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Abstract

The current paper deals with the mathematical models of predator-prey system
where a transmissible disease spreads among the predator species only. Four math-
ematical models are proposed and analysed with several popular predator functional
responses in order to show the influence of functional response on eco-epidemic models.
The existence, boundedness, uniqueness of solutions of all the models are established.
Mathematical analysis including stability and bifurcation are observed. Comparison
among the results of these models allows the general conclusion that relevant behaviour
of the eco-epidemic predator-prey system, including switching of stability, extinction,
persistence and oscillations for any species depends on four important parameters viz.
the rate of infection, predator interspecies competition and the attack rate on suscep-
tible predator. The paper ends with a discussion of the biological implications of the
analytical and numerical results.

Keywords: Predator-Prey models; transmissible disease in predator; intra-specific com-
petition among the predator; limit cycles; biological implications.

1 Introduction

In eco-epidemiology, (two) interacting populations are investigated, which also host a trans-
missible disease. The latter can affect only one population, the case most often treated in
the literature, [29, 30, 32|, or it can spread to the other one(s). In fact, only a few fairly
recent papers have dealt with this specific issue, [19, 33|. The interactions can be either of
competition type, [31], or else symbiotic, [16, 34|, but mainly they are assumed of predator-
prey nature, see the references in [21].



An important issue in models of this kind is the choice of the functional response. The
latter is defined as the amount of prey consumed by one predator per unit of time. The
functional response depends upon a number of factors. Some of them are represented by
prey features, such as their ability to escape an attack, or the predators habits, e.g. the
so-called prey handling time, the predators’ search efficiency; finally others are represented
by the natural environment, which establishes the structure of the prey habitat and the
encounter rate among individuals of the different populations. These factors influence the
predator’s functional response, see [1, 2, 24|, and therefore change the dynamical behaviour
of the demographic model. Different responses have at times been considered in the context
of eco-epidemiology, see for instance [15].

In this paper we consider a predator-prey demographic system, in which the predators are
disease-affected so that the infected individuals are somewhat impaired in their hunting
activities. Further, we assume that the epidemics cannot be transmitted to the prey. The
main aim of this investigation is to uncover the effects of different functional responses in
eco-epidemic models.

The most well-known predator-prey response is linear, called mass action or also Holling
type L. It has the form max, where m is the predation rate and = denotes the prey population.
It is an adequate model if there is no handling time of the captured prey. This assumption
is often regarded to be too crude, so as to adequately model the actual nature of the
interactions, see [20]. In fact, predators often experience satiation so that their consumption
rate declines with abundant available food, a property that is clearly not shown by a linear
function. Despite this drawback, the mass action functional response is mathematically
convenient, especially when the populations at hand are not too large. To better mimic
the shape of the consumption rate, the Holling type II functional response mz(a + z)~! is
used, [17]. It is a hyperbola with a horizontal asymptote, whose value reflects the maximum
predation rate. Another variation that can be used is instead the Monod-Haldane or Holling
type IV response function, mathematically represented by mz(a® + 2?)~, [27]. Tt is a
humped curve that raises up from the origin and then declines at high prey densities, this
decline being attributed due to possible prey group defence. In fact a very well known
epidemiological paper is based on such an assumption, but rather used for the disease
transmission rate, [11], and more recent ones exploit the same feature, |9, 23]. Note that
while Holling type II models predators’ satiation, Holling type IV better describes situations
in which the hunting drops when the prey density is sufficiently high, due for instance to
prey toxicity.

The reasons for having different functional responses are various. They range from the
fact that for instance a particular predator hunts prey having different escape abilities.
If a particular prey has several natural predators, their different hunting techniques will
induce diverse functional responses. The structure of the prey habitat may also alter their
functional response. In addition also the prey behaviour is responsible for such changes.
For instance the musk ox can more easily defend itself from wolves grouping in herds rather
than staying alone. For other similar examples, see [12, 13].

The following more general Holling type IV functional response is sometimes used, see

3, 14, 36],
Cx

x—;—l—x—i—d.

(1.1)



Here the non-negative parameters ¢ and d can be thought to be the maximum per capita
consumption rate and the half-saturation constant in the absence of inhibitory effects.
The parameter b measures the predators immunity from the prey, since when it drops the
predator’s hunting efficiency decreases. Note indeed that for large b the right hand side of
(1.1) becomes a Holling type II functional response.

In particular in this paper we examine four eco-epidemic models differing in the type of
response function, but to keep the length manageable one of them is seen only as a particular
case. All of them contain the transmissible disease only among the predators. It affects the
infected individuals by impairing somewhat their hunting efficiency.

Our aim is to make explicit and compare the dynamics of the proposed models and to
identify the crucial system parameters that ensure specific population behaviours.

2 Basic assumptions and mathematical model formula-
tions

Studies of predator-prey models have been performed in theoretical ecology since the early
days of this discipline after the pioneering works of Lotka and Volterra. A number of
predator-prey models have been proposed and studied during the last couple of decades
(see [7], [8] and [5] and the references therein). A general predator-prey model (cf. [7] and
[8]) in its classical form is represented by

dx dy

o = ol(a) — P (), Y — Py - i 2.)

where x(t) and y(t) represent the densities of the prey and predator species, respectively,
at time ¢t. F(z) denotes the prey per capita growth rate in the absence of predators and
q is the constant predator mortality. We call F(x) the functional response and the term
eF(z)y is known as the prey conversion factor into new predators. e is the conversion
efficiency constant. We assume that the prey population grows logistically with intrinsic
growth rate r and carrying capacity % so that is I'(z) = rx (1 — %) A detailed history of
modifications of the classical predator-prey model of the type (2.1) is given in reference [5].
This paper illustrates how, under the environmental stochasticity, the competition among
the predator population is beneficial for a number of predator-prey models since it keeps
them stable around their positive interior steady state (i.e. the situation in which both
populations co-exist). Comparisons of the findings of this paper with the results of [4]
allows the general conclusion that under both deterministic and stochastic environments,
the predator-prey system benefits by the predator intra-species competition. This paper also
resolves the ongoing 20-year controversy over the "paradox of enrichment" and illustrates
how the model proposed in [4] would be the best possible predator-prey model among the
most popular models discussed in the last half-century. The predator-prey model proposed
in [4] contains an intra-specific competition term for the predator population. Therefore a
more general predator-prey model would be



dx @_

_ = — — 7] — — 2.
7 ol'(z) — gF(z), 7 eF(z)y — qy — iy (2.2)

where h; represents the intra-specific competition of the predator population. The basic
eco-epidemiological models are formulated from the general predator-prey model (2.2) under
the following assumptions:

(A1): A transmissible unrecoverable disease spreads among the predators only. It can also
be vertically transmitted. It does not affect the prey population. We assume that the
disease spreads with an incidence rate A per unit time ¢. We split the predator population
respectively among the sound predators y(t) and the infected predators z(t), so that y(t) =

y(t) + z(t).

(A2): The disease may reduce the hunting capabilities of the predator and thus we assume
that the predation rate of the infected predators is reduced by a factor 0 < p < 1.

(A3): We assume that the susceptible predators have a natural death rate ¢ and the infected
predator has a higher death rate ¢ due to the disease related mortality, that is 6 > ¢q. (8
denotes the prey carrying capacity, e < 1 the food conversion rate.

(A4): We also assume that the diseased predators are still able to compete with their similar
for resources. Further we allow here for intra-specific competition, by writing the last term
in both predators’ equations; e.g. healthy predators y feel the total predators population
pressure at rate h; and similarly the infected ones z feel it at rate hy. All the parameters
are assumed to be nonnegative.

With the above set of assumptions the model (2.2) reduces to

d
d_f = ro— B2® — F(x)y — pF(z)z, (2.3a)
d
d—zt/ = eF(z)y — hyly +2) — qy — My, (2.3b)
d
d_’; = \yz +epF(x)z — hoz(y + 2) — dz; (2.3¢)

where z(t) denotes the prey population, y(t) the healthy predators and z(¢) the infected
ones, at time ¢t. The first equation describes the prey dynamics, accounting for logistic
growth and hunting by the two types of predators. The second equation contains the sound
predators’ evolution, reproducing logistically in presence of food, and subject to natural
mortality and to the disease contagion process. Diseased predators enter this class from
the healthy class upon a "successful" contact with an infected one, first term in the third
equation, reproduce logistically giving birth to diseased offspring in presence of food, and
are subject to an additional mortality rate due to the disease.

