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Influence of adhesive techniques on fracture resistance of endodontically treated premolars with 

various residual wall thicknesses 

 

ABSTRACT  

Statement of the problem. The choice of restorative method is commonly based on the cavity 

configuration and the residual number of cavity walls. However, the residual wall thickness 

could be a valuable clinical parameter in the choice of restoration for endodontically treated 

teeth.  

Purpose. The fracture resistance of endodontically treated premolars was compared with 

different wall thicknesses restored with direct composite resin with and without cuspal coverage 

and with and without fiber post insertion. 

Material and methods. This study included 104 intact human maxillary premolars extracted for 

periodontal or orthodontic reasons. Standardized MOD cavities were prepared with different 

palatal wall thicknesses (1.5, 2, and 2.5 mm) and a buccal wall thickness of 2 mm. Teeth were 

restored with or without a fiber post and with or without cuspal coverage. Specimens were 

subjected to thermocycling (3000 cycles, 5 to 55°C) and embedded in polymerized acrylic resin. 

Teeth were submitted to cyclic fatigue followed by a static fatigue test with an Instron machine; 

a compressive force was applied 30 degrees to the long axis of the teeth until fracture. The 

results were statistically analyzed by ANOVA (α=.05).  
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Results. Residual wall thickness (P=.004), the type of adhesive restoration (P<.001), and fiber 

post insertion (P<.001) significantly influenced the fracture resistance of endodontically treated 

premolars.   

Conclusion. In specimens with a cavity wall thickness >2 mm, direct intracuspal composite resin 

restorations supported by a fiber post achieved comparable fracture resistance. With a residual 

wall thickness <2 mm, only cuspal coverage with or without a fiber post provided satisfactory 

fracture resistance.  

 

Clinical implications. Within the limits of this study, the remaining wall thickness could be an 

important clinical parameter in deciding how to restore endodontically treated premolar teeth. 

Cuspal coverage composite resin restorations should provide improved fracture resistance in 

maxillary premolars, especially when the residual wall thickness is <2 mm.  

 

INTRODUCTION 

 Preventing the fracture of endodontically treated teeth is essential in clinical practice. 

Indeed, the loss of tissue either at the radicular or coronal level leads to significant changes in the 

biomechanics,1–4 leading to a high incidence of fractures in endodontically treated teeth1. 

Therefore, conservative endodontic and restorative procedures are important. Posts are necessary 

as foundations for prosthetic crowns in patients with substantial hard tissue loss. Of the various 

post systems available, metal or fiber posts are commonly recommended for clinical use.5 The 

introduction of adhesive techniques and the use of fiber-reinforced posts in conjunction with 

composite resin foundation restorations  have facilitated the preservation of tooth structure.6 

Moreover, if the post and core has the same elastic modulus as root dentin forces will be 
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distributed along the long axis of the post, improving the fracture resistance of endodontically 

treated teeth in vitro.7–9 The  function of a fiber post is to improve the retention of the definitive 

restoration and to distribute occlusal stressors along the remaining tooth structure. Posts do not 

strengthen endodontically treated teeth,10,11 especially anterior teeth,12 although some studies 

have suggested that cast metal posts result in reduced stresses in the dentin.13 

 However, endodontically treated teeth restored with direct techniques, with or without 

posts, may sometimes present residual compromised cusps that could eventually fracture. In 

these patients, reduction and coverage with a complete crown is usually indicated to prevent 

coronal fracture.14,15 However, the concept of minimal intervention dentistry to maximize 

preservation of the tooth structure is gaining popularity in the restoration of endodontically 

treated teeth.13 Tooth structure preservation is directly correlated with fracture resistance,16,17 

reducing the occurrence of catastrophic failures and enhancing the longevity of the restoration. In 

vivo and in vitro studies support the use of direct intracuspal adhesive techniques for the 

restoration of endodontically treated teeth if a normal occlusion without parafunction is 

present.18,19 This approach has the advantage reinforces teeth without occlusal coverage.20–22 To 

date, few prospective clinical studies have evaluated the different types of direct or indirect 

adhesive restorations of endodontically treated teeth. Mannocci et al23 found fiber posts and 

direct composite resin restorations to be more effective than amalgam in preventing root 

fractures, but not secondary caries, of endodontically treated premolars. Another prospective in 

vivo study24 showed similar 3-year survival rates between endodontically treated premolars 

restored with fiber posts and direct composite resin restorations and complete coverage with 

metal ceramic crowns.  
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 The thickness of the residual cavity wall could be a simple but effective parameter for 

clinically evaluating the remaining tooth structure, and consequently, for the selection of the 

most appropriate type of restoration for endodontically treated teeth. However, this parameter 

has not been investigated extensively. The choice of restorative method is commonly based on 

the cavity configuration and the residual number of cavity walls.25,26 However, because the 

residual cavity wall thickness represents the quantity of remaining enamel and dentin and is 

directly correlated with the residual sound tissue,27 wall thickness evaluation could provide more 

information to the clinician regarding the fatigue resistance of an endodontically treated tooth. 

