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Abstract

We extend the previously developed geometrical correction for the inter- and intra-molecular

basis set superposition error (gCP) to periodic Density Functional Theory (DFT) calculations.

We report gCP results compared to those from the standard Boys-Bernardi counterpoise cor-

rection scheme and large basis set calculations. The applicability of the method to molecular

crystals as the main target is tested for the benchmark set X23. It consists of 23 non-covalently

bound crystals as introduced by Johnson et. al. (J. Chem. Phys. 2012, 137, 054103) and

refined by Tkatchenko et. al (J. Phys. Chem. Lett. 2013, 4, 1028). In order to accurately

describe long-range electron correlation effects, we use the standard atom-pairwise disper-

sion correction scheme DFT-D3. We show that a combination of DFT energies with small

atom-centered basis sets, the D3 dispersion correction, and the gCP correction can accurately

describe van der Waals and hydrogen bonded crystals. Mean absolute deviations of the X23

sublimation energies can be reduced by more than 70% and 80% for the standard functionals

PBE and B3LYP, respectively, to small residual mean absolute deviations of about 2 kcal/mol

(corresponding to 13 % of the average sublimation energy). As a further test we compute the

interlayer interaction of graphite for varying distances and obtain good equilibrium distance

and interaction energy of 6.75 Å and −43.0 meV/atom at the PBE-D3-gCP/SVP level. We fit

the gCP scheme for a recently developed pob-TZVP solid-state basis set and obtain reasonable

results for the X23 benchmark set and the potential energy curve for water adsorption on a

nickel (110) surface.

Introduction

The theoretical description of periodic systems using Density Functional Theory (DFT) or Hartree-

Fock (HF) with moderate computational costs is highly desirable. Especially the computation

of reliable sublimation energies, geometries and relative energies of molecular crystals and their

polymorphic forms is of utmost importance, i.e., aiming at crystal structure prediction.1–3 The

theoretical evaluation of molecular crystals and their polymorphs is an active research field.4–10
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Bulk metals have a strongly delocalized valence electron density and therefore, originless

plane-wave based basis sets are probably the best choice in orbital based methods.11 In molec-

ular crystals, on the other hand, the charge density is more localized. Thus, for plane-wave based

methods huge basis sets are needed. We have recently found that for a typical system of stacked

organic π-systems, up to 1.5 · 105 projector augmented plane-wave (PAW) basis functions must

be considered for accurate results.12 For this and similar systems, atom-centered basis functions

could be much more efficient.13–16

Small atom-centered basis sets strongly suffer from basis set errors (BSE), especially the basis

set superposition error (BSSE). For molecular systems, a number of different correction schemes

exist. The Ref.17 gives a good review of the various approaches. Recently, we have mapped

the standard Boys-Bernardi counterpoise correction (BB-CP) onto a semi-empirical atom-pairwise

potential.18 This repulsive potential was fitted for a number of typical basis sets and depends only

on the system geometry and was therefore denoted as geometrical counterpoise correction (gCP).

Analytic gradients are problematic in nearly all other counterpoise schemes, but are easily and

efficiently obtained within the gCP. Moreover, the accidental error cancellation in standard small

basis set calculations was recently demonstrated for molecular thermochemistry and results could

be significantly improved by applying gCP.19

In this work we include periodic boundary conditions and unit cell gradients in the gCP code.

We correct the (semi) local density functionals for missing long-range electron correlation, also

known as van der Waals or London dispersion interaction, with the DFT-D3 method.20 The theory

of both correction schemes, D3 and gCP, is briefly discussed. The proposed approach could also

be applied analogously to HF calculations but we restrict ourselves to DFT in this work. Compu-

tational details are summarized and a short comparison of gCP and BB-CP energies is given. We

test the applicability of the DFT-D3-gCP (or ’functional’-D3-gCP) denoted method on the X23

benchmark set21,22 for non-covalent interactions in molecular crystals and for the interaction be-

tween graphite layers. Furthermore, gCP parameters are calculated for a new solid-state optimized

basis (pob-TZVP) and tested on the X23 sublimation energies, the graphite stacking, and for water
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adsorption on a nickel (110) surface. Finally, we give a conclusion.

Theory

We split the BSE into basis set incompleteness error (BSIE) and BSSE. The BSIE arises always,

when finite incomplete basis sets are used. The BSSE is due to an inhomogeneous basis, i.e., the

variational freedom varies in different spacial regions. In the description of periodic systems, two

types of single particle basis sets are the most prominent, (1) a superposition of orthonormal plane-

waves spread uniformly in space which is BSSE-free and (2) a direct product of a superposition of

atom-centered functions and a momentum (k) dependent phase factor enforcing the correct trans-

lational symmetry. The atom-centered orbitals are typically contracted from primitive Gaussian

functions with different exponents to decrease the computational effort. In the dissociation limit,

each atom can be accurately described by this set. It is possible to choose the ’most important’

atom-centered basis functions and to minimize the BSIE with a fixed number of basis functions.

