = xn) =

∫
ΠD

n∏
j=1

p {xj} γ (dp) , (1.1)

where the elements of ΠD are written in the form p := {p {di} : i = 1, ...,K} . In other
words, the de Finetti representation theorem states that a sequence of r.v. is exchangeable
if and only if it is a mixture of i.i.d. random sequences with values in D.

Any probability measure p ∈ ΠD can be parameterized in terms of the simplex

ΘK−1 :=

{
(θ1, ..., θK−1) : θh ≥ 0, h = 1, ...,K − 1 and

K−1∑
h=1

θh ≤ 1

}
,

by setting p {d1} = θ1, ..., p {dK−1} = θK−1 and p {dK} = 1 −
∑K−1

h=1 θh. Thus, the repre-
sentation in (1.1) can be rewritten as

P (X1 = x1, ..., Xn = xn)=

∫
ΘK−1

(
ΠK−1
j=1 θ

ij
j

)(
1− ΣK−1

h=1 θh

)iK
γ (dθ1, ...,dθK−1) , (1.2)
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where (with an abuse of notation) we have identified γ with its image through the canonical
bijection between ΠD and ΘK−1, and ij :=

∑n
v=1 1 (xv = dj) , j = 1, ...,K. Clearly, when

K = 2, (1.2) becomes

P (X1 = x1, ..., Xn = xn) =

∫
[0,1]

θi (1− θ)n−i γ (dθ) (1.3)

with i =
∑n

v=1 1 (xv = d1) .

If there exists a vector α = (α1, ..., αK) ∈ (0,+∞)K of strictly positive numbers such
that

γ(dθ1, . . . ,dθK−1) =
1

B (α)

(
ΠK−1
j=1 θ

αj−1
j

)(
1− ΣK−1

h=1 θh

)αK−1
dθ1 · · · dθK−1, (1.4)

where B (α) := ΠK
j=1Γ (αj) /Γ

(
ΣK
j=1αj

)
, and Γ (·) stands for the gamma function, we

say that γ is a Dirichlet probability measure and that X[1,∞) is a K-color Pólya sequence
with parameter α. Specializing (1.4) to the case K = 2, one sees immediately that the
measure γ in (1.3) becomes a beta distribution with parameters α1, α2. It follows that an
exchangeable sequence X[1,∞) is a two-color Pólya sequence if and only if its de Finetti
measure is a beta distribution.

1.3 Hoeffding decomposability

Let us first introduce some notation. For all n ≥ 1 and all 1 ≤ u ≤ n, we write [n] =
{1, ..., n} and [u, n] = {u, u+ 1, ..., n} , and set X[n] := (X1, X2, ..., Xn) and X[u,n] :=
(Xu, Xu+1, ..., Xn) . As in [9] define, for all n ≥ 2, the sequence of spaces{

SUk
(
X[n]

)
: k = 0, ..., n

}
,

generated by symmetric U -statistics of increasing order, as follows: SU0

(
X[n]

)
:= R and,

for all k = 1, ..., n, SUk
(
X[n]

)
is the collection of all r.v. of the type

F
(
X[n]

)
=

∑
1≤j1<···<jk≤n

ϕ (Xj1 , ..., Xjk) , (1.5)

where ϕ is a real-valued symmetric function on Dk. Any r.v. F as in (1.5) is called a
U -statistic with symmetric kernel of order k. The collection

{
SUk

(
X[n]

)}
is an increasing

sequence of vector spaces such that SUn
(
X[n]

)
= Ls

(
X[n]

)
, where Ls

(
X[n]

)
is defined as

the Hilbert space of all symmetric statistics T
(
X[n]

)
w.r.t. the inner product 〈T1, T2〉 :=

E
(
T1

(
X[n]

)
T2

(
X[n]

))
. Hence, one can meaningfully define the sequence of symmetric

Hoeffding spaces associated with X[n], denoted by{
SHk

(
X[n]

)
: k = 0, ..., n

}
,

as follows: SH0

(
X[n]

)
:= SU0

(
X[n]

)
= R, and

SHk

(
X[n]

)
:= SUk

(
X[n]

)
∩ SUk−1

(
X[n]

)⊥
, k = 1, ..., n,
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where all orthogonals (here and in the sequel) are taken in Ls
(
X[n]

)
. The following repre-

sentation is therefore at hand

Ls
(
X[n]

)
=

n⊕
k=0

SHk

(
X[n]

)
,

where ‘⊕” stands for an orthogonal sum. This fact implies that, for all n ≥ 2, every
symmetric statistic T

(
X[n]

)
admits an almost-surely unique representation of the type:

T
(
X[n]

)
= E (T ) +

n∑
k=1

Fk
(
X[n]

)
, (1.6)

where the Fk’s are uncorrelated U -statistics such that, for all k = 1, ..., n, there exists a
symmetric kernel ϕk of order k satisfying

Fk
(
X[n]

)
=

∑
1≤i1<···<ik≤n

ϕk (Xi1 , ..., Xik) . (1.7)

We are now in a position to recall the definition of Hoeffding decomposability for
exchangeable sequences given in Peccati [20].

Definition 1.2 The exchangeable sequence X[1,∞) is said to be Hoeffding decomposable if,
for all n ≥ 2 and all k = 1, ..., n, the following double implication holds: Fk ∈ SHk

(
X[n]

)
if

and only if the kernel ϕk appearing in its representation (1.6)–(1.7) is completely degenerate,
that is

E
(
ϕk
(
X[k]

)
| X[2,k]

)
= 0, a.s.-P. (1.8)

1.4 Weak independence

Fix n ≥ 2 and let S (Dn) be the class of all symmetric real-valued functions on Dn. Fix

ϕ ∈ S (Dn) and define the functions [ϕ]
(n−1)
n,n−1 : Dn−1 → R and [ϕ]

(n−u)
n,n−1 : Dn−1 → R,

u = 2, ..., n as the unique mappings such that

[ϕ]
(n−1)
n,n−1

(
X[2,n]

)
= E

(
ϕ
(
X[n]

)
| X[2,n]

)
, a.s.-P, (1.9)

and
[ϕ]

(n−u)
n,n−1

(
X[u+1,u+n−1]

)
= E

(
ϕ
(
X[n]

)
| X[u+1,u+n−1]

)
, a.s.-P, (1.10)

respectively. Exchangeability and symmetry imply that Dn−1 → R : x 7→ [ϕ]
(n−1)
n,n−1 (x)

and Dn−1 → R : x 7→ [ϕ]
(0)
n,n−1 (x) (the latter being the function appearing in (1.10)

written for u = n) are symmetric functions whereas, for u = 2, ..., n − 1, the function

Dn−1 3 (x1, ..., xn−1) 7→ [ϕ]
(n−u)
n,n−1 (x1, ..., xn−1) is separately symmetric in the variables

(x1, ..., xn−u) and (xn−u+1, ..., xn−1) , and not necessarily as a function on Dn−1. Recall
that, given a function f : Dn → R, the canonical symmetrization of f, denoted by f̃ , is
given by

f̃ (xn) =
1

n!

