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Abstract

The current paper deals with the mathematical models of predator-prey system
where a transmissible disease spreads among the predator species only. Four math-
ematical models are proposed and analysed with several popular predator functional
responses in order to show the influence of functional response on eco-epidemic models.
The existence, boundedness, uniqueness of solutions of all the models are established.
Mathematical analysis including stability and bifurcation are observed. Comparison
among the results of these models allows the general conclusion that relevant behaviour
of the eco-epidemic predator-prey system, including switching of stability, extinction,
persistence and oscillations for any species depends on four important parameters viz.
the rate of infection, predator interspecies competition and the attack rate on suscep-
tible predator. The paper ends with a discussion of the biological implications of the
analytical and numerical results.

Keywords: Predator-Prey models; transmissible disease in predator; intra-specific com-
petition among the predator; limit cycles; biological implications.

1 Introduction

In eco-epidemiology, (two) interacting populations are investigated, which also host a trans-
missible disease. The latter can affect only one population, the case most often treated in
the literature, [29, 30, 32], or it can spread to the other one(s). In fact, only a few fairly
recent papers have dealt with this specific issue, [19, 33]. The interactions can be either of
competition type, [31], or else symbiotic, [16, 34], but mainly they are assumed of predator-
prey nature, see the references in [21].



An important issue in models of this kind is the choice of the functional response. The
latter is defined as the amount of prey consumed by one predator per unit of time. The
functional response depends upon a number of factors. Some of them are represented by
prey features, such as their ability to escape an attack, or the predators habits, e.g. the
so-called prey handling time, the predators’ search efficiency; finally others are represented
by the natural environment, which establishes the structure of the prey habitat and the
encounter rate among individuals of the different populations. These factors influence the
predator’s functional response, see [1, 2, 24], and therefore change the dynamical behaviour
of the demographic model. Different responses have at times been considered in the context
of eco-epidemiology, see for instance [15].

In this paper we consider a predator-prey demographic system, in which the predators are
disease-affected so that the infected individuals are somewhat impaired in their hunting
activities. Further, we assume that the epidemics cannot be transmitted to the prey. The
main aim of this investigation is to uncover the effects of different functional responses in
eco-epidemic models.

The most well-known predator-prey response is linear, called mass action or also Holling
type I. It has the form mx, where m is the predation rate and x denotes the prey population.
It is an adequate model if there is no handling time of the captured prey. This assumption
is often regarded to be too crude, so as to adequately model the actual nature of the
interactions, see [20]. In fact, predators often experience satiation so that their consumption
rate declines with abundant available food, a property that is clearly not shown by a linear
function. Despite this drawback, the mass action functional response is mathematically
convenient, especially when the populations at hand are not too large. To better mimic
the shape of the consumption rate, the Holling type II functional response mx(a+ x)−1 is
used, [17]. It is a hyperbola with a horizontal asymptote, whose value reflects the maximum
predation rate. Another variation that can be used is instead the Monod-Haldane or Holling
type IV response function, mathematically represented by mx(a2 + x2)−1, [27]. It is a
humped curve that raises up from the origin and then declines at high prey densities, this
decline being attributed due to possible prey group defence. In fact a very well known
epidemiological paper is based on such an assumption, but rather used for the disease
transmission rate, [11], and more recent ones exploit the same feature, [9, 23]. Note that
while Holling type II models predators’ satiation, Holling type IV better describes situations
in which the hunting drops when the prey density is sufficiently high, due for instance to
prey toxicity.

The reasons for having different functional responses are various. They range from the
fact that for instance a particular predator hunts prey having different escape abilities.
If a particular prey has several natural predators, their different hunting techniques will
induce diverse functional responses. The structure of the prey habitat may also alter their
functional response. In addition also the prey behaviour is responsible for such changes.
For instance the musk ox can more easily defend itself from wolves grouping in herds rather
than staying alone. For other similar examples, see [12, 13].

The following more general Holling type IV functional response is sometimes used, see
[3, 14, 36],

cx
x2

b
+ x+ d

. (1.1)
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Here the non-negative parameters c and d can be thought to be the maximum per capita
consumption rate and the half-saturation constant in the absence of inhibitory effects.
The parameter b measures the predators immunity from the prey, since when it drops the
predator’s hunting efficiency decreases. Note indeed that for large b the right hand side of
(1.1) becomes a Holling type II functional response.

In particular in this paper we examine four eco-epidemic models differing in the type of
response function, but to keep the length manageable one of them is seen only as a particular
case. All of them contain the transmissible disease only among the predators. It affects the
infected individuals by impairing somewhat their hunting efficiency.

Our aim is to make explicit and compare the dynamics of the proposed models and to
identify the crucial system parameters that ensure specific population behaviours.

2 Basic assumptions and mathematical model formula-

tions

Studies of predator-prey models have been performed in theoretical ecology since the early
days of this discipline after the pioneering works of Lotka and Volterra. A number of
predator-prey models have been proposed and studied during the last couple of decades
(see [7], [8] and [5] and the references therein). A general predator-prey model (cf. [7] and
[8]) in its classical form is represented by

dx

dt
= xΓ(x) − ȳF (x),

dȳ

dt
= eF (x)ȳ − qȳ; (2.1)

where x(t) and ȳ(t) represent the densities of the prey and predator species, respectively,
at time t. F (x) denotes the prey per capita growth rate in the absence of predators and
q is the constant predator mortality. We call F (x) the functional response and the term
eF (x)ȳ is known as the prey conversion factor into new predators. e is the conversion
efficiency constant. We assume that the prey population grows logistically with intrinsic
growth rate r and carrying capacity r

β
so that is Γ(x) = rx

(

1 − βx

r

)

. A detailed history of
modifications of the classical predator-prey model of the type (2.1) is given in reference [5].
This paper illustrates how, under the environmental stochasticity, the competition among
the predator population is beneficial for a number of predator-prey models since it keeps
them stable around their positive interior steady state (i.e. the situation in which both
populations co-exist). Comparisons of the findings of this paper with the results of [4]
allows the general conclusion that under both deterministic and stochastic environments,
the predator-prey system benefits by the predator intra-species competition. This paper also
resolves the ongoing 20-year controversy over the "paradox of enrichment" and illustrates
how the model proposed in [4] would be the best possible predator-prey model among the
most popular models discussed in the last half-century. The predator-prey model proposed
in [4] contains an intra-specific competition term for the predator population. Therefore a
more general predator-prey model would be
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dx

dt
= xΓ(x) − ȳF (x),

dȳ

dt
= eF (x)ȳ − qy − h1ȳ

2; (2.2)

where h1 represents the intra-specific competition of the predator population. The basic
eco-epidemiological models are formulated from the general predator-prey model (2.2) under
the following assumptions:

(A1): A transmissible unrecoverable disease spreads among the predators only. It can also
be vertically transmitted. It does not affect the prey population. We assume that the
disease spreads with an incidence rate λ per unit time t. We split the predator population
respectively among the sound predators y(t) and the infected predators z(t), so that ȳ(t) =
y(t) + z(t).

(A2): The disease may reduce the hunting capabilities of the predator and thus we assume
that the predation rate of the infected predators is reduced by a factor 0 < p < 1.

(A3): We assume that the susceptible predators have a natural death rate q and the infected
predator has a higher death rate δ due to the disease related mortality, that is δ > q. β
denotes the prey carrying capacity, e < 1 the food conversion rate.

(A4): We also assume that the diseased predators are still able to compete with their similar
for resources. Further we allow here for intra-specific competition, by writing the last term
in both predators’ equations; e.g. healthy predators y feel the total predators population
pressure at rate h1 and similarly the infected ones z feel it at rate h2. All the parameters
are assumed to be nonnegative.

With the above set of assumptions the model (2.2) reduces to

dx

dt
= rx− βx2 − F (x)y − pF (x)z, (2.3a)

dy

dt
= eF (x)y − h1y(y + z) − qy − λyz, (2.3b)

dz

dt
= λyz + epF (x)z − h2z(y + z) − δz; (2.3c)

where x(t) denotes the prey population, y(t) the healthy predators and z(t) the infected
ones, at time t. The first equation describes the prey dynamics, accounting for logistic
growth and hunting by the two types of predators. The second equation contains the sound
predators’ evolution, reproducing logistically in presence of food, and subject to natural
mortality and to the disease contagion process. Diseased predators enter this class from
the healthy class upon a "successful" contact with an infected one, first term in the third
equation, reproduce logistically giving birth to diseased offspring in presence of food, and
are subject to an additional mortality rate due to the disease.

Field Observation: [39] described a number of situations in which possible predators
are infected by various transmissible diseases. Here we outline just the following pairs of
parasites affecting hosts: rabies and foxes, Vulpes vulpes; Sarcoptes spp. affecting both
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foxes and coyotes, Canis latrans; Yersinia pestis and the Prairie dog, Cynomys spp.; Sto-

moxys calcitrans and Panthera leo; Aeromonas hydrophila and Alligator mississippiensis;
we mention Phocine distemper virus affecting both the common seal, Phoca vitulina and
the striped dolphin, Stenella coeruleoalba in the oceanic natural environment.