Moreover, the use of Gaussian basis sets presents some advantages: core electrons can be easily

treated, the algorithms are similar to those used in efficient molecular quantum chemistry codes

where Gaussian orbitals are generally adopted, and the quasi-local character of electronic structure

(at least for insulators) is more naturally exploited. However, incomplete, atom-centered basis sets

always favor certain spatial locations.

Two major manifestations of the BSSE arise: (1) In the calculation of cohesive energies the

presence of surrounding molecules increases the basis relative to that in the dissociation limit

leading to an artificial overbinding; (2) In geometry optimizations the atomic centers move and

therefore the basis changes, too. Unit cell volumes are artificially underestimated. A complete

basis set is BSE-free, so the best way to avoid both BSIE and BSSE, is to increase the basis set and

this is always recommended if technically possible.

Unfortunately, in most periodic systems large atom-centered basis sets are not commonly af-

fordable. This is particularly relevant when diffuse functions with small Gaussian exponents are
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included. While they are important to describe the tails of molecular density distributions, they

are less needed in periodic systems because the overlap between Bloch functions is higher than

between AOs in finite systems. Diffuse functions may lead to quasi-linear basis set dependencies

which can cause an instability in the convergence of the iterative solution of the Kohn-Sham or

HF equations (SCF procedure). Practically, it turns out to be difficult to enlarge the basis to the

quadruple-ζ level, even in not very dense solids, although polarized triple- and quadruple-ζ ba-

sis sets have been employed occasionally in calculations on molecular crystals.6,23–25 Recently,

a consistent triple-ζ basis set for periodic systems was developed by some of us, which aims to

overcome some of the mentioned problems.26 Therein, basis functions with very small exponents

are consistently replaced by more localized contracted orbitals. However, we show below that the

BSSE of this basis is still very large for typical cases and must be corrected.

Another problem of HF and common (semi-local) DFT functionals is that they are not capable

of describing long-range electron correlation, a.k.a. London Dispersion interaction. In order to

get physically reasonable results, the methods have to be properly dispersion corrected.27 We

decompose the total energy Etot of a system into DFT/HF energy EDFT/HF, dispersion energy Edisp,

and additional counterpoise correction EgCP:

Etot = EDFT/HF +Edisp +EgCP . (1)

To accurately describe the London dispersion interaction, we use our latest semi-classical ab-

initio dispersion correction DFT-D3.20,28 It incorporates non-empirical, pairwise-specific, chemi-

cal environment-dependent dispersion coefficients, a physically sound damping function according

to Becke and Johnson,29 and optionally a non-additive Axilrod-Teller-Muto three-body disper-

sion term.30 The dispersion energy can be split into two- and three-body contributions Edisp =
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E(2)+E(3):

E(2) =− 1
2 ∑

n=6,8

atom pairs

∑
A 6=B

∑
T

sn
CAB

n

‖rB− rA +T‖n + f (RAB
0 )

n (2)

E(3) =− 1
6

atom triples

∑
A6=B6=C

∑
T

CABC
9 (3cosθacosθbcosθc +1)
rABC

9 · (1+6(rABC/R0)−α)
. (3)

Here, CAB
n denotes the averaged (isotropic) nth-order dispersion coefficient for atom pair AB, and

rA/B are their Cartesian positions. The real-space summation over all unit cells is done by consid-

ering all translation invariant vectors T inside a cut-off sphere. The scaling parameter s6 equals

unity for the here applied functionals and ensures the correct limit for large distances, and s8 is a

functional-dependent scaling factor. The rational damping function f (Rab
0 ) is

f (Rab
0 ) = a1 Rab

0 +a2 , Rab
0 =

√
Cab

8

Cab
6

. (4)

The dispersion coefficients are obtained from first-principle calculations for molecular systems

with time-dependent DFT and and application of the Casimir-Polder relation.31 The three parame-

ters s8, a1, and a2 are fitted for each functional (or HF) on a benchmark set of small, non-covalently

bound molecules. The fitting is necessary to prevent double counting of dispersion interactions at

short range and to adjust repulsive and attractive parts. This procedure has an impact on the short-

to medium-ranged part of the dispersion energy, but does not affect the long-range regime, which

is most important for periodic systems. In the three-body contribution, rABC corresponds to an

averaged distance between the three pairs and θa/b/c are the corresponding angles. The general

applicability of this atom-pairwise dispersion correction was shown in a number of recent pub-

lications by us32–34 and other groups8,35,36 and also for solids.12,37–40 The importance of three-

and many-body dispersion effects is currently not clear but this question is intensively investi-

gated.34,41,42

The most frequently used method to correct for the BSSE is the Boys-Bernardi counterpoise
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(BB-CP)43 method. For a dimer AB with basis functions a and b, respectively, it reads

EBB-CP = {E(A)a−E(A)ab}+{E(B)b−E(B)ab} , (5)

where E(A)a is the energy of fragment A with basis functions a and E(A)ab denotes the energy

of the same fragment A with the enlarged basis ab. In the geometric counterpoise correction

scheme, we map the BB-CP onto a semi-empirical, repulsive pair potential VA(r), which decays

exponentially with the inter-atomic distance r:

VA (r) = emiss
A

exp
(
−α · rβ

)
√

S ·Nvirt
B

. (6)

The energy difference between a large and the generally smaller target basis set for an atom A

inside a weak electric field emiss
A is computed for all atoms. This quantity measures the incomplete-

ness of the atomic target basis. The potential is normalized by the Slater-overlap S, the number

of virtual orbitals Nvirt
B , and the empirical parameters α and β . The Slater exponents of s- and

p-valence orbitals ζs and ζp, respectively, are averaged to get a single s-function exponent ζ ∗s

ζ
∗
s = η

ζs +ζp

2
, (7)

with fit parameter η . In order to satisfy the periodic boundary conditions (PBC), the summation

runs over all distinct pairs AB inside a large super-cell of certain radius. Using a real-space cut-off

is possible because of the exponential decay, which converges rapidly with increasing distance.

We sum over all atom pairs and get the energy EgCP:

EgCP =
σ

2

atom pairs

∑
A6=B

∑
T

VA(‖rA− rB +T‖) , (8)

with a global scaling parameter σ .

Altogether, gCP involves four fit parameters (σ , α , β , η) for each basis set. They have been
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fitted to reproduce the BB-CP energy of the large S66× 8 non-covalent interaction benchmark

set44 by minimizing the root-mean-square deviation. No parameter re-fit is considered here nor

needed here for the applied standard basis sets (the new pob-TZVP basis26 is discussed separately)

because a short-range potential should not be affected by PBC. Parameters are available for a

variety of basis sets, namely the Ahlrichs-type basis sets SV, def2-SVP, and def2-TZVP,45–47 the

minimal basis set MINIS,48,49 and the Pople-style basis 6-31G∗.50

Computational Details

We calculate the HF and DFT energies mostly with the widely used crystalline-orbital program

CRYSTAL09.51,52 In the CRYSTAL code, the Bloch functions are obtained by a direct product

of a superposition of atom-centered Gaussian functions and a k dependent phase factor. We use

the generalize gradient approximated (GGA) functional PBE53,54 and the hybrid GGA functional

B3LYP.55,56 The Γ-centered k-point grid is generated via the Monkhorst-Pack scheme57 with one

k-point for molecular calculations, four k-points for molecular crystals, and 12k-points in each

direction for graphite. The large integration grid (LGRID) and tight tolerances for Coulomb and

exchange sums are used. The self consistent field (SCF) energy threshold is set to 10−8 Hartree.

We exploit the polarized and unpolarized split-valence basis set SVP and SV and the triple-ζ

basis set pob-TZVP. Calculations close to the complete basis set limit (CBS) are carried out with

the Vienna Ab-initio Simulation Package VASP 5.3.58,59 We utilize the GGA functional PBE in

combination with a projector-augmented plane wave basis set (PAW)60,61 with a huge energy cut-

off of 1000eV. This corresponds to∼ 200% of the recommended high-precision cut-off and should

accurately approximate the CBS for the here investigated properties (denoted as PBE/CBS in the

following).

We include the dispersion energy with the dftd3 program in the Becke-Johnson damping scheme

and a conservative distance cut-off radius of 95 Bohr. The BSSE correction is added via the gCP

method as discussed above where a smaller cut-off radius of 60 Bohr is used. Compared to the
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computation of the HF or DFT energies and gradients, the dispersion and counterpoise contribu-

tions requires practically no additional computation time (even in a small basis, the HF or DFT

calculation is one to two orders of magnitudes slower).

The gCP correction will be also compared with the BB-CP scheme. In CRYSTAL, the BB-

CP method is applied by supplementing the basis set of a single molecule, as cut out from the

crystal structure, with the functions of an increasing number of atoms (ghost atoms) belonging to

the surrounding array of molecules within a sphere of a given radius. Here, a sphere of 4.0 Å from

each atom of the molecule was used. Tests with a larger radius of the sphere show a change of the

lattice energies by only a few tenths of a kcal/mol.

For the geometry optimization, we use an extended version of the approximate normal coordi-

nate rational function optimization program (ANCOPT).62 The Cartesian coordinates of all atoms

in one unit cell are transformed into approximate normal coordinates. In order to obtain reason-

able internal coordinates, we translate all atoms by multiples of unit cell vectors in such a way that

all molecular fragments are directly connected. We use a rational function algorithm to calculate

the new coordinates from analytic atomic gradients and an interpolated Hessian matrix of second

derivatives.63

Common unit cell optimizer rescale all atom positions inside the unit cell to get the new coordi-

nates. For molecular crystals, this procedure is very inefficient because all intramolecular distances

change and therefore all atom gradients rise significantly. We perform a slightly different cell step.