∑
π∈Sn

f
(
xπ(n)

)
, xn ∈ Dn.
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Now define the sequence of vector spaces

Ξn
(
X[1,∞)

)
:=
{
ϕ ∈ S (Dn) : [ϕ]

(n−1)
n,n−1

(
X[2,n]

)
= 0
}
, n ≥ 2,

and the array of spaces

Ξ̃n,n−u
(
X[1,∞)

)
:=

{
ϕ ∈ S (Dn) : [̃ϕ]

(n−u)

n,n−1

(
X[u+1,u+n−1]

)
= 0

}
, u = 2, ..., n, n ≥ 2,

where [̃ϕ]
(n−u)

n,n−1 is the canonical symmetrization of [ϕ]
(n−u)
n,n−1 .

Definition 1.3 We say that the sequence X[1,∞) is weakly independent if, for every n ≥ 2,

Ξn
(
X[1,∞)

)
⊂

n⋂
u=2

Ξ̃n,n−u
(
X[1,∞)

)
.

In other words, weak independence occurs if, for every n ≥ 2 and every ϕ ∈ S (Dn) , the

relation [ϕ]
(n−1)
n,n−1

(
X[2,n]

)
= 0 necessarily implies that [̃ϕ]

(n−u)

n,n−1

(
X[u+1,u+n−1]

)
= 0 for all

u = 2, ..., n. For instance, when n = 2 weak independence yields the following implication
for every symmetric ϕ on D2:

E (ϕ (X1, X2) | X2) = 0 ⇒ E (ϕ (X1, X2) | X3) = 0.

Parts I and II of the following statement contain some of the main findings in Peccati
[20] and El-Dakkak and Peccati [9], respectively.

Theorem 1.4 (Peccati [20]; El-Dakkak and Peccati [9]) Let X[1,∞) be an exchange-
able sequence of r.v. with values in the finite set D.

(I) Assume that
SHk

(
X[n]

)
6= {0} , ∀k = 1, ..., n, ∀n ≥ 2. (1.11)

Then X[1,∞) is Hoeffding decomposable if and only if it is weakly independent.

(II) Assume that D = [2] and that X[1,∞) is non deterministic (so that (1.11) is auto-
matically satisfied). Then, X[1,∞) is Hoeffding decomposable if and only if X[1,∞) is
either a Pólya sequence or an i.i.d. sequence.

1.5 Urn processes and a result by Hill, Lane and Sudderth

Let X[1,∞) := {Xn : n ≥ 1} be a sequence of {0, 1}-valued r.v.. Roughly speaking, X[1,∞)

is a two-color urn process if its probabilistic structure can be represented by successive
drawings from an urn with changing composition. More precisely, consider an urn con-
taining r red balls and b black balls, r, b ∈ {1, 2, ...}, and let Y0 := r/(r + b) denote the
initial proportion of red balls in the urn. Suppose that a red ball is added with proba-
bility f(Y0) and that a black ball is added with probability 1 − f(Y0), where f denotes a
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function from the unit interval into itself, and let Y1 be the new proportion of red balls in
the urn. Now, iterate the procedure to generate a sequence (Y0, Y1, Y2, . . .). For all n ≥ 1,
let Xn denote the indicator of the event that the n-th ball added is red. The process
X[1,∞) := {Xn : n ≥ 1} constructed in this manner is called a two-color urn process with
initial composition (r, b) and urn function f . It is immediately seen that, for all n ≥ 1,

P (Xn+1 = 1 | X1, . . . , Xn) = f(Yn).

In other words, two-color urn processes are characterized by the fact that the conditional
probability that, at stage n+ 1, a red ball is added depends uniquely on the proportion of
red balls at stage n, via the function f .

A two-color urn process is said to be exchangeable if the sequence X[1,∞) is exchange-
able. In particular, if X[1,∞) is a two-color urn process with initial composition (r, b), and
the identity map as urn function then (a) X[1,∞) is exchangeable and (b) the de Finetti
measure of X[1,∞) is a beta distribution with parameters r and b. In this case, X[1,∞)

is termed two-color Pólya urn process. Similarly, a two-color urn process, X[1,∞), with
constant urn function, identically equal to Y0 is (a) exchangeable and (b) has de Finetti
measure equal to a point mass at Y0. In other words, X[1,∞) is a sequence of i.i.d. Bernoulli
trials with parameter Y0. Finally, a two-color urn process, X[1,∞), with urn function

f(x) = p1{Y0}(x) + 1(Y0,1](x), p ∈ (0, 1),

is (a) exchangeable and (b) has de Finetti measure γ = pδ{1} + (1 − p)δ{0}. In this case,
X[1,∞) is termed deterministic urn process. Note that such processes are characterized by
the fact that the support of their de Finetti measure is {0} ∪ {1}.

The following statement is the main result of Hill, Lane and Sudderth [13]: it shows
that the three classes described above are the only two-color exchangeable urn processes.

Theorem 1.5 (Hill, Lane and Sudderth [13]) Let X[1,∞) be an exchangeable non de-
terministic urn process with values in {0, 1}. Then, X[1,∞) is either a two-color Pólya urn
process or an i.i.d. Bernoulli sequence.

Remark 1.6 In the parlance of the present article, a distinction is made between Pólya
sequences and Pólya urn processes, the latter being a proper subset of the former: in
fact, according to our definitions, a Pólya urn process is a Pólya sequence with de Finetti
measure given by a beta distribution whose parameters are integer-valued.

