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Abstract 

Only approximately 10 % of genetically unselected patients with chemorefractory metastatic colorectal cancer 
experience tumor regression when treated with the anti-epidermal growth factor receptor (EGFR) antibodies cetuximab 
or panitumumab (“primary” or “de novo” resistance). Moreover, nearly all patients whose tumors initially respond 
inevitably become refractory (“secondary” or “acquired” resistance). An ever-increasing number of predictors of both 
primary and acquired resistance to anti-EGFR antibodies have been described, and it is now evident that most of the 
underlying mechanisms significantly overlap. By trying to extrapolate a unifying perspective out of many idiosyncratic 
details, here, we discuss the molecular underpinnings of therapeutic resistance, summarize research efforts aimed to 
improve patient selection, and present alternative therapeutic strategies that are now under development to increase 
response and combat relapse. 
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Introduction 

Colorectal cancer is the second commonest cancer worldwide, and the metastatic disease accounts for up to 20 % of 
newly diagnosed patients or further develops in 50 % of cases, with a median overall survival (OS) of approximately 
20 months [1-5]. 

The clinical outcome of patients with metastatic colorectal cancer (mCRC) has been improved by the introduction of 
cetuximab and panitumumab, two monoclonal antibodies (moAbs) targeting the epidermal growth factor receptor 
(EGFR/ErbB1/HER1), given in combination with chemotherapy or, when other options are exhausted, as monotherapy 
[6-8]. 

EGFR is a member of the ErbB family of receptor tyrosine kinases (RTKs), which also 
includes HER2/neu(ERBB2), HER3 (ErbB3), and HER4 (ErbB4) [9]. EGF or other EGF-like ligands trigger homo- and 
hetero-dimerization of EGFR with other ErbB members, which activates a mitogenic and antiapoptotic signaling cascade 
via several pathways, including not only the RAS-RAF-MEK-ERK and the PI3K-AKT-mTOR axes but also SRC family 
kinases, PLCγ-PKC, and STATs [9, 10]. Such activation stimulates key processes involved in tumor growth and 
progression, including proliferation, angiogenesis, invasion, and metastasis [11] (Fig. 1). 
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Fig. 1 

EGFR signaling pathways. a Upon ligand binding and consequent homo- and hetero-dimerization, ErbB family members 
can activate a number of pathways, including the RAS-RAF-MEK-ERK and the PI3K-AKT-mTOR axes, the SRC family 
kinases (SFKs), PLCγ-PKC, and STATs, driving cell proliferation and/or influencing apoptosis. b By binding the 
extracellular domain of EGFR, both cetuximab and panitumumab prevent ligand-induced activation of downstream 
signaling 

When used as monotherapy in genetically unselected patients with chemotherapy-refractory mCRC, cetuximab and 
panitumumab achieve clinically meaningful response rates (RRs) of approximately 10 % [7,8, 12]. Unlike other tumor 
types such as non-small cell lung cancers (NSCLCs) or melanomas, in which target mutations are associated with 
massive regressions following treatment with specific inhibitors [13,14], genetic alterations of EGFR are extremely 
infrequent in colorectal tumors. 

The complex and thin boundary between primary and acquired resistance is determined by the evidence of an initial 
response to treatment. If refractoriness to therapy is present at baseline, this is defined as primary (also known as de 
novo) resistance and can be explained by resistance-conferring factors preexisting in the bulk of tumor cells. Acquired 
(or secondary) resistance refers to disease progression in the face of ongoing treatment that was initially effective and 
can be caused by mutations arising during treatment as well as through other various adaptive nongenetic responses 
[15, 16]. In the case of colorectal cancer, acquired resistance typically occurs within 3–18 months after treatment 
initiation [7, 8]. 

Starting with seminal observations in 2006–2007 [17, 18], a large body of evidence has described different biomarkers of 
primary resistance to anti-EGFR moAbs in mCRC patients, leading to exclusion from treatment of a number of 
molecularly defined nonresponders [19, 20]. The field of acquired resistance has received preclinical and clinical 
attention much more recently, with the emergence of new insights only in the last 2 years. 
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In this review, we will appraise the current knowledge on primary and acquired resistance to anti-EGFRmoAbs in mCRC, 
from initial mechanistic exploration to clinical applications, and will highlight emerging lines of investigation aimed at 
improving response and delay relapse in this tumor setting. 

Molecular mechanisms of resistance to anti-EGFR antibodies in patients with metastatic colorectal cancer 

In general terms, the commonest mechanisms of resistance to inhibition of receptor tyrosine kinases (RTKs) involve 
genomic alterations affecting downstream effectors, such as KRAS and PIK3CA mutations, with consequent constitutive 
pathway hyperactivation. Notably, the KRAS and PI3K signaling cascades can also be activated by 
upstream RTKs other than EGFR [21], leading to an oncogenic shift [22]. In both cases, the primary drug target remains 
unaltered and continues to be inhibited while an alternative signal transducer becomes activated, bypassing the 
consequences of EGFR inhibition [16, 23] (Fig. 2a, b). 