Therefore, the aim of this in vitro study was to evaluate the effect of cavity wall thickness on the 

fracture resistance of endodontically treated teeth restored with a variety of adhesive techniques. 

The null hypothesis tested was that residual wall thickness does not influence the fracture 

resistance or fracture mode of endodontically treated premolars restored with or without fiber 

posts and with or without cusp coverage. 

 

 

MATERIAL AND METHODS 

 This study included 104 noncarious single-rooted maxillary premolars with mature apices 

recently extracted for orthodontic or periodontal reasons. The inclusion criteria were an absence 

of restorations, similar crown and root sizes, and no cracks under transillumination. Selected 

teeth were stored in 0.5% chloramine T trihydrate at 4°C. After cleaning the tooth surfaces, 

endodontic treatment was performed on all specimens, except those in the control group (intact 

teeth; n=8). Specimens were endodontically instrumented with Pathfiles (1-2-3) and ProTaper 

(S1-S2-F1-F2-F3) (Dentsply Maillefer, Ballaigues, Switzerland) to the working length, enlarging 
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the apex to a size 30, 0.09 taper. The specimens were irrigated with 5% NaOCl alternated with 

10% ethylenediaminetetraacetic acid (EDTA) with a 2-mL syringe and 25-gauge needle. 

Specimens were obturated with gutta percha by using the DownPack heat source (Hu-Friedy, 

Chicago, Ill) and an endodontic sealer (Pulp Canal Sealer EWT; Kerr, Orange, Calif). 

Backfilling was performed with the Obtura III system (Analytic Technologies, Redmond, Wash). 

 After 24 hours, all specimens were randomly assigned to 3 groups (W1,5; W2; W2,5; 32 

teeth each) based on the thickness of the residual palatal wall (1.5, 2, and 2.5 mm) after cavity 

preparation, measured with a caliber at the occlusal floor of the cavity. The specimens were 

treated as reported by Scotti et al22 In each tooth, a Class II mesio-occluso-distal (MOD) cavity 

was prepared. In order to compensate for different coronal anatomy, all teeth were prepared by 

hand by 1 experienced operator. The preparation was extended until the gingival cavosurface 

margin was 1-mm coronal to the cement-enamel junction (CEJ). The residual thickness of the 

buccal cusps at the height of the contour was 2+0.2 mm. Within each group, the specimens were 

further randomly assigned to 4 subgroups (eight 8 teeth each), based on the restoration type 

(Table I). In the groups with cusp coverage (overlay), both cusps were reduced with a completely 

flat enamel margin of up to 2 mm. 

 In the fiber post groups, the dowel space was prepared with drills from the post 

manufacturer (Dentsply Maillefer, Ballaigues, Switzerland) to a depth of 7 mm, measured from 

the pulpal chamber floor . All adhesive procedures were performed with All-Bond 3 (Bisco, 

Schaumburg, Ill) according to the manufacturer’s instructions. For fiber post cementation, a 

dual- curing cement (NanoCore Dual, Dentalica, Milano, Italy) was used. Dual curing cement 

was applied into the canal by using a tube with a needle and the appropriate plug (KerrHawe SA, 

Bioggio, Switzerland) and by injecting the materials into the post spaces with a specific 
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Composite-Gun (KerrHawe SA, Bioggio, Switzerland). Size 1 RTD Fiber Posts (RTD, Saint 

Egreve, France) were cemented to the full depth in the prepared post spaces. After initial 

preparation, photopolymerization was performed with an LED curing light for 40 s (Translux, 

Haereus, Hanau, Germany) at 1200 mW/cm2. 