Field Observation: [39] described a number of situations in which possible predators
are infected by various transmissible diseases. Here we outline just the following pairs of
parasites affecting hosts: rabies and foxes, Vulpes vulpes; Sarcoptes spp. affecting both



foxes and coyotes, Canis latrans; Yersinia pestis and the Prairie dog, Cynomys spp.; Sto-
moxys calcitrans and Panthera leo; Aeromonas hydrophila and Alligator mississippiensis;
we mention Phocine distemper virus affecting both the common seal, Phoca vitulina and
the striped dolphin, Stenella coeruleoalba in the oceanic natural environment.

2.1 Model I: linear functional response

Let us take the functional response as the mass-action type, that is, F'(z) = max; then the
general eco-epidemic model (2.3) reduces to

dz

i Br* — may — pmaz, (2.4a)
dy
o = emxy — hy(y + 2) — qu — \yz, (2.4b)
d
d—j = \yz+emprz — hgz(y + Z) — 0z, (2-40)

The first equation describes the prey dynamics, accounting for logistic growth and hunting
by the two types of predators. The second and third equations describe the predators
dynamics. They contain mortality rates ¢ and §, which, in the absence of the prey, drive the
predators to extinction. The second equation also contains the sound predators’ evolution,
reproducing logistically in presence of food, and subject to natural mortality and to the
disease contagion process. Diseased predators enter this class from the healthy class upon
a "successful" contact with an infected one, first term in the third equation, reproduce
logistically giving birth to diseased offsprings in presence of food, and are subject to an
additional mortality rate due to the disease. Note indeed that the diseased predators are
still able to compete with their similar for resources.

The parameters, all always assumed to be non-negative, have the following interpretation:
r represents growth rate of the prey, % the prey carrying capacity, m the predation rate, A
the contact rate, e the conversion factor, ¢ the susceptible predator mortality, h; the intra
and inter-specific competition rate for sound predators, 6 > ¢ the natural plus disease-
related mortality of the infected predators, hs the intra and inter-specific competition rate
of diseased predators. We assume that the hunting rate of the infected predators is reduced
by a factor p < 1 since the disease affects their hunting capabilities.

It is to be noted that the model (2.2) reduces to the famous predator-prey model of [37]
if the functional response is taken to be mass-action type, that is, F'(x) = ma. Therefore
Model I represents an eco-epidemic model that is derived from the famous predator-prey
model of Piolou [37] under the basic assumptions Al-A4. In view also of its resemblance
to 32|, we just basically summarize the analytic findings.

First of all, boundedness of the solution holds, (cf. Appendix 4.1).



2.1.1 The prey-only equilibrium

B 6 q
P > 1 makes the prey-only equilibrium unstable and is a threshold thus for the predators
establishing themselves in the environment.

The point Ell(xn,0,0), with x;; = r37! is stable if PY = wmax{g l} < 1. Thus

2.1.2 The disease-free equilibrium

Es'(x13,y13,0), with

rhi + gm rem — qf3
X = - — -
B em2 4+ h B’ vrs em? + hi 3’
and feasibility condition
rem > qf (2.5)

E5! is locally asymptotically stable if

r—20x3
Yi3

(2.6)

2h d+h —A
<m < m = min { q+ 13/13’ + hayrs y[s} '
€rr3 €PIr3

In this case, by making the trace of the Jacobian at E;’ vanish, Hopf bifurcations arise,
when the bifurcation parameter ¢ crosses the value ¢! = 28z 3 +mys+2hiyrs —r — emays.

2.1.3 The healthy predators-free equilibrium

I
E, (9612, 0, ZI4)> where

rhe + pmd empr — 03
€T = - A = -————
B B+ prem?’ T hoB+ pPem?’
is feasible for
empr > 63 (2.7)

and locally asymptotically stable if

—emrhy + Xempr + qho 8 + qp?em? + hiempr

6 < ol =
em?p + \G + hi

(2.8)



2.1.4 The coexistence equilibrium

Es' (215, yrs, 215) with

rha X — mdhy +rA% 4+ mpAq — mphag — mAS + mhaq + mphid — r\hs

= haem? — phyem?® — em?phy + p?hiem? — BAhg + Bk + G2
_emrhy — emprhy — empr\ + dem?p — gem?p?® — qBhy + 6Bh1 + BAS
s = hoem? — phoem? — em?2phy + p2hiem?2 — BAhg + B\ + A2 7
L emprhy — §3hy — emrhy — dem? + qgem?p + Aemr + qBhy — A3
5 =

hoem? — phoem? — em?2phy + p?hyem? — BAhg + Bhy A + B2
and

emprhi + emprX — emrhy + gem?p? + qBhs
em?p + Bhy + BA

em?(1 — p)(phy — ho) <8

A2 — A(hg — hy)

A>hy — hy

&ﬂ:mm{TMA+%V+WmM—meq+qu—ﬂwz
mhy +m\ — mph,

emprhy — emrhy + gem?®p + Aemr + qBhy — Mg
Bhy + em? } '

<6 <ot (2.9)

)

For this equilibrium we show local stability with the method of first approximation and also
its global stability. We summarize the local and global stability results of model I through
the following propositions whose proofs are given in Appendix A.

Proposition 1. The equilibrium E5’ is locally asymptotically stable if

L oy <yl (210)
hg <A< hz +m, (211)
5 > ()\ — h2)y]5 + (p()\ + hl) — 2h2)Z]5 + empxrrs, (212)

where

bl

em emp
y15(2h1 — A= hg) + Z[5<)\ + hl - 2h2) +q— (5}
em(1+p) '

o {)\215 +q+ h(2yrs + 215) yrs(ha — A) 4+ 2hozp5 +6
pl = min ,

Proposition 2. The coexistence equilibrium F5’ is globally asymptotically stable if

A+ 3hy < min A+hy+emp mp+20 (2.13)
2(N = hy) — 2(N=3hgy+emp)’ 2mp |’ ‘



Proof. Proof is given in Appendix 4.8.3.

2.2 Model II: Holling type II functional response

If we assume the functional response to be Holling type II, that is, F'(z) = 2=, then the
classical model (2.2) reduces to the popular predator-prey model which has been proposed
by Bazykin. A detailed study has been done by him and his colleagues, [38]. Using of the
same functional response of model (2.3) gives a corresponding eco-epidemic model

dx _ o  mxy  pmxz

P e h A ey (2.15a)
dy  emxy

A" aia WEmay—hylyta), (2.15b)
dz emprz

at — 0z : 2.1

dt Ayz + a+t+x 0z = haz(y + 2) (2.15¢)

The parameters have the same meaning as for (2.3); a in this case represents the half
saturation constant.

The Jacobian of the model (2.15) is given in Appendix B. From that we could easily see
that the origin is an unstable equilibrium, in view of the Jacobian’s eigenvalues r, —¢§, —q.
Again E»!'! = E,, since the system with no prey coincides with Model I, and therefore it
must be infeasible for the same reason.

2.2.1 The prey-only equilibrium

The point £ (2771,0,0), with 2771 = £ is stable if the following condition holds

B
8> Al = max r(em —q) r(emp —0)
a ag ad '
which can be recast in the form
1
pul = M ax -, Pl (2.16)
r+af q o

2.2.2 The disease-free equilibrium

The point E’gn(xng, Y13, 0), with yr3 = m™(ra + rzrs — aBxrs — Br3;,) and where z7r3
is a real positive root of the equation in Z

hiBZ% + (2hBa — hir) Z* 4 (—2hira + hyBa® — gm + em?)Z — hyra® — gam = 0.

is feasible for
r> ﬁl’][g. (217)



The characteristic equation of the Jacobian Jr3 = (6;5), 4,7 = 1,2, 3, factors to give one
eigenvalue directly, and the two roots of the quadratic in 7

7% — (011 + O2)T + 011029 — 091015 = 0.