 

Fig. 2 

Mechanisms of resistance to anti-EGFR moAbs in mCRC. a Activating mutations of EGFR effectors, such as KRAS (by 
either point mutations or gene amplification), BRAF and PI3KCA, or PTEN loss of function, cause persistent activation of 
downstream signaling despite EGFR inhibition. b Aberrant activation (by either receptor gene amplification or high ligand 
levels) of alternative receptors, such as HER2 or MET (not shown), can bypass EGFR inhibition and mediate 
downstream pathway activation. c Additional genetic alterations within the target oncogene may abrogate drug binding. 
The EGFR S492R mutation inhibits cetuximab but not panitumumab binding, mediating acquired resistance to the former 
but not the latter in mCRC patients. d Other mechanisms of resistance may be “pathway independent,” such as altered 
angiogenesis (through increased secretion of VEGF or activation of VEGFR-1/2), dysregulation of EGFRrecycling (with 
consequent increase of EGFR degradation), or tumor-stroma interactions (i.e., through increased release of 
antiapoptotic growth factors and cytokines, such as HGF) 

Importantly, it is increasingly recognized that tumors can contain a high degree of genetic and molecular heterogeneity 
within the same lesion [24]. Thus, secondary resistance can arise not only through acquisition of de novo genetic lesions 
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over the course of therapy but also through treatment-induced selection of resistant minor subpopulations of cells that 
are intrinsically insensitive and already present in the original tumor [25]. If secondary resistance may be nothing but the 
emergence, under drug pressure, of rare tumor subsets featuring primary resistance, then most of the molecular 
mechanisms of primary and acquired resistance should overlap. Accordingly, hereinafter, we provide a description of 
resistance predictors as a whole, specifying for each biomarker when it has been reported in both cases. We will also 
focus on current research efforts aimed at developing alternative strategies to circumvent such resistances in patients 
with no other therapeutic options. Table 1 summarizes the main biomarkers of primary and acquired resistance observed 
in mCRC patients and describes potential alternative strategies proposed by different approaches. 

 

Table 1 

Biomarkers of primary and acquired resistance to anti-EGFR moAbs in mCRC patients and potential alternative 
therapeutic strategies 

Biomarker Scientific approach Alternative strategies proposed References 

Primary resistance 

 KRASmutations 

KRAS mutant cell lines in 
vitro and in vivo 

Combination of EGFR and MEK 
inhibitors was more effective than 
either agent alone in reducing cell 
viability in vitro. [18] 

  

Combination of dasatinib (SFK 
inhibitor) with cetuximab induced 
decreased proliferation and enhanced 
apoptosis in vitro, tumor growth delay 
but not regression in vivo. [51] 

Synthetic lethal interactions 
in KRASmutant cell lines 

Mutant KRAS cells exhibited selective 
sensitivity to suppression of the 
mitocondrial apoptosis-regulator 
STK33. Studies to develop STK33 
inhibitors are required. [45] 

  

RAS- mutant cells were sensitive to 
proteasome and mitotic perturbations. 
PLK1 inhibition attenuated tumor 
growth in vivo. [46] 

  Combined IGF-IR and MEK inhibition 
induced partial tumor regression in [49] 
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Biomarker Scientific approach Alternative strategies proposed References 

vivo. 

  

TAK1 inhibition promoted apoptosis 
inKRAS-dependent APC-mutant CRC 
cells and tumor regression in vivo. [48] 

  

Proteasome and topoisomerase 
inhibitors selectively impaired cell 
viability (GATA2 and CDC6 could be 
potential new targets). [44] 

  
Combined BCL-XL and MEK inhibition 
promoted tumor regression in vivo. [47] 

Patient-derived xenografts 
of RAS mutant CRCs 

Inhibition of MEK 
and PI3K/mTORinduced tumor growth 
delay but not regression. This strategy 
may retard progression in patients. [43] 

 BRAFmutations 

KRAS or BRAF mutant cells, 
mouse xenografts and 
GEMMs. 

Combined targeting of BCL-2/BCL-XL 
and TORC1/2 induced selective 
apoptosis in vitro and tumor regression 
in vivo. [50] 

BRAF V600E CRC models 
Combined BRAF and EGFR inhibition 
was synergistic in vitro and in vivo. [52, 58, 59] 

  

Calfizomib (proteasome inhibitor) 
reduced cell viability in vitro and 
suppressed tumor growth in vivo. [64] 

Cell lines with 
concurrentPIK3CA mutations 
orPTEN loss/BRAF V600E 
GEMMs 

Combination therapy 
with BRAF andPI3K inhibitors induced 
apoptosis in vitro, delayed tumor 
growth in vivo and caused tumor 
regression in GEMMs. [60, 62, 63] 
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Biomarker Scientific approach Alternative strategies proposed References 

 PIK3CAmutations 
orPTEN loss 

Cells 
carrying PIK3CAmutations 
or PTEN loss but 
not BRAF/KRASmutations 

Adjuvant low-dose aspirin in PIK3CA-
mutant patients improved survival. 
Further prospective studies are 
required. [85, 86] 