We now turn to the definition of multicolor urn processes. Consider an urn containing
balls of K colors, K ∈ {3, 4, . . .}, and suppose that it contains exactly ri balls of color di,
respectively, ri ∈ {1, 2, . . .}, i = 1, . . . ,K. Let Y0 := (Y0,1, . . . , Y0,K) be the vector of initial
proportions of balls of each color in the urn, where Y0,i := ri∑K

k=1 rk
denotes the proportion

of balls of color di, i = 1, . . . ,K. Suppose that, at stage 1, a ball is added and that it is
of color dj with probability fj(Y0), j = 1, . . . ,K, where the fj ’s are [0, 1]-valued functions
defined on the simplex

SK :=

{
y = (y1, . . . , yK) :

K∑
k=1

yk = 1, yk ≥ 0, k = 1, . . . ,K

}
, (1.12)

7



such that, for all y ∈ SK ,
∑K

j=1 fj(y) = 1. Let Y1 := (Y1,1, . . . , Y1,K) be the new com-
position of the urn and iterate the process to generate a sequence (Y0, Y1, Y2, . . .). For all
n ≥ 1, let Xn be the {d1, . . . , dK}-valued r.v. such that Xn = dj if and only if the ball
added, at stage n, is of color dj . The process X[1,∞) := {Xn : n ≥ 1} obtained in this man-
ner is called a K-color urn process with initial composition (r1, . . . , rK) and urn function
f = (f1, . . . , fK), and we have, for all n ≥ 1 and all j ∈ {1, . . . ,K},

P (Xn+1 = dj | X1, . . . , Xn) = fj(Yn).

A K-color urn process with initial composition (r1, . . . , rK) and an urn function given by
the identity map is (a) exchangeable and (b) has de Finetti measure given by a Dirichlet
distribution of parameters r1, . . . , rK . Such an urn process is called K-color Pólya urn
process with initial composition (r1, . . . , rK). Once more, the class of K-color Pólya urn
processes is a proper subset of the class of K-color Pólya sequences. The following example,
taken from Hill, Lane and Sudderth [13, p. 1591], shows that a neat result such as Theorem
1.5 cannot hold for exchangeable urn processes with values in sets with strictly more than
two elements.

Example 1.7 An urn contains three balls, 1 red, 1 black and 1 green. At each stage, a ball
is drawn. If the ball is red, it is replaced and another red ball is added. If the ball is black
or green, it is replaced, and a green or black ball is added, depending whether a fair coin
falls head or tails. Attaching the labels 1, 2, 3, respectively, to the colors red, black and
green, one sees immediately that the sequence {Xn : n ≥ 1}, defined as Xn = j (j = 1, 2, 3)
according to whether the nth ball added to the urn is of color j, is an exchangeable urn
process with urn function given by f1(y) = y1 and f2(y) = f3(y) = (y2 + y3)/2. In
particular, {Xn} is not a Pólya urn process.

The main achievement of the present paper is the proof that a generalization of the
previous example provides examples of Hoeffding decomposable exchangeable sequences
that are neither Pólya nor i.i.d..

1.6 Outline

Section 2 contains a discussion and the statement of our main result: Theorem 2.3. Section
3 contains the main combinatorial tools and the novel combinatorial characterization that
are needed throughout the present paper, whereas the proof of Theorem 2.3 is provided in
Section 4.

2 A remarkable class of exchangeable sequences

To achieve the announced negative result we introduce a remarkable class of exchangeable
sequences. As will be clear from its definition, this class generalizes the exchangeable
sequence introduced by Hill, Lane and Sudderth [13] recalled in Example 1.7. Let K ≥ 3,
and let X[1,∞) be an exchangeable sequence with values in D = {d1, . . . , dK}, whose de
Finetti measure γ is such that
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γ(dθ1, . . . ,dθK−1) =

1

B(π, ν)
δα1(1−θ1)(dθ2) · · · δαK−2(1−θ1)(dθK−1)θπ−1

1 (1− θ1)ν−1dθ1, (2.13)

where π, ν > 0 and α1, . . . , αK−2 > 0 are such that
∑K−2

i=1 αi < 1.

Remark 2.1 Equation (2.13) defines the de Finetti measure of an exchangeable sequence
that is neither i.i.d. nor Pólya. In the sequel, we refer to any such sequence as a

HLSK(π, ν, α1, . . . , αK−2) exchangeable sequence,

(or, simply, a HLSK-exchangeable sequence, if the parameters need not be specified in a
given context) with the acronym pointing to Hill, Lane and Sudderth [13]. In particular,
as deduced from the discussion below, the case HLS3(1, 2, 1

2) corresponds to the 3-color
urn sequence described in Example 1.7.

When π and ν are integer-valued, for any fixed K, all HLSK(π, ν, α1, . . . , αK−2) exchange-
able sequences are non Pólya exchangeable urn processes. To see this, it suffices to notice
that any such sequence can be generated by means of an urn with initial composition
(π, ν1, . . . , νK−1), where the integers νi are such that ν =

∑K−1
i=1 νi, and with urn func-

tion f = (f1, . . . , fK) given by f1(y) = y1, fj(y) = αj−1
∑K

i=2 yi (j = 2, ...,K − 1), and

fK(y) = (1− α)
∑K

i=2 yi, with α =
∑K−2

i=1 αi. An HLSK(π, ν, α1, . . . , αK−2) exchangeable
urn process (i.e. with integer-valued π and ν) has consequently the following interpretation:
suppose an urn contains initially π balls of color d1 and νi−1 balls of color di, i = 2, . . . ,K,
with

∑K−1
i=1 νi = ν. The following random experiment is run at each stage: a ball is drawn,

if it is of color d1, it is replaced along with another of the same color. If the ball drawn
is of color di, i = 2, . . . ,K, it is replaced along with a ball of color dj , with probability tj ,

where tj = αj−1, if j = 2, . . . ,K − 1 and tj = 1− α = 1−
∑K−2

s=1 αs, if j = K.

Remark 2.2 In the above described explicit realization of a sequence of the type
HLSK(π, ν, α1, . . . , αK−2), the initial decomposition of the index ν into integers νi, i =
2, ...,K, is immaterial.

Let X[1,∞) be anHLSK(π, ν, α1, . . . , αK−2) exchangeable sequence. For any xn = (x1, . . . , xn) ∈
{d1, . . . , dK}n, containing exactly zi coordinates equal to di, i = 1, . . . ,K − 1, setting
θ :=

∑K−1
i=1 θi and z :=

∑K−1
i=1 zi, one has that

P(X[n] = xn) =
1

B(π, ν)

∫
ΘK−1

(1− θ)n−z(
K−1∏
i=1

θzii )

× δα1(1−θ1)(dθ2) · · · δαK−2(1−θ1)(dθK−1)θπ−1
1 (1− θ1)ν−1dθ1

=
(1− α)n−z

∏K−1
i=2 αzii−1

B(π, ν)

∫ 1

0
θz1+π−1

1 (1− θ1)n−z1+ν−1dθ1
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=

[
(1− α)n−z

K−2∏
i=1

α
zi+1

i

]
B(z1 + π, n− z1 + ν)

B(π, ν)
. (2.14)

The following result provides a negative answer to Problem A stated in Section 1.1,
and is one of the main achievement of the present paper. In particular, it shows that
a naive generalization of Theorem 1.4-(II) cannot be achieved for sets containing strictly
more than 2 elements.