Assume now

(r — 208z3)(a + x3)*

0+ hays — A
cm <l = & {q 4 2y, 128 y3} . (2.18)
ays €T3
Then
m mz me
Oy = 1 — 2815 — Y113 113 y1132 <0, Opy—— s _ 0,
a+zus  (a+ xps) a+ z3
Oy = emyms emfﬂmynz S0, Oy — ems 4 —2hyyms < 0,
a+zns (a4 z3) a+ 3
EMpxy;
033 = A ypis + ———2 — § — hoyps < 0.
a + T3

Both roots of the quadratic characteristic equation then have negative real parts. Therefore
E5M s locally asymptotically stable if (2.18) holds.

2.2.3 The healthy predators-free equilibrium

Here only prey x and infected predators z are present, E4H(a:H4,O, 2r14), with zrq =
(mp)~'(ra + rxyry — Baxry — Br?;,) and where x4 is a real positive root of the cubic

hoZ33 + (2heaf3 — rhy) Z? 4 (—2hgar + hea®B + p*em? — pmd)Z — hoa’r — Samp = 0.

The equilibrium E,’! is feasible for
r > .%’][46. (219)

The entries of its Jacobian, Jru = (¢45), 4, j = 1, 2,3 have the following signs

pmzy pmxyy 21 pmzyr
Yy =r—2Bxm — : é<07 %32——4
a + Iy (a + 1’114) a—+ Ty

empz empxr, 2 empzx
Pz Py 1124 >0, hgy = DTy 5— 2h22H4 <0,
a + L1y (a + $[[4> a+ Ty

<0,

Y31 =

if the following inequalities hold

(r=20zpa)(at+ame)® g
apzrra

— min { (q+ hizrra + Azra)(a+ xra) (04 2hozirs)(a + xr14) }

(2.20)

Y

€EXI14 EPTrra

Hence, since the characteristic equation factors once more to give one eigenvalue and the
following quadratic in 7 having roots with negative real parts,

72 — (11 + ¥33)T + (Y1133 — Yizhsr) = 0

10



stability holds if (2.20) is satisfied.

2.2.4 The coexistence equilibrium

The equilibrium E5'! (115, Y115, 2115) has analytically determined components

xrr5(hipem + emp\ — A0 + haq — hoem — Shy) — aX\d — adhy + ahag
Yris = — )

)\()\ + hl — hg)(a + .17115)
xrrs(hipem — 0hy + haq — hoem — A\q + Aem) — ahid + ahsq — agA
AA+ hy — ho)(a+ xyr5) ‘

2115 =

where x5 is a real positive root of the cubic equation

(—haBX + ABh1 + N26)Z% + (20aBh1 + harX — Arhy — 2haafBA — N2 + 2X%a ) 22
+(=Apgm — hapem?® + dmA + dmhy + haem® — hogm — 2\%ar + \*a*B — hoa® BN
+em?p*hy — em?phy — dmhyp — 2Xarhy + Aa®Bhy + hopgm + 2hoar\)Z — Apgam

—hogam — Aa*rhy 4+ dam\ + damhy 4+ hoa*r\ — N2a*r + hopgam — samhyp = 0.

E5' is feasible for

5 < 8 = min { zrs(fupem = Ag — haem + emA 1 haq) + ahaq — agh
hl (CL + LU[[5)
wrs(Aemp + ghy + hipem — hyem) + ahag
(hl + )\)(CL + .I[[5>

(2.21)

}, A > hy — hy.

We summarize the behaviour of the model around E5'’ through the following propositions
whose proofs are given in Appendix C.

Proposition 3. Let

ho — phy } M[H] _ m(Yrrs + D211s)

_ h
A = min {—2(9115 + p211s), (a+ x115)?
15

YIi1s

The system (2.15) is locally asymptotically stable at E5'’ if the following conditions hold

a> zos, hy < A< N g < g < gl g BH5 AU oy o un T (2.22)

Xrrs ’ 25

Proposition 4. The coexistence equilibrium Ej5’ is globally asymptotically stable if,

11



recalling the boundedness property of the prey populations,

DZr15 + Y115
> P2 T YIS 9.93
p a(a + xyrs) (2.23)

2
ih, [5 _ g PAs + ynﬂ - <m(a(1 —e)+ IU5)) 7 (2.24)

ala+ xyrs) ala+ xyrs)
pm(1l —e) Empxrs } {(1 —e)m emprrs } (2.25)
a+W (a+zis)(a+W) || a+W (a+W)(a+ zs5) .
- 4(h1 + ho) {5 _ pmzrs + myns}
2 ala+ xyy5)

hl + hg > 2h1p (226)

2.3 Models III and IV: Holling types III and IV functional re-
sponses

Once we use the functional response F(x) = —“— in the general eco-epidemic model
a’+br+x

(2.3), it reduces to following model which we call Model IV.

dx

9 maxy pmxz

b _ — - 2.27
dt re -z a?+br+a> a4+ b+ x? (2.27)
dy emxy

= = ————— —Xyz—qy—nh 2.27b
7 A b2 Wy yly +2), (2.27b)
dz empxz

— = A ——————— —6z—h 2.27
dt yet a? + bx + 22 2= hazly +2), (2:27¢)

The particular case b = 0 is not treated explicitly, but corresponds to what we call Model
[II. The Jacobian of the model (2.27) is given in Appendix D. A straightforward calculation
form the Jacobian matrix shows that the origin with eigenvalues r, —d, —q is unstable. Once
more, B’V = E,’ and infeasibility follows.

2.3.1 The prey-only equilibrium

At Ellv(mm, 0,0), with x7y; = 737! stability is ensured by

1
a’B3* +r* + brf3 > emr max {—, %} . (2.28)
q

12



2.3.2 The disease-free equilibrium
E3™ (21vs,yrvs, 0), with

1

Yrva = E[m%m +rbxrys +ra’ — Bady, — Batysb — Brysa’]
and where x5 is a real positive root of the quintic equation

hiZ°B 4 (2h1Bb — hyr) Z* 4 (2h1 Ba® + hib* 3 — 2hyrb) Z°

+(2h1bBa’® — hyb*r — 2hyra® — qm)Z?

+(h1a*B — gbm — 2hibra® + em?)Z — qa*m — hya*r =0,

is feasible if
r > Bxrvs. (2.29)

The Jacobian matrix at E3'" is denoted by Jyvz = (wij), 4,7 = 1,2,3 with the relevant
entries given in Appendix 4.6 . The characteristic equation also factors, giving an eigenvalue

EMPIIvs
a2 -+ bl’]\/g + x1V32

AyYrvs + — 0 — hayrvs

and a quadratic characteristic equation in 7
? =0
77 — (w11 + wWe)T + wiwsg — wWorwrp =
whose roots have negative real parts since wy; < 0, woe < 0, wo; > 0, wip < 0, assuming

(r — 28x1vs)(a® + bxyvs + xrvs?)? v
(a®> — x1vs?)yrvs =M= i

2 2
a® + bx +x .
= Vs V3 min {q + 2h1yrvs,
exrv3

a > Trys, (230)

0 + hayrvs — A\yrvs }
P

Conditions (2.30) thus ensure stability.

2.3.3 The healthy predator-free equilibrium

We now consider the point E,"Y (x4, 0, 27v4), with

1
2Iv4 = %[ﬁm +brrvy + CL2](7‘ — xrvaf3).

Here x4 is any real positive root of the equation

haZ° B3 + (2h23b — hor) Z* + (2haBa’ + hob?3 — 2harb) Z°
+(2habBa® — hob*r — 2hyra® — dmp) Z*
+(—2hobra® + em*p? + hoa' — Sbmp)Z — Sa*mp — hya'r =0

13



Note that by Descartes’ rule, at least one such root exists. E,MV is feasible if zp4 > 0 ie.
for
r> l‘jv4ﬁ. (231)

The characteristic equation stemming from the Jacobian at E,’, denoted by Jyv4 = (vij),
1,7 = 1,2, 3 factors to give the eigenvalue

eEmiyryy
$1V42 + b(E]V4 + CL2

V22 = - A 2rvy — 4 — h1ZIV47

and the roots of the quadratic 72 — (vy; + v33)T + v11v33 — vi3v3; = 0. Take

(r— 25131\/4)(&2 +brrvy + $1V42)2
(CL2 - SCIV42)PZIV4
CL2 + bxjv4 + $1V42

= min { (¢ + hizrva + Azpva), p~ (0 + 2hozpva) }
EXIV4

a > Trv4, = my; < m < ml") (2.32)

to find that v < 0, V1g < O, Voo < 0, vy > 0 and U3z < 0, conditions that by the
Routh-Hurwitz criterion thus ensure stability.