 HER2amplification 
HER2-amplified patient-
derived xenografts 

Combination of cetuximab/pertuzumab 
with lapatinib induced overt long-
lasting tumor regression. [91] 

 MET activation HGF-overexpressing cells 

Co-treatment with cetuximab and MET 
inhibitors induced marked tumor 
regression of HGF-overexpressing 
cells in vivo. [105] 

  
MET amplified patient-
derived xenografts 

MET inhibition achieved long-lasting 
abolition of tumor growth in vivo. [104] 

Acquired resistance 

 EGFRmutations 

Mutations in the EC domain 
(S492R) and in the kinase 
domain (codons 714 and 
794) ofEGFR found in 
patients 

Panitumumab remained active in a 
patient with S492R mutation, which 
abrogated cetuximab binding. [41, 109] 

 
RAS/BRAFactivation 

CRC cell lines with 
acquired KRAS/BRAFpoint 
mutations 
and/orKRAS amplification 
and one patient-derived 
xenograft 

Combination of cetuximab with 
pimasertib (MEK inhibitor) induced 
moderate tumor shrinkage in vivo. [40] 

 HER2activation 
Cells with high heregulin 
levels or HER2amplification 

Pertuzumab/lapatinib restored 
sensitivity to cetuximab in vitro. [92] 

 METactivation 
MET amplified patient-
derived xenografts Combined inhibition of MET 

andEGFR induced long-lasting [104] 
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Biomarker Scientific approach Alternative strategies proposed References 

disease stabilization in vivo 

 

 

RAS 

The RAS family includes three small GTPases (KRAS, NRAS, and HRAS) responsible for coupling EGFR to the 
RAF/MEK/ERK pathway [22]. Several retrospective analyses have described KRAS mutations in exon 2 (codons 12 and 
13), which are found in approximately 40–45 % of CRCs [20, 26], as major determinants of primary resistance to 
cetuximab or panitumumab [17, 27-29]. The robust predictive power of such correlations, despite being obtained in 
retrospective studies, was sufficient to convince both the US Food and Drug Administration and the European Medicines 
Agency to approve the use of anti-EGFR moAbs only in the subset of KRAS wild-type colorectal cancers [26, 30-34]. 

Although exclusion of patients with KRAS (exon 2)-mutant tumors has arithmetically increased the percentage of 
responders up to 13–17 %, most KRAS wild-type tumors still do not respond to anti-EGFRmoAbs [26, 32]. Additional 
rare mutations of KRAS, as well as mutations of NRAS, have been associated with primary resistance to treatment. The 
relatively high cumulative frequency of rare KRAS mutations andNRAS mutations, coupled with initial successful 
validation in prospective trials, strongly advocates prompt incorporation of such biomarkers into clinical practice as 
negative predictors [35]. A very low frequency ofKRAS amplification (0.7 %) has also been reported and found to 
correlate with primary resistance [36]. 

KRAS point mutations and gene copy number gains are responsible not only for primary but also for acquired resistance 
in 38–60 % of patients who relapse on cetuximab or panitumumab [37-39]. Intriguingly, such mutations presumably are 
either present in a clonal subpopulation within the tumor before treatment initiation [37, 38] or raise as a consequence of 
continued mutagenesis over the course of therapy [38, 39]. KRASalterations could be identified noninvasively 5–
10 months before radiographic disease progression by analyzing cell-free circulating tumor DNA (ctDNA) [37, 38]. Using 
this approach, two recent studies have highlighted the emergence of several independent clones carrying 
heterogeneous patterns of KRAS andNRAS mutations concomitantly associated with acquired resistance 
to EGFR blockade [40, 41]. 

Currently, KRAS-mutant patients are treated with chemotherapy (with or without antiangiogenic therapy using the anti-
VEGF moAb bevacizumab), but if intensive regimens are not tolerated or relapse occurs, the remaining treatment option 
is best supportive care [42]. To date, direct inhibitors of mutant KRAS protein are not yet available; therefore, multiple 
efforts have been made at the preclinical level by approaches as different as targeting downstream effectors such as 
MEK and PI3K [43], exploiting synthetic lethal interactions [44-49] or using high-throughput drug screens [50]. Of note, 
most of these studies showed that simultaneous targeting of two different pathways induced some responses 
in KRAS mutant CRC mouse models, albeit rarely with overt tumor regressions [51] (see Table 1); most of these 
approaches are currently under evaluation in phase I/II clinical trials (NCT01085331, http://clinicaltrials.gov/ct2/show/
NCT01085331?term=NCT01085331&rank=1; NCT01390818, http://clinicaltrials.gov/ct2/results?term=NCT01390818&
Search=Search; NCT02039336, http://clinicaltrials.gov/ct2/show/NCT02039336?term=NCT02039336&rank=1). In the 
case of secondary resistance due to RAS mutations, preclinical evidence suggests that early initiation of a combinational 
targeting of EGFR and MEK could delay or reverse the emergence of resistance [40]. 
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BRAF 

Mutations of BRAF, which encodes the cytoplasmic serine/threonine kinase immediately downstream of RAS, are found 
in 4–13 % of advanced CRCs and are usually mutually exclusive with KRAS mutations [20,52]. 