2.1 Model I: linear functional response

Let us take the functional response as the mass-action type, that is, F (x) = mx; then the
general eco-epidemic model (2.3) reduces to

dx

dt
= rx− βx2 −mxy − pmxz, (2.4a)

dy

dt
= emxy − h1y(y + z) − qy − λyz, (2.4b)

dz

dt
= λyz + empxz − h2z(y + z) − δz, (2.4c)

The first equation describes the prey dynamics, accounting for logistic growth and hunting
by the two types of predators. The second and third equations describe the predators
dynamics. They contain mortality rates q and δ, which, in the absence of the prey, drive the
predators to extinction. The second equation also contains the sound predators’ evolution,
reproducing logistically in presence of food, and subject to natural mortality and to the
disease contagion process. Diseased predators enter this class from the healthy class upon
a "successful" contact with an infected one, first term in the third equation, reproduce
logistically giving birth to diseased offsprings in presence of food, and are subject to an
additional mortality rate due to the disease. Note indeed that the diseased predators are
still able to compete with their similar for resources.

The parameters, all always assumed to be non-negative, have the following interpretation:
r represents growth rate of the prey, r

β
the prey carrying capacity, m the predation rate, λ

the contact rate, e the conversion factor, q the susceptible predator mortality, h1 the intra
and inter-specific competition rate for sound predators, δ > q the natural plus disease-
related mortality of the infected predators, h2 the intra and inter-specific competition rate
of diseased predators. We assume that the hunting rate of the infected predators is reduced
by a factor p < 1 since the disease affects their hunting capabilities.

It is to be noted that the model (2.2) reduces to the famous predator-prey model of [37]
if the functional response is taken to be mass-action type, that is, F (x) = mx. Therefore
Model I represents an eco-epidemic model that is derived from the famous predator-prey
model of Piolou [37] under the basic assumptions A1-A4. In view also of its resemblance
to [32], we just basically summarize the analytic findings.

First of all, boundedness of the solution holds, (cf. Appendix 4.1).
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2.1.1 The prey-only equilibrium

The point E1
I(xI1, 0, 0), with xI1 = rβ−1 is stable if P 1I ≡ erm

β
max

{

p

δ
, 1

q

}

< 1. Thus

P 1I > 1 makes the prey-only equilibrium unstable and is a threshold thus for the predators
establishing themselves in the environment.

2.1.2 The disease-free equilibrium

E3
I(xI3, yI3, 0), with

xI3 =
rh1 + qm

em2 + h1β
, yI3 =

rem− qβ

em2 + h1β
,

and feasibility condition
rem > qβ (2.5)

E3
I is locally asymptotically stable if

r − 2βxI3

yI3

< m < m[I] ≡ min

{

q + 2h1yI3

exI3

,
δ + h2yI3 − λyI3

epxI3

}

. (2.6)

In this case, by making the trace of the Jacobian at E3
I vanish, Hopf bifurcations arise,

when the bifurcation parameter q crosses the value q[I] = 2βxI3 +myI3 +2h1yI3−r−emxI3.

2.1.3 The healthy predators-free equilibrium

E4
I(xI2, 0, zI4), where

xI4 =
rh2 + pmδ

h2β + p2em2
, zI4 =

empr − δβ

h2β + p2em2
,

is feasible for
empr > δβ (2.7)

and locally asymptotically stable if

δ < δ[I] ≡ −emrh2 + λempr + qh2β + qp2em2 + h1empr

em2p+ λβ + h1β
. (2.8)
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2.1.4 The coexistence equilibrium

E5
I(xI5, yI5, zI5) with

xI5 =
rh1λ−mδh1 + rλ2 +mpλq −mph2q −mλδ +mh2q +mph1δ − rλh2

h2em2 − ph2em2 − em2ph1 + p2h1em2 − βλh2 + βh1λ+ βλ2
,

yI5 =
emrh2 − emprh1 − emprλ+ δem2p− qem2p2 − qβh2 + δβh1 + βλδ

h2em2 − ph2em2 − em2ph1 + p2h1em2 − βλh2 + βh1λ+ βλ2
,

zI5 =
emprh1 − δβh1 − emrh2 − δem2 + qem2p+ λemr + qβh2 − λqβ

h2em2 − ph2em2 − em2ph1 + p2h1em2 − βλh2 + βh1λ+ βλ2
.

and

emprh1 + emprλ− emrh2 + qem2p2 + qβh2

em2p+ βh1 + βλ
< δ < δ[∗], (2.9)

em2(1 − p)(ph1 − h2)

λ2 − λ(h2 − h1)
< β

λ > h2 − h1

δ[∗] = min

{

rh1λ+ rλ2 +mpλq −mph2q +mh2q − rλh2

mh1 +mλ−mph1

,

emprh1 − emrh2 + qem2p+ λemr + qβh2 − λqβ

βh1 + em2

}

.

For this equilibrium we show local stability with the method of first approximation and also
its global stability. We summarize the local and global stability results of model I through
the following propositions whose proofs are given in Appendix A.

Proposition 1. The equilibrium E5
I is locally asymptotically stable if

r

2β
< xI5 < µ[I], (2.10)

h2 < λ < h2 +m, (2.11)

δ > (λ− h2)yI5 + (p(λ+ h1) − 2h2)zI5 + empxI5, (2.12)

where

µ[I] = min

{

λzI5 + q + h1(2yI5 + zI5)

em
,
yI5(h2 − λ) + 2h2zI5 + δ

emp
,

yI5(2h1 − λ− h2) + zI5(λ+ h1 − 2h2) + q − δ

em(1 + p)

}

.

Proposition 2. The coexistence equilibrium E5
I is globally asymptotically stable if

λ+ 3h1

2(λ− h2)
≤ min

{

λ+ h1 + emp

2(λ− 3h2 + emp)
,
mp+ 2β

2mp

}

, (2.13)

λ > h2. (2.14)
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Proof. Proof is given in Appendix 4.8.3.

2.2 Model II: Holling type II functional response

If we assume the functional response to be Holling type II, that is, F (x) = mx
a+x

, then the
classical model (2.2) reduces to the popular predator-prey model which has been proposed
by Bazykin. A detailed study has been done by him and his colleagues, [38]. Using of the
same functional response of model (2.3) gives a corresponding eco-epidemic model

dx

dt
= rx− βx2 − mxy

a+ x
− pmxz

a+ x
, (2.15a)

dy

dt
=

emxy

a+ x
− λyz − qy − h1y(y + z), (2.15b)

dz

dt
= λyz +

empxz

a+ x
− δz − h2z(y + z). (2.15c)

The parameters have the same meaning as for (2.3); a in this case represents the half
saturation constant.

The Jacobian of the model (2.15) is given in Appendix B. From that we could easily see
that the origin is an unstable equilibrium, in view of the Jacobian’s eigenvalues r, −δ, −q.
Again E2

II ≡ E2
I , since the system with no prey coincides with Model I, and therefore it

must be infeasible for the same reason.

2.2.1 The prey-only equilibrium

The point E1
II(xII1, 0, 0), with xII1 = r

β
is stable if the following condition holds

β > γ[II] ≡ max

{

r(em− q)

aq
,
r(emp− δ)

aδ

}

,

which can be recast in the form

P 1II ≡ erm

r + aβ
max

{

1

q
,
p

δ

}

< 1. (2.16)

2.2.2 The disease-free equilibrium

The point E3
II(xII3, yII3, 0), with yII3 = m−1(ra+ rxII3 − aβxII3 − βx2

II3) and where xII3

is a real positive root of the equation in Z

h1βZ
3 + (2h1βa− h1r)Z

2 + (−2h1ra+ h1βa
2 − qm+ em2)Z − h1ra

2 − qam = 0.

is feasible for
r > βxII3. (2.17)
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The characteristic equation of the Jacobian JII3 = (θij), i, j = 1, 2, 3, factors to give one
eigenvalue directly, and the two roots of the quadratic in τ

τ 2 − (θ11 + θ22)τ + θ11θ22 − θ21θ12 = 0.

Assume now

(r − 2βx3)(a+ x3)
2

ay3

< m < m[II] ≡ a+ x3

ex3

min

{

q + 2h1y3,
δ + h2y3 − λy3

p

}

. (2.18)

Then

θ11 = r − 2β xII3 − myII3

a+ xII3

+
mxII3 yII3

(a+ xII3 )2 < 0, θ12 = − mxII3

a+ xII3

< 0,

θ21 =
emyII3

a+ xII3

− emxII3yII3

(a+ xII3 )2 > 0, θ22 =
emxII3

a+ xII3

− q − 2h1yII3 < 0,

θ33 = λ yII3 +
empxII3

a+ xII3

− δ − h2yII3 < 0.

Both roots of the quadratic characteristic equation then have negative real parts. Therefore
E3

II is locally asymptotically stable if (2.18) holds.

2.2.3 The healthy predators-free equilibrium

Here only prey x and infected predators z are present, E4
II(xII4, 0, zII4), with zII4 =

(mp)−1(ra+ rxII4 − βaxII4 − βx2
II4) and where xII4 is a real positive root of the cubic

h2Z
3β + (2h2aβ − rh2)Z

2 + (−2h2ar + h2a
2β + p2em2 − pmδ)Z − h2a

2r − δamp = 0.