Theorem 2.3 For any K ≥ 3 and choice of the parameters π, ν > 0 and α1, . . . , αK−2 > 0
with

∑K−2
i=1 αi < 1, the corresponding HLSK(π, ν, α1, . . . , αK−2) exchangeable sequence is

Hoeffding decomposable while being neither i.i.d. nor Pólya.

Section 3 contains a combinatorial characterization of Hoeffding decomposability in the
framework of exchangeable sequences taking values in a finite set with K ≥ 3 elements.
Such a result will be our main tool in the proof of Theorem 2.3, as detailed in the subsequent
Section 4.

3 Hoeffding-decomposability: a combinatorial characteriza-
tion on finite spaces

3.1 Framework

Let X[1,∞) := {Xn : n ≥ 1} be a sequence of exchangeable r.v. with values inD = {d1, ..., dK} ,
K ≥ 3. Let γ be the de Finetti measure associated with X[1,∞). Throughout this section,
we will systematically assume that X[1,∞) is such that

P(X[n] = xn) > 0. ∀xn ∈ Dn, ∀n ≥ 1. (3.15)

In the sequel, we will adopt the following notation: let N (n,K) denote the set of weak
K-compositions of n, that is the collection of all vectors iK = (i1, ..., iK) ∈ NK such that∑K

j=1 ij = n. For each n ≥ 1 and each iK ∈ N (n,K) , define the set

C (n, iK) :=

{
xn ∈ Dn :

n∑
h=1

1 (xh = dj) = ij , j = 1, ...,K

}
.

By exchangeability of X[1,∞) and symmetry of all ϕ ∈ Ξn
(
X[1,∞)

)
, for all n ≥ 2 and

all iK ∈ N (n,K) , the functions xn 7→ P
(
X[n] = xn

)
and xn 7→ ϕ (xn) are constant on

C (n, iK) . The constant values taken by each of these functions is indicated, respectively,
Pn (i1, ..., iK−1) and ϕn (i1, ..., iK−1) . Note that the omission of the last coordinate of the
vector iK comes from the fact that its value is completely determined by those of the
previous K − 1 coordinates.

Remark 3.1 (On multinomial coefficients) Consider integers m ≥ 1 and b1, ..., bk ≥ 0
such that

∑
bi ≤ m. In what follows we adopt the notation

(
m

b1,···, bk

)
in order to indicate

10



the multinomial coefficient m![b1! · · · bk!(m −
∑
bi)!]

−1. We shall also use the following
special “star notation”:(

m

b1, · · ·, bk

)
∗

=

(
m

b1

)
∗

(
m− b1
b2

)
∗
· · ·
(
m− (b1 + · · ·+ bk−1)

bk

)
∗

(3.16)

where (
a

b

)
∗

=

(
a

b

)
1{0,...,a}(b) (3.17)

and
(
a
b

)
is the usual binomial coefficient. Note that

(
m

b1,···, bk

)
=
(

m
b1,···, bk

)
∗
, whenever the

binomial coefficients on the RHS of (3.16) are all different from zero.

3.2 Two technical lemmas

Our first technical result concerns the structure of the spaces Ξn
(
X[1,∞)

)
introduced in

Section 1.4.

Lemma 3.2 If X[1,∞) is an exchangeable random sequence satisfying (3.15). Then the

vector space Ξn
(
X[1,∞)

)
is the

[(
n+K−1
K−1

)
−
(
n+K−2
K−1

)]
-dimensional vector space spanned by

the symmetric kernels ϕ
mK−2
n , mK−2 = (m1, . . . ,mK−2) ∈

n⋃
a=0
N (a,K − 2), such that,

for each mK−2 = (m1, . . . ,mK−2) ∈
n⋃
a=0
N (a,K − 2), and each iK = (i1, . . . , iK−1, iK) ∈

N (n,K),

ϕ
mK−2
n (i1, ..., iK−1) = (−1)i1

(
i1

m1 − i2 · · · mK−2 − iK−1

)
∗

Pn (0,m1, ...,mK−2)

Pn (i1, ..., iK−1)
. (3.18)

Proof. The fact that

dim(Ξn(X[1,∞))) =

(
n+K − 1

K − 1

)
−
(
n+K − 2

K − 1

)
follows from [9, Proposition 6]. In order to prove the rest of the statement, we will show
that the collection

Φn :=

{
ϕ
mK−2
n : mK−2 ∈

n⋃
a=0

N (a,K − 2)

}
,

is indeed a basis of the vector space Ξn(X[1,∞)). To do this, we will first show that, for each

iK ∈ {iK = (i1, . . . , iK) ∈ N (n,K) : i1 ≥ 1}, there exists a linear mapping fiK : RA → R,

where A =
n⋃
a=0
N (a,K − 2), such that, for all ϕn ∈ Ξn(X[1,∞)),

ϕn(i1, . . . , iK−1) = fiK

(
ϕn(0,mK−2) : mK−2 ∈

n⋃
a=0

N (a,K − 2)

)
. (3.19)

11



Once the explicit representation (3.19) will be at hand, the characterization of Φn as a

basis will be deduced from the fact that, for mK−2 in
n⋃
a=0
N (a,K − 2), the functions

ϕ
mK−2
n appearing in the statement verify the relation

ϕ
mK−2
n (i1, . . . , iK)=fiK

(
1{mK−2}(yK−2) : yK−2 ∈

n⋃
a=0

N (a,K − 2)

)
(3.20)

Let ϕn ∈ Ξn
(
X[1,∞)

)
. It turns out that, for all iK ∈ {iK = (i1, . . . , iK) ∈ N (n,K) : i1 ≥

1},

ϕn (i1, ..., iK−1) = − 1

Pn (i1, ..., iK−1)

K∑
j1=2

ϕn · Pn
(
µj11 (i1, ..., iK−1)

)
, (3.21)

where ϕn · Pn (·) := ϕn (·)Pn (·), for 1 ≤ l < p ≤ K − 1,

µpl (i1, ..., iK−1) := (i1, ..., il−1, il − 1, il+1, ..., ip−1, ip + 1, ip+1, ..., iK−1) ,

and, for 1 ≤ l ≤ K − 1,

µKl (i1, ..., iK−1) := (i1, ..., il−1, il − 1, il+1, ..., iK−1) .

Before proving formula (3.21), let us clarify our notation with some simple examples and
remarks. For 1 ≤ l < p ≤ K − 1, the action of the operator µpl consists in subtracting 1
from the l-th coordinate of the vector (i1, ..., iK−1) an adding 1 to the p-th coordinate. For
example:

µ4
2 (2, 7, 5, 9, 4) = (2, 6, 5, 10, 4) .