The BRAF V600E mutation has been described as a predictor of tumor aggressiveness in metastatic disease 
[33, 52, 53] and also of low RRs to cetuximab and panitumumab [18, 20, 52, 53]. However, the predictive impact 
of BRAF mutations is tempered by their low prevalence and is further biased by the prominent role of mutant BRAF as a 
negative prognostic biomarker [54]. Overall, the predictive power of this alteration remains immature and requires further 
prospective endorsement before clinical applicability [20,33, 52, 55]. 

Although, unlike RAS, BRAF can be efficiently blocked by clinically approved small-molecule inhibitors, no targeted 
therapeutic options are currently available for BRAF mutant CRC. In contrast to dramatic responses obtained 
in BRAF V600E-mutant melanomas (RR of 48 to 67 %) [13, 56], selective BRAF inhibitors such as vemurafenib have 
failed in BRAF-mutant CRCs (RR of 5 %) [57]; this lack of efficacy has been ascribed to the feedback activation 
of EGFR, which ensues as a consequence of BRAF inactivation and leads to EGFR-dependent compensatory signals 
[58, 59]. Accordingly, preclinical studies have provided a proof of principle that the combined inhibition 
of EGFR and BRAF can be synergistic in BRAF-mutant CRCs; however, it is worth noting that the best responses of 
CRC cell xenografts to such combinations were only disease stabilizations or mild tumor regressions [52, 58-60]. At the 
clinical level, a recent case report sustained the rationale of combined therapy with vemurafenib and cetuximab 
in BRAF V600E-mutant mCRC patients [61], and a pilot study of vemurafenib and panitumumab in this disease setting is 
currently recruiting participants (NCT01791309, http://clinicaltrials.gov/ct2/results?term=NCT01791309&Search=
Search). From the diagnostic viewpoint, the feedback activation of EGFR upon BRAF inhibition likely implies 
that EGFRexpression and phosphorylation levels may be potential predictors of response to vemurafenib monotherapy 
in BRAF-mutant mCRC patients [58, 59]. Other combinatorial approaches needing further testing or already under 
clinical evaluation [50, 62-64] are listed in Table 1. 

BRAF mutations could be also detected noninvasively by ctDNA analysis, together with 
concomitant KRASand NRAS mutations [40, 41], in patients who objectively responded to anti-EGFR therapy but 
subsequently relapsed. This indicates that the emergence of BRAF-mutant-resistant subclones also sustains secondary 
resistance. 

 

PI3K-AKT-PTEN pathway 

PI3Ks are a family of lipid kinases; in particular, class IA PI3Ks can be activated by different RTKs [65], but also through 
RAS association [66] or signaling from G protein-coupled receptors [9]. 

Class IA PI3Ks consist of heterodimeric proteins composed of a regulatory (p85) and a catalytic (p110) subunit [67]. 
Activating mutations of PIK3CA (encoding p110α) have been found in 10–20 % of CRCs [20,68-70]; most of them occur 
in exons 9 and 20, respectively, in the helical and kinase domain [68, 71]. Sartore-Bianchi and colleagues performed a 
retrospective analysis of 110 mCRC patients treated with cetuximab or panitumumab, reporting a statistically significant 
association between PIK3CA mutations and primary resistance to treatment within KRAS wild-type tumors. In this study, 
11 out of 15 mutations were found in exon 20 (73.3 %) and only 4 in exon 9 (26.7 %) [72]. Another study, in which a 
majority of exon 9 mutations was reported, did not confirm such correlation [70]. These conflicting reports were then 
reconciled by a large retrospective consortium analysis on 1,022 tumor samples which showed that, in the KRAS wild-
type subpopulation, only PIK3CA exon 20 mutations may be predictive of lack response to cetuximab (RR of 0 % in 
mutant vs 36.8 % in wild-type cases) [20]. This study also described a strong association betweenPIK3CA exon 9 (but 
not exon 20) mutations and KRAS mutations, suggesting the lack of independent influence of PIK3CA exon 9 mutations 
on cetuximab efficacy. 
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Loss of function of PTEN, which antagonizes PI3K activity, occurs in 30 % of sporadic CRCs through a variety of 
mechanisms [73, 74]. PTEN inactivation (usually assessed as lack of protein expression) has been associated with 
nonresponsiveness to anti-EGFR moAbs in mCRC patients in several studies [19, 73,75, 76], whereas others have only 
reported a prognostic role [53]. In summary, both PIK3CA exon 20 mutations and loss of PTEN expression are promising 
predictors of tumor suitability for anti-EGFR therapies. However, due to the low incidence of exon 20 mutations (2–5 %) 
[77] and lack of a consensus method forPTEN expression analysis [20, 73, 76, 78, 79], further prospective trials are 
required to challenge the clinical utility of PI3K pathway activation as a negative response predictor. 

