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ABSTRACT Here we summarize some results that are further developed in Nava et al. (2013). We pro-
pose a method to construct strictly stationary Markovian models with fixed invariant distributions. Of
particular interest are those models with invariant distributions belonging to the class of Generalized
Inverse Gaussian (GIG) distributions family. The construction we propose is based on a Poisson trans-
form which controls the dependence structure in the model. In particular, it allows to fully control the
underlying transition probabilities that, an appealing feature, is then incorporated within standard es-
timation methods. A Bayesian estimate via a Gibbs sampler algorithm, based on the slice method, is
proposed and implemented.

1 INTRODUCTION

When interested in random phenomena evolving in time, a natural starting point is to consider
Markovian processes. If at the outset, we look to retain the marginal distributional features
invariant over time, then the immediate question is how to construct the transition mecha-
nism accomplishing this. This is the approach pursued by many of the constructions avail-
able in the literature, in both discrete and continuous time. Most of these approaches start
from a stochastic equation describing the dynamics in time and thus not necessarily leading
to analytic expressions for the corresponding transition probabilities. This then leads to the
consideration of specific, sometimes too specific and not always computationally efficient,
estimation techniques. On the counterpart, full control of the transition probabilities driving
a Markovian process is desirable, especially for the conveyed advantages in estimation and
prediction procedures.

By appropriately relaxing the distributional assumptions of the underlying stationary and
transition distributions, data features typically associated to non-stationary sequences can
also be captured through stationary models, e.g. widen the definition of stationary measure
accordingly to the observed phenomena.



With similar targets in mind, Pitt e al. (2002) made use of the reversibility property char-
acterizing Gibbs sampler Markov chains to propose strictly stationary AR(1)-type models
with virtually any choice of marginal distribution. In particular, they demonstrate that various
general existing approaches, e.g. the one by Joe (1996), can be seen as particular cases of
their construction. However, being such a general constructive approach, concrete choices of
dependence should be made to accommodate specific modeling needs. Indeed, examples of
this construction, meeting some specific dependency or distributional features, can be found
in Mena (2003), Mena and Walker (2005, 2007, 2007b, 2009) and Contreras-Cristan et al.
(2009). The idea presented in Nava et al. (2013), and also explored in this note, aims at
constructing stationary Markovian models using a Poisson transform. The resulting specific
dependence structure is general enough to accommodate models with invariant distributions
onR,.

2 f-STATIONARY POISSON-DRIVEN MARKOV PROCESS

As mentioned, our target is the construction of stationary Markov process with arbitrary but
given marginal distribution. For the sake of simplicity, we assume that our choice of in-
variant distribution has an absolutely continuous density function f supported on R, . Let
y€{0,1,2,...} and ¢ > 0. We define the Poisson weighted density as
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Notice that if the above integral exists, then (1) is a well defined probability density with
positive support. The interesting role of the Poisson weighted density is enhanced by the
following observations:

- for ¢ | 0, it reduces to the size-biased density of f;
- when y = 0, f reduces to the Esscher transform of f;
- eq. (1) can be seen as the posterior density of a Po(¢x) distribution with prior x ~ f.

The Poisson weighted density is crucial for our construction of stationary Markovian pro-
cesses, (X, )nez, , with invariant distribution having density f. The construction we propose
is to define the following time-homogeneous one-step ahead Markovian density
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which clearly satisfies the balance condition p(x,—1,%)f(xn—1) = p(xn,Xu—1)f(xn) for all
Xn—1,X, € R4 and hence leading to a time-reversible Markovian process.

Definition 1. We term the stationary Markovian process, driven by the transition density (2)
and stationary density f, an f-stationary Poisson-driven Markov process (f-sPDMP).

It can be easily seen that n-step ahead transition probabilities based on (2), modulating a
discrete-time f-stationary Poisson-driven Markovian process, (X, )nez . » satisfies the Chapman-
Kolmogorov (CK) equation. An interesting extension of this construction is its continuous



time counterpart. The crucial point here is that we need to add some further conditions on
the transition density (2) to preserve the CK equation. The approach followed in Nava et al.
(2013) is based on an underlying time-homogeneous effect that enters through one of the
parameters in (2) in a way that CK equation is satisfied. Following this approach we will
consider time homogeneous transition densities
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with ¢ — ¢ a Cp-function chosen such that the CK equation is satisfied. Stating the problem
in terms of the Laplace transform, we need to find ¢, such that
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where the Laplace transform of the corresponding transition distribution is given by

g B0 D)
LX:‘XO(}\’) _};()P (y’ Oq)t) E_,(y7¢t)

Within the above setting it can be seen that the above condition is sufficient for constructing
a Feller semigroup ensuring the existence of a right continuous modification.