The equilibrium E4
II is feasible for

r > xII4β. (2.19)

The entries of its Jacobian, JII4 = (ψij), i, j = 1, 2, 3 have the following signs

ψ11 = r − 2β xII4 − pmzII4

a+ xII4

+
pmxII4 zII4

(a+ xII4 )2 < 0, ψ13 = − pmxII4

a+ xII4

< 0,

ψ31 =
empzII4

a+ xII4

− empxII4 zII4

(a+ xII4 )2 > 0, ψ33 =
empxII4

a+ xII4

− δ − 2h2zII4 < 0,

if the following inequalities hold

(r − 2βxII4)(a+ xII4)
2

apzII4

< m < m[II1] (2.20)

≡ min

{

(q + h1zII4 + λzII4)(a+ xII4)

exII4

,
(δ + 2h2zII4)(a+ xII4)

epxII4

}

.

Hence, since the characteristic equation factors once more to give one eigenvalue and the
following quadratic in τ having roots with negative real parts,

τ 2 − (ψ11 + ψ33)τ + (ψ11ψ33 − ψ13ψ31) = 0
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stability holds if (2.20) is satisfied.

2.2.4 The coexistence equilibrium

The equilibrium E5
II(xII5, yII5, zII5) has analytically determined components

yII5 = −xII5(h1pem+ empλ− λδ + h2q − h2em− δh1) − aλδ − aδh1 + ah2q

λ(λ+ h1 − h2)(a+ xII5)
,

zII5 =
xII5(h1pem− δh1 + h2q − h2em− λq + λem) − ah1δ + ah2q − aqλ

λ(λ+ h1 − h2)(a+ xII5)
.

where xII5 is a real positive root of the cubic equation

(−h2βλ+ λβh1 + λ2β)Z3 + (2λaβh1 + h2rλ− λrh1 − 2h2aβλ− λ2r + 2λ2aβ)Z2

+(−λpqm− h2pem
2 + δmλ+ δmh1 + h2em

2 − h2qm− 2λ2ar + λ2a2β − h2a
2βλ

+em2p2h1 − em2ph1 − δmh1p− 2λarh1 + λa2βh1 + h2pqm+ 2h2arλ)Z − λpqam

−h2qam− λa2rh1 + δamλ+ δamh1 + h2a
2rλ− λ2a2r + h2pqam− δamh1p = 0.

E5
II is feasible for

δ < δ[II] ≡ min

{

xII5(h1pem− λq − h2em+ emλ+ h2q) + ah2q − aqλ

h1(a+ xII5)
, (2.21)

xII5(λemp+ qh2 + h1pem− h2em) + ah2q

(h1 + λ)(a+ xII5)

}

, λ > h2 − h1.

We summarize the behaviour of the model around E5
II through the following propositions

whose proofs are given in Appendix C.

Proposition 3. Let

λ[II] = min

{

h2

yII5

(yII5 + pzII5),
h2 − ph1

p

}

, µ[II] =
m(yII5 + pzII5)

(a+ xII5)2
.

The system (2.15) is locally asymptotically stable at E5
II if the following conditions hold

a > xII5, h2 < λ < λ[II], µ[II] < β < µ[II] + h2
zII5

xII5

, λ[II] < λ < µ[II],
r

2β
< xII5. (2.22)

Proposition 4. The coexistence equilibrium E5
II is globally asymptotically stable if,
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recalling the boundedness property of the prey populations,

β > m
pzII5 + yII5

a(a+ xII5)
, (2.23)

4h1

[

β −m
pzII5 + yII5

a(a+ xII5)

]

>

(

m(a(1 − e) + xII5)

a(a+ xII5)

)2

, (2.24)
[

pm(1 − e)

a+W
+

empxII5

(a+ xII5)(a+W )

][

(1 − e)m

a+W
+

empxII5

(a+W )(a+ xII5)

]

(2.25)

> 4
(h1 + h2)

2

[

β − pmzII5 +myII5

a(a+ xII5)

]

,

h1 + h2 > 2h1p. (2.26)

.

2.3 Models III and IV: Holling types III and IV functional re-

sponses

Once we use the functional response F (x) = mx
a2+bx+x2 in the general eco-epidemic model

(2.3), it reduces to following model which we call Model IV.

dx

dt
= rx− βx2 − mxy

a2 + bx+ x2
− pmxz

a2 + bx+ x2
, (2.27a)

dy

dt
=

emxy

a2 + bx+ x2
− λyz − qy − h1y(y + z), (2.27b)

dz

dt
= λyz +

empxz

a2 + bx+ x2
− δz − h2z(y + z), (2.27c)

The particular case b = 0 is not treated explicitly, but corresponds to what we call Model
III. The Jacobian of the model (2.27) is given in Appendix D. A straightforward calculation
form the Jacobian matrix shows that the origin with eigenvalues r, −δ, −q is unstable. Once
more, E2

IV ≡ E2
I and infeasibility follows.

2.3.1 The prey-only equilibrium

At E1
IV (xIV 1, 0, 0), with xIV 1 = rβ−1 stability is ensured by

a2β2 + r2 + brβ > emrβmax

{

1

q
,
p

δ

}

. (2.28)
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2.3.2 The disease-free equilibrium

E3
IV (xIV 3, yIV 3, 0), with

yIV 3 =
1

m
[rx2

IV 3 + rbxIV 3 + ra2 − βx3
IV 3 − βx2

IV 3b− βxIV 3a
2]

and where xIV 3 is a real positive root of the quintic equation

h1Z
5β + (2h1βb− h1r)Z

4 + (2h1βa
2 + h1b

2β − 2h1rb)Z
3

+(2h1bβa
2 − h1b

2r − 2h1ra
2 − qm)Z2

+(h1a
4β − qbm− 2h1bra

2 + em2)Z − qa2m− h1a
4r = 0,

is feasible if
r > βxIV 3. (2.29)

The Jacobian matrix at E3
IV is denoted by JIV 3 = (ωij), i, j = 1, 2, 3 with the relevant

entries given in Appendix 4.6 . The characteristic equation also factors, giving an eigenvalue

λ yIV3 +
empxIV3

a2 + bxIV 3 + xIV3
2
− δ − h2yIV3

and a quadratic characteristic equation in τ

τ 2 − (ω11 + ω22)τ + ω11ω22 − ω21ω12 = 0

whose roots have negative real parts since ω11 < 0, ω22 < 0, ω21 > 0, ω12 < 0, assuming

a > xIV 3,
(r − 2βxIV 3)(a

2 + bxIV 3 + xIV 3
2)2

(a2 − xIV 3
2)yIV 3

≡ m[IV ] < m < m[IV ] (2.30)

≡ a2 + bxIV 3 + xIV 3
2

exIV 3

min

{

q + 2h1yIV 3,
δ + h2yIV 3 − λyIV 3

p

}

.

Conditions (2.30) thus ensure stability.

2.3.3 The healthy predator-free equilibrium

We now consider the point E4
IV (xIV 4, 0, zIV 4), with

zIV 4 =
1

pm
[x2

IV 4 + bxIV 4 + a2](r − xIV 4β).

Here xIV 4 is any real positive root of the equation

h2Z
5β + (2h2βb− h2r)Z

4 + (2h2βa
2 + h2b

2β − 2h2rb)Z
3

+(2h2bβa
2 − h2b

2r − 2h2ra
2 − δmp)Z2

+(−2h2bra
2 + em2p2 + h2a

4β − δbmp)Z − δa2mp− h2a
4r = 0

13



Note that by Descartes’ rule, at least one such root exists. E4
IV is feasible if zIV 4 ≥ 0 i.e.

for
r > xIV 4β. (2.31)

The characteristic equation stemming from the Jacobian at E4
IV , denoted by JIV 4 = (υij),

i, j = 1, 2, 3 factors to give the eigenvalue

υ22 =
emxIV4

xIV4
2 + bxIV4 + a2

− λ zIV4 − q − h1zIV4 ,

and the roots of the quadratic τ 2 − (υ11 + υ33)τ + υ11υ33 − υ13υ31 = 0. Take

a > xIV 4,
(r − 2βxIV 4)(a

2 + bxIV 4 + xIV 4
2)2

(a2 − xIV 4
2)pzIV 4

≡ m[IV1] < m < m[IV1] (2.32)

≡ a2 + bxIV 4 + xIV 4
2

exIV 4

min
{

(q + h1zIV 4 + λzIV 4), p
−1(δ + 2h2zIV 4)

}

to find that υ11 < 0, υ13 < 0, υ22 < 0, υ31 > 0 and υ33 < 0, conditions that by the
Routh-Hurwitz criterion thus ensure stability.

2.3.4 The coexistence equilibrium

In spite of the complexity of the system, the coexistence equilibrium can be analytically
determined. In view of this fact, although the expressions are involved we decided to report
them below. The population levels at E5

IV (xIV 5, yIV 5, zIV 5) are then

yIV 5 =
b1

m(a2 + x2
IV 5 + bxIV 5)λ(λ+ h1 − h2)

,

zIV 5 =
d1

(a2 + xIV 5b+ x2
IV 5)λ(λ+ h1 − h2)(h1p− λ− h1)

,

where the numerators b1 has a complicated expressions and given in Appendix 4.8.4.

Furthermore, xIV 5 is a real positive root of the equation

5
∑

i=0

AiI
i = 0, (2.33)

with coefficients given in Appendix 4.8.1. In general, this equation has five roots. The
sufficient conditions for which the equation (2.33) has a positive root are presented in
Appendix 4.8.2.