2.3.4 The coexistence equilibrium

In spite of the complexity of the system, the coexistence equilibrium can be analytically
determined. In view of this fact, although the expressions are involved we decided to report
them below. The population levels at Es'" (27vs, yrvs, 21vs) are then

by
m(a2 + 13%;5 + b$1V5>>\()\ + h1 — hg) ’
z = dl
s = (CL2 + l’[\/5b + ZL’%VE’))\()\ + hl — hg)(hlp — A= hl)’

Yrvs =

where the numerators b; has a complicated expressions and given in Appendix 4.8.4.

Furthermore, x5 is a real positive root of the equation

5
Y AT =0, (2.33)
=0

with coefficients given in Appendix 4.8.1. In general, this equation has five roots. The
sufficient conditions for which the equation (2.33) has a positive root are presented in
Appendix 4.8.2.

We summarize the behaviour of the system (2.27) around the equilibrium point Es! V(:C V5, YIVE, 21V5)
by the following propositions whose Proofs are given in Appendix .
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Proposition 5. The equilibrium E5'" is locally asymptotically stable if

0> zrvs hy < A< AL VI 2 g o IV g, ZIV5’ (2.34)
TIvs
. h -
AV — min {—2(ylv5 + pzrvs), p 1(h2 - phl)} ’
Yrvs

] _ m(2zrys + b)(yrvs + p2rvs)
(CL2 + bxjvg) -+ x;v52)2 )

I

Proposition 6. The coexistence equilibrium FEs’" is globally asymptotically stable if,
recalling the boundedness property of the prey population,

(pzrvs + yrvs)(b+ W + zvs)
a?(a® + bxrys + x%5)

6>m

, hl + hg > 2h1p7 (235)

4h, {5 B m(PZIV5 + yrvs) (b + W2+ leS)} (2.36)
a?(a® + bryys + w3y5)
> m2 ((1 — 6)(@2 + ZE%V5) + bl’[V5 + emxlm(W + [L’]V5))2
a?(a? + bxrys + x3y5) '
pm? 1—e N exrvs(b+ xrvs) 2 (2.37)
4 \a?+bW 4+ W2 = a?+ bW 4+ W2)(a? + bxyvs + 23y5) '

- B(hi+he)  m(b+ xrvs)(yrvs + pzrvs) (b1 + he)
2 2(a% + bW + W2)(a? + bxyys + x%,5)

Proposition 7. The system possesses a Hopf bifurcation around Es'Y when m passes
through m,, , where m,, satisfy the equality K1 K, = K3 and K;’s satisfy the characteristic
equation of the system (2.27) at EIV(xrvs, yrvs, z1vs), that is,

@3+K1@2+K2@+K3 == O (238)

Proof. The proof is given in Appendix 4.6.

3 Numerical simulations and discussion.

For the convenience of the reader, we report all the conditions of local and global stability
for the various equilibria in Tables 1 — 3 | including also Model III, which as mentioned is
the particular case for b = 0 of Model IV.

In all models, the trivial equilibrium is always unstable for all possible parameter values.
This is a good result, since it means that the ecosystem will never disappear.

The prey-only equilibrium in Models I and II is stable if P/ and P! are smaller than 1.
Note that Model II is favoured for stability, in the sense that the half saturation constant
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helps in lowering the critical ratio P!/, Thus, when predators experience satiation, mod-
elled by the Holling type II term, it is harder for them to invade the ecosystem. Prey in
such case thrives at the system’s carrying capacity. Other factors that favour the stabil-
ity of this equilibrium in both models in the same way, are a low predation rate m, low
conversion factor e, low hunting rate of infected predators, expressed by the parameter p.
Equivalently, we need large healthy ¢ and infected 0 predators’ mortalities. The role of the
prey reproduction rate r instead is not clear-cut in Model II, while we need it low in Model
I. This is quite unexpected, but it can be explained by the fact that if prey reproduce fast,
they favour the predators growth and thus ultimately the possibility of their establishing
themselves in the ecosystem. It is hard to compare the first pair of Models with the second
one. But for the second pair, it is clear that for Model IV stability is favoured, since a
positive value of b will help in satisfying it, even if the same condition does not hold for
Model TIII.

The prey-free equilibrium is infeasible in all the models. This makes sense since in absence
of prey, the predators have no source of food, and hence the latter must get extinguished,
first the healthy ones and then the infected ones.

From the feasibility conditions and the stability analysis of the equilibria, we observe that
the parameters \,m, h; and hy play a crucial role in controlling the dynamical behaviour
of the models. In all the four models the trivial equilibrium is always an unstable saddle
for all parameter values.

Now E," is locally asymptotically stable if (P'7) < 1, PYT < 1, {a?3*+r? > emr3 max {%, %}}
and {a232 + 12 + br3 > emr max {5, g}} for n =1, 1, II1, TV. Biologically, it implies that

if both the predation rate and the reduced factor of prey be low, then the healthy predator
and infected predator cannot survive and the system will be equilibrium only where prey

exists. From the fifth row of Table 1the stability conditions of E3™ are [%

< m < mil = min { 2Mys dthayrs—Ayrs (r=2Bz113)(atarrs)®
- exrs eprrs ) ayrrs

Il — a+Zrr3 dthoyris—Ayirs N (r=2Bzr1r3)(@®+arrs®)?

m m[ = ————=1nin 2h — 1 =m

< < €T3 {q + 2y, P ’ ( ) (a?=zrr132)yrirs 1) <
m[]II] — a2+$11132
T errrs

m <

O0+hoyrrrs—Ayrirs }
p )

min {q + 2P Yrrrs,

Y N (r=2Bxrvs)(a®4brrvtrrvs?)? V] — a®>+brrvztarya®
(”) a= 331]13:| and {(Z) : (a21(3121v32)y1v3 : =mpy) <m < mlVl = w

dt+hoyrva—Ayrva }
)

min {q + 2h1yrvs, »

(17) a > zvs|, respectively which depend mainly predation rate m which also depends on

the reduced factor p and A. It is observed that for the lower value of p and A the prey
and healthy predator co-exist in the form of a stable equilibrium. But for the models II
and IIT depend upon the half saturation constant a. For the model IV the co-existence (of
prey and healthy predator) depends also the another ecological parameter b. Next from

the sixth row of the Table 1 with used notations §l] = =¢mrhatdempriahaf+ap’em®thyempr
em?p+AB+hi1 0
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ny —

min (g+hizrratAzrra)(atarrs) (5+2h22114)(a+$114)} (r—2Bzrrra)(a®+wrr142)?
9

m ) ( 2_ 2)
€TI14 EPTII4 a=—TJI1147 )PRIII4

mthl = % min {(q + h1zrrra + Azra), 071 (0 + 2hozrrr4) }
: mlvi]

= Mi1n),

(r—2Bzrva)(@®+bzrvataryva®)
) (a?—zrv4? )p21v4
= %ﬁzg’“ min {(q + h1zrva + A21va), p~ 1 (0 + 2hezv4) } one can observe from the sta-
ility conditions of E4" if the infection rate is too high and the predation rate moderate an
bility diti f E4" if the infecti te is too high and th dati t derat d
the intra and inter competition rate hy very low then the healthy predator cannot survive

and the system converges to the equilibrium where prey and infected predator co-exist.

= M,

Successful observation of local stability of Es™ in the Table 1 allows the comparison of
stability for the four models I IT III and IV. We can then compare the situation for global
stability of coexistence equilibrium for the different models.

To describe the coexistence of global stability for different models for comparison purposes
we set the fixed parameter values specified in Table 4 and vary only the hunting rate on
prey by healthy predator, m, and intra- and inter-specific competition rates hq, hy of healthy
predator and infected predator, respectively. For the above set of values of the parameters
the coexistence equilibrium E5 will be globally asymptotically stable if we choose the value
of m as 1,1.002,1.5 and 1.7 for the model I, II, III, IV respectively. At the same time the
choosing set of values of h; and hs are {0.005, 0.0001, 0.00015, 0.00017 } and {0.04, 0.2,
0.3, 0.4}. In this case we observe that all the trajectories originating from any point of the
basin of attraction converges to the equilibrium points (1.85, 5.99, 1.01), (1.81, 3.58, 0.49)
and (1.86, 10.90, 0.34) up to two decimal places respectively for the models I, II, III, IV.
which means that the system is globally asymptotically stable for these models.