On the other hand, when 1 ≤ l ≤ K − 1 and p = K, the action of the operator µKl consists
in just subtracting 1 from the l-th coordinate. This is consistent with our conventions since
we are omitting the K-th coordinate of the vectors (i1, ..., iK); in other words the the 1
subtracted from the l-th coordinate is actually added to the last coordinate whose value
we are omitting since it is completely determined by the values of the previous ones.

We shall now prove formula (3.21). Fix n ≥ 2 and ϕn ∈ Ξn
(
X[1,∞)

)
. By the definition of

Ξn
(
X[1,∞)

)
, we must have

E
(
ϕn
(
X[n]

)
| X[2,n]

)
= 0.

Then, for any arbitrarily fixed xn−1 ∈ Dn−1,

K∑
i=1

ϕn (di, x2, ..., xn−1)
Pn
(
X1 = di,X[2,n] = xn−1

)
Pn−1

(
X[2,n] = xn−1

) = 0.

Suppose xn−1 ∈ C (n− 1,hK) , for some hK ∈ N (n− 1,K) . Then, by (3.15), the just-
stated formula is equivalent to

ϕn · Pn (h1 + 1, h2, ..., hK−1) +

K∑
j1=2

ϕn · Pn
(
µj11 (h1 + 1, h2, ..., hK−1)

)
= 0,
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thus proving that (3.21) holds for the vector i∗K = (i1, ..., iK) := (h1 + 1, h2, ..., hK).
Clearly, i∗K ∈ {iK = (i1, . . . , iK) ∈ N (n,K) : i1 ≥ 1}. To see that (3.21) holds for all
iK ∈ {iK = (i1, . . . , iK) ∈ N (n,K) : i1 ≥ 1}, observe that for any such iK , there exists
hK ∈ N (n− 1,K) such that iK = (h1 + 1, ..., hK). This proves also that

card ({iK = (i1, ..., iK) ∈ N (n,K) : i1 ≥ 1}) = card (N (n− 1,K)) . (3.22)

Now, the recursion in (3.21) yields

ϕn (i1, ..., iK−1) =
(−1)i1

Pn (i1, ..., iK−1)

K∑
j1=2

· · ·
K∑

ji1=2

ϕn · Pn
(
µ
ji1
1 ◦ · · · ◦ µ

j1
1 (i1, ..., iK−1)

)
,

(3.23)

where the operator µ
ji1
1 ◦ · · ·◦ µ

j1
1 denotes the successive iteration of operators µj11 , ..., µ

ji1
1 .

For instance,

µ2
1 ◦ µ3

1 ◦ µ2
1 ◦ µ4

1 (4, 7, 5, 4, 9) = µ2
1

(
µ3

1

(
µ2

1

(
µ4

1 (4, 7, 5, 4, 9)
)))

= (0, 9, 6, 5, 9) .

To see this, fix j1 ∈ {2, ...,K} and apply (3.21) to ϕn

(
µj11 (i1, ..., iK−1)

)
to obtain

ϕn

(
µj11 (i1, ..., iK−1)

)
= − 1

Pn
(
µj11 (i1, ..., iK−1)

) K∑
j2=2

ϕn · Pn
(
µj21 ◦ µ

j1
1 (i1, ..., iK−1)

)
.

Do that for all j1 ∈ {2, ...,K} and plug in (3.21) to obtain

ϕn (i1, ..., iK−1) =
1

Pn (i1, ..., iK−1)

K∑
j1=1

K∑
j2=2

ϕn · Pn
(
µj21 ◦ µ

j1
1 (i1, ..., iK−1)

)
.

Iterating the process i1 times gives (3.23).

Next, observe that the term ϕn · Pn
(
µ
ji1
1 ◦ · · · ◦ µ

j1
1 (i1, ..., iK−1)

)
is certainly of the form

ϕn · Pn (0, i2 + b1, i3 + b2, ...., iK−1 + bK−2) , (3.24)

where bv =
∑i1

t=1 1 (jt = v + 1) , v = 1, ...,K − 2 is the number of 1’s subtracted from the
first coordinate of (i1, ..., iK−1) and added to coordinate v + 1. Note that bK−1 (i.e. the
number of 1’s subtracted from the first coordinate and added to the last) is completely

determined by the vector bK−2 = (b1, ..., bK−2) . Clearly, the operator µ
ji1
1 ◦ · · ·◦ µj11 is

commutative in the sense that

µ
ji1
1 ◦ · · · ◦ µ

j1
1 = µ

jσ(i1)
1 ◦ · · · ◦ µjσ(1)1 ,

for any permutation σ of (1, ..., i1) . It follows that, for any fixed (b1, ..., bK−2) ∈
i1⋃
a=0
N (a,K − 2)

the term (3.24) occurs exactly
(

i1
b1,b2...,bK−2

)
times in the sum described in (3.23). Conse-

quently, (3.23) can be rewritten as follows:
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ϕn (i1, ..., iK−1) =
(−1)i1

Pn (i1, ..., iK−1)

×
∑
(+)

(
i1

b1, ..., bK−2

)
ϕn · Pn (0, i2 + b1, i3 + b2...., iK−1 + bK−2) , (3.25)

where the sum (+) is extended to all vectors bK−2 = (b1, . . . , bK−2) ∈
i1⋃
a=0
N (a,K − 2).

Set mp := bp + ip+1, p = 1, . . . ,K − 2, and rewrite (3.25) as

ϕn(i1, . . . , iK−1) =
(−1)i1

Pn(i1, . . . , iK−1)

×
∑
(])

(
i1

m1 − i2, . . . ,mK−2 − iK−1

)
ϕn · Pn(0,m1, . . . ,mK−2), (3.26)

where the sum (]) is extended to all vectors (m1, . . . ,mK−2) ∈
n⋃
a=0
N (a,K − 2), such that

m1 ∈ {i2, . . . , i1 + i2},
m2 ∈ {i3, . . . , (i1 −m1) + i2 + i3}
m3 ∈ {i4, . . . , (i1 −m1) + (i2 −m2) + i3 + i4}

...

mK−2 ∈

{
iK−1, . . . ,

K−3∑
v=1

(iv −mv) + iK−2 + iK−1

}
.

It is immediately seen that the multinomial coefficient in (3.26) is always well defined. It
follows that (3.26) can be rewritten, using the convention defined in (3.16), as

ϕn(i1, . . . , iK−1) =
(−1)i1

Pn(i1, . . . , iK−1)

×
∑
(=)

(
i1

m1 − i2, . . . ,mK−2 − iK−1

)
∗
ϕn · Pn(0,m1, . . . ,mK−2), (3.27)

where the sum (=) is extended to all vectors mK−2 = (m1, . . . ,mK−2) ∈
n⋃
a=0
N (a,K − 2).

