AperTO - Archivio Istituzionale Open Access dell'Università di Torino

The fundamental group of the open symmetric product of a hyperelliptic curve

This is the author's manuscript
Original Citation:

Availability:
This version is available http://hdl.handle.net/2318/148097
since

Published version:
DOI:10.1007/s10711-014-9998-7
Terms of use:

Open Access

Anyone can freely access the full text of works made available as "Open Access". Works made available under a Creative Commons license can be used according to the terms and conditions of said license. Use of all other works requires consent of the right holder (author or publisher) if not exempted from copyright protection by the applicable law.

Università di Torino

The final publication is available at Springer via
http://dx.doi.org/(inserire 10.1007/s10711-014-9998-7)

THE FUNDAMENTAL GROUP OF THE OPEN SYMMETRIC PRODUCT OF A HYPERELLIPTIC CURVE

ALBERTO COLLINO

Abstract

On the second symmetric product $C^{(2)}$ of a hyperelliptic curve C of genus g let L be the line given by the divisors on the standard linear series g_{2}^{1} and for a point $b \in C$ let C_{b} be the curve $\{(x+b): x \in C\}$. It is proved that $\pi_{1}\left(C^{(2)} \backslash\left(L \cup C_{b}\right)\right)$ is the integer-valued Heisenberg group, which is the central extension of $\mathbb{Z}^{2 g}$ by \mathbb{Z} determined by the symplectic form on $H_{1}(C, \mathbb{Z})$.

1. Introduction

If C is a smooth curve the second symmetric product $C^{(2)}$ is a non singular surface, which parametrizes the effective divisors of degree 2 on C. The choice of a point $b \in C$ determines a copy of C inside $C^{(2)}$, this is $C_{b}:=\{(x+b): x \in C\}$. When C is projective and hyperelliptic there is one line L, the locus of divisors in the linear series g_{2}^{1}.

According to Nori [9] the complement of the theta-divisor Θ in a general principally polarized abelian variety of dimension $g \geq 2$ has the integer-valued Heisenberg group $H(g)$ for its fundamental group. Recall that $H(g)$ is generated by $2 g+1$ letters $\left\{a_{i}, b_{i}, \delta\right\}$, the commutators among generators are all trivial but for $\left[a_{i}, b_{i}\right]$, they are all identified with δ. This gives the central extension

$$
0 \rightarrow \mathbb{Z}_{\delta} \rightarrow H(g) \rightarrow \mathbb{Z}^{2 g} \rightarrow 0
$$

When $g=2$ the p.p. abelian variety is the Jacobian $J(C)$ of a curve C of genus 2 and then C is hyperelliptic. In this case the Abel-Jacobi map $C^{(2)} \rightarrow J(C)$ is the blow down of L and the theta-divisor is the image of C_{b}, up to translation. Restriction gives a homeomorphism $C^{(2)} \backslash(L \cup$ $\left.C_{b}\right) \rightarrow J(C) \backslash \Theta$, therefore $\pi_{1}\left(C^{(2)} \backslash\left(L \cup C_{b}\right)\right)$ is $H(2)$. We extend this version of Nori's result to higher genus:
Theorem 1.1. Let C be a hyperelliptic curve of genus $g \geq 2$ then

$$
\pi_{1}\left(C^{(2)} \backslash\left(L \cup C_{b}\right)\right) \simeq H(g) .
$$

The generator δ is the class σ_{L} of a meridian loop around L, moreover $\delta^{(g-1)}=\sigma_{C_{b}}$, the class of a meridian around C_{b}.

2. Proof of Theorem 1.1

2.1. The semistable degeneration. Let $\phi: \mathscr{F} \rightarrow \Delta$ be a morphism from a smooth scheme to the disk. This is called a semistable degeneration if the fibration ϕ has non singular fibres over over the punctured disk, while the central fibre $\phi^{-1}(0)$ is a reduced scheme with simple normal crossing singularities. We deal with the situation in which a nonsingular curve C of genus g
degenerates to a reduced nodal curve with two simple crossing components G and E meeting at one point p, E being an elliptic curve and G a non singular curve of genus $(g-1)$.