We identify all molecular fragments, calculate their center of mass, and transform all these centers

according to the new cell matrix. This keeps the intramolecular distances fixed and we need less

optimization steps. Full convergence is achieved if the energy change is below 10−6 Hartree and

if the gradient thresholds for the total atomic gradient (10−4 Hartree/Bohr) and total cell gradient

(10−3 Hartree/Bohr) are fulfilled.
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Comparison of Counterpoise Corrections

We first compare the gCP and BB-CP correction schemes with a large basis set calculation. We

start this comparison by calculating potential energy curves for two simple cubic molecular crys-

tals, namely N2 and NH3, with the hybrid functional B3LYP and small (SVP) and large (QZVP64)

basis set. By starting from the experimental crystal structures, the lattice parameter has been var-

ied in a range of -10% < a < +15 % by fixing the internal coordinates of the molecules at their

experimental values. In Figure 2, the gCP corrected potential energy curves are shown. In the case

of N2, the curve obtained with the small basis set shows a minimum not far from the experimental

lattice constant of 5.649 Å, while the BB-CP corrected one is purely repulsive. This is expected

because of the very weak dispersion dominated intermolecular interactions in solid N2 and of the

well known failure of the B3LYP functional in properly describing van der Waals interactions.

The artificial minimum is evidently due to the BSSE as confirmed by the results with the larger

QVZP basis set which shows only a very small BSSE. The gCP correction removes most of the

BSSE and closely reproduces the BB-CP corrected curve. A closer inspection shows that the gCP

approach gives a better agreement with BB-CP at shorter lattice parameters, while it overestimates

the correction when the cell is expanded. For ammonia (Figure 1 (b)) similar results are found.

However, the gCP corrected lattice energies tend to be underestimated with respect to the BB-CP
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(b)

-12

-10

-8

-6

-4

-2

0

2

4.5 4.75 5 5.25 5.5 5.75

E
la
tt
[k
ca
l/
m
ol
]

c [Å]
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Figure 1: Potential energy curves for (a) N2 and (b) NH3 molecular crystals. The lattice parameter
is changed around the experimental value. The B3LYP/SVP curves that includes either the gCP
and the BB-CP corrections are compared with the B3LYP/QZVP one (with and without BB-CP
correction).

10



ones. Larger deviations are observed as the lattice constant enlarges. Notably, for both molecular

crystals, the B3LYP/QZVP results are still affected by some BSSE. This indicates that the utilized

QZVP basis still suffers from incompleteness, which leads to a significant BSSE.
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Figure 2: Potential energy curves for urea. The lattice parameter is changed around the experi-
mental value. The B3LYP/SVP curves that includes either the gCP and the BB-CP corrections are
compared with the B3LYP/QZVP one (with and without BB-CP correction).

Additionally, we investigate the urea crystal in the same fashion. In order to have a single

variable to scan, we adopt the following procedure. By starting from the experimental crystal

geometry (tetragonal) as measured at 12 K by neutron powder diffraction65 the lattice energy is

computed as a function of the lattice constant a while the lattice parameter c is varied by fixing

the c/a ratio at its experimental value (i.e. 0.8417). We change the lattice parameter in a range

between −5.4 % and +10.8 %. Expansion and contraction of the lattice parameters is carried out

in a rigid body approach. This means that during the cell deformation the internal geometry of

the urea molecule is kept fixed. As can be seen in Figure 2, the crystal is bound on all theoretical

levels. This is expected because of the strong hydrogen bonds, which can be properly described by

the (semi-)local hybrid functional B3LYP. However, the binding energy is strongly overestimated

by 42 % on the B3LYP/SVP level compared to the B3LYP/QZVP result. We correct the small basis

calculation with the standard BB-CP correction and with the new gCP scheme. Deviations of the

binding energy compared the the B3LYP/QZVP level diminishes to 2 % and 3 % on the B3LYP-
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BB-CP/SVP and B3LYP-gCP/SVP levels, respectively. As shown in Figure 2, the gCP curve is in

good agreement with the BB-CP and the large QZVP basis set. While the gCP corected energy is

very close to the BB-CP corrected one, the minimum is slighly shifted to larger values. This will

change the equilibrium in unconstrained geometry optimizations towards too large unit cells. We

present a more detailed analysis and work-around in the following section.

Overall, in the three cases, the gCP approach appears to reasonably reproduce the BB-CP

correction at least regarding the lattice energies. The shape of the potential energy profile is qual-

itatively corrected in the right direction but we note a slight inconsistency between crystal energy

and geometry. This is important for geometry optimization as will be discussed in the next section.

Note that dispersion corrections have not been applied yet which is mandatory when comparisons

to experimental data are made as discussed in the next section.

X23 Benchmark Set

A benchmark set for non-covalent interactions in solids consisting of 21 molecular crystals (dubbed

C21) was compiled by Johnson21 recently. Two data sets are considered: (1) thermodynamically

Figure 3: Geometries of the 23 small organic molecules from the X23 benchmark set for non-
covalent interactions in solids. H-atoms at carbons are omitted for clarity. Carbons are denoted
by dark gray balls, hydrogens are light gray, oxygens are red, and nitrogens are light blue (color
online).
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Table 1: Mean absolute deviation (MAD), mean deviation (MD), and standard deviation (SD)
of the sublimation energy for the X23 test set and for the subset X12/Hydrogen dominated
by hydrogen bonds. We calculate the energy with different combinations of functionals (PBE
and B3LYP), dispersion correction D3, and geometric counterpoise correction gCP and com-
pare with thermodynamically back-corrected experimental sublimation energies. On the
PBE/SVP level, we give values based on deviations to the corresponding large plane-wave
basis set values in the SI. All values are in kcal/mol.