Since equality (3.27) holds for any ϕn ∈ Ξn(X[1,∞)) and any iK ∈ {iK = (i1, . . . , ik) ∈
N (n,K) : i ≥ 1}, (3.19) is proved. The claim of the present step of the proof follows, now,
immediately from (3.20).

Next, an adaptation of the arguments rehearsed in the proof of Lemma 3 in [9] yields
the following statement about symmetrizations.

Lemma 3.3 Fix m ≥ 2, v ∈ {1, ...,m− 1}, D = {d1, ..., dK} and let the application

fv,m−v : Dm 7→ R : (x1, ..., xm) 7→ fv,m−v (x1, ..., xm) ,
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be separately symmetric in the variables (x1, ..., xv) and (xv+1, ..., xm) (and not necessarily
as a function on Dm). Then, for any xm ∈ C (m, zK) for some zK = (z1, ..., zK) ∈
N (m,K) , the canonical symmetrization of f, denoted by f̃ , reduces to

f̃ (xm) =
∑
(∗)

(
v

k1, k2, ..., kK−1

)(
m− v

z1 − k1, z2 − k2, ..., zK−1 − kK−1

)

× fv,m−v ((k1, ..., kK−1) , (z1 − k1, ..., zK − kK))∑
(∗)
(

v
k1,k2,...,kK−1

)(
m−v

z1−k1,z2−k2,...,zK−1−kK−1

) , (3.28)

where the sums (∗) are extended to all the vectors (k1, ..., kK−1), in sequel referred to as
(m, v, zK)-coherent vectors, with

k1 ∈ {0 ∨ [z1 − (m− v)] , ..., z1 ∧ v} ,
k2 ∈ {0 ∨ [z2 − (m− v)− (z1 − k1)] , ..., z2 ∧ (v − k1)} ,

...

kK−1 ∈
{

0 ∨
[
zK−1 − (m− v)− ΣK−2

1 (zp − kp)
]
, ..., zK−1 ∧

(
v − ΣK−2

1 kp

)}
where fv,m−v ((k1, ..., kK−1) , (z1 − k1, ..., zK − kK)) denotes the common value of fv,m−v (ym)
when ym = (y1, ..., ym) is such that the subvector (y1, ..., yv) contains exactly ki coordinates
equal to di, i = 1, ...,K, and the subvector (yv+1, ..., ym) contains exactly (zi − ki) coordi-
nates equal to di, i = 1, ...,K.

As a consequence, f̃v,m−v (xm) = 0 for every xm ∈ Dm if, and only if, for all zK =
(z1, ..., zK) ∈ N (m,K) ,

∑
(∗)

(
v

k1, k2, ..., kK−1

)(
m− v

z1 − k1, z2 − k2, ..., zK−1 − kK−1

)
× fv,m−v ((k1, ..., kK−1) , (z1 − k1, ..., zK − kK)) = 0. (3.29)

3.3 The characterization

We are now ready to prove the announced full characterization of D-valued Hoeffding
decomposable exchangeable sequences satisfying (3.15), where D = {d1, ..., dK}. To this
end, recall that, for every symmetric ϕ : Dn → R, every u = 2, ..., n and every xn−1 =
(x1, ..., xn−1) ∈ Dn−1,

[ϕ]
(n−u)
n,n−1 (xn−1) = E

(
ϕ
(
X[n]

)
| X[u+1,u+n−1] = xn−1

)
.

Observe that the function [ϕ]
(n−u)
n,n−1 : Dn−1 → R clearly meets the symmetry properties of

Lemma 3.3 with m = n − 1 and v = n − u. Now, fix zK = (z1, ..., zK) ∈ N (n− 1,K)
and suppose xn−1 = (x1, ..., xn−1) ∈ C (n− 1, zK) is such that

∑n−u
t=1 1 (xt = dp) = kp,

p = 1, ...K − 1. Then
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[ϕ]
(n−u)
n,n−1 (xn−1) =

u∑
q1=0

u−q1∑
q2=0

· · ·
u−ΣK−2

1 qj∑
qK−1=1

(
u

q1, ..., qK−1

)

× ϕn (k1 + q1, ..., kK−1 + qK−1)
Pn+u−1 (z1 + q1, ..., zK−1 + qK−1)

Pn−1 (z1, ..., zK−1)
. (3.30)

By applying (3.29) in the case m = n−1, we deduce that [̃ϕ]
(n−u)

n,n−1 (xn−1) = 0 if and only if

∑
(∗)

(
n− u

k1, k2, ..., kK−1

)(
u− 1

z1 − k1, z2 − k2, ..., zK−1 − kK−1

)
×

× [ϕ]
(n−u)
n,n−1 ((k1, ..., kK−1) , (z1 − k1, ..., zK − kK)) = 0, (3.31)

where the sum (∗) runs over all (n− 1, n− u, zK)-coherent vectors (k1, ..., kK−1) , i.e.

k1 ∈ {0 ∨ [z1 − (u− 1)] , ..., z1 ∧ (n− u)} ,
k2 ∈ {0 ∨ [z2 − (u− 1)− (z1 − k1)] , ..., z2 ∧ (n− u− k1)} ,

...

kK−1 ∈
{

0 ∨
[
zK−1 − (u− 1)− ΣK−2

1 (zp − kp)
]
, ..., zK−1 ∧

(
n− u− ΣK−2

1 kp

)}
,

and the notation [ϕ]
(n−u)
n,n−1 ((k1, ..., kK−1) , (z1 − k1, ..., zK − kK)) indicates the common value

of [ϕ]
(n−u)
n,n−1 (xn−1) , for all xn−1 (x1, ..., xn−1) ∈ C (n− 1, zK) such that

∑n−u
t=1 1 (xt = dp) =

kp, p = 1, ...,K − 1.
Now recall that, by Theorem 1.4-(I), Hoeffding decomposability and weak indepen-

dence are equivalent provided condition (1.11) is verified. The fact that such condi-
tion is verified in our case is a consequence of [9, Proposition 6, Point 2]. Moreover,
X[1,∞) is weakly independent if, and only if, for all n ≥ 2 and all ϕn ∈ Ξn

(
X[1,∞)

)
,

one has ϕn ∈ Ξ̃n,n−u
(
X[1,∞)