 After fixing the matrix band with a retainer, A2-shaded nanohybrid composite (Venus 

Diamond, Heraeus Kultzer, Hanau, Germany) was placed by using an oblique layering 

technique. Each layer, 1.5 to 2 mm thick, was polymerized for 20 seconds with an LED-curing 

lamp at 1200 mW/cm2 (Translux Power Blue, Heraeus Kultzer, Hanau, Germany). The matrix 

band and retainer were then removed, and postpolymerization was performed on the buccal and 

lingual aspects of the boxes for 40 seconds on each side. All the restored specimens were 

finished, polished, and then stored in distilled water at 37°C for 7 days. All specimens were 

subjected to 3000 thermal cycles between 5 and 55°C for 60 seconds each. All specimens were 

embedded in light-curing acrylic resin to 1 mm below the CEJ, with a thin layer of polyvinyl 

siloxane (Aquasil, Dentsply Italia, Rome, Italy) around the root to simulate the periodontal 

ligament. Specimens were then exposed to cyclic loading (Mini Bionics II; MTS Systems, Eden 

Prairie, Minn) with an inclination angle of 30 degrees to the long axis of the tooth and at a 

frequency of 8 Hz, starting with a load of 20 N for 5000 cycles, followed by a stage of 50 N for 

20  000 cycles. A 10-mm-diameter metallic ball was used. The site of loading was the central 

fissure of the occlusal surface of the restoration in the direction of the buccal cusp. The 

specimens were then submitted to the static fracture resistance test by using a universal testing 

machine (Instron, Canton, Mass) with a 2-mm-diameter steel sphere crosshead welded to a 

tapered shaft and applied to the specimens at a constant speed of 2 mm/min and at an angle of 30 
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degrees to the long axis of the tooth. The forces necessary to fracture each tooth were measured 

in Newtons (N).  

 Restorable and nonrestorable fractures were distinguished by using an optical 

stereomicroscope with agreement by 2 examiners. Restorable failures included fractures above 

the cement-enamel junction, meaning that the tooth could be restored even in individuals with 

major coronal tissue loss. Nonrestorable failures included fracture patterns that extended below 

the cement-enamel junction, in which a surgical approach would be required to perform an 

adhesive restoration. 

 A statistical analysis of variance (3-way ANOVA, including 2-way and 3-way 

interactions, p<.05) was performed to evaluate the influence of the residual wall thickness (factor 

T at levels 1.5, 2 and 2.5 mm), the restoration (factor R at inlay and onlay levels), and the fiber 

post (factor P at 2 levels) on the fracture resistance of the tooth. An χ2 test was used to compare 

the failure modes of the specimens. Differences were considered statistically significant at values 

of P<.05. 

 

RESULTS 

 The mean fracture resistance values and the modes of failure observed in the groups are 

listed in Table I. The normal probability plot showed that the residuals followed a normal 

distribution. None of the tested restorations showed similar fracture resistance values to the 

control group, even those with residual walls of 2.5 mm. Within the restored specimens, 

ANOVA (Table II) showed that the thickness of the residual wall (P=.004), the type of adhesive 

restoration (P<.001) and the fiber post insertion (P<.001) significantly influenced the fracture 

resistance of endodontically treated premolars with a 1% significance level.  
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 The first-order interaction plot (Fig. 1), which graphically represents the interaction 

between the factors (thickness, restoration, and fiber post), showed that only the interaction 

between the restoration and the fiber post insertion significantly influenced the fracture 

resistance (P<.001; large nonparallelism between solid and dashed lines). 

 The interval plot (Fig. 2) showed that the type of adhesive restoration was the most 

significant factor in providing fracture resistance to endodontically treated premolars. Regardless 

of wall thickness and post placement, teeth with cusp cupping (factor restoration at level 

“onlay”) showed the greatest fracture resistance.  

 The χ2 test showed statistically significant differences in the patterns of fractures between 

the subgroups (χ2 = 18.133; P<.001). The highest numbers of restorable fractures were in the 

subgroups that received fiber post insertion with inlay direct restoration, regardless of the 

residual wall thickness. Similar modes of failure were detected in subgroups B and D, in which 

specimens were restored without a fiber post.  

 

DISCUSSION  

 The present study evaluated the influence of wall thickness on the fracture resistance in 

endodontically treated maxillary premolars with fiber-post insertion and cuspal coverage. The 

results of this in vitro study led to partial rejection of the null hypothesis because the residual 

wall thickness significantly affected the fracture resistance, but not the failure mode, of 

endodontically treated premolars.  

 The restoration of endodontically treated teeth remains a major concern in dentistry. 

Endodontic therapy is primarily performed on teeth with crowns previously damaged by caries, 

restorative failure, or fracture. Moreover, decay and trauma often induce extensive loss of tooth 
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structure, which may lead to reduced fracture resistance.1 The clinical survival of these teeth 

depends on several parameters, such as dental type, occlusal load and lateral excursive contacts, 

restorative material used, and remaining tooth structure.1, 28 The thickness of the residual cavity 

wall is a simple but effective parameter for clinical evaluation of the remaining tooth structure, 

and consequently, selection of the most appropriate type of restoration for the endodontically-

treated tooth. However, this parameter has not been investigated extensively.  