The comparison of global stability for the models I and II is relatively simple. It is worth
to compare the behaviours of models IIT and IV since both contain non monotonic response
functions (cf., [25], [26]). It is analytically very complicated to study the problem in the
parametrer space. But with numerical simulations, the parameter space m — hy — ho of
model IV has larger regions of global stability compared to the other three models. Similarly
the region of global stability of model III is larger than the one of model II. The range of
parameter values of the global stability region of model I is larger than the that of model
II. This is not surprising. Several researchers used Holling type IV non monotonic response
function motivating it as a group defence mechanism. Predation indeed decreases or is even
prevented when the prey are many, so that they can better defend themselves, (cf. [13],
[22], [35]). Our results indicate thus that in this way the interactions of predators and prey
are stabilized for a wide range of parameter values.

Also we compare the bifurcation behaviour for our four models in Figure 2 choosing the
same initial conditions. A general proof showing the existence of critical Hopf bifurcations
for all models is given in the Appendix 4.6. We also obtained phase portraits of global
stable behaviour of the four models but they are not reported here due to lack of space.

The model (2.27) is more general, we present the Hopf bifurcation analysis for this model
only in Proposition 7.

For numerical simulation we take m = 5.5, keeping the other parameter at the same value
as that of Fig. 2(iv). All the feasibility conditions of the interior equilibrium of the system
(2.27) hold; the co-existence equilibrium point is EZY(1.62,1.90,0.79). We obtain here
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Interior Conditions For Global Stability
Equilibria
E5IV () b > a,

( )ﬁ >m (pzrvs+yrvs)(b+zrvs)
2 2 b 9
a?(a?+ 11V5+$Iv5)

a2(a2+bx1v5+x%v5)

le> 4h, (ﬂ m p21v5+y1V5)(b+W+x1V5)>

a? a2+bzlv5+xlvs))

2
S (m a(l—e)(a +xIV5)+emxIV5(W+:v1v5)>
7

2
ZU) p (1—e) + exrvs(btxrvs)
a?+bW+W?2 (a2+bW+W?2)(a?4+bzryvs+z7,,y)
B(hi+h2)  m(btarvs)(yrvs+pzrvs)(hi+ha)
2 2(a?+bW+W?2)(a?+barysIVE+ady, )’

and (v) h1 + ho > 2hyp.

Table 1: Global stability conditions of the interior equilibrium E5’"

Mer = 5.9 and My, = 6.3. The interior equilibrium point £V is asymptotically stable
when m = 5.5 < m,,. This situation is presented in (a) of Fig. 1lin terms of solution curves.
Again when m lies between m,, and the maximum value of m.. then a stable bifurcating
limit cycle occurs as supercritical Hopf bifurcation (cf. Fig. 1 (b)). An extensive numerical
simulation shows that when the value of m is very close to m,., the three populations
(prey, healthy predator and infected predator) take long time to become stable whereas
when m crosses the value m.. and becomes very close to m,.., the three populations
become unstable. Therefore we arrive at the following conclusion:

Proposition 8. In the interval [0, m,,..], there exists a critical value m,., where a super-
critical Hopf bifurcation occurs. For supercritical Hopf bifurcation in the interval [0, m,q.]
the interior equilibrium point is asymptotically stable between 0 and m,, and for m lying
between mg, and M., a limit cycle occurs. On the other hand when m > m,.., the
equilibrium does not exist since the predation rate is too high.

An example of population dynamics for the Holling type IV response function phenomenon
is described by Tener [28|. Lone musk Ox can be successfully attacked by wolves. small
herds of musk Ox (2 to 6 animals) are attacked but with rare success. No successful attacks
have been shown in larger herds. Another example observed by Holms and Bethel [18] in-
volves certain insect individuals. Large swarms of insects make the individual identification
difficult for their predators.
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Functional | Model I(n=I) | Model II(n=II) | Model III(n=III) | Model IV (n=IV)
response
Equilibria
Ey" Always unstable | Always unstable | Always unstable Always unstable
B P < 1. PUT <1, a’B? + r* > a’p? +r?
emrﬁmax{é,%’}. + brp >
emr 3 max {é, %’}.
BE," Infeasible. — — —
E3n r—ilﬁ:m (T*QﬂII;Z{);iEZ‘FJHIS) (Z) mi < (Z) mirv) <
<m < ml. <m < ml. m < ml, m < mlVl
, (ll) a > Trrrs- (Zl) a > Tryvs
E § < ol (rfwxfl;‘;)fiﬂ”“) ()miumm < (i) mpvy <
<m < m[IIl}_ m < m < m[IV”
mt M (i3)a > 1) a > Ty
: LII14-
E5" (1) 55 < @15 < (1) a > xr5, (i) a > @115, (i) a > xrvs,
! (17) hg < X < (i1) ha < A < (i1) ha < X <
(i5) hy < X < | A, A AV
(o 10). Gii) g < |G ft < | (i) ) <
(i) s > (A= | B < w1 < p Bo< ptvh+
ha)yrs+(p(A+ pre pre hazrve
hi)=2hy) 215+
emprys.

Table 2: Comparison of the global stability conditions of the various Equilibria; n denotes
the model number.
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Interior Conditions For Global Stability

Equilibria
T A+3h . A +hi+em mp+203)

E5 (a') 2()\7h;) < min (2()\73}1Lg+ersp)’ gmp )’

(b) A > hs.

1T : P2rrs+yiis
Es (Z) g >m a(a+zrrs)”’

2
(ZZ) 4hy (ﬂ — m27gil—?;;i> > (m(‘;((z;egﬁ)j;:;ns)) 7
B pm(l—E) empzx (1_e)m empx
(Z’I//L) a+W + (a+£115)(lal,iW) ( at+W + (&+W)(af&-12115))

> 4(h1+h2) 8- pm2115+my115)
)

2 alatxrrs)

(ZU) h1 —+ h2 > 2h1p
E5H[ (Z) 6 > m(pzufz-g?gfgéf;-xnw)’

(m) 4h1 (ﬂ _ m(PZIII5+y]1[5)(W+zH[5)

(212
a?(a®+a7rr5)

3
a?(a®+z7;,5) )

2
> (m((l—e)(a2+$§n5)+emz]1[5(W+x[115)))
) 2

1&2 (1—e) €TIIIs
(122) &5 e T (a2 FW2) (a2 423, ,5)
Bhi+h2)  maxrrrs(yrrrs+pzrrrs)(hi+he)
2 2(a2+W2)(a2+x%115)
(Z’U) hi 4+ hy > 2h1p
v . (pzrvs+yrvs) +WH+zrvs)
Es (i) B> m a?(a®+brrvstatys)

(m) 4h, (ﬂ _ m(pzzv5+y1v5)(b+W+mIV5))

a?(a?+bzrvs+ziy ;)

2
> m2 (1—e)(a®+a? ) +barvs+exrvs(Wzrys)
a2(a2+bmlv5+m%‘/5)) ’

2
(i) pm? (le) exrvs(b+zrvs)
4 a?+bW+Ww?2 (a2 +bW+W?2)(a?+bzrys+ay,s)
s Bluthy) mb+zrvs)(Yrvs+pzivs)(hi+ha)
2 2(a2+bW+W2)(a24+bzrys+ays)’

(ZU) hi 4+ ho > thp

Table 3: Comparison of the conditions for global stability of the interior equilibria Ej’,
EsM and Es™ and E5'V.
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Variable/ | Units Defination Default value
parameter
x number per unit designated | prey density | ...
area
Y number per unit designated | density of healthy predator | ......
area
z number per unit designated | density of infected predator | ......
area
r per day growth rate of prey 10.3
15} per day intra-specific ~ competition | 5
rate of prey
a per day half saturation constant 1
b per day ecological parameter 1.5
P per day reduced factor 0.001
m per day predation rate | ...
e per day conversion factor 0.7
hy per day intra and inter specific com- | ......
petition rate of healthy
predator
ho per day intra and inter-specific com- | ......
petition rate of infected
predator
A per day force of infection/contact | 0.9
rate
q per day death rate of healthy preda- | 0.00005
tor
) per day death rate of infected preda- | 2

tor

Table 4: Variables and parameters used in the simulations.
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4 Appendix

4.1 Appendix: Boundedness of the solution

The boundedness of the solution (see [15] for details) can be shown in the following way.
In fact, the prey are bounded since

) r

limsup z(t) < —

t——+o00 5
and further, introducing the total environment population ) = x + y + z, for an arbitrary
n > 0 the inequality

0
S0 <o
g T e

follows, from which then all solutions of the system (2.4) starting in R? are confined in the
region

B:{(x,y,z)ERi: z+y+z§?+e for any e>0}.
n

Remark. This argument applies also to the models (2.15), (2.27) with minor changes and
will not be repeated.