In principle, patients harboring PIK3CA mutations or PTEN loss of function, without concomitantKRAS/BRAF mutations, 
may benefit from targeted treatments against PI3K or PI3K-downstream effectors such as mTOR or AKT [80]; however, 
emerging clinical data have shown only minimal single-agent activity of such inhibitors at tolerated doses [81-83]. It is 
likely that mTOR kinase, AKT, pan-PI3K, or isoform-specific PI3K inhibitors will provide greater therapeutic index when 
combined with RTK inhibitors [84]. Phase I/II studies testing mTOR inhibitors, such as everolimus or temsirolimus, in 
combination with RTK inhibitors or anti-EGF moAbs plus chemotherapy in mCRC patients are underway 
(NCT01154335, http://clinicaltrials.gov/ct2/show/NCT01154335?term=colorectal+cancer&rank=33; NCT01139138, http://
clinicaltrials.gov/ct2/show/NCT01139138?term=colorectal+cancer&rank=67; NCT01387880, http://clinicaltrials.gov/ct2/
show/NCT01387880?term=everolimus+AND+colorectal+cancer&rank=2; NCT00827684, http://clinicaltrials.gov/ct2/
show/NCT00827684?term=everolimus+AND+colorectal+cancer&rank=9). 

Finally, recent observational studies have shown that adjuvant low-dose aspirin improved survival in patients 
with PIK3CA-mutant tumors [85-87]; this sensitivity requires further prospective evaluation and could be at least partially 
explained by the fact that PI3K-AKT seems to induce NF-ĸB-dependent transcriptional upregulation of COX2, which has 
been demonstrated to display pro-survival activity in CRC cells [87-89]. Therefore, a PIK3CA-mutant context may render 
CRC cells susceptible to apoptosis by aspirin-mediated COX2 inhibition. 

To our knowledge, no alterations in the PI3K/AKT pathway have been associated with acquired resistance thus far. 

 

HER2 

It has been calculated that, among nonresponsive patients, 70 % bear tumors harboring at least one genetic alteration in 
the four abovementioned markers: KRAS, NRAS, BRAF, and PIK3CA [19]; therefore, the remaining 30 % of “quadruple 
negative” resistant cases display still-unidentified features that sustain lack of response. 

HER2 is the only member of the ErbB family that does not bind ligands; it is activated via hetero-dimerization with the 
other ligand-bound receptors [10], with the strongest mitogenic signals created byHER2-
HER3 heterodimers; HER2 overexpression, usually caused by gene amplification, allows HER2activation even in the 
absence of ligand bound to the other partners [90]. 

Two independent studies have recently shown that HER2 amplification is a predictor of poor sensitivity to anti-
EGFR antibodies [91, 92]. By performing genotype-response correlations in a preclinical platform of patient-derived 
metastatic CRC xenografts (xenopatients), Bertotti and colleagues identified HER2amplification as a biomarker of 
resistance to cetuximab within a quadruple negative population. Concomitantly, using a combination of resistant clones 
from cetuximab-sensitive cell lines and plasma and tissue samples from cetuximab-treated mCRC patients, Yonesaka 
and colleagues reported aberrant HER2signaling (by either HER2 amplification or through overproduction of the HER3-
activating ligand heregulin) as a mediator of lack of response [92]. In retrospective studies, patients with tumors 
featuring HER2amplification or heregulin overexpression and treated with cetuximab or panitumumab experienced 
disease progression and shorter progression-free and overall survival compared with HER2 wild-type cases [91-93]. 

Interestingly, in patients with acquired resistance, HER2 amplification was present in a small percentage of pretreatment 
tumor cells (14 %) that considerably increased in posttreatment samples (71 %). Similarly, heregulin levels, evaluated 
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both in plasma and tumor specimens, were found to be significantly higher in patients that relapsed on anti-
EGFR therapy [92]. This indicates that enhanced HER2 signaling confers both primary and acquired resistance. 

Active HER2 also contributes to unleashing the oncogenic properties of HER3 mutations, which have been recently 
identified in about 11 % of colon cancers [94]. A “dosage effect” may be envisioned whereby low-
grade HER2 amplification or low levels of heregulin, which alone would be insufficient to sustain therapeutic resistance, 
might in fact decrease responsiveness to EGFR inhibition by collaborating with coexisting HER3mutations. Anti-
HER3 antibodies and small molecules are now available and have been shown to effectively impair HER3-mediated 
signals and tumor progression in preclinical studies in vivo [94]. Therefore, HER3mutations in CRC deserve further 
exploration as new potential biomarkers of resistance to EGFR targeted therapies as well as new predictors of response 
to alternative treatment options. 