Intraorally, teeth are subjected to cyclic loading through mastication, and dental 

restorations most commonly fail due to fatigue.29 Therefore, to simulate this clinical situation in 

this study, a cycling fatigue test was conducted before static load with parameters similar to 

those described previously.30 Load cycling is essential to test adhesive restorations, since the 

cyclic loading pattern is comparable to the actual physiological function of mastication. 

However, the experimental methods used for in vitro analyses do not accurately reflect intraoral 

conditions. Intraorally, teeth are subjected to cyclic loading through mastication and are 

immersed in a wet environment that is subject to chemical and thermal changes. Moreover, a 

number of factors may affect the resistance to fracture, such as differences between specimens, 

tooth embedment methods, type and direction of load application, crosshead speed, and 

simulation of thermally or mechanically induced fatigue. 

 The results indicated that the fracture resistance of endodontically treated maxillary 

premolars was significantly influenced by the residual wall thickness. This parameter is directly 

correlated with the residual sound tissue: the more residual sound tissue, the higher the tooth 

resistance. Therefore, minimal intervention dentistry aiming to maximize preservation of tooth 

tissue is fundamental. The first-order interactions (Figure 1) evidenced a slight difference 

between the 1.5- and 2-mm groups, but not between the 2- and 2.5-mm groups, probably due to a 
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greater amount of dentine under the enamel. The presence of dentine within the composite and 

enamel improves the stress distribution because of the similar elastic modulus of dentine and 

composite materials.22 

 In the present study, the type of restoration had a marked influence on fracture resistance, 

independently of the residual wall thickness. Similar results were also achieved in recent studies 

on premolars restored with direct cusp coverage restorations.21,31 

The fiber post also improved fracture resistance in the presence of sufficient residual 

coronal dentine.32 The post distributes stress and loads applied to the core and prosthetic crown 

within the radicular dentine.33 In this study, fiber-post insertion significantly increased the 

fracture resistance of direct intracuspal restorations independently of the wall thickness. Direct 

restorations with a fiber post commonly reinforced the weakened remaining coronal structures 

and the tooth, probably due to better distribution of functional stresses along the adhesive 

interface.34 In contrast, some studies have shown that root-filled maxillary premolars without 

fiber posts had a similar fracture resistance to those with a post.35-37 This may be attributed to the 

fact that a greater portion of tooth structure is removed during post placement. Soares et al3 

found that the use of glass fiber posts did not reinforce the tooth restoration complex when major 

dental structure was lost, and, in cases of moderate structure loss, the use of posts actually 

reduced fracture resistance.  

The contrasting results reported in this study may depend on the different types of crown 

restorative material, the type of teeth, and the directions of the load applied. This study found 

that at a remaining wall thickness of endodontically treated teeth of at least 2 mm, the fiber post 

direct restoration yielded a fracture resistance similar to that of cuspal coverage restoration.22 

Thus, teeth with a wall thickness of 1.5 mm require a cusp coverage restoration to significantly 
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increase fracture resistance. The results of this study suggest that cusp coverage represents an 

important and effective method for the prevention of fracturing of endodontically treated 

premolars. These results agree with other reports that restored teeth had a significantly lower 

resistance to fracture.38,39  

In the current study, onlay restorations had a mean decrease in fracture resistance of 35% 

compared to intact teeth, regardless of the remaining wall thickness. It is well-documented that 

coronal coverage significantly reduces the risk of tooth fracture in teeth undergoing root canal 

treatment.10,13,27,40 According to Aquilino and Caplan,13 although ceramic or composite onlays 

could protect against fractures, no reports support their use in the restoration of posterior teeth. 

Some laboratory studies concluded that endodontically treated teeth recovered the lost resistance 

to fracture after receiving an indirect restoration with cusp protection.22 The tendency of onlay 

composite restorations to receive higher load might be attributed to the dispersion of 

compressive stresses. Similar results were found for cusp coverage with amalgam,40 which 

significantly increased the fracture resistance of the teeth compared to those restored without 

cusp coverage. In contrast to the study by Soares et al,41 cuspal reduction restorations reduced 

fracture resistance in mandibular premolars, probably because of the large amount of sound tooth 

tissue removed during specimen preparation. 