The corresponding semistable degeneration of $C^{(2)}$ has as central fibre a reducible surface with three components, cf. [11]. One component is the blow up B of the product $G \times E$ at the point $\left(p_{G}, p_{E}\right)$, the other components are $G^{(2)}$ and $E^{(2)}$. It is $G^{(2)} \cap E^{(2)}=\emptyset$. The surface B intersects $G^{(2)}$ along a copy of G. On B this is the proper transform of $G \times\left\{p_{E}\right\}$, while it is $G_{p_{G}}$ on $G^{(2)}$. In the same way B intersects $E^{(2)}$ along a copy of E, which is on B the proper transform of $\left\{p_{G}\right\} \times E$ and which is $E_{p_{E}}$ on $E^{(2)}$. We summarize the situation by drawing a schematic diagram.

Figure 1. L_{B} is the exceptional divisor. The lines L, L_{G} and L_{E} appear only for the hyperelliptic degeneration.

As a topological space the smooth fibre $C^{(2)}$ is reconstructed from the central fibre of the degeneration using a surgery procedure, see [4], [10]. Remove on each component an open normal disc bundle around the double curves of intersection, then $C^{(2)}$ is obtained by gluing along the corresponding circle bundles.

We now make the assumption that the degeneration takes place inside the hyperelliptic locus, then the point p_{G} is a Weierstrass point on G, namely one of the ramification points of the hyperelliptic map $G \rightarrow \mathbb{P}^{1}$, cf. [7]. This fact is discussed also in [2], an explicit computation is given there in section 4.

Up to a finite base change over the disk, we can choose the semistable family of curves so that the section given by the base point $b_{t} \in C_{t}$ intersects the central curve $C_{0}=G+E$ is a point b_{o} in $E \backslash\left\{p_{E}\right\}$. Moreover, although this is not needed, we may take b_{t} to be a Weierstrass point, so on E the divisor $2 b_{o}$ is linearly equivalent to $2 p_{E}$. Looking at the corresponding degeneration of the symmetric products we find that the curve C_{b} degenerates to the reducible curve $G \times\left\{b_{o}\right\}+E_{b_{o}}$ inside the central fibre of the degeneration. The two components meet in one point, this is $\left(p_{G}, b_{o}\right)$ on B and it is $p_{E}+b_{o}$ on $E^{(2)}$. The degeneration of the line L is a reducible connected
curve with three components. On B it is the exceptional divisor L_{B}, while the component L_{E} on $E^{(2)}$ is the linear system on E to which the divisor $2 p_{E}$ belongs. Similarly the component L_{G} on $G^{(2)}$ is the linear system on G to which the divisor $2 p_{G}$ belongs.
2.2. Open second symmetric products. Given a possibly reducible divisor $D=\sum D_{i}$ on a smooth variety V, we assign to each component of D an element $\sigma_{D_{i}}$ in $\pi_{1}(V \backslash D)$ represented by some choice of a simple loop around D_{i}. This is well defined up to conjugacy. On the other hand if $\Gamma \rightarrow X$ is an oriented circle bundle we write σ_{Γ} to represent the class of the circle in $\pi_{1}(\Gamma)$.

The choice of the base point p_{E} determines the Abel-Jacobi map $\zeta: E^{(2)} \rightarrow E$, given by the rule $\zeta(x+y)=z$, where $\left(z+p_{E}\right) \sim(x+y)$. It is a \mathbb{P}^{1}-fibration and the curves E_{b} are sections. Let L_{1} be the fibre containing $2 p_{E}$. The open surface $E^{(2) o}:=E^{(2)} \backslash\left(L_{1} \cup E_{p}\right)$ is topologically a \mathbb{C}-fibration over $E \backslash\left\{p_{E}\right\}$, then its fundamental group is F_{2}, the free group on two letters. Consider $E^{(2) o o}:=E^{(2)} \backslash\left(L_{1} \cup E_{b} \cup E_{p}\right)$.