Therapeutically, only the dual targeting of HER2 and EGFR by combining a small-molecule inhibitor, such as the 
dual EGFR/HER2 inhibitor lapatinib, with a moAb, such as cetuximab or pertuzumab, induced overt and long-lasting 
tumor regressions in proof-of-concept trials in HER2-amplified xenopatients [91]. This finding led to the design and 
execution of a clinical trial that is currently assessing the activity and efficacy of a trastuzumab-lapatinib combination in 
mCRC patients with KRAS wild-type, HER2-amplified, cetuximab-resistant tumors (https://www.clinicaltrialsregister.eu/
ctr-search/trial/2012-002128-33/IT). A similar study, in which a combination of trastuzumab and irinotecan was tested in 
patients with HER2-overexpressing advanced colorectal cancers, has been recently completed (NCT00003995, http://
clinicaltrials.gov/ct2/results?term=NCT00003995&Search=Search). It is likely that also heregulin-driven tumors 
lacking HER2amplification may benefit from HER2-directed therapies [92, 95, 96], although the definition of proper cutoff 
levels for ligand expression will be necessary before starting further clinical studies. 

 

MET 

The RTK MET and its ligand, hepatocyte growth factor (HGF), can activate a number of pathways, including the RAS-
BRAF-ERK cascade, the PI3K-AKT axis, SRC, and STAT signaling [97]; these signaling networks collectively influence 
multiple key processes in cancer such as proliferation, apoptosis, invasion, and angiogenesis [98, 99]. Aberrant 
activation of MET may occur by several mechanisms, including METamplification and/or increased HGF 
expression/activity [97], and has been widely described as a cause of both primary and acquired resistance 
to EGFR inhibitors in NSCLCs carrying EGFR mutations [100-102]. 

HGF-induced MET activation as a mechanism of attenuated sensitivity to cetuximab in CRC has been reported by 
preclinical studies using either CRC cell lines [103, 104] or, more recently, CRC spheroids enriched in cancer stem cells 
[105]. In these studies, only the simultaneous blockade of both MET andEGFR effectively impaired tumor growth in vivo. 
Based on publicly available gene expression data, cetuximab resistance mediated by HGF overexpression may be also 
relevant in mCRC patients [105]. However, similar to that discussed for heregulin, the investigation of such candidate 
biomarker requires the definition of methods and the categorization of expression cutoffs before further clinical 
evaluations. 

The role of MET amplification as a mechanism of primary resistance to cetuximab and panitumumab in mCRC patients 
has been recently elucidated by Bardelli and colleagues [104]. MET amplification was retrospectively found in around 
1 % of mCRC samples, in line with previous reports [106]. However, this frequency increased to 12.5 % in a 
subpopulation of cetuximab-resistant xenopatients bearing wild-type forms of KRAS, NRAS, BRAF, PIK3CA, and HER2. 
Notably, only focal, high-grade amplification of the METlocus associated with lack of response; conversely, cetuximab 
proved to be active in tumors with modest gene copy number gains or polysomy of chromosome 7, where the MET gene 
lies [106]. This suggests that resistance is driven by a dosage effect. Multi-arm preclinical trials in MET-positive CRC cell 
lines and patient-derived xenografts revealed that long-lasting abolition of tumor growth could be achieved through MET 
inhibition, with or without concurrent interception of EGFR [104, 107]. In coherence, a phase II clinical trial with the 
primary objective to assess the antitumor efficacy of the dual MET-ALK inhibitor crizotinib in patients with solid tumors 
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(including CRCs) harboring MET alterations is currently recruiting participants (NCT02034981, http://clinicaltrials.gov/ct2/
results?term=NCT02034981&Search=Search). 

MET amplification was also found in three out of seven patients who developed acquired resistance, showing mutual 
exclusivity with secondary KRAS mutations. Of note, the MET amplicon was detected in circulating, cell-free DNA as 
early as 3 months after initiation of therapy, before relapse was clinically evident. Like HER2 amplification 
and KRAS mutations, rare MET-amplified cells were found in pretreatment tumor material from one out of three patients 
with MET-driven acquired resistance, suggesting that preexisting clones were selected under the pressure of anti-
EGFR therapy. 

 

EGFR 

Additional genetic alterations within the target oncogene itself, which prevent drug binding and lead to kinase activation 
even in the presence of the inhibitor, are a common mechanism of both primary and acquired resistance in cancer; a 
paradigmatic example is provided by the T790M “gatekeeper” secondary mutation in the EGFR gene, which installs 
resistance to reversible EGFR inhibitors in EGFR-mutant NSCLC [108]. In colorectal cancer patients, a mutation in the 
extracellular domain of EGFR (S492R), which abrogates cetuximab binding but retains panitumumab sensitivity, has 
been recently described as a mechanism of acquired resistance [109, 110] (Fig. 2c). Two mutations in the EGFR kinase 
domain (codons 714 and 794), which were not detected before EGFR blockade, were identified as circulating mutations 
by cell-free DNA analysis. Although the functional relevance of these alterations in affecting sensitivity to anti-
EGFR moAbs remains to be determined, it is conceivable that they contribute to the onset of secondary resistance [41]. 