 Other authors have stated that cusp coverage does not strengthen premolars restored with 

composite onlay32 or molars with ceramic restorations.42 This may be due either to the different 

axial direction of the compressive load used in these studies, or to the different indirect 

restoration, which involved only a buccal cusp. Moreover, in this study, the insertion of a fiber 

post within the cuspal coverage restoration did not significantly increase fracture resistance, 
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probably due to the adequate dispersion of compressive stresses already provided by the 

composite overlay.21,26,30 

 Regarding failure mode, the combination of the fiber post with an inlay adhesive 

restoration led to a higher incidence of more favorable failure types (P<.001). This is consistent 

with the results of other similar studies.26,42,43 Furthermore, the residual wall thickness did not 

influence the fracture mode, as reported elsewhere.26 This finding is probably due to the stress 

distribution provided by the materials and techniques employed for the restoration, which 

influence the fracture pattern more than does the quantity of sound tissue.44 

 The current study has some limitations: although the methodology chosen cannot 

perfectly reproduce clinical conditions, it does result in fewer variables and allows for a more 

specific evaluation of the performance of various composite restorations on endodontically 

treated premolars with different wall thicknesses. This study focused on the fracture resistance of 

restored teeth, but additional in vitro investigations could be done to determine other clinical 

aspects related to occlusal loading before tooth fracture. A recent study45 suggested that marginal 

leakage precedes loss of retention or fracture of the restoration and, therefore, may be regarded 

as a precursor to the failure of the treated tooth. Thus, further research to identify microleakage 

at the composite-tooth interface after cyclic loading would help reveal whether marginal leakage 

is occurring, where, and to what extent. 

 

CONCLUSIONS 

Within the limits of this investigation, the results suggest that wall thickness is an 

effective clinical parameter in selecting an appropriate adhesive restoration technique for 

endodontically treated premolars. In fact, when the residual cavity wall thickness is >2 mm, less 
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invasive treatments such as direct intracuspal composite restoration supported by fiber-post 

insertion can provide sufficient fracture resistance to occlusal loads. In contrast, when the 

residual wall thickness is <2 mm, the cuspal coverage through a composite adhesive restoration, 

with or without a fiber post, represents the treatment of choice because it is the only option that 

provides satisfactory fracture resistance. Further clinical trials are required to confirm these 

findings. 
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Table I. Specimen characteristics, grouping, mean fracture resistance values (Newtons) and fracture 

modes of the various groups. 

GROUP 

(n) 

RESIDUAL 

WALL 

THICKNESS 

SUBGROUP 

(n) 
CHARACTERISTICS 

FRACTURE 

RESISTANCE 

(mean ± SD) 

NON-

RESTORABLE 

FRACTURE (%) 

W1,5 

(n=32) 
1.5 mm 

W1,5 A (n=8) Post (-), cusp coverage (-) 260.51 ± 82.69 87.5 

W1,5 B (n=8) Post (+), cusp coverage (-) 445.71 ± 103.19 62.5 

W1,5 C (n=8) Post (-), cusp coverage (+) 793.11 ± 196.56 87.5 

W1,5 D (n=8) Post (+), cusp coverage (+) 775.98 ± 173.30 87.5 

W2 

(n=32) 
2 mm 

W2 A (n=8) Post (-), cusp coverage (-) 313.77 ± 69.61 75 

W2 B (n=8) Post (+), cusp coverage (-) 660.59 ± 149.48 50 

W2 C (n=8) Post (-), cusp coverage (+) 801.16 ± 175.28 87.5 

W2 D (n=8) Post (+), cusp coverage (+) 868.58 ± 139.76 87.5 

W2,5 

(n=32) 
2.5 mm 

W2,5 A (n=8) Post (-), cusp coverage (-) 368.22 ± 130.27 87.5 

W2,5 B (n=8) Post (+), cusp coverage (-) 676.06 ± 155.56 50 

W2,5 C (n=8) Post (-), cusp coverage (+) 821,18 ± 121.45 75 

W2,5 D (n=8) Post (+), cusp coverage (+) 871,77 ± 150.74 87.5 

Control 

(n=8) 
- - Intact teeth 1098.64 ± 287.86 20 
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Table II. ANOVA of empirical fracture resistance values. 

Source 
Degrees of 

Freedom 

Sum of 

Squares 

Mean 

Square 

F-

Statistics 
P 

Thickness 2 238703 119351 5.91 .004 

Restoration 1 3247018 3247018 160.84 <.001 

Fiber post 1 590008 590008 29.23 <.001 

Thickness–Restoration 2 50737 25368 1.26 .290 

Thickness–Fiber post 2 66634 33317 1.65 .198 

Restoration–Fiber post 1 364051 364051 18.03 <.001 

Thickness–Restoration– 

Fiber Post 
2 6296 3148 0.16 .856 

Error 84 1695753 20188   

Total 95 6259199    
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LEGENDS 

Fig. 1. First-order interaction plot of fracture resistance. 

 

Fig. 2. Ninety-five percent confidence intervals of mean fracture resistance values. 
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