Lemma 2.3.

$$
\pi_{1}\left(E^{(2) o o}\right) \simeq \mathbb{Z} \sigma_{E_{p}} \times F_{2}
$$

Proof. The sections E_{p} and E_{b} intersect each of the fibers of ζ in two different points, but for the fiber L_{2} through $(p+b)$, since $E_{p} \cap E_{b}=(p+b)$. By removing L_{2} we have then that $E^{(2) o o} \backslash L_{2}$ is topologically an oriented \mathbb{C}^{*}-bundle over the twice punctured elliptic curve. The long exact sequence of homotopy yields $\pi_{1}\left(E^{(2) o o} \backslash L_{2}\right) \simeq \mathbb{Z} \sigma_{E_{p}} \times F_{3}$, because our bundle is oriented. We note for later use that $\sigma_{E_{p}}=\sigma_{E_{b}}^{-1}$. Lemma 4.18 from [8] and corollary 2.5 [9] give that a meridian $\sigma_{L_{2}}$ normally generates the kernel $\pi_{1}\left(E^{(2) o o} \backslash L_{2}\right) \rightarrow \pi_{1}\left(E^{(2) o o}\right)$. Since $\sigma_{L_{2}}$ is part of a basis of F_{3} then the result follows immediately.
2.4. Surgeries. Let $X:=G \backslash \Delta_{p_{G}}$ be the complement of an open disc around p_{G} and let $Y:=$ $E \backslash\left(\Delta_{p_{E}} \cup \Delta_{b_{o}}\right)$, here we require that the two discs are disjoint. We choose the generators for $\pi_{1}(Y)$ to be $\left\{\alpha, \beta, \sigma_{b_{o}}\right\}$ so that $\sigma_{p_{E}} \sigma_{b_{o}}=[\alpha, \beta]$ and $\{\alpha, \beta\}$ freely generate $\pi_{1}\left(E \backslash \Delta_{p_{E}}\right)$. The generators for $\pi_{1}(X)$ are $\left\{\alpha_{i}, \beta_{i}: i=1, \ldots,(g-1)\right\}$ with the condition $\sigma_{p_{G}}=\prod_{i=1}^{g-1}\left[\alpha_{i}, \beta_{i}\right]$.

We are interested in the topology of the open surface $C^{(2) o}:=C^{(2)} \backslash\left(L \cup C_{b}\right)$. Consider each component of the normal crossing curve $L \cup C_{b}$, take an open tubular neighbourhood from each component and by plumbing them together construct a regular neighbourhood (r.n.) of $L \cup C_{b}$ inside $C^{(2)}$. By removing this last neighbourhood from $C^{(2)}$ we obtain $C^{(2) \partial}$, this is a surface with boundary which is a deformation retract of $C^{(2) o}$.

The construction of $C^{(2)}$ by surgery gives

$$
C^{(2) \partial}=G^{(2) \partial} \cup(X \times Y) \cup E^{(2) \partial}
$$

where the three surfaces are
(1) $E^{(2) \partial}$ the complement of a r.n. around $L_{E} \cup E_{b_{o}} \cup E_{p_{E}}$ on $E^{(2)}$, a deformation retract of $E^{(2) o o}$ 。
(2) $X \times Y$, this is the complement B^{∂} of a r.n. for $L_{B} \cup\left(G \times\left\{b_{o}, p_{E}\right\}\right) \cup\left(\left\{p_{G}\right\} \times E\right)$ in B.
(3) $G^{(2) \partial}$ the complement of a r.n. for $L_{G} \cup G_{p_{G}}$ on $G^{(2)}$.

We define $M:=(X \times Y) \cap G^{(2) \partial}$, recall that the gluing of $X \times Y$ with $G^{(2) \partial}$ is done by identification of the circle bundle around $X \times\left\{p_{E}\right\}$ with the normal circle bundle around $G_{p_{G}} \cap G^{(2) \partial}$
inside $G^{(2)}$, with the proviso that the orientation of corresponding circles are reversed. Note $\pi_{1}(M)=F_{2 g-2} \times \mathbb{Z} \sigma_{M}$, where σ_{M} corresponds to the class of the circle around p_{E} on Y.