 

Other potential biomarkers of drug sensitivity and resistance 

The step forward into refining mCRC patient stratification presumably will be the validation of new candidate positive and 
negative predictors of response to EGFR moAbs. Increased EGFR gene copy number could predict response 
among KRAS wild-type patients [53, 91, 111-113], but EGFR FISH in mCRCs still needs interlaboratory standardization 
[75, 114, 115]. 

Different EGFR-specific ligands could differently influence the clinical activity of cetuximab: while highmRNA levels of 
either amphiregulin or epiregulin may predict a better response [21, 116-119], high levels of TGF-α as well as HB-
EGF could confer lack of sensitivity [107, 118]. These findings, together with the role of other growth factors mentioned 
in this review, i.e., HGF, sustain the potential but understudied contribution of tumor-stromal interactions in influencing 
drug response in mCRCs [104, 120, 121]. 

Controversial data have been reported regarding the predictive role of a number of prognostic biomarkers: for example, 
IGF-1R overexpression seems to be a favorable prognostic factor [79, 106, 122] while high levels of EphA2, a pro-
angiogenic RTK [123, 124], have been associated with poor outcome in mCRC patients treated with cetuximab-based 
therapy [125]. Biologically, altered tumor angiogenesis as a way to escape cetuximab antitumor activity has been 
previously reported in CRC cellular models and ascribed to eitherVEGF protein overexpression or increased VEGFR-1 
and VEGFR-2 activation [126, 127]; taken together, these findings suggest that increased expression of pro-angiogenic 
ligands and cognate receptors (including VEGFs, VEGFRs, and Eph receptors) may dictate sensitivity to anti-
EGFR therapy in colorectal tumors. Other “pathway-independent” mechanisms could also have a role in modifying drug 
response, for example, deregulation of EGFR ubiquitination which affects receptor recycling and expression at the cell 
membrane [128] (Fig. 2d). 

 

Ongoing research and challenges 
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New therapeutic opportunities are currently being offered by genome-scale analyses of CRCs: recurrent mutations, 
rearrangements, and copy-number alterations have been proposed as therapeutically actionable drivers of colorectal 
tumorigenesis [129, 130] and will receive further biological validation by future integrated proteogenomics [131]. 
Promising hints are also emerging from treatments aimed at disrupting immune evasion strategies. As a means to 
instigate immune suppression, tumor cells often engage immune checkpoint molecules, such as CTLA-4 and PD1, which 
downregulate pathways of T cell activation. Antibodies against CTLA-4 (ipilimumab) or PD1 (nivolumab) have been 
shown to induce quick and intense tumor regression in melanoma and NSCLC patients and are currently under clinical 
investigation in other solid tumors, including CRC [132, 133] (NCT01975831, http://clinicaltrials.gov/ct2/show/
NCT01975831). 

Although an ever-increasing number of primary and acquired resistance mechanisms have been described until now, 
mutant KRAS is the only validated biomarker in routine practice for selection of mCRC patients to be treated with EGFR-
targeted therapies. Thereby, there is a need to develop new models for clinical trials in order to facilitate and accelerate 
the introduction of other potentially useful biomarkers into clinical practice. Translational research in this context has an 
unquestionable role. Despite the lack of defined successful endpoints for preclinical models [134], arrest of cell growth 
and induction of apoptosis in vitro, and especially tumor regression in vivo (ideally in patient-derived xenografts), could 
have great impact to help design new cancer drug trials. Basket trials, in which patients are treated with different 
regimens based on their specific genetic profiles, may also optimize outcomes. 

Further trial shaping could be provided by genomic analysis from serial biopsies to monitor response evolution and 
acquisition of genetic or adaptive resistance. However, tumor biopsy may not be representative of the intratumoral and 
intermetastatic heterogeneity and posttreatment tumor tissue is almost invariably unavailable. Such limitations could be 
overcome by less-invasive analysis of circulating tumor DNA, which can offer a high degree of sensitivity and specificity 
to monitor the emergence of drug resistance during the course of treatment [41, 135]. The mechanisms by 
which ctDNA is released into the circulation and whether multiple metastases shed ctDNA homogeneously are still 
unclear; however, the proof of principle that such an approach could complement tumor biopsy and provide an early 
warning of acquired resistance has been established [38, 41, 136]. 

One way for cancer to escape therapy is by continuous adaptation to the selective pressure of the drug, mainly through 
tumor genetic heterogeneity and biochemical or transcriptional activation of compensatory feedback loops [137]; 
exploiting these observations to create a “balance” between drug activity and graded responsiveness of different clones 
could be useful to delay the onset of resistance and, ideally, to turn cancer into a chronic disease. In this scenario, the 
lessons learned from metronomic treatment strategies forBRAF V600E melanomas as well as EGFR-mutant NSCLCs 
suggest that discontinuous dosing of the drug could be a strategy to prevent or retard acquired resistance [138, 139]. 