We summarize the behaviour of the system (2.27) around the equilibrium pointE5
IV (xIV 5, yIV 5, zIV 5)

by the following propositions whose Proofs are given in Appendix .
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Proposition 5. The equilibrium E5
IV is locally asymptotically stable if

a > xIV 5, h2 < λ < λ[IV ], µ[IV ] < β < µ[IV ] + h2
zIV 5

xIV 5

, (2.34)

λ[IV ] = min

{

h2

yIV 5

(yIV 5 + pzIV 5), p
−1(h2 − ph1)

}

,

µ[IV ] =
m(2xIV 5 + b)(yIV 5 + pzIV 5)

(a2 + bxIV 5 + xIV 5
2)2

.

Proposition 6. The coexistence equilibrium E5
IV is globally asymptotically stable if,

recalling the boundedness property of the prey population,

β > m
(pzIV 5 + yIV 5)(b+W + xIV 5)

a2(a2 + bxIV 5 + x2
IV 5)

, h1 + h2 > 2h1p, (2.35)

4h1

[

β −m
(pzIV 5 + yIV 5)(b+W + xIV 5)

a2(a2 + bxIV 5 + x2
IV 5)

]

(2.36)

> m2

(

(1 − e)(a2 + x2
IV 5) + bxIV 5 + emxIV 5(W + xIV 5)

a2(a2 + bxIV 5 + x2
IV 5)

)2

,

pm2

4

(

1 − e

a2 + bW +W 2
+

exIV 5(b+ xIV 5)

a2 + bW +W 2)(a2 + bxIV 5 + x2
IV 5)

)2

(2.37)

>
β(h1 + h2)

2
− m(b+ xIV 5)(yIV 5 + pzIV 5)(h1 + h2)

2(a2 + bW +W 2)(a2 + bxIV 5 + x2
IV 5)

.

Proposition 7. The system possesses a Hopf bifurcation around E5
IV when m passes

through mcr , where mcr satisfy the equality K1K2 = K3 and Ki’s satisfy the characteristic
equation of the system (2.27) at EIV

5 (xIV 5, yIV 5, zIV 5), that is,

ω̂3 +K1ω̂
2 +K2ω̂ +K3 = 0. (2.38)

Proof. The proof is given in Appendix 4.6.

3 Numerical simulations and discussion.

For the convenience of the reader, we report all the conditions of local and global stability
for the various equilibria in Tables 1 − 3 , including also Model III, which as mentioned is
the particular case for b = 0 of Model IV.

In all models, the trivial equilibrium is always unstable for all possible parameter values.
This is a good result, since it means that the ecosystem will never disappear.

The prey-only equilibrium in Models I and II is stable if P 1I and P 1II are smaller than 1.
Note that Model II is favoured for stability, in the sense that the half saturation constant
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helps in lowering the critical ratio P 1II . Thus, when predators experience satiation, mod-
elled by the Holling type II term, it is harder for them to invade the ecosystem. Prey in
such case thrives at the system’s carrying capacity. Other factors that favour the stabil-
ity of this equilibrium in both models in the same way, are a low predation rate m, low
conversion factor e, low hunting rate of infected predators, expressed by the parameter p.
Equivalently, we need large healthy q and infected δ predators’ mortalities. The role of the
prey reproduction rate r instead is not clear-cut in Model II, while we need it low in Model
I. This is quite unexpected, but it can be explained by the fact that if prey reproduce fast,
they favour the predators growth and thus ultimately the possibility of their establishing
themselves in the ecosystem. It is hard to compare the first pair of Models with the second
one. But for the second pair, it is clear that for Model IV stability is favoured, since a
positive value of b will help in satisfying it, even if the same condition does not hold for
Model III.

The prey-free equilibrium is infeasible in all the models. This makes sense since in absence
of prey, the predators have no source of food, and hence the latter must get extinguished,
first the healthy ones and then the infected ones.

From the feasibility conditions and the stability analysis of the equilibria, we observe that
the parameters λ,m, h1 and h2 play a crucial role in controlling the dynamical behaviour
of the models. In all the four models the trivial equilibrium is always an unstable saddle
for all parameter values.

Now E1
n is locally asymptotically stable if (P 1I) < 1, P 1II < 1, {a2β2+r2 > emrβmax

{

1
q
, p

δ

}

}

and {a2β2 + r2 + brβ > emrβmax
{

1
q
, p

δ

}

} for n =I, II, III, IV. Biologically, it implies that
if both the predation rate and the reduced factor of prey be low, then the healthy predator
and infected predator cannot survive and the system will be equilibrium only where prey

exists. From the fifth row of Table 1the stability conditions of E3
n are

[

r−2βxI3

yI3

< m < m[I] ≡ min
{

q+2h1yI3

exI3

, δ+h2yI3−λyI3

epxI3

}

]

,
[

(r−2βxII3)(a+xII3)
2

ayII3

< m < m[II] ≡ a+xII3

exII3

min
{

q + 2h1yII3,
δ+h2yII3−λyII3

p

}

]

,
[

(i) (r−2βxIII3)(a
2+xIII3

2)2

(a2
−xIII3

2)yIII3

≡ m[III] <

m < m[III] ≡ a2+xIII3
2

exIII3

min
{

q + 2h1yIII3,
δ+h2yIII3−λyIII3

p

}

,

(ii) a > xIII3

]

and
[

(i) (r−2βxIV 3)(a2+bxIV +xIV 3
2)2

(a2
−xIV 3

2)yIV 3

≡ m[IV ] < m < m[IV ] ≡ a2+bxIV 3+xIV 3
2

exIV 3

min
{

q + 2h1yIV 3,
δ+h2yIV 3−λyIV 3

p

}

,

(ii) a > xIV 3

]

, respectively which depend mainly predation rate m which also depends on

the reduced factor p and λ. It is observed that for the lower value of p and λ the prey
and healthy predator co-exist in the form of a stable equilibrium. But for the models II
and III depend upon the half saturation constant a. For the model IV the co-existence (of
prey and healthy predator) depends also the another ecological parameter b. Next from
the sixth row of the Table 1 with used notations δ[I] ≡ −emrh2+λempr+qh2β+qp2em2+h1empr

em2p+λβ+h1β
,

16



m[II1] ≡ min
{

(q+h1zII4+λzII4)(a+xII4)
exII4

,
(δ+2h2zII4)(a+xII4)

epxII4

}

,
(r−2βxIII4)(a

2+xIII4
2)2

(a2
−xIII4

2)pzIII4

≡ m[III1],

m[III1] ≡ a2+xIII4
2

exIII4

min {(q + h1zIII4 + λzIII4), p
−1(δ + 2h2zIII4)} ,

(r−2βxIV 4)(a2+bxIV 4+xIV 4
2)2

(a2
−xIV 4

2)pzIV 4

≡ m[IV1],m
[IV1]

≡ a2+bxIV 4+xIV 4
2

exIV 4

min {(q + h1zIV 4 + λzIV 4), p
−1(δ + 2h2zIV 4)} one can observe from the sta-

bility conditions of E4
n if the infection rate is too high and the predation rate moderate and

the intra and inter competition rate h2 very low then the healthy predator cannot survive
and the system converges to the equilibrium where prey and infected predator co-exist.

Successful observation of local stability of E5
n in the Table 1 allows the comparison of

stability for the four models I II III and IV. We can then compare the situation for global
stability of coexistence equilibrium for the different models.

To describe the coexistence of global stability for different models for comparison purposes
we set the fixed parameter values specified in Table 4 and vary only the hunting rate on
prey by healthy predator, m, and intra- and inter-specific competition rates h1, h2 of healthy
predator and infected predator, respectively. For the above set of values of the parameters
the coexistence equilibrium E5 will be globally asymptotically stable if we choose the value
of m as 1, 1.002, 1.5 and 1.7 for the model I, II, III, IV respectively. At the same time the
choosing set of values of h1 and h2 are {0.005, 0.0001, 0.00015, 0.00017 } and {0.04, 0.2,
0.3, 0.4}. In this case we observe that all the trajectories originating from any point of the
basin of attraction converges to the equilibrium points (1.85, 5.99, 1.01), (1.81, 3.58, 0.49)
and (1.86, 10.90, 0.34) up to two decimal places respectively for the models I, II, III, IV.
which means that the system is globally asymptotically stable for these models.

The comparison of global stability for the models I and II is relatively simple. It is worth
to compare the behaviours of models III and IV since both contain non monotonic response
functions (cf., [25], [26]). It is analytically very complicated to study the problem in the
parametrer space. But with numerical simulations, the parameter space m − h1 − h2 of
model IV has larger regions of global stability compared to the other three models. Similarly
the region of global stability of model III is larger than the one of model II. The range of
parameter values of the global stability region of model I is larger than the that of model
II. This is not surprising. Several researchers used Holling type IV non monotonic response
function motivating it as a group defence mechanism. Predation indeed decreases or is even
prevented when the prey are many, so that they can better defend themselves, (cf. [13],
[22], [35]). Our results indicate thus that in this way the interactions of predators and prey
are stabilized for a wide range of parameter values.

Also we compare the bifurcation behaviour for our four models in Figure 2 choosing the
same initial conditions. A general proof showing the existence of critical Hopf bifurcations
for all models is given in the Appendix 4.6. We also obtained phase portraits of global
stable behaviour of the four models but they are not reported here due to lack of space.

The model (2.27) is more general, we present the Hopf bifurcation analysis for this model
only in Proposition 7.