)
, for all u = 2, ..., n. By Lemma 3.2, this implies that

for every mK−2 ∈
n⋃
a=0
N (a,K − 2) , the corresponding basis function ϕ

mK−2
n belongs to

Ξ̃n,n−u
(
X[1,∞)

)
. On the other hand since any ϕn ∈ Ξn

(
X[1,∞)

)
is a linear combination of

the basis functions ϕ
mK−2
n , we deduce that weak independence occurs if, and only if, for all

mK−2 ∈
n⋃
a=0
N (a,K − 2) , ϕ

mK−2
n ∈ Ξ̃n,n−u

(
X[1,∞)

)
. In other words, weak independence

occurs if, and only if, for all n ≥ 2, all u = 2, ..., n, all zK = (z1, ..., zK) ∈ N (n− 1,K) ,

and all mK−2 ∈
n⋃
a=0
N (a,K − 2)

∑
(∗)

(
n− u

k1, k2, ..., kK−1

)(
u− 1

z1 − k1, z2 − k2, ..., zK−1 − kK−1

)
×
[
ϕ
mK−2
n

](n−u)

n,n−1
((k1, ..., kK−1) , (z1 − k1, ..., zK − kK)) = 0, (3.32)
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the sum (∗) being, as before, extended to all (n− 1, n− u, zK)-coherent vectors (k1, ..., kK−1) .
Substituting (3.18) and (3.30) in (3.31), one has that (3.32) is true if, and only if, all

mK−2 ∈
n⋃
a=0
N (a,K − 2) , for the following quantity equals 0:

Pn (0,m1, ...,mK−2)

Pn−1 (z1, ..., zK−1)

∑
(∗)

(−1)k1
(

n− u
k1, k2, ..., kK−1

)

×
(

u− 1

z1 − k1, z2 − k2, ..., zK−1 − kK−1

)∑
(∗∗)

(−1)q1
(

u

q1, ..., qK−1

)
(3.33)

×
(

k1 + q1

m1 − k2 − q2 · · · mK−2 − kK−1 − qK−1

)
∗

Pn+u−1 (z1 + q1, ..., zK−1 + qK−1)

Pn (k1 + q1, ..., zK−1 + kK−1)
,

where the sum (∗) is over all (n− 1, n− u, zK)-coherent vectors (k1, ..., kK−1) and the sum

(∗∗) is w.r.t. all qK−1 = (q1, ..., qK−1) ∈
u⋃
a=0
N (a,K − 1). Note that

Pn+u−1 (z1 + q1, ..., zK−1 + qK−1)

Pn (k1 + q1, ..., zK−1 + kK−1)

=
Pnn+u−1 (z1 + q1, ..., zK−1 + qK−1 | k1 + q1, ..., zK−1 + kK−1)(

u−1
z1−k1,z2−k2,...,zK−1−kK−1

) , (3.34)

where Pnn+u−1 (z1 + q1, ..., zK−1 + qK−1 | k1 + q1, ..., zK−1 + kK−1) denotes the conditional
probability that the vector X[n+u−1] contains exactly zp + qp coordinates equal to dp,
p = 1, ...,K−1, given that the subvector X[n] contains exactly kp+ qp coordinates equal to
dp, p = 1, ...,K − 1. Plugging (3.34) into (3.33), one deduces immediately the announced
characterization of weak independence.

Theorem 3.4 Let X[1,∞) be an infinite sequence of exchangeable D-valued r.v. satisfying
(3.15). For the sequence to be Hoeffding-decomposable, it is necessary and sufficient that,
for every n ≥ 2, every u = 2, ..., n, every zK = (z1, ..., zK) ∈ N (n− 1,K) and every

mK−2 ∈
n⋃
a=0
N (a,K − 2) , the following quantity equals 0:

∑
(∗)

(−1)k1
(

n− u
k1, k2, ..., kK−1

)
× (3.35)

×
∑
(∗∗)

(−1)q1
(

u

q1, ..., qK−1

)(
k1 + q1

m1 − k2 − q2 · · · mK−2 − kK−1 − qK−1

)
∗

× Pnn+u−1 (z1 + q1, ..., zK−1 + qK−1 | k1 + q1, ..., qK−1 + kK−1)

where the sums (∗) and (∗∗) run over, respectively, all (n− 1, n− u, zK)-coherent vectors

(k1, ..., kK−1) and all qK−1 = (q1, ..., qK−1) ∈
u⋃
a=0
N (a,K − 1) .

In the next section, we will use the content of Theorem 3.4 specialized to the case K = 3.
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4 Proof of Theorem 2.3

We start by stating a result that is easily deduced from the proof of the Theorem 1 in [9].

Lemma 4.1 For all π, ν > 0, all n ≥ 2, all u = 2, . . . , n, all z = 0, . . . , n − 1 and all
k ∈ {max{0, z − (u− 1)}, . . . ,min{z, n− u}}},

u∑
q=0

(−1)q
(
u

q

)
B(π + z + q, ν + n+ u− 1− z − q)

B(π + k + q, ν + n− k − q)
= 0.

To minimize the notational burden, we shall restrict ourselves to the case K = 3. The
proof for general K carries out exactly in the same way. Let X[1,∞) be a HLS3(π, ν, α)-
exchangeable sequence with values in D = {d1, d2, d3}, where π, ν > 0 and 0 < α < 1. By
(2.14), the following facts are in order : (a) X[1,∞) satisfies (3.15), (b) X[1,∞) is neither
i.i.d. nor a K-color Pólya sequence and (c) if xn ∈ Dn contains exactly z1 coordinates
equal to d1 and z2 coordinates equal to d2, then, in the language of the present paper,

P(X[n] = xn) = Pn(z1, z2) = αz2(1− α)n−z1−z2
B(z1 + π, n− z1 + ν)

B(π, ν)
. (4.36)

Recall that, by Theorem 3.4, an exchangeable sequence with values in D = {d1, d2, d3} is
Hoeffding-decomposable if and only if, for all n ≥ 2, all u = 2, . . . , n, all m = 0, . . . , n and
all (z1, z2) ∈ S(z1, z2) := {(z1, z2) ∈ {0, . . . , n− 1}2 : z1 + z2 ≤ n− 1}, one has

0 =
∑

k1∈A(z1,u)

∑
k2∈Az1,k1 (z2,u)

(−1)k1
(
n− u
k1 k2

)(
u− 1

z1 − k1 z2 − k2

)

×
u∑

q1=0

u−q1∑
q2=0

(−1)q1
(

u

q1 q2

)(
k1 + q1

m− k2 − q2

)
∗

Pn+u−1(z1 + q1, z2 + q2)

Pn(k1 + q1, k2 + q2)
,

where the notation
(
a
b

)
∗ is defined in (3.17) and

A(z1, u) = {max{0, z1 − (u− 1)}, . . . ,min{z1, n− u}}
Az1,k1(z2, u) = {max{0, z2 − (u− 1)− (z1 − k1)}, . . . ,min{z1, n− u− k1}}.