Early detection of disease progression calls for hypothesis-driven approaches to contrast outcompetition by subclones 
exhibiting resistance-conferring mutations. Nonetheless, resistance is pervasive, and observations so far let us conclude 
that, in most cases, progression to alternative strategies of drug elusion will inevitably occur [109, 140]. Thereby, there is 
a need to design adaptive drug combinations to achieve tumor response, reduce chances of relapse, and prolong patient 
survival. In line with this, bioinformatics and systems biology approaches interrogating the huge amount of patient 
datasets produced until now may provide models and signatures that are more comprehensive and predictive than the 
mutation status alone [21, 141, 142]. Rational combination therapies guided by real-time monitoring of tumor evolution 
along treatment, coupled with integrated omics approaches, will ultimately inform trial design to improve patients care in 
the coming years. 

 

Final remarks 

A decade after the introduction of cetuximab in the treatment of mCRC, much is known about the genetic determinants 
of primary resistance to anti-EGFR moAbs and initial insights are emerging about the mechanisms underlying acquisition 
of secondary resistance. The unifying concept is that the very same genetic alterations that account for intrinsic 

http://link.springer.com/article/10.1007/s00109-014-1161-2/fulltext.html#CR129
http://link.springer.com/article/10.1007/s00109-014-1161-2/fulltext.html#CR130
http://link.springer.com/article/10.1007/s00109-014-1161-2/fulltext.html#CR131
http://link.springer.com/search?dc.title=CTLA-4&facet-content-type=ReferenceWorkEntry&sortOrder=relevance
http://link.springer.com/search?dc.title=CTLA-4&facet-content-type=ReferenceWorkEntry&sortOrder=relevance
http://link.springer.com/search?dc.title=NSCLC&facet-content-type=ReferenceWorkEntry&sortOrder=relevance
http://link.springer.com/article/10.1007/s00109-014-1161-2/fulltext.html#CR132
http://link.springer.com/article/10.1007/s00109-014-1161-2/fulltext.html#CR133
http://clinicaltrials.gov/ct2/show/NCT01975831
http://clinicaltrials.gov/ct2/show/NCT01975831
http://link.springer.com/search?dc.title=KRAS&facet-content-type=ReferenceWorkEntry&sortOrder=relevance
http://link.springer.com/search?dc.title=EGFR&facet-content-type=ReferenceWorkEntry&sortOrder=relevance
http://link.springer.com/article/10.1007/s00109-014-1161-2/fulltext.html#CR134
http://link.springer.com/article/10.1007/s00109-014-1161-2/fulltext.html#CR41
http://link.springer.com/article/10.1007/s00109-014-1161-2/fulltext.html#CR135
http://link.springer.com/search?dc.title=ctDNA&facet-content-type=ReferenceWorkEntry&sortOrder=relevance
http://link.springer.com/search?dc.title=ctDNA&facet-content-type=ReferenceWorkEntry&sortOrder=relevance
http://link.springer.com/article/10.1007/s00109-014-1161-2/fulltext.html#CR38
http://link.springer.com/article/10.1007/s00109-014-1161-2/fulltext.html#CR41
http://link.springer.com/article/10.1007/s00109-014-1161-2/fulltext.html#CR136
http://link.springer.com/article/10.1007/s00109-014-1161-2/fulltext.html#CR137
http://link.springer.com/search?dc.title=BRAF&facet-content-type=ReferenceWorkEntry&sortOrder=relevance
http://link.springer.com/search?dc.title=EGFR&facet-content-type=ReferenceWorkEntry&sortOrder=relevance
http://link.springer.com/article/10.1007/s00109-014-1161-2/fulltext.html#CR138
http://link.springer.com/article/10.1007/s00109-014-1161-2/fulltext.html#CR139
http://link.springer.com/article/10.1007/s00109-014-1161-2/fulltext.html#CR109
http://link.springer.com/article/10.1007/s00109-014-1161-2/fulltext.html#CR140
http://link.springer.com/article/10.1007/s00109-014-1161-2/fulltext.html#CR21
http://link.springer.com/article/10.1007/s00109-014-1161-2/fulltext.html#CR141
http://link.springer.com/article/10.1007/s00109-014-1161-2/fulltext.html#CR142
http://link.springer.com/search?dc.title=EGFR&facet-content-type=ReferenceWorkEntry&sortOrder=relevance


refractoriness also appear to foster progressive lack of response along treatment (Fig. 3), likely due to the presence of 
preexisting drug-insensitive subclones that are positively selected by continuous EGFR blockade. Future studies are 
needed to address cogent issues such as modeling tumor heterogeneity along cancer progression and under drug 
pressure, designing rational combination therapies to target concurrent mutations in the same cells or in different 
subpopulations, and improving early detection of disease progression. 

 

Fig. 3 

Overlap between molecular biomarkers of primary and acquired resistance in mCRC. Most of the primary and acquired 
mechanisms of resistance to EGFR-targeted therapies in mCRC overlap. To date, no alterations of the PI3K pathway 
have been associated with acquired resistance; on the contrary, EGFRmutations have never been detected before 
exposure to EGFR monoclonal antibodies 
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