X23 X12/Hydrogen
Method MAD MD SD MAD MD

PBE/CBS 11.7 −11.7 6.1 9.7 −9.7
PBE-D3/CBS 1.1 0.4 1.3 1.3 0.8

PBE-D3/CBS+E(3)a 1.2 −0.5 1.7 1.1 0.1
PBE/SVP 5.4 −3.8 7.0 2.6 −0.1

PBE-D3/SVP 8.5 8.5 3.5 10.5 10.5
PBE-D3-gCP/SVP 2.5 −1.1 3.0 2.8 −1.4

PBE-D3-gCP/SVP+E(3)a 2.9 −2.0 3.2 3.1 −2.2
B3LYP-D3/SVP 10.1 10.1 4.1 12.0 12.0

B3LYP-D3-gCP/SVP 2.0 0.6 2.2 1.7 −0.1
B3LYP-D3-gCP/SVP+E(3)a 1.7 −0.3 2.2 1.8 −0.8

a Three-body dispersion single-point energy E(3) on optimized structures.

back-corrected experimental sublimation energies and (2) structural data from low-temperature X-

ray diffraction. The thermal and zero-point effects were explicitly accounted for. Therefore, we can

directly compare the electronic energy differences with the back-corrected experimental values.

The error bar of experimental sublimation energies was estimated to be 1.2 kcal/mol.66 Recently,

the C21 set was extended and refined by Tkatchenko et. al.22 The X23 benchmark set (16 systems

are presented in Ref.22 and seven additional systems were obtained as a private communication

from the authors) includes two additional molecular crystals, namely hexamine and succinic acid.

The molecular geometries of the X23 set are shown in Figure 3. The details of the back-correction

procedure are summarized in Ref.22 The mean absolute deviation (MAD) between both reference

data sets is 0.55 kcal/mol. Because the X23 data seem to be more consistent we use it here as

reference. If we take the standard deviation (SD) between both thermodynamic corrections as

independent error source, we can add the squared errors to the total uncertainty of the reference
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values and obtain about 1.3 kcal/mol as statistical error. We calculate sublimation energies and

crystal geometries utilizing the GGA functional PBE and the hybrid GGA functional B3LYP with

a small polarized split-valence basis set SVP. The PBE/CBS values are computed with the VASP

program package. In the sublimation energy calculations the isolated molecules are approximated

by a large unit cell calculation with a minimum distance between molecule images of 16 Å. In
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energies are calculated on optimized structures with experimental lattice constants.

order to calculate the sublimation energy, we optimize the isolated molecule and the corresponding
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molecular crystal. The unit cells are kept fixed at the experimental values. We summarize the

deviations from reference data in Table Table 1. The individual values for all systems are given

in the SI. First, the exceptionally small MAD of 1.1 kcal/mol on the PBE-D3/CBS level should be

mentioned which is within the estimated experimental error. The importance of the D3 correction

is obvious from the huge error of plain PBE/CBS which very strongly underbinds most of the

crystals. The D3 uncorrected functional (PBE/SVP) yields a smaller error than the corresponding

CBS result which is due to the BSSE. Because of the very encouraging results of the D3 scheme

in the estimated CBS limit and the physical significance of dispersion in periodic systems, we will

only report and discuss D3 corrected results in the following.

Without BSSE correction, the MADs are 8.5kcal/mol and 10.1kcal/mol on the PBE-D3/SVP

and B3LYP-D3/SVP level, respectively. The mean deviation (MD) and the MAD are identical

meaning that the sublimation energy is artificially overestimated in all tested systems. Utilizing the

gCP potential for BSSE correction, the MAD drops drastically to 2.5kcal/mol and 2.0kcal/mol,

respectively, for the two methods. The BSSE corrected small basis set PBE-D3 results nicely

match those at the estimated CBS limit obtained with the BSSE-free plane wave basis. Figure 5

shows the correlation between the PBE-D3(-gCP)/SVP energies and the experimental reference

values. The remaining BSE is of the same order of magnitude than the error of the corresponding

CBS calculation. Additionally we investigate the effect of three-body dispersion for all levels of

theory. The correlation plot between the B3LYP-D3(-gCP)/SVP(+E(3)) energies and the reference

values is shown in Figure 4. The three-body term is repulsive for all systems and significantly

improves the results for the B3LYP functional (see Table Table 1). However, the PBE-D3 errors

are slightly larger with three-body term. The MAD is 1.7kcal/mol and 1.2kcal/mol, respectively,

on the B3LYP-D3-gCP/SVP+E(3) and PBE-D3/CBS+E(3) level. Tentatively this can be attributed

to the very different many-body behavior of the two functionals for overlapping densities as noted

already some years ago.67

We compute the deviations separately for hydrogen and non-hydrogen bonded systems to in-

vestigate the different energetic contributions. Results are also reported in Table Table 1. On

15



the PBE-D3/CBS level, the sublimation energies of hydrogen bonded systems (X12/Hydrogen

subset) are systematically too large. The systematic overbinding of PBE for such systems is

well-known from molecular complexes32,68 and not unexpectedly transfers to molecular crystals.