It follows that X[1,∞) is Hoeffding-decomposable if and only if for all n ≥ 2, all u = 2, . . . , n,
all m = 0, . . . , n and all (z1, z2) ∈ S(z1, z2) := {(z1, z2) ∈ {0, . . . , n− 1}2 : z1 + z2 ≤ n− 1},
one has

0 =
∑

k1∈A(z1,u)

∑
k2∈Az1,k1 (z2,u)

(−1)k1
(
n− u
k1 k2

)(
u− 1

z1 − k1 z2 − k2

)

× C
u∑

q1=0

u−q1∑
q2=0

(−1)q1
(

u

q1 q2

)(
k1 + q1

m− k2 − q2

)
∗

× B(π + z1 + q1, ν + n+ u− 1− z1 − q1)

B(π + k1 + q1, ν + n− k1 − q1)
,
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where
C = C(α, u, z1, z2, k1, k2) = αz2−k2(1− α)(u−1)−(z1−k1)−(z2−k2),

clearly does not depend on q1 and q2.
We will, in fact, show an even stronger fact. More precisely, we will show that, for all
n ≥ 2, all u = 2, . . . , n, all m = 0, . . . , n, all (z1, z2) ∈ S(z1, z2) := {(z1, z2) ∈ {0, . . . , n −
1}2 : z1 + z2 ≤ n− 1}, all k1 ∈ A(z1, u) and all k2 ∈ Az1,k1(z2, u), one has

σ(n, u,m, z1, k1, k2) = 0,

where

σ(n, u,m, z1, k1, k2) :=

u∑
q1=0

u−q1∑
q2=0

(−1)q1
(

u

q1 q2

)(
k1 + q1

m− k2 − q2

)
∗

× B(π + z1 + q1, ν + n+ u− 1− z1 − q1)

B(π + k1 + q1, ν + n− k1 − q1)
.

Towards this aim, we first show that

σ(n, u,m, z1, k1, k2) = (4.37)

=

u∑
q1=0

(−1)q1
(
u

q1

)
B(π + z1 + q1, ν + n+ u− 1− z1 − q1)

B(π + k1 + q1, ν + n− k1 − q1)

×
u−q1∑
q2=0

(
u− q1

q2

)(
k1 + q1

m− k2 − q2

)
∗

=

(
k1 + u

m− k2

)
∗

u∑
q1=0

(−1)q1
(
u

q1

)
B(π + z1 + q1, ν + n+ u− 1− z1 − q1)

B(π + k1 + q1, ν + n− k1 − q1)
.

In other words, we show that

σ̃q1(m,u, k1, k2) =

u−q1∑
q2=0

(
u− q1

q2

)(
k1 + q1

m− k2 − q2

)
∗

=

(
k1 + u

m− k2

)
∗
, (4.38)

i.e. that σ̃q1(m,u, k1, k2) does actually not depend on q1. For reading convenience, set
u− q1 = i and m− k2 = j and rewrite σ̃q1(m,u, k1, k2) as

σ̃i(j, u, k1) =
i∑

q2=0

(
i

q2

)(
k1 + u− i
j − q2

)
∗
.

To see that

σ̃i(j, u, k1) =

(
k1 + u

j

)
∗
,

start by fixing i ∈ {0, . . . , u}. If j < 0 (i.e. if m < k2), then the equality is trivial. If
0 ≤ j ≤ i, then, by definition of

(
k1+q1
j−q2

)
∗
, we have

σ̃i(j, u, k1) = σ̃j(j, u, k1),
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and the result follows by a direct application of the Vandermonde formula. If j ≥ i, then
a direct application of the classical Pascal’s triangle gives(

k1 + u

j

)
∗

=

(
k1 + u− 1

j

)
∗

+

(
k + u− 1

j − 1

)
∗

=

(
k1 + u− 2

j

)
∗

+ 2

(
k + u− 2

j − 1

)
∗

+

(
k1 + u− 2

j − 2

)
∗

=

(
k1 + u− 3

j

)
∗

+ 3

(
k + u− 3

j − 1

)
∗

+ 3

(
k1 + u− 3

j − 2

)
∗

+

(
k1 + u− 3

j − 3

)
∗

= · · ·
= σ̃i(j, u, k1).

Now that (4.38) is in order, fix, arbitrarily, n, u, z1, k1. For all k2 and m such that m ∈
{0, . . . , k2−1}∪{k1+u+1, . . . , n}, we have, by definition of

(
k1+u
m−k2

)
∗, that σ(n, u,m, z1, k1, k2) =

0 as desired. The fact that this is still the case for all m ∈ {k2, . . . , k1 + u}, follows from
(4.37) and Lemma 4.1. The proof of Theorem 2.3 is complete.

5 Concluding remarks

A Bayesian reader will immediately recognize several quantities and structures scattered
throughout the paper. To some extent this is not surprising given we are dealing with
exchangeable sequences but still the pivotal role played by conditional distributions of the
exchangeable r.v., interpreted as predictive distributions by the Bayesian, is quite striking.
This hints towards the worthiness of further investigating the connections between Hoeffd-
ing decomposability and Bayesian inference. Given the impact Hoeffding decomposability
had in the classical framework, one could hope for significant implications and applications
also in the Bayesian context. Of particular interest is the nonparametric case, where Ho-
effding decomposability could lead to significant insights on the infinite-dimensional objects
one is required to deal with. To this end a full characterization of Hoeffding decompos-
ability for the case of exchangeable sequences taking values in a arbitrary Polish space is
fundamental. In fact, from [20] we already know that the Ferguson-Dirichlet process is
indeed Hoeffding decomposable. Is it the only one? Or does such a property hold also for
some other class of nonparametric processes generalizing the Ferguson-Dirichlet process,
among the many present in the literature (see [17])? On the one hand the results of the
present paper seem to hint that Hoeffding decomposability is not unique to the Ferguson-
Dirichlet process. But on the other hand, in passing from the finite to the infinite case,
the consistency conditions for the finite-dimensional distributions might restrict the class
of Hoeffding-decomposable models significantly. This important open question constitutes
the object of future research.

20



Acknowledgements

The authors are grateful to Eugenio Regazzini for a number of illuminating discussions.
I. Prünster is supported by the European Research Council (ERC) through StG “N-BNP”
306406.

References

[1] D.J. Aldous (1983). Exchangeability and related topics. École d’été de Probabilités de
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