For numerical simulation we take m = 5.5, keeping the other parameter at the same value
as that of Fig. 2(iv). All the feasibility conditions of the interior equilibrium of the system
(2.27) hold; the co-existence equilibrium point is EIV

5 (1.62, 1.90, 0.79). We obtain here
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Interior
Equilibria

Conditions For Global Stability

E5
IV (i) b > a,

(ii) β > m
(pzIV 5+yIV 5)(b+xIV 5)

a2(a2+bxIV 5+x2

IV 5
)

,

(iii) 4h1

(

β −m
(pzIV 5+yIV 5)(b+W+xIV 5)

a2(a2+bxIV 5+x2

IV 5
)

)

>

(

m(a(1−e)(a2+x2

IV 5
)+emxIV 5(W+xIV 5)

a2(a2+bxIV 5+x2

IV 5
))

)2

,

(iv) pm2

4

(

(1−e)
a2+bW+W 2 + exIV 5(b+xIV 5)

(a2+bW+W 2)(a2+bxIV 5+x2

IV 5
)

)2

>
β(h1+h2)

2
− m(b+xIV 5)(yIV 5+pzIV 5)(h1+h2)

2(a2+bW+W 2)(a2+bxIV 5IV 5+x2

IV 5
)
,

and (v) h1 + h2 > 2h1p.

Table 1: Global stability conditions of the interior equilibrium E5
IV .

mcr = 5.9 and mmax = 6.3. The interior equilibrium point EIV
5 is asymptotically stable

when m = 5.5 < mcr. This situation is presented in (a) of Fig. 1in terms of solution curves.
Again when m lies between mcr and the maximum value of mcr then a stable bifurcating
limit cycle occurs as supercritical Hopf bifurcation (cf. Fig. 1 (b)). An extensive numerical
simulation shows that when the value of m is very close to mcr, the three populations
(prey, healthy predator and infected predator) take long time to become stable whereas
when m crosses the value mcr and becomes very close to mmax, the three populations
become unstable. Therefore we arrive at the following conclusion:

Proposition 8. In the interval [0,mmax], there exists a critical value mcr, where a super-
critical Hopf bifurcation occurs. For supercritical Hopf bifurcation in the interval [0,mmax]
the interior equilibrium point is asymptotically stable between 0 and mcr and for m lying
between mcr and mmax, a limit cycle occurs. On the other hand when m > mmax, the
equilibrium does not exist since the predation rate is too high.

An example of population dynamics for the Holling type IV response function phenomenon
is described by Tener [28]. Lone musk Ox can be successfully attacked by wolves. small
herds of musk Ox (2 to 6 animals) are attacked but with rare success. No successful attacks
have been shown in larger herds. Another example observed by Holms and Bethel [18] in-
volves certain insect individuals. Large swarms of insects make the individual identification
difficult for their predators.
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Functional
response
Equilibria

Model I(n=I) Model II(n=II) Model III(n=III) Model IV(n=IV)

E0
n Always unstable Always unstable Always unstable Always unstable

E1
n P 1I < 1. P 1II < 1. a2β2 + r2 >

emrβmax
{

1
q
, p

δ

}

.

a2β2 + r2

+ brβ >

emrβmax
{

1
q
, p

δ

}

.

E2
n Infeasible. — — —

E3
n r−2βxI3

yI3

< m < m[I].

(r−2βxII3)(a+xII3)
2

ayII3

< m < m[II].
(i) m[III] <

m < m[III],

(ii) a > xIII3.

(i) m[IV ] <

m < m[IV ]

(ii) a > xIV 3.
E4

n δ < δ[I]. (r−2βxII4)(a+xII4)
2

apyII4

< m < m[II1].
(i)m[III1] <

m <

m[III1], (ii)a >
xIII4.

(i) m[IV 1] <

m < m[IV 1]

(ii) a > xIV 4.

E5
n (i) r

2β
< xI5 <

µ[I],

(ii) h2 < λ <

(h2 +m),
(iii) δ > (λ −
h2)yI5+(p(λ+
h1)−2h2)zI5+
empxI5.

(i) a > xII5,

(ii) h2 < λ <

λ[II],

(iii) µ[II] <

β < µ[II] +
h2

zII5

xII5

.

(i) a > xIII5,

(ii) h2 < λ <

λ[III],

(iii) µ[III] <

β < µ[III] +
h2

zIII5

xIII5

.

(i) a > xIV 5,

(ii) h2 < λ <

λ[IV ],

(iii) µ[IV ] <

β < µ[IV ] +
h2

zIV 5

xIV 5

.

Table 2: Comparison of the global stability conditions of the various Equilibria; n denotes
the model number.
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Interior
Equilibria

Conditions For Global Stability

E5
I (a) λ+3h1

2(λ−h2)
≤ min

(

λ+h1+emp

2(λ−3h2+emp)
,

mp+2β)
2mp

)

,
(b) λ > h2.

E5
II (i) β > mpzII5+yII5

a(a+xII5)
,

(ii) 4h1

(

β −mpzII5+yII5

a(a+xII5)

)

>

(

m(a(1−e)+xII5)
a(a+xII5)

)2

,

(iii)

(

pm(1−e)
a+W

+ empxII5

(a+xII5)(a+W )

)(

(1−e)m
a+W

+ empxII5

(a+W )(a+xII5)

)

> 4 (h1+h2)
2

(

β − pmzII5+myII5

a(a+xII5)

)

,

(iv) h1 + h2 > 2h1p.
E5

III (i) β > m
(pzIII5+yIII5)(W+xIII5)

a2(a2+x2

III5
)

,

(ii) 4h1

(

β −m
(pzIII5+yIII5)(W+xIII5)

a2(a2+x2

III5
)

)

>

(

m((1−e)(a2+x2

III5
)+emxIII5(W+xIII5))

a2(a2+x2

III5
)

)2

,

(iii) pm2

4

(

(1−e)
a2+W 2 +

ex2

III5

(a2+W 2)(a2+x2

III5
)

)2

>
β(h1+h2)

2
− mxIII5(yIII5+pzIII5)(h1+h2)

2(a2+W 2)(a2+x2

III5
)

,
(iv) h1 + h2 > 2h1p.

E5
IV (i) β > m

(pzIV 5+yIV 5)(b+W+xIV 5)

a2(a2+bxIV 5+x2

IV 5
)

,

(ii) 4h1

(

β −m
(pzIV 5+yIV 5)(b+W+xIV 5)

a2(a2+bxIV 5+x2

IV 5
)

)

> m2

(

(1−e)(a2+x2

IV 5
)+bxIV 5+exIV 5(W+xIV 5)

a2(a2+bxIV 5+x2

IV 5
))

)2

,

(iii) pm2

4

(

(1−e)
a2+bW+W 2 + exIV 5(b+xIV 5)

(a2+bW+W 2)(a2+bxIV 5+x2

IV 5
)

)2

>
β(h1+h2)

2
− m(b+xIV 5)(yIV 5+pzIV 5)(h1+h2)

2(a2+bW+W 2)(a2+bxIV 5+x2

IV 5
)
,

(iv) h1 + h2 > 2h1p.

Table 3: Comparison of the conditions for global stability of the interior equilibria E5
I ,

E5
II ,and E5

III and E5
IV .

20



Variable/
parameter

Units Defination Default value

x number per unit designated
area

prey density ......

y number per unit designated
area

density of healthy predator ......

z number per unit designated
area

density of infected predator ......

r per day growth rate of prey 10.3

β per day intra-specific competition
rate of prey

5

a per day half saturation constant 1

b per day ecological parameter 1.5

p per day reduced factor 0.001

m per day predation rate ......

e per day conversion factor 0.7

h1 per day intra and inter specific com-
petition rate of healthy
predator

......

h2 per day intra and inter-specific com-
petition rate of infected
predator

......

λ per day force of infection/contact
rate

0.9

q per day death rate of healthy preda-
tor

0.00005

δ per day death rate of infected preda-
tor

2

Table 4: Variables and parameters used in the simulations.
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Figure 1: (i), (ii), (iii) and (iv) are the phase portrait of limit cycle oscillations of the system
(2.4), (2.15), (2.27) with b = 0, and (2.27) at the coexistence equilibria with fixed parameter
values β = 1.2, a = 2, h1 = 0.005, h2 = 0.002, λ = 0.9, e = 0.7, δ = 2 and the set of values r as
{3.27, 3.23, 3.3, 3.37} the set of values m as {2, 2, 2, 3} the set of values p as {0.201, 0.21, 0.3, 0.4}
and the set of values q as {0.0009, 0.00098, 0.001, 0.002} respectively.
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4 Appendix

4.1 Appendix: Boundedness of the solution

The boundedness of the solution (see [15] for details) can be shown in the following way.
In fact, the prey are bounded since

lim sup
t→+∞

x(t) <
r

β

and further, introducing the total environment population Ω = x+ y + z, for an arbitrary
η > 0 the inequality

dΩ

dt
+ ηΩ ≤ φ.

follows, from which then all solutions of the system (2.4) starting in R3
+ are confined in the

region

B =

{

(x, y, z) ∈ R3
+ : x+ y + z ≤ φ

η
+ ǫ for any ǫ > 0

}

.

Remark. This argument applies also to the models (2.15), (2.27) with minor changes and
will not be repeated.