However, for the small SVP basis the sublimation energies of the X12/hydrogen set are system-

atically underestimated by 2.2 kcal/mol and by 0.8 kcal/mol on the PBE-D3-gCP/SVP+E(3) and

B3LYP-D3-gCP/SVP+E(3) level, respectively. We explain this underbinding by the lack of a sec-

ond set of polarization functions with smaller exponents. This prevents the system from a proper

polarization in an electric field, which is significant in hydrogen bonds. The effect is very dom-

inant in both oxalic acid polymorphs and in succinic acid and explains their larger error (visi-

ble in Figure 4 and Figure 5). For both functionals, α/β -oxalic acid have the largest deviation

from the reference values. For α-oxalic acid the sublimation energy is overestimated with PBE-

D3/CBS by 4.7 kcal/mol, while it is underestimated with PBE-D3-gCP/SVP+E(3) and B3LYP-D3-

gCP/SVP+E(3) by 8.4 kcal/mol and 2.7 kcal/mol, respectively. The errors in describing hydrogen

bonds with the PBE functional are significantly larger than with the hybrid functional B3LYP.
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Figure 6: Unit cell volumes for eight representative crystals of the X23 set on the B3LYP-D3/SVP
and B3LYP-D3-1

2gCP/SVP levels. We compare with experimental low-temperature X-ray data.

For eleven crystals of the X23 set, we perform a full geometry optimization and explore the

PBE functional. For eight systems, we additionally investigate the performance of the hybrid func-

tional B3LYP. A more detailed analysis of these structural data is presented in the SI. As most
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sensitive observable, we compare the unit cell volume with the experimental values in Table Ta-

ble 2. Due to thermal length expansions, the calculated zero Kelvin cell volumes should be smaller

than the measured ones. Thermal expansions of these systems are estimated to be approximately

3%, while also larger thermal expansion up to 8 % were reported.69 The estimated PBE-D3/CBS

Table 2: Mean absolute deviations (MAD) and mean deviation (MD) of the unit cell volumes.
We calculate the geometries with different combinations of functionals PBE and B3LYP with
SVP basis, dispersion correction D3, and geometric counterpoise correction gCP. Deviations
with respect to the CBS values are given in parentheses. Absolute values are in Å3.

Method MAD MD Rel. MD
PBE-D3/CBS 4.2 (0.0) −1.5 (0.0) −0.8%

PBE-D3 17.5 (15.9) −17.5 (−15.9) −6.1%
PBE-D3-1

2gCP 7.5 (5.8) −3.3 (4.9) 1.0%
PBE-D3-gCP 23.7 (25.3) 23.7 (25.3) 7.9%

B3LYP-D3 22.1 −22.1 −9.1%
B3LYP-D3-1

2gCP 6.6 −6.6 −2.9%

results have a small MAD of 4 Å3. As expected, the unit cells are systematically too small by

0.8%. With the SVP basis set, the BSSE artificially shrinks the crystal by on average 6% on the

PBE-D3/SVP level. With the full counterpoise correction we obtain unit cell volumes by 8% too

large. The full BB-CP is known to overestimate the BSSE in large and dense systems.70 While

this seems not to be the case for the sublimation energies, we notice a significant effect on the

crystal geometry which, however, at present is not entirely clear. Empirically it has been found

before70–75 that half of the counterpoise correction is a reasonably work around. Indeed, when the

gCP correction is reduced to 50%, a good agreement with the experimental data is obtained. The

MAD drops from 17Å3 to 7Å3 on the PBE-D3/SVP and PBE-D3-1
2gCP/SVP levels, respectively.

The MADs with respect to the corresponding PBE-D3/CBS values are smaller. This indicates that

some of the remaining errors do not arise because of BSE, but rather due to shortcomings of the

PBE functional as noted in the previous paragraph. The unit cell volume of the systems dominated

by hydrogen bonds has an MD of 5Å3 with respect to the CBS estimate, while the non-hydrogen

bonded systems have a significantly smaller MD of 2Å3. Again, in the description of hydrogen
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bonds, B3LYP performs better than PBE. In Figure 6, we show the correlation with the experi-

mental unit cell volumes. Utilizing BSSE uncorrected B3LYP-D3/SVP, the unit cell volumes are

underestimated by 9% while with 50% of the gCP correction very reasonable geometries, too

small by only 3%, are obtained.