In the same way the gluing of $(X \times Y) \cup G^{(2) \partial}$ with $E^{(2) \partial}$ is done by identification of the circle bundle around $\left\{p_{G}\right\} \times Y$ with the circle bundle around $E_{p_{E}} \cap E^{(2) \partial}$. We write $N:=((X \times Y) \cup$ $\left.G^{(2) \partial} \cap E^{(2) \partial}\right)$, so $\pi_{1}(N)=\mathbb{Z} \sigma_{N} \times F_{3}$, where σ_{N} represents the class of the circle around p_{G} on X.
2.5. The computation. The proof of thm1 is by induction on the genus g of C, we have therefore

- if $g(G)=1$ then $\pi_{1}\left(G^{(2) d}\right) \simeq F_{2}, \sigma_{L_{G}}=\left[a_{1}, b_{1}\right]$ and $\sigma_{G_{p}}=1$
- if $g(G) \geq 2$ then $\pi_{1}\left(G^{(2) \partial}\right) \simeq H(g-1), \sigma_{L_{G}}=\left[a_{i}, b_{i}\right]=\delta$ and $\sigma_{G_{p}}=\delta^{(g(G)-1)}$

The morphism $\pi_{1}(M) \rightarrow \pi_{1}\left(G^{(2) \partial}\right)$ sends σ_{M} to $\sigma_{G_{p}}^{-1}$ and it maps α_{i} and β_{j} to generators which we can take to be a_{i} and b_{j} without restriction. On the other hand $\pi_{1}(M) \rightarrow \pi_{1}(X \times Y)$ is the identity on $F_{2 g-2}$ and it maps $\sigma_{M} \rightarrow \sigma_{p_{E}}=[\alpha, \beta] \sigma_{b_{o}}^{-1}$. By van Kampen theorem a presentation for $\pi_{1}\left((X \times Y) \cup G^{(2) \partial}\right)$ is obtained from the one for $\pi_{1}\left(G^{(2) \partial}\right) \times F_{3}$ by the addition of the further relation $\delta^{(g(G)-1)}=\sigma_{b_{o}}[\alpha, \beta]^{-1}$.

Similarly $\pi_{1}(N) \rightarrow \pi_{1}\left((X \times Y) \cup G^{(2) \partial}\right)$ sends σ_{N} to $\sigma_{p_{G}}=\prod_{i=1}^{g-1}\left[a_{i}, b_{i}\right]$ and it is the identity on F_{3}. The epimorphism $\pi_{1}(N) \rightarrow \pi_{1}\left(E^{(2) \partial}\right)$ is given by $\sigma_{N} \rightarrow \sigma_{E_{p}}^{-1}$, $\sigma_{b_{o}} \rightarrow \sigma_{E_{b}}=\sigma_{E_{p}}^{-1}$, while $\alpha \rightarrow a$ and $\beta \rightarrow b$. It follows that $\pi_{1}\left(C^{(2) \partial}\right)$ is the quotient of $\pi_{1}\left(G^{(2) \partial}\right) \times F_{2}$ modulo the relations $\delta^{(g(G)-1)}=\sigma_{b_{o}}[a, b]^{-1}$ and $\prod_{i=1}^{g-1}\left[a_{i}, b_{i}\right]=\sigma_{b_{o}}$, this implies
Lemma 2.6. (1) $[a, b]=\left[a_{i}, b_{i}\right]$ is a central element δ in $\pi_{1}\left(C^{(2) \partial}\right)$.
(2) $\pi_{1}\left(C^{(2) д}\right) \simeq H(g)$.
(3) $\delta=\sigma_{L_{C}}$.

Proof. Only the last item requires a proof. We know that the line L in $C^{(2)}$ is obtained by gluing the line L_{G} with the exceptional divisor L_{B} on B and then with L_{E}, therefore $\sigma_{L_{C}}=\sigma_{L_{G}}=$ δ.