The equilibria are the origin, always unstable, and five other points. Among these, note that
E5'(0, 912, 212), cannot be feasible, because it should solve the equation —\z—q—hy(y+2) =
0, and this is not possible for both y;9 > 0, 279 > 0.
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4.2 Appendix A: Local stability analysis of model I

For the proof of local stability, the concept of the second compound matrix is used. If
Jrs = (&j), 1,7 = 1,2,3 represents the Jacobian of the model I, the second compound
matrix is

§11 + & 23 —&13
Je = 32 S+ 633 §12 . (4.1)
—&31 o1 §o2 +&33

Note that in our case the Jacobian has the following entries

i = 1 —=20x15 —myrs —pmzrs, &2 = —mags,  §13 = —pmars,
521 = emyrs, 522 = emxys — )\215 —q— 2h1y15 - h12157 523 = _>\?JI5 - h1y15,
§a1 = empzrs, &30 = Azrs — hozps,  &33 = Ayrs + empxrs — 0 — hayrs — 2hozys.

Proof of Proposition 1.. Let D = diag(xss,yrs, 2r5). The matrix J&(E5") is similar to
DJB(Es")D™! = (di;), where diy = &11 + aa, day = E11 + Ess, dsz = Ean + £33 and

215 215 Yrs
dig = Eo3—, diz = —&i3—, do = E327—,
Yrs Trs5 215
Yrs X5 X15
d23 = 512—, d31 = —531—7 d32 = 521—-
Trs 215 Yrs

Hence JP(E5") and DJPZ(E5")D~! have the same eigenvalues. Since the diagonal elements
of DJP(E;"YD~" are negative, using Gershgorin’s theorem the eigenvalues have negative
real part if the matrix is row diagonally dominant. Set wl!! = max{gi,gs, g3}, where
gk = dg1 + dpo + dis, k= 1,2, 3 and specifically

g1 =1+ (em —2B)x5 — yrs(m + 2hy) — 2z15(A + hy) — g,
g2 = &1+ &3+ (A — ha — m)yrs,
g3 = —empx s + emx s + oo + E3.

When (2.10) and (2.11) hold true then w!’l < 0, which implies diagonal dominance. Again
with these assumptions we find &7 < 0, &2 < 0, &13 < 0, &1 > 0, Ea9 < 0, a3 < 0, &31 > 0,
&30 > 0, £33 < 0 and &19(&23831 — £21€33) < 0. Then we complete the proof by observing that

det(Jrs) = = &11622833 — 1132823 + 13821832 — 13831622
+&12(§23831 — &21633) < 0.
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4.3 Appendix B: The Jacobian matrix of model 11

The Jacobian of the model (2.15) is given by J(x,y, 2) = (ui;)3x3 where

2z — L 4 D L2 P
f— T — €r — - ?
Hi1 a+r  (a+z)° at+zr  (a+42)
B mx __ pmx _ ey emry
Hi2 = CL+I7 Hi3 = CL+I', :u21_a_'_x (G—F.I)Q’
emax
Hoo = — A2 —q—hi(y+2)—hy, ps=-\y—hy,
a+x
empz  emprz
— _ = Az — hoz
Hal a+z (a—l—x)27 a2 -
empx
sy = Ay T 6 hy(y o+ 2) — ha.
a+x

4.4 Appendix C: The proof of Proposition 3 and 4
4.4.1 The proof of Proposition 3

The proof of Proposition 3 is given by

Proof The signs of the entries of the Jacobian matrix Jys = (¢45), ¢, = 1,2,3 can be
assessed as follows: ¢rr11 < 0 when 8 > ul!l; ¢y < 0; ¢33 < 0; and finally ¢ro < 0, 3 < 0,
¢23 < 0, while ¢32 > (0 for A > hg, §b21 > 0, §b31 > 0. It follows that

m(yrrs + p21rs)
(CL + $]]5)2

Mirs = (11022 — 021012) + (P11033 — P13031) + (P22033 — P32023) > 0,

tr(Js) = —Prs+ — hiyrrs — hozrs <0,

while

det(Jrr5) = P11(P22033 — Pa3Psa) + P12(P31023 — P21¢33) < 0
if @31093 > 91033, which follows from the condition A < (hy — hyp)p~t. Finally, we see that

Crris = tr(Jrs) M — det(Jrrs)
= ¢112(¢22 + ¢33) + ¢222(¢11 + ¢33) + ¢332(¢11 + P22) + 2011022033

_¢13(¢33¢31 + ¢21¢32) - ¢23¢32(¢33 - ¢11) - ¢12¢31¢23
_¢11(¢32¢23 + ¢31¢13 + ¢12¢21> - ¢22¢32¢23 - ¢22¢12¢21 <0

if ¢33 — P11 < 0, and ¢33¢031 + o132 < 0 which both follow from the conditions (2.22).
Hence the Routh-Hurwitz conditions hold so that E5’’ is locally asymptotically stable.
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4.4.2 The proof of Proposition 4

Proof of proposition 4. Let R} = [U” = (z,y,2) € R}, x > 0,y > 0, 2 > 0] and consider

the scalar function Ly : R — R, dgt” = 22:1 %Lnk(x, Yy, ), given by

x Y z
LII<t) = |z —xrs — TrpsIn—— )+ Y — Y15 — Yiis In— |+ 22— 215 — 2rpaln —

X115 Yrrs 2115

Its derivative of along solutions of the system (2.15) gives the quadratic form

dL[] T
=-U"M;U,
dt !
where
A Hip Gop
Mir= | Hir B Fir |, (4.2)
Gir Frr Cir
and whose elements are
m(pzrrs + Yirs) m((1—e) errrs )
A =0— 5 = + ) Bir=nh )
=75 (a+ zy55)(a+ x) =9 ( a+x (a+z)(a+ x15) i !
hy + ho mp(1 — e) emprrrs
Frp= ., G = Cir = ho.
" 2 "7 20a+2) " 2a+a)atags) T
In fact,
dLrn = (=) Brars + myrrs . pmzis B — my  pmz
dt e e a-+ x5 a-+xrrs at+x a+uw
Y —UYiis Z = ZII5 y115(l’ - xUs)
= (r—=x -0z —x —m —pm +m
( HE’)( A 113) a+x p a+x (a+ zy75)(a+ x)
+pmz T s X
s ) (a+ ) )
dL[[2 emx
= — —Xz—qg—h
I (Y — yirs) P zZ—q 1y +2)
em(x — xyr5) emxys(r — 93115)>
= — — (AN h)(z—2 — hy(y — — :
(y y[]5)< atr ( 1)( 115) l(y yIIS) (CL + J})(CL + l‘IIS)
dLirs empx
= — A —0—nh
I (2 —zms) | Ay + s 2(y + 2)
emp(:r; - 96115) €mp$115(33 - 90115))
= (z—2z +(A—h - — ho(z — 2 — )
( 115)( ata ( 2)(?/ y115) 2( 115) (a+x)(a+xn5)
Thus, if the matrix M;; is positive definite then % < 0. For that, we require all principal
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minors of M;; to be positive, namely

pPMzrrs + Myirs
P = A;=0-
111 =7 (@ 21m3) (@ + o)
Pris = AnBrCr+2FGrrHr — AHFH2 — BIIG112 — CIIH112
= Cr(AnB — HH2) + G (FrrHpp — BrGrp) + Fr(GrHp — A Frp).