Graphite: Interlayer Distance and Energy

In order to demonstrate the applicability of the gCP correction for denser systems, we investi-

gate the interactions between graphite layers. The experimental interlayer equilibrium distance

is 3.34± 0.03 Å.76 The experimental exfoliation energies have a large spread and range from

−35meV to −52meV per atom.77–80 We studied a similar system previously and demonstrated

the applicability of the semi-empirical dispersion correction DFT-D2.81,82 The earlier study was

done by an extrapolation of different finite size graphene layers. Significant errors were noted

utilizing basis sets below the quadruple-ζ level.
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Figure 7: Exfoliation energy Eex of two graphite layers per atom as a function of the stacking
distance c. We explore the PBE functional with SV basis and huge PAW (dubbed as CBS) basis
sets. The vertical line denotes the experimental value. The cell parameters a and b are fixed to the
experimental values.

Here, we describe the system periodically and investigate the effect of BSSE. For our calcu-

lations, we use the PBE functional with unpolarized split valence basis set SV. We compute the
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interlayer binding energy of graphite for different interlayer distances c (PES) shown in Figure 7.

The plain PBE functional shows no significant minimum in the potential energy curve and no net

bonding is observed. Adding the D3 correction, the minimum distance is underestimated by 0.2Å

due to BSSE. At the gCP corrected level a perfect agreement between theory and experiment is

found. Calculations with huge, BSSE free plane-wave basis sets confirm the identified PBE-D3

minimum. Especially in the minimum region, the agreement between the PBE-D3-gCP/SVP and

PBE-D3/CBS results is excellent. We calculate an exfoliation energy of −43.0 meV/atom on the

PBE-D3-gCP/SVP level. This is reasonable in comparison to the experimental estimates, and it

differs by only 3% from three PBE-D3/CBS value.

We investigate the same system on the PBE/pob-TZVP level. The additional basis functions

increase the BSSE significantly resulting in an artificial minimum at an interlayer distance of 3.2Å.

This seemingly good result arises from an accidental error cancellation. The BSSE gives an artifi-

cial attraction which simulates, near the minimum, the neglected dispersion attraction. However,

the exponentially decaying BSSE can not accurately mimic the dispersion interaction, which de-

cays as r−6 with the interatomic distance for each atom pair. This is demonstrated in Figure 8,

where we analyze the long-range behavior of the interlayer interaction on the PBE-D3-gCP/SV

and PBE(-D3-gCP)/pob-TZVP levels. We fit a power law Eex ∝ c−n in a least-square sense for

distances c in the interval [10,20]Å.

The combination of PBE/SV, D3, and gCP shows the correct asymptotic behavior of c−4 for

insulating infinite layers. For the special case of graphite (k-point conductor) the true dependence

is c−3 ln(c/c0) .83 We find a critical exponent of 4.03 which nicely agrees with the value of 4.2

as predicted by means of quantum Monte Carlo calculations.84 On the other hand, the raw PBE

functional with a triple-ζ basis exhibits a more exponential behavior (the exponent for the power-

law fit is about 18) as expected.
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Figure 8: Exfoliation energy Eex of two graphite layers per atom as a function of the stacking
distance c in the long-range limit. The continuous lines correspond to a power law fit with critical
exponents of 18 and 4 for the PBE/pob-TZVP and PBE-D3-gCP/SV levels, respectively. The cell
parameters a and b are fixed to the experimental values.

The gCP correction for the pob-TZVP Basis

We mentioned the problem of near linear dependencies that arises if basis functions with small

exponents are included in periodic calculations of dense systems. Even with the Ahlrichs SVP basis

set, we encounter some SCF convergence problems. Recently, a new Gaussian basis set, denoted

as pob-TZVP, was developed26 which provided stable and robust SCF convergence for a wide

range of solids. However, we demonstrated above, that its BSSE can be huge. The main target of

these basis sets are bulk systems or surfaces where both, dispersion interactions and BSSE artifacts

are important. Therefore, we determined the gCP parameters for the pob-TZVP basis in the same

way as described in the original Ref18 using the TURBOMOLE program suite.85 We calculate the

emiss parameters for all elements H-Br (excluding rare gases) between the restricted open shell HF

energy EROHF for the target basis and a large quadruple-ζ basis def2-QZVPD according to

emiss = E target basis
ROHF −E large basis

ROHF |F=0.06au , (9)

where F = 0.06 au denotes an applied weak electric field in order to populate higher angular mo-

mentum functions. These values can be used to judge the completeness of an atomic basis set
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as discussed in the orginal gCP work. In this regard, the pob-TZVP and the SVP basis sets are

rather similar, with mean emiss parameters of 0.24 and 0.22 Hartree, respectively. We fit the four

parameters σ , α , β , and η in equation Eq. (8) to computed BB-CP data at the B3LYP/pob-TZVP

level for the S66x844 benchmark set. The optimized parameters are

σ = 0.1300 α = 1.3743

β = 0.4792 η = 1.3962 . (10)

The root mean square deviation (RMSD) of the fit for the pob-TZVP and SVP basis sets are 0.002

and 0.001 Hartree, respectively, i.e., the Ahlrichs basis set SVP seems to be better balanced.