Lemma 2.7. $\sigma_{C_{b}}=\delta^{g-1}$.
Proof. By construction $\sigma_{C_{b}}=\sigma_{G \times\left\{b_{0}\right\}}=\sigma_{b_{o}}=\prod_{i=1}^{g-1}\left[a_{i}, b_{i}\right]=\delta^{g-1}$.
The proof of Theorem 1.1 is completed.
Corollary 2.8. $\pi_{1}\left(C^{(2)} \backslash L\right)$ is a central extension of $\mathbb{Z}^{2 g}$.
This fact was used without proof in my paper [5] where it was computed that the fundamental group of the Fano surface F is the Heisenberg like central extension of $H_{1}(F, \mathbb{Z})$, but with kernel $\mathbb{Z} / 2$. The homotopy properties of F have been revisited recently, see [3] and [6].

Remark 2.9. The referee knows of a different way to prove the result. Let $w: C \rightarrow \mathbb{P}^{1}$ be the hyperelliptic projection, let $b_{1}, \ldots, b_{2 g+2} \in C$ be the branching points. Then w induces $h: C^{(2)} \rightarrow$ $\left(\mathbb{P}^{1}\right)^{(2)} \equiv \mathbb{P}^{2}$. It is a non-Galois 4-fold covering ramified at $D:=Q \cup L_{1} \cup \ldots L_{2 g+2}$, where Q is a smooth conic and L_{j} are tangent lines to Q. We have $h^{-1}\left(L_{j}\right)=C_{b_{j}}$ and $h^{-1}(Q)=L \cup \Delta$, where $\Delta:=\{2 x \mid x \in C\}$. Using Zariski-van Kampen theorem $\pi_{1}\left(\mathbb{P}^{2} \backslash D\right)$ is computed, cf. [1]. The
fundamental group $\pi_{1}\left(C^{2} \backslash h^{-1}(D)\right)$ is determined next using the Reidemeister-Schreier method. Finally the referee uses Lemma 4.18 from [8], to the effect that the desired fundamental group can be computed by tracking and killing the meridians of $\Delta, C_{1} \ldots C_{2 g+1}$. He finds that the quotient is $H(g)$ and that σ_{C} is the class which was written above.

Acknowledgements. The author is grateful to the referee for his kind help.

References

[1] M. Amram, M. Teicher, and M.A. Uludag Fundamental groups of some quadric-line arrangements., Topology Appl. 130, (2003) 159-173.
[2] D. Avritzer and H. Lange, The moduli spaces of hyperelliptic curves and binary forms, Math. Z. 242 (2002), no. 4, 615-632.
[3] A. Beauville, On the second lower quotient of the fundamental group, Preprint arXiv:1304.5588, due to appear in Algebraic and Complex Geometry In Honour of Klaus Hulek's 60th Birthday Frühbis-Krüger, Anne, Kloosterman, Remke Nanne, Schütt, Matthias (Eds.) Series: Springer Proceedings in Mathematics \& Statistics, Vol. 71. 2014.
[4] C.H. Clemens Degeneration of Kaehler manifolds. Duke Math. J. 44 (1977), 215-290.
[5] A. Collino, The fundamental group of the Fano surface. I, II, Algebraic threefolds (Varenna, 1981), Lecture Notes in Math., vol. 947, Springer, Berlin, 1982, 209-218, 219-220.
[6] A. Collino, Remarks On the Topology of the Fano surface. Preprint arXiv:1211.2621.
[7] M. Cornalba and J. Harris, Divisor classes associated to families of stable varieties, with applications to the moduli space of curves, Ann. Scient. Éc. Norm. Sup., 4^{e} série, t. 21 (1988), 455-475.
[8] T. Fujita, On the topology of non-complete algebraic surfaces, J. Fac. Sci. Univ Tokyo, 29 (1982) 503-566.
[9] M.V. Nori, Zariski's conjecture and related problems, Ann. Scient. Éc. Norm. Sup., 4^{e} série, t.16(1983), 305-344.
[10] Ulf Persson, On degenerations of algebraic surfaces. Mem. Amer. Math. Soc. 11 (1977), no. 189.
[11] J. WANG, Geometry of general curves via degenerations and deformations, Ph.D. thesis. Dec. 2010, The Ohio State University.

```
E-mail address: alberto.collino@unito.it
```