The equilibria are the origin, always unstable, and five other points. Among these, note that
E2

I(0, yI2, zI2), cannot be feasible, because it should solve the equation −λz−q−h1(y+z) =
0, and this is not possible for both yI2 ≥ 0, zI2 ≥ 0.
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4.2 Appendix A: Local stability analysis of model I

For the proof of local stability, the concept of the second compound matrix is used. If
JI5 = (ξij), i, j = 1, 2, 3 represents the Jacobian of the model I, the second compound
matrix is

J [2] =









ξ11 + ξ22 ξ23 −ξ13
ξ32 ξ11 + ξ33 ξ12

−ξ31 ξ21 ξ22 + ξ33









. (4.1)

Note that in our case the Jacobian has the following entries

ξ11 = r − 2βxI5 −myI5 − pmzI5, ξ12 = −mxI5, ξ13 = −pmxI5,

ξ21 = emyI5, ξ22 = emxI5 − λzI5 − q − 2h1yI5 − h1zI5, ξ23 = −λyI5 − h1yI5,

ξ31 = empzI5, ξ32 = λzI5 − h2zI5, ξ33 = λyI5 + empxI5 − δ − h2yI5 − 2h2zI5.

Proof of Proposition 1.. Let D = diag(xI5, yI5, zI5). The matrix J [2](E5
I) is similar to

DJ [2](E5
I)D−1 = (dij), where d11 = ξ11 + ξ22, d22 = ξ11 + ξ33, d33 = ξ22 + ξ33 and

d12 = ξ23
zI5

yI5

, d13 = −ξ13
zI5

xI5

, d21 = ξ32
yI5

zI5

,

d23 = ξ12
yI5

xI5

, d31 = −ξ31
xI5

zI5

, d32 = ξ21
xI5

yI5

.

Hence J [2](E5
I) and DJ [2](E5

I)D−1 have the same eigenvalues. Since the diagonal elements
of DJ [2](E5

I)D−1 are negative, using Gershgorin’s theorem the eigenvalues have negative
real part if the matrix is row diagonally dominant. Set ω[I] = max{g1, g2, g3}, where
gk = dk1 + dk2 + dk3, k = 1, 2, 3 and specifically

g1 = r + (em− 2β)xI5 − yI5(m+ 2h1) − 2zI5(λ+ h1) − q,

g2 = ξ11 + ξ33 + (λ− h2 −m)yI5,

g3 = −empxI5 + emxI5 + ξ22 + ξ33.

When (2.10) and (2.11) hold true then ω[I] < 0, which implies diagonal dominance. Again
with these assumptions we find ξ11 < 0, ξ12 < 0, ξ13 < 0, ξ21 > 0, ξ22 < 0, ξ23 < 0, ξ31 > 0,
ξ32 > 0, ξ33 < 0 and ξ12(ξ23ξ31 − ξ21ξ33) < 0. Then we complete the proof by observing that

det(JI5) = = ξ11ξ22ξ33 − ξ11ξ32ξ23 + ξ13ξ21ξ32 − ξ13ξ31ξ22

+ξ12(ξ23ξ31 − ξ21ξ33) < 0.
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4.3 Appendix B: The Jacobian matrix of model II

The Jacobian of the model (2.15) is given by J(x, y, z) = (µij)3×3 where

µ11 = r − 2βx− my

a+ x
+

mxy

(a+ x)2 − pmz

a+ x
+

pmxz

(a+ x)2 ,

µ12 = − mx

a+ x
, µ13 = − pmx

a+ x
, µ21 =

emy

a+ x
− emxy

(a+ x)2 ,

µ22 =
emx

a+ x
− λz − q − h1 (y + z) − h1y, µ23 = −λy − h1y,

µ31 =
empz

a+ x
− empxz

(a+ x)2 , µ32 = λz − h2z,

µ33 = λy +
empx

a+ x
− δ − h2 (y + z) − h2z.

4.4 Appendix C: The proof of Proposition 3 and 4

4.4.1 The proof of Proposition 3

The proof of Proposition 3 is given by

Proof The signs of the entries of the Jacobian matrix JII5 = (φij), i, j = 1, 2, 3 can be
assessed as follows: φII11 < 0 when β > µ[II]; φ22 < 0; φ33 < 0; and finally φ12 < 0, φ13 < 0,
φ23 < 0, while φ32 > 0 for λ > h2, φ21 > 0, φ31 > 0. It follows that

tr(JII5) = −βxII5 +
m(yII5 + pzII5)

(a+ xII5)2
− h1yII5 − h2zII5 < 0,

MII5 ≡ (φ11φ22 − φ21φ12) + (φ11φ33 − φ13φ31) + (φ22φ33 − φ32φ23) > 0,

while
det(JII5) = φ11(φ22φ33 − φ23φ32) + φ12(φ31φ23 − φ21φ33) < 0

if φ31φ23 > φ21φ33, which follows from the condition λ < (h2−h1p)p
−1. Finally, we see that

CII5 ≡ tr(JII5)MII5 − det(JII5)

= φ11
2(φ22 + φ33) + φ22

2(φ11 + φ33) + φ33
2(φ11 + φ22) + 2φ11φ22φ33

−φ13(φ33φ31 + φ21φ32) − φ23φ32(φ33 − φ11) − φ12φ31φ23

−φ11(φ32φ23 + φ31φ13 + φ12φ21) − φ22φ32φ23 − φ22φ12φ21 < 0

if φ33 − φ11 < 0, and φ33φ31 + φ21φ32 < 0 which both follow from the conditions (2.22).
Hence the Routh-Hurwitz conditions hold so that E5

II is locally asymptotically stable.
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4.4.2 The proof of Proposition 4

Proof of proposition 4. Let R3
x = [UT ≡

(

x, y, z) ∈ R+
x , x ≥ 0, y ≥ 0, z ≥ 0] and consider

the scalar function LII : R3
x → R, dLII

dt
=

∑3
k=1

d
dt
LIIk(x, y, z), given by

LII(t) =

(

x− xII5 − xII5 ln
x

xII5

)

+

(

y − yII5 − yII5 ln
y

yII5

)

+

(

z − zII5 − zII4 ln
z

zII5

)

Its derivative of along solutions of the system (2.15) gives the quadratic form

dLII

dt
= −UTMIU,

where

MII =









AII HII GII

HII BII FII

GII FII CII









, (4.2)

and whose elements are

AII = β − m(pzII5 + yII5)

(a+ xII5)(a+ x)
, HII =

m

2

(

(1 − e)

a+ x
+

exII5

(a+ x)(a+ xII5)

)

, BII = h1,

FII =
h1 + h2

2
, GII =

mp(1 − e)

2(a+ x)
+

empxII5

2(a+ x)(a+ xII5)
CII = h2.

In fact,

dLII1

dt
= (x− xII5)

(

βxII5 +
myII5

a+ xII5

+
pmzII5

a+ xII5

− βx− my

a+ x
− pmz

a+ x

)

= (x− xII5)

(

−β(x− xII5) −m
y − yII5

a+ x
− pm

z − zII5

a+ x
+m

yII5(x− xII5)

(a+ xII5)(a+ x)

+pmzII5
x− xII5

(a+ xII5)(a+ x)

)

;

dLII2

dt
= (y − yII5)

(

emx

a+ x
− λz − q − h1(y + z)

)

= (y − yII5)

(

em(x− xII5)

a+ x
− (λ+ h1)(z − zII5) − h1(y − yII5) −

emxII5(x− xII5)

(a+ x)(a+ xII5)

)

;

dLII3

dt
= (z − zII5)

(

λy +
empx

a+ x
− δ − h2(y + z)

)

= (z − zII5)

(

emp(x− xII5)

a+ x
+ (λ− h2)(y − yII5) − h2(z − zII5) −

empxII5(x− xII5)

(a+ x)(a+ xII5)

)

.

Thus, if the matrix MII is positive definite then dLII

dt
< 0. For that, we require all principal
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minors of MII to be positive, namely

PII1 ≡ AII = β − pmzII5 +myII5

(a+ xII5)(a+ x)
, PII2 ≡ AIIBII −HII

2,

PII3 ≡ AIIBIICII + 2FIIGIIHII − AIIFII
2 −BIIGII

2 − CIIHII
2

= CII(AIIBII −HII
2) +GII(FIIHII −BIIGII) + FII(GIIHII − AIIFII).

Now differentiating PII1 when x > 0, we find

A′

II(x) =
pmzII5 +myII5

(a+ xII5)

1

(a+ x)2
> 0,

so that A′

II(x) is a monotonic increasing function. Therefore by (2.23) we get AII(x) >
A(0) = β − (pmzII5 +myII5)[a(a + xII5)]

−1 > 0 and thus PII1 = AII > 0. Next by (2.24)
we find

PII2 =

(

β − pmzII5 +myII5

(a+ xII5)(a+ x)

)

h1 −
m2

4

(

1 − e

a+ x
+

exII5

(a+ x)(a+ xII5)

)2

> 0.