_ 2
. Pro=AnBir— Hyp,

Now differentiating Pr;y when x > 0, we find

Al (z) = pmzirs + myrrs 1 -0
u (a+z15)  (a+x)? ’

so that A’,(x) is a monotonic increasing function. Therefore by (2.23) we get Ar(z) >
A(0) = B8 — (pmzr1s + myprs)|a(a + xr55)] 7t > 0 and thus Prjp = Ajr > 0. Next by (2.24)
we find

mzrrs +m m? [1—e ex 2
Py = (5 _ pmZzirs Yrrs ) hy— ( X 115 ) -0
(a+zq75)(a+ ) 4 \a+z (a+z)(a+xs)

Obviously Fy; > 0. For Pyj3, by (2.25), we have

mp(1l — e) EMpryss mil—e erIIs
Gt — AirFy = + B *
e [ 2(a+ ) 2(a+$)(a+xn5)} 2 [ +z 2atz)(a +m>}
pmzirs +myrrs | ha + ha
—1g-
(a+xms)(at+x)| 2
[pm(l —e) EMPI 15 } {(1 —e)m
a+W (a4 xs)(a+ W) at+W

empyrs } _4h1 + hy {ﬁ _ pmzis + mylw] -0
(a+W)(a+ zr15) 2 ala + xyrs) ’

so that F[[(G[[H[] — A]]F[[) > 0. Again for P[[g by (226) we have

m(1l—e) emyrs

Na+n) " Hato)(atams) > 0.

FriHir — BrGrr = [ } {fh + hy — 2hyp

so that also Gy;(F;rHyp — BriGrr) > 0. Combining these results it follows that Pz >
0. Hence the symmetric matrix M;j; is positive definite, implying dZtH < 0 along the
trajectories and % = 0, when (x,y,2) = (z115, Y115, 2115). Thus, L;; is a Lyapunov

function and global stability follows.
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4.5 Appendix D: The Jacobian of the model (2.27)

The Jacobian of the system (2.27) is given by J(z,y, 2) = (kij)sxs with entries given by
ko3 = —AYy — h1y, K3 = Az — hoz and

m(y + pz) mx(y + pz) (22 + b)

ki1 = r—20x—

2?2 +br 4 a® (22 + bz + a2)’
pmzx emy emxy (2x +b)
Rz = — Q57 5 Hka=—5 5 2
2+ br+a > +br+a® (22 + bz + a?)
emzx
- T g s
Ko2 R z—q—hi(y+z)— My,
empz empxz (2x + b) mx
K31 = — 5 2y K12 = =55,
2+ br+a* (224 b+ a?) 22 +br +-a
empx
= A —— —0—h —h
K33 y+$2+bI+CL2 2(y+2) 274,

4.6 Appendix E: The proofs of the propositions 5, 6 and 7
4.6.1 The proof of the proposition 5:

Proof. The Jacobian is now a full matrix Jy, 5 = (qgij), 1,7 = 1,2,3 If we assume a > xjys,
6> ,u[IV], and A > hs the components of the Jacobian are all negative but for ¢, @gllégl.

It then follows that tr(Jrvs) < 0, Mpvs = (d11022 — ¢21012) + (d11033 — P13031) + (P22d33 —
$32¢023) > 0 and

det(Jrvs) = 011(Poadss — Passz) + dra(dsidas — Pa1dss)
+013(P32001 — P3122),
Crvs = tr(Jrvs)Mrvs — det(Jrvs)
= 011(d22 + d33) + D3o(d11 + Ps3) + D3 (D11 + P22) + 2011022033

—P13(P330031 + P21032) — Pasaa(das — P11) — Pr2Ps1 P23

—h11(P326023 + P31013 + Pr2da1) — Paads20h23 — D212
Now, det(Jrys) < 0 if the second term in its expression is negative, i.e., if qgglgzﬁgg > 1P,
But this follows from the first condition (2.34). Finally, Crys < 0 if (¢33 — ¢11) < 0 and

(33031 + d21¢32) < 0 which also follows from the conditions (2.34). Hence the Routh-
Hurwitz conditions hold, and local asymptotic stability follows.

4.6.2 The proof of the proposition 6

Proof. Again, consider the scalar function Ly : R — R

x Y z
Lfv(t) =\|\z—zvs—xvsIn— |+ y—yrvs —yrvsIn —— | +| 2 — 2rv5 — 215 In ——
TIvs Yrvs ZIV5
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with derivative along solution trajectories of (2.27) which are given by

dLrvi (r— as)2( -5 — myrvs(b+x + zvs)
dt v (a2 + bz + 22)(a® + bryys + 22,5)
pmzrvs(b+x + x1vs) )_m(y —yrvs) (T — T1vs)
(a® + bx + 22)(a® + bxyvs + 3y5) (a® + bz + 22?)
_pm(z — 21vs) (T — T1vs)
(a® + bx + 2?)

dLpy em(r — Zrvs)
dt = (y—yrvs) (m — (A +h)(z = 21vs) — ha(y — yrvs)

_emapys(T — 2pvs) (b + T + T1v5) )
(a% + bz + 22)(a® + bxvs + 235)
dLivs (2 = z1vs) (emp(x — T1vs)
dt a? + bx + 22
B empxvs(r — xpvs)(b+ x + xvs) )
(a% + bx + 22)(a® + bxyys + x3y5)

+ (A= h2)(y — yrvs) — ha(z — 21v5)

and which can be written in matrix notation as

dL[V

i ~U" My U.

where the symmetric quadratic form Mjy is given by the expression (4.2) with obvious
changes in the subscripts. The entries now are

m(pzrvs + yrvs) (b + x + x1vs)

A - - 9 B - h ) C = h Y
=0 (a2 + bx + 22)(a® + bryys + a3y) 0 TV
m 1—e 61’]\/5(b+3’]+1‘[v5)
HIV = + 2 ’
2\a®+bxr+22  (a®+bx+2?)(a® + brrys + x7y5)
P hy + hoy G mp(l —e) empzryvs(b+ x + zvs)
v 2 TV T (@4 br+22) | 2(a? + br + 22)(a? + bapys + 22,5)

Its principal minors can be shown to be all positive. In fact

m(pzrvs + yrvs) (b + W + x1v5)
(a® + bxyyvs + x%v5)a2

m(pzrvs + yrvs) (b + 2 + xrvs)
(a? + bxrys + 3y5)(a? + bx + 2?)

Py = Apv(x) = 8- > 8-

)

therefore by the first (2.35), A;v(z) > 0. By (2.36)

b
P[v2 = AIVBIV — HIV2 = <ﬁ _ m(pZIV5 +yIV5)( +x + LU]V5> ) X

(a® + bxpys + x3y5)(a? + br + 22)

_22 (1—6) 6.27]V5(b+$+.1’[v5) 2> 0
a?+br+2a?  (a®+ bxr+ 22)(a® + bryvs + x35) '

4
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Clearly Fjy > 0. For Ppy3, we have by (2.37),

B(hy 4+ ha) — m(b+ xrvs)(yrvs + pzrvs)(hi + ha)

GrvHry — Ay Fry > —

2 2(a? + bW + W2)(a? + bxpys + x35)
+pm2 ( 1—c + exrvs(b+ xrvs) >2 >0
4 \a@®+ bW + W2 a?+ bW +W?2)(a?+ bxyys + x3y5)

and F[V(G[VH]V — A[VF]V) > (0. Further for Pjvg, we have by the third (235)

FryHry — BrvGry
emx;m(b +x+ il?[vg)) hl + hg — 2h1p

>0
(% + brpys + a2ys) | 4(a? + b + 22)

= {m(l —e)+

and using Gy > 0 we find Gy (FrvHpy — BryGry) > 0, so that combining these results
Pry3 > 0. Hence Mpy is positive definite, the derivative of Ly is negative along the
trajectories and vanishes at Ejys. Thus, Ly, is a Lyapunov function and global stability
follows.