For the X23 benchmark set, presented previously, the MAD of the sublimation energies is

significantly reduced from 10.7 kcal/mol on the PBE-D3/pob-TZVP level to 4.7 kcal/mol on the

PBE-D3-gCP/pob-TZVP level. The asymptotic behavior of the interlayer interation in graphite is

also improved. The scaling exponent of 4.72 on the PBE-D3-gCP/pob-TZVP level represents a

huge improvement compared to the unphysical value of 17.83 for plain PBE/pob-TZVP. Although

the dispersion and BSSE corrected pob-TZVP basis set works reasonably well, we recommend to

use the Ahlrichs type basis set for calculations on molecular crystals.

Figure 9: Model system for the adsorption of H2O on the Ni (110) surface.

One of the most important applications of bulk-optimized basis sets in combination with cor-

rection schemes for dispersion and BSSE is the description of adsorption of molecules on sur-
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Figure 10: Potential energy surface of the water adsorption on a Ni(110) surface with varying
Ni−OH2 distance d. We utilize the PBE functional with pob-TZVP basis set and explore the
effects of D3 and gCP correction, respectively.

faces. Neglecting even one of these effects can lead to significant errors. We therefore demonstrate

the application of our periodic BSSE correction scheme for the adsorption of water on Ni (110).

Water adsorbs oxygen-down on the Ni (110) surface at a top position. The Ni−OH2 distance

was determined by surface extended X-ray absorption fine structure (SEXAFS) spectroscopy as

2.06±0.03 Å.86,87

The Ni bulk was optimized employing the PBE functional and the pob-TZVP basis set. With

3.451 Å for the unmodified pob basis set, the deviation from the experimental lattice constant88

of 3.524 Å is only 2 %. A 2× 2 supercell slab model (a = 4.881 Å, b = 6.902 Å) with 5 atomic

layers was optimized, allowing full relaxation of all atoms. The structure of the water molecule

was optimized in the gas phase also employing the PBE functional and the pob-TZVP basis set

and set on top of a center Ni atom (see Figure 10).

We varied the Ni−OH2 bond distance from 1.7 to 2.3 Å, fixing the orientation of the water

molecule. Without any correction, PBE/pob-TZVP seems to give the correct value of 2.05 Å.

When applying only the D3 correction, a slight overbinding (2.00 Å) is found, while applying only

the gCP correction overestimates the bond distance (2.15 Å). Correcting for dispersion as well as

for the BSSE, the Ni−OH2 bond distance (2.05 Å) is in perfect agreement with the experiment.
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Conclusions
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Figure 11: Deviations between experimental sublimation energies of the X23 set and theoretical
calculations utilizing the PBE and B3LYP functional and small SVP basis set. The CBS values are
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We presented and evaluated the semi-empirical geometrical counterpoise correction gCP for

usage in periodic DFT calculations. The gCP correction is added to the total (ideally dispersion

corrected) DFT energy and approximates the Boys-Bernardi counterpoise energy in a fast and dif-

ferentiable way for various atom-centered Gaussian basis sets. A benchmark set for non-covalent

interactions in solids (X23) is exploited to evaluate the performance of various DFT methods also

with small Gaussian AO basis sets. The statistical data for the deviations of computed sublima-

tion energies from reference data are converted to normal error distributions shown in Figure 11.

The plane-wave basis set PBE-D3 results are of high quality with an MAD below the estimated

experimental uncertainty. From the small basis set calculations, PBE-D3-gCP/SVP and B3LYP-

D3-gCP/SVP can also be recommended. The error spread at the PBE/SVP and PBE-D3/SVP

levels is significant due to an incomplete account of dispersion and BSSE. This is also true for the

B3LYP/SVP calculations if one of the corrections is neglected.

For the computation of the crystal structures at the SVP level, the BSSE seems to be overesti-
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mated by the counterpoise corrections. We suggest the following general strategy when small basis

sets are employed. First, a geometry optimization using the atom pairwise dispersion correction

D3, and 50% of the gCP correction (dubbed DFT-D3-1
2gCP) should be conducted. Subsequently, a

single-point energy with two- and three-body dispersion energy and full counterpoise correction on

the optimized structure (dubbed DFT-D3-gCP+E(3)) should be computed. If hydrogen bonds are

present, the B3LYP functional is preferred over PBE. The gCP can be also applied to denser sys-

tems as demonstrated by the good results for the graphite stacking on the PBE-D3-gCP/SV level.

The interlayer potential agrees remarkably well with BSSE-free, plane-wave results on the PBE-

D3/CBS level. The agreement with the experimental interlayer equilibrium interaction energy and

distance is satisfactory.

We fitted the gCP parameters for a recently developed solid-state Gaussian basis set (pob-

TZVP). For the adsorption of water on a nickel (110) surface as an example, the PBE-D3-gcp/pob-

TZVP level was tested. For the Ni-O distance a very good agreement with the experimental value

was found.

The gCP method is implemented in a freely available FORTRAN program obtainable from the

author’s website and will be available in the next release of the CRYSTAL code. Similar to what

has been pointed out recently for molecular thermochemistry,19 it is recommend as a default for

dispersion corrected, small basis set DFT or HF calculations also for solids.
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