Obviously FII > 0. For PII3, by (2.25), we have

GIIHII − AIIFII =

[

mp(1 − e)

2(a+ x)
+

empxII5

2(a+ x)(a+ xII5)

]

m

2

[

1 − e

a+ x
+

exII5

2(a+ x)(a+ xII5)

]

−
[

β − pmzII5 +myII5

(a+ xII5)(a+ x)

]

h1 + h2

2

>

[

pm(1 − e)

a+W
+

empxII5

(a+ xII5)(a+W )

][

(1 − e)m

a+W

+
empxII5

(a+W )(a+ xII5)

]

−4
h1 + h2

2

[

β − pmzII5 +myII5

a(a+ xII5)

]

> 0,

so that FII(GIIHII − AIIFII) > 0. Again for PII3 by (2.26) we have

FIIHII −BIIGII =

[

m(1 − e)

4(a+ x)
+

emxII5

4(a+ x)(a+ xII5)

][

h1 + h2 − 2h1p

]

> 0.

so that also GII(FIIHII − BIIGII) > 0. Combining these results it follows that PII3 >

0. Hence the symmetric matrix MII is positive definite, implying dLII

dt
< 0 along the

trajectories and dLII

dt
= 0, when (x, y, z) = (xII5, yII5, zII5). Thus, LII is a Lyapunov

function and global stability follows.
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4.5 Appendix D: The Jacobian of the model (2.27)

The Jacobian of the system (2.27) is given by J(x, y, z) = (κij)3×3 with entries given by
κ23 = −λ y − h1y, κ32 = λ z − h2z and

κ11 = r − 2β x− m(y + pz)

x2 + bx+ a2
+
mx(y + pz) (2x+ b)

(x2 + bx+ a2)2 ,

κ13 = − pmx

x2 + bx+ a2
, κ21 =

emy

x2 + bx+ a2
− emxy (2x+ b)

(x2 + bx+ a2)2 ,

κ22 =
emx

x2 + bx+ a2
− λ z − q − h1 (y + z) − h1y,

κ31 =
empz

x2 + bx+ a2
− empxz (2x+ b)

(x2 + bx+ a2)2 , κ12 = − mx

x2 + bx+ a2
,

κ33 = λ y +
empx

x2 + bx+ a2
− δ − h2 (y + z) − h2z,

4.6 Appendix E: The proofs of the propositions 5, 6 and 7

4.6.1 The proof of the proposition 5:

Proof . The Jacobian is now a full matrix JIV 5 =
(

φ̄ij

)

, i, j = 1, 2, 3 If we assume a > xIV 5,
β > µ[IV ], and λ > h2 the components of the Jacobian are all negative but for φ̄32, φ̄21, φ̄31.
It then follows that tr(JIV 5) < 0, MIV 5 ≡ (φ̄11φ̄22 − φ̄21φ̄12) + (φ̄11φ̄33 − φ̄13φ̄31) + (φ̄22φ̄33 −
φ̄32φ̄23) > 0 and

det(JIV 5) = φ̄11(φ̄22φ̄33 − φ̄23φ̄32) + φ̄12(φ̄31φ̄23 − φ̄21φ̄33)

+φ̄13(φ̄32φ̄21 − φ̄31φ̄22),

CIV 5 ≡ tr(JIV 5)MIV 5 − det(JIV 5)

= φ̄2
11(φ̄22 + φ̄33) + φ̄2

22(φ̄11 + φ̄33) + φ̄2
33(φ̄11 + φ̄22) + 2φ̄11φ̄22φ̄33

−φ̄13(φ̄33φ̄31 + φ̄21φ̄32) − φ̄23φ̄32(φ̄33 − φ̄11) − φ̄12φ̄31φ̄23

−φ̄11(φ̄32φ̄23 + φ̄31φ̄13 + φ̄12φ̄21) − φ̄22φ̄32φ̄23 − φ̄22φ̄12φ̄21.

Now, det(JIV 5) < 0 if the second term in its expression is negative, i.e., if φ̄31φ̄23 > φ̄21φ̄33.
But this follows from the first condition (2.34). Finally, CIV 5 < 0 if (φ̄33 − φ̄11) < 0 and
(φ̄33φ̄31 + φ̄21φ̄32) < 0 which also follows from the conditions (2.34). Hence the Routh-
Hurwitz conditions hold, and local asymptotic stability follows.

4.6.2 The proof of the proposition 6

Proof. Again, consider the scalar function LIV : R3
x → R

LIV (t) =

(

x−xIV 5 −xIV 5 ln
x

xIV 5

)

+

(

y− yIV 5 − yIV 5 ln
y

yIV 5

)

+

(

z− zIV 5 − zIV 5 ln
z

zIV 5

)
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with derivative along solution trajectories of (2.27) which are given by

dLIV 1

dt
= (x− xIV 5)

2

(

−β − myIV 5(b+ x+ xIV 5)

(a2 + bx+ x2)(a2 + bxIV 5 + x2
IV 5)

+
pmzIV 5(b+ x+ xIV 5)

(a2 + bx+ x2)(a2 + bxIV 5 + x2
IV 5)

)

−m(y − yIV 5)(x− xIV 5)

(a2 + bx+ x2)

−pm(z − zIV 5)(x− xIV 5)

(a2 + bx+ x2)

dLIV 2

dt
= (y − yIV 5)

(

em(x− xIV 5)

a2 + bx+ x2
− (λ+ h1)(z − zIV 5) − h1(y − yIV 5)

− emxIV 5(x− xIV 5)(b+ x+ xIV 5)

(a2 + bx+ x2)(a2 + bxIV 5 + x2
IV 5)

)

dLIV 3

dt
= (z − zIV 5)

(

emp(x− xIV 5)

a2 + bx+ x2
+ (λ− h2)(y − yIV 5) − h2(z − zIV 5)

− empxIV 5(x− xIV 5)(b+ x+ xIV 5)

(a2 + bx+ x2)(a2 + bxIV 5 + x2
IV 5)

)

and which can be written in matrix notation as

dLIV

dt
= −UTMIVU.

where the symmetric quadratic form MIV is given by the expression (4.2) with obvious
changes in the subscripts. The entries now are

AIV = β − m(pzIV 5 + yIV 5)(b+ x+ xIV 5)

(a2 + bx+ x2)(a2 + bxIV 5 + x2
IV 5)

, BIV = h1, CIV = h2,

HIV =
m

2

(

1 − e

a2 + bx+ x2
+

exIV 5(b+ x+ xIV 5)

(a2 + bx+ x2)(a2 + bxIV 5 + x2
IV 5)

)

,

FIV =
h1 + h2

2
, GIV =

mp(1 − e)

2(a2 + bx+ x2)
+

empxIV 5(b+ x+ xIV 5)

2(a2 + bx+ x2)(a2 + bxIV 5 + x2
IV 5)

Its principal minors can be shown to be all positive. In fact

PIV 1 = AIV (x) = β− m(pzIV 5 + yIV 5)(b+ x+ xIV 5)

(a2 + bxIV 5 + x2
IV 5)(a

2 + bx+ x2)
> β − m(pzIV 5 + yIV 5)(b+W + xIV 5)

(a2 + bxIV 5 + x2
IV 5)a

2
,

therefore by the first (2.35), AIV (x) > 0. By (2.36)

PIV 2 = AIVBIV −HIV
2 =

(

β − m(pzIV 5 + yIV 5)(b+ x+ xIV 5)

(a2 + bxIV 5 + x2
IV 5)(a

2 + bx+ x2)

)

h1

−m
2

4

(

(1 − e)

a2 + bx+ x2
+

exIV 5(b+ x+ xIV 5)

(a2 + bx+ x2)(a2 + bxIV 5 + x2
IV 5)

)2

> 0.
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Clearly FIV > 0. For PIV 3, we have by (2.37),

GIVHIV − AIV FIV > −β(h1 + h2)

2
+

m(b+ xIV 5)(yIV 5 + pzIV 5)(h1 + h2)

2(a2 + bW +W 2)(a2 + bxIV 5 + x2
IV 5)

+
pm2

4

( 1 − e

a2 + bW +W 2
+

exIV 5(b+ xIV 5)

a2 + bW +W 2)(a2 + bxIV 5 + x2
IV 5)

)2

> 0

and FIV (GIVHIV − AIV FIV ) > 0. Further for PIV 3, we have by the third (2.35)

FIVHIV −BIVGIV

=

[

m(1 − e) +
emxIV 5(b+ x+ xIV 5)

(a2 + bxIV 5 + x2
IV 5)

]

h1 + h2 − 2h1p

4(a2 + bx+ x2)
> 0

and using GIV > 0 we find GIV (FIVHIV − BIVGIV ) > 0, so that combining these results
PIV 3 > 0. Hence MIV is positive definite, the derivative of LIV is negative along the
trajectories and vanishes at EIV 5. Thus, LIV is a Lyapunov function and global stability
follows.