4.6.3 The proof of the proposition 7

Proof. The characteristic equation of the system (2.27) at ELV(zrvs, yrvs, zrvs) is
O3 4+ K10% + Koo + K5 = 0,

where K1 = —tr(Jpyvs), Ko = Mpys, K3 = —det(Jyvs) and K1 Ky — K3 = —Chys. Hopf
bifurcation will occur if and only if there exists m = m, such that (i) Ki(me.)Ks(me) =
Ks(me) with Ki(mer), Ko(mer), Ks(me) > 0 and (i) %(Re(d)(m)))]m:mcr # 0. Now
when m = m,,., K1Ky; = K3 with Ky, Ky, K3 > 0. The characteristic equation is given by

(@ + Ka) (@ + K;) =0, (4.3)

with roots w; = i/ Ky, w9 = —i/ Ky and w3 = — K7, so that there exists a pair of purely
imaginary eigenvalues and a strictly negative real eigenvalue. For m in a neighbourhood of
Mer, the roots have the form @y (me,) = q1(m)+iga(m), &y = g1(m) —iga(m), and ws(m) =
—q3(m) where ¢1(m), g2(m), and g3(m) are real. Next, we shall verify the transversality
condition

d
Ry m))) e, # 0. 12 (4.4
Substituting w(m) = ¢1(m) +1igz2(m) into the characteristic equation and taking the deriva-

tive we have

A ~ A A

U (m)gi(m) — D(m)ga(m) + O(m) = 0, &(m)gi(m) + ¥(m)g(m) + I'(m) =0,
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where

(m) = B(qu(m))® + 252(m)qs () + Ka(m) — 3(g2(m))*.
©(m) = 6qi(m)ga(m) + 2K, (m)gz(m),
O(m) = (qi(m))*Ki(m) + qi(m)K>(m)

and

Now

d (O + ¥O)
—(Re(w;(m m=m = ——= = |m = Mer
- (Re(@5(m) bnme e
# 0
and gz(me.) = —Ki(me)
# 0.
This completes the proof.
4.7 Appendix F: w;;’s
The w;;’s are given by
ou = 28 myrvs mryvs Yrvs (2 7rvs + )
n = r- g — ;
zrvs? + brpvs +a®  (zpys? + bagys + a?)’
w _ mITrvs
2 zrvs? + brpys + a2’
o eEMYrvs emarys Yrvs (2 2rvs +b)
21 — - 9
xjvgz + bl"jvg + a? ($jvg2 + bxjvg + CL2)2
EMIyy,
Way = 5 —q— 2hyrvs.

Tryvs? + barys + a?

4.8 The coefficients A;’s and positive root conditions
4.8.1 The A;’s

The A;’s are defined below:
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As = ABhy — hofSA + N0,

Ay = hor\ — 2haBbA\ + 2X23b — N1 + 2\Bbhy — Arhy,

As = X023 — 2)\%rb — 2X\rbhy + A2 Bhy + 2horb) + 20Ba’hy
+2X02Ba? — 2hoBa* X — haob?* B,

Ay = om\—2X%ra® — Smhyp + dmhy + 202054 — hogm
—Nb%r — 2Xra’hy + hopgm — Ab?rhy + 2\bBa’h,
—2hobBa* X + 2hara X — A\pgm + hob?r )\,

A1 = hopgbm + Xa*Bhy — 20\bra®hy — hoaBA + 2hobra® A
—hopem? — Sbmhyp — Apgbm — hagbm + em?*p*hy
—em?phy — 2X%bra® + heem® + 6bmhy + N2a*B + Sbm ),

Ay = hopga®m — A\pga*m — da®mhip — Na*r + §a*mhy
—\a*rhy — hoga®m + da*m\ + hoa’r .

4.8.2 Condition for positive root of (2.33)

We find sufficient conditions for it to have a positive real root of the equation (2.33). Assume
that there are two pairs of complex conjugate roots wy, w* and 7y, n;*. Each pair arises
from a suitable quadratic with negative discriminant, respectively (I — wi)(I — wi*) =
I? = 2Re(w)I + |w1|*, (I —m)(I —m*) = I* — 2Re(m)I + |m|*>. Let my = —2Re(wy),
ny = |wi|* > 0, u = —2Re(n;) and v = |n|* > 0. Equation (2.33) will then have the
following factorization, where oo = I5 is the sought real root,

5
S AT = A(I + mal 4 ny)(I? +ul +v)(] - ) (4.10)
=0

= A5<I5 + (my +u—a)I* + (v +ny +mu —mia — ua) I
+(myv + nu — nia — mpua — va)I? + (v — amiv — nyua)l — nlva).

Equating coefficients of like powers on the left and the right we find

_AO _AO

= . 4.11
nvAs  Aslwi]?|m|? (4.11)

A A
a=my+u—-2=—("242Re(m) + 2Re(wy) | =
As As

For feasibility of I5, we need o > 0, i.e. feasibility of the interior equilibrium is given by

4] 3]
A > hg—hl, 5— <0 0

57 < 56 (4.12)
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with

oM = Tshaq + Trvsemphy + pmapyse\ — xryshoem + zryshagb

+haqa?,

O = 22 N+ 225 hy + xrvsbhy 4+ Abxrys + X\ + a®hy,

o = (a®h3(1 — p) + a*Ahy) + 2pyshab) + 225 (B2 + Ay — h2p) + 21vshib(1 — P),
ob = (—a®X*q — 275 °q + zpvsemhihop + zpvshy Apgb

—z1vshihopgb — a®hihapq + a?haApg — 23y 5hahopq + 27y5ha Apg

—xlv5h%emp2 + xrvshoAgb — xyshihsem — xpyshoAem

+a’hihaq + xrvshihagb — xrysAhiqb + zrysAhiem + xpyshiemp — a?Aghy
+a*Ahyg — x%mhl)\q + x%vg)hlhgq + x?v5/\h2q + zvsA\lem — xlv5)\2qb).

4.8.3 Proof of Proposition 2

Proof of Proposition 2. Let R? = {(x,y, z) € Rf,x > 0,y > 0,z > 0}, consider the
scalar function L; : R3 — R defined by

T 1 z
Ll(t)zlﬁ T—x;5 —T3In— | + = y_yIS_yIBIHi +ks|z— 25— 2zaln— | .
xrs 2 Y15 2715

(4.13)
The derivative of Eq. (4.13) along the solutions of (2.4) is

dLI _ dLIl(x7y7Z> + dLIQ(x7y7Z> + deg(ZE,y,Z>

dt dt dt dt
Now
dL
dtH = ki(x —z55)(r — B —my — pmz)
= k (33 - 96’15)[—5(55 - 3515) - m(y - 915) - pm(z - 215)]:
dL 1
dm = S(y—wyms)emz — Az —q—hi(y +2))
t 2
1
= §(ZL" - 3315)[67"(33 - 3?15) - ()\ + hl)(z - 215) - hl(y - y[S)]a
dL
dtIg = ks(z — z15)[\y + empr — § — ha(y + 2)]

= ks(z — zps)lemp(z — x15) + (A = ha)(y — yrs) — ha(z — 215)].
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Therefore

dL em
o = kbl - wr5)” + (= = mk)(@ = 215)(y = yrs) + (ksemp — pmba) (@ = 215) (2 = 215)
A+ h h
+ {k’?,()\ — hy) — 9 1] (v — yrs)(z — z15) — ?l(y - y15)2 — hoks(z — 215)2
k — pmk A—h A+h
h A—h A+ h
—?11 (y—yrs)” + {kS 5 2 - 1 ~ — hoks
k — pmk
+ 36m]92 pm 1:| (Z . 215)2 < 0’
having taken
2
k‘1=57 kgz—)\+3h17 3 < At h t emp ) 3§—mp—|— ﬁ,
2 2(A — hy) 2(A — 3hy + emp) 2mp

which correspond to the assumptions (2.13), (2.14). Also the derivative vanishes only at
the equilibrium Ej5’. Thus, L; is a Lyapunov function and by Lasalle theorem

global stability follows.

4.8.4 The b, is given by

by = 23ysmI(\ + hy) — 23y5haqm — xpvsem®phy + xvs0bmhy — pmPzpyse)
+x1vsheem? + mAObx vy — T rvsmhagb + da’*mA + da*mhy — hoga®m,

di = a®*N2q + a2§h% + x?v5/\2q + m%méhf — xrvsemhihop — xy5hi Apgb
+arvshihopgb + a’hihapg — a*hiApg + 23y 5hihapq — 23,5k Apg
taryshiemp® + wryshi0bN — 21vshalgb — Trysh26bp + xryshihaem
+ryshedem — xryshihagb + TrysAhigh — 2rysAhiem — zpyshiemp
+a?A6hy + a*Aghy — a®hihaq — a®h20p — a?Ahaq + 22,56 Mhy + 13 shi Mg

—aﬁmhlhgq — x%v5h%5p - x?v5>\h2q — zvs\iem + {E[V5)\2qb + xlv5h%(56
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