Within the framework of this construction, various appealing features are at hand. In
particular, using the conditional representation in (2), we see that an f-stationary Poisson-
driven Markov process has conditional moments Ex, ,[X] := E[X] | X,—1 = x,—1] given by
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Therefore the autocorrelation can be expressed as
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provided that f leads to the existence of second order moments. The continuous time case
follows analogously.
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2.1 GIG-STATIONARY DENSITY IN DISCRETE TIME

Let us concentrate our choice of f on the general family of Generalized Inverse Gaussian
(GIG) distributions. Constructing Markovian models with this invariant distributions is ap-
pealing in several areas due to its ability to capture diverse empirical features. The GIG dis-
tribution has density given by
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where Ky denotes the modified Bessel function of the third type with index v. Importantly,
the GIG distribution encompasses several well known distributions: for instance, the gamma
distribution (o > 0,8 = 0,7 > 0), the inverse gamma distribution (o > 0,8 > 0,y = 0) and
the inverse Gaussian distribution (o0 = —%,y > 0,0 > 0). See Eberlein and v. Hammerstein
(2002) for further details on GIG distributions.

Following the construction of an f-stationary Poisson-driven Markov process, we obtain
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where A(a,3,7y) := (8/7)% 2Ky (8y). Namely, the corresponding Poisson weighted distribu-
tion is also GIG. Given these results, the transition density (2) simplifies to
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2.2 BAYESIAN ESTIMATION FOR GIG-SPDMP

The availability of a tractable expression for the transition density is a desirable feature in the
analysis and estimation of Markov processes. In particular if the choice of f leads to a man-
ageable analytic (or computable) expression in (2), the maximum likelihood estimator (MLE)
can be typically determined exactly. If not, one could make use of such a representation for
the transition density to obtain a MLE via the expectation-maximization (EM) algorithm
based on the augmented likelihood or a Gibbs sampler algorithm for Bayesian estimation.
Regarding, this latter approach, we could define a Gibbs sampler algorithm borrowing some
slice sampling ideas from Mena et al. (2011). An augmentation of the transition density for
the GIG-sPDMP can be introduced as follows
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where s — i is a N-valued function with known inverse y*, e.g. e, for 0 <1 < 1. The
use of these latent variables allows us to construct the augmented likelihood for a set of
observations x = (xp,...,xy) for 8 = (a,d,Y,d). With the assumption of independent priors
7, the full conditionals can be obtained from the log-posterior distribution:

(6)

N N
log(6]---) e<log(n(6)) + Y log(GIG(x,;8)) + ) [log(1(us < 5,)) —log(wy, )]
n=1 n=2
N N

- Z O(xn +xp-1) + Z {snlog(xnx,—10) —log(s,!E(sn,$:0)) }

— -



where u= (u,...,uy) and s = (s2,...,sy). Simulation from this posterior distribution can be
done via the adaptive rejection Metropolis sampling (ARMS) algorithm. The full conditional
distributions for the latent variables can be obtained via
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for n =2,...,N. Note that the above distribution has support s, = 0,..., |y*(u,)|. This is
the advantage of the slice method at issue, i.e. that we only need to sample from a finite
distribution instead of performing the infinite summation involved in the transition.
Figure 1 shows the posterior estimates of the above MCMC scheme for a simulated GIG-
stationary Poisson driven Markov process. In Figure 2 we illustrate the application of the
same model to real data. See Nava et al. (2013) for further details.
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Figurel. Simulated data from a GIG-stationary Poisson driven Markov process. The top plots show
the simulated time series (left) and the data histogram together with stationary GIG distribution (right).
The Gibbs sampler algorithm is based on 5000 iterations, after 500 burn in sweeps. The posterior es-
timates for the model parameters, 6 = (a,3,0,0), have modes located at (2.029,1.005,0.963,0.926)
respectively as plotted in the bottom plots. The data were generated from the model using parameters
(2,1,1,0.8), 1 = 0.4 and assuming independent priors 7(6) =Exp(1).



MIBTEL lItalia Estimated stationary density for MIBTEL Italia
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Figure2. Mibtel Italia volatility data modeled with a GIG-sPDMP. The plots show the time series from
February 18, 2003 to June 27, 2006 (left) and the data histogram together with estimated stationary
GIG distribution (right). The Gibbs sampler algorithm is based on 8000 iterations, after 1000 burn in
sweeps. The posterior estimates for (0., 8,6) have modes located at (—2.710,0.198,0.649).
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