4.6.3 The proof of the proposition 7

Proof. The characteristic equation of the system (2.27) at EIV
5 (xIV 5, yIV 5, zIV 5) is

ω̂3 +K1ω̂
2 +K2ω̂ +K3 = 0,

where K1 ≡ −tr(JIV 5), K2 ≡ MIV 5, K3 ≡ −det(JIV 5) and K1K2 − K3 ≡ −CIV 5. Hopf
bifurcation will occur if and only if there exists m = mcr such that (i) K1(mcr)K2(mcr) =
K3(mcr) with K1(mcr), K2(mcr), K3(mcr) > 0 and (ii) d

dm
(Re(ω̂(m)))|m=mcr

6= 0. Now
when m = mcr, K1K2 = K3 with K1, K2, K3 > 0. The characteristic equation is given by

(ω̂2 +K2)(ω̂ +K1) = 0, (4.3)

with roots ω̂1 = i
√
K2, ω̂2 = −i

√
K2 and ω̂3 = −K1, so that there exists a pair of purely

imaginary eigenvalues and a strictly negative real eigenvalue. For m in a neighbourhood of
mcr, the roots have the form ω̂1(mcr) = q1(m)+ iq2(m), ω̂2 = q1(m)− iq2(m), and ω̂3(m) =
−q3(m) where q1(m), q2(m), and q3(m) are real. Next, we shall verify the transversality
condition

d

dm
(Re(ω̂j(m)))|m=mcr

6= 0, j=1,2. (4.4)

Substituting ω̂(m) = q1(m)+ iq2(m) into the characteristic equation and taking the deriva-
tive we have

Ψ̂(m)q̇1(m) − Φ̂(m)q̇2(m) + Θ̂(m) = 0, Φ̂(m)q̇1(m) + Ψ̂(m)q̇2(m) + Γ̂(m) = 0,
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where

Ψ̂(m) = 3(q1(m))2 + 2K1(m)q1(m) +K2(m) − 3(q2(m))2, (4.5)

Φ̂(m) = 6q1(m)q2(m) + 2K1(m)q2(m), (4.6)

Θ̂(m) = (q1(m))2K̇1(m) + q1(m)K̇2(m)

+ K̇3(m) − K̇1(m)(q2(m))2, (4.7)

and

Γ̂(m) = 2q1(m)q2(m)K̇1(m) + K̇2(m)q2(m)

Now

d

dm
(Re(ω̂j(m)))|m=mcr

= −(Φ̂Γ̂ + Ψ̂Θ̂)

Ψ̂2 + Φ̂2
|m = mcr (4.8)

6= 0

and q3(mcr) = −K1(mcr)

6= 0. (4.9)

This completes the proof.

4.7 Appendix F: ωij’s

The ωij’s are given by

ω11 = r − 2β xIV3 − myIV3

xIV3
2 + bxIV3 + a2

+
mxIV3 yIV3 (2 xIV3 + b)

(xIV3
2 + bxIV3 + a2)2 ,

ω12 = − mxIV3

xIV3
2 + bxIV3 + a2

,

ω21 =
emyIV3

xIV3
2 + bxIV3 + a2

− emxIV3 yIV3 (2 xIV3 + b)

(xIV3
2 + bxIV3 + a2)2 ,

ω22 =
emxIV3

xIV3
2 + bxIV3 + a2

− q − 2h1yIV3 .

4.8 The coefficients Ai’s and positive root conditions

4.8.1 The Ai’s

The Ai’s are defined below:

33



A5 = λβh1 − h2βλ+ λ2β,

A4 = h2rλ− 2h2βbλ+ 2λ2βb− λ2r + 2λβbh1 − λrh1,

A3 = λ2b2β − 2λ2rb− 2λrbh1 + λb2βh1 + 2h2rbλ+ 2λβa2h1

+2λ2βa2 − 2h2βa
2λ− h2b

2βλ,

A2 = δmλ− 2λ2ra2 − δmh1p+ δmh1 + 2λ2bβa2 − h2qm

−λ2b2r − 2λra2h1 + h2pqm− λb2rh1 + 2λbβa2h1

−2h2bβa
2λ+ 2h2ra

2λ− λpqm+ h2b
2rλ,

A1 = h2pqbm+ λa4βh1 − 2λbra2h1 − h2a
4βλ+ 2h2bra

2λ

−h2pem
2 − δbmh1p− λpqbm− h2qbm+ em2p2h1

−em2ph1 − 2λ2bra2 + h2em
2 + δbmh1 + λ2a4β + δbmλ,

A0 = h2pqa
2m− λpqa2m− δa2mh1p− λ2a4r + δa2mh1

−λa4rh1 − h2qa
2m+ δa2mλ+ h2a

4rλ.

4.8.2 Condition for positive root of (2.33)

We find sufficient conditions for it to have a positive real root of the equation (2.33). Assume
that there are two pairs of complex conjugate roots ω1, ω1

∗ and η1, η1
∗. Each pair arises

from a suitable quadratic with negative discriminant, respectively (I − ω1)(I − ω1
∗) =

I2 − 2Re(ω1)I + |ω1|2, (I − η1)(I − η1
∗) = I2 − 2Re(η1)I + |η1|2. Let m1 = −2Re(ω1),

n1 = |ω1|2 > 0, u = −2Re(η1) and v = |η1|2 > 0. Equation (2.33) will then have the
following factorization, where α ≡ I5 is the sought real root,

5
∑

i=0

AiI
i = A5(I

2 +m1I + n1)(I
2 + uI + v)(I − α) (4.10)

= A5

(

I5 + (m1 + u− α)I4 + (v + n1 +m1u−m1α− uα)I3

+(m1v + n1u− n1α−m1uα− vα)I2 + (n1v − αm1v − n1uα)I − n1vα
)

.

Equating coefficients of like powers on the left and the right we find

α = m1 + u− A4

A5

= −
(

A4

A5

+ 2Re(η1) + 2Re(ω1)

)

=
−A0

n1vA5

=
−A0

A5|ω1|2|η1|2
. (4.11)

For feasibility of I5, we need α > 0, i.e. feasibility of the interior equilibrium is given by

λ > h2 − h1,
δ[4]

δ[5]
< δ <

δ[3]

δ[6]
(4.12)
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with

δ[4] = x2
IV 5h2q + xIV 5emph1 + pmxIV 5eλ− xIV 5h2em+ xIV 5h2qb

+h2qa
2,

δ[5] = x2
IV 5λ+ x2

IV 5h1 + xIV 5bh1 + λbxIV 5 + a2λ+ a2h1,

δ[6] = (a2h2
1(1 − p) + a2λh1) + xIV 5h1bλ+ x2

IV 5(h
2
1 + λh1 − h2

1p) + xIV 5h
2
1b(1 − P ),

δ[3] =
(

−a2λ2q − x2
IV 5λ

2q + xIV 5emh1h2p+ xIV 5h1λpqb

−xIV 5h1h2pqb− a2h1h2pq + a2h1λpq − x2
IV 5h1h2pq + x2

IV 5h1λpq

−xIV 5h
2
1emp

2 + xIV 5h2λqb− xIV 5h1h2em− xIV 5h2λem

+a2h1h2q + xIV 5h1h2qb− xIV 5λh1qb+ xIV 5λh1em+ xIV 5h
2
1emp− a2λqh1

+a2λh2q − x2
IV 5h1λq + x2

IV 5h1h2q + x2
IV 5λh2q + xIV 5λ

2em− xIV 5λ
2qb).

4.8.3 Proof of Proposition 2

Proof of Proposition 2. Let R3
x = {

(

x, y, z) ∈ R+
x , x ≥ 0, y ≥ 0, z ≥ 0}, consider the

scalar function LI : R3
x → R defined by

LI(t) = k1

(

x− xI5 − xI5 ln
x

xI5

)

+
1

2

(

y − yI5 − yI5 ln
y

yI5

)

+ k3

(

z − zI5 − zI4 ln
z

zI5

)

.

(4.13)
The derivative of Eq. (4.13) along the solutions of (2.4) is

dLI

dt
=
dLI1(x, y, z)

dt
+
dLI2(x, y, z)

dt
+
dLI3(x, y, z)

dt
.

Now

dLI1

dt
= k1(x− xI5)(r − βx−my − pmz)

= k1(x− xI5)[−β(x− xI5) −m(y − yI5) − pm(z − zI5)],

dLI2

dt
=

1

2
(y − yI5)(emx− λz − q − h1(y + z))

=
1

2
(x− xI5)[em(x− xI5) − (λ+ h1)(z − zI5) − h1(y − yI5)],

dLI3

dt
= k3(z − zI5)[λy + empx− δ − h2(y + z)]

= k3(z − zI5)[emp(x− xI5) + (λ− h2)(y − yI5) − h2(z − zI5)].
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Therefore

dL

dt
= −k1β(x− xI5)

2 + (
em

2
−mk1)(x− xI5)(y − yI5) + (k3emp− pmk1)(x− xI5)(z − zI5)

+

[

k3(λ− h2) −
λ+ h1

2

]

(y − yI5)(z − zI5) −
h1

2
(y − yI5)

2 − h2k3(z − zI5)
2

≤
[

k3emp− pmk1

2
− k1β

]

(x− xI5)
2 +

[

k3
λ− h2

2
− λ+ h1

4

−h1

2

]

(y − yI5)
2 +

[

k3
λ− h2

2
− λ+ h1

4
− h2k3

+
k3emp− pmk1

2

]

(z − zI5)
2 ≤ 0,

having taken

k1 =
e

2
, k3 =

λ+ 3h1

2(λ− h1)
, k3 ≤

λ+ h1 + emp

2(λ− 3h2 + emp)
, k3 ≤

mp+ 2β

2mp
,

which correspond to the assumptions (2.13), (2.14). Also the derivative vanishes only at
the equilibrium E5

I . Thus, LI is a Lyapunov function and by Lasalle theorem

global stability follows.

4.8.4 The b1 is given by

b1 = x2
IV 5mδ(λ+ h1) − x2

IV 5h2qm− xIV 5em
2ph1 + xIV 5δbmh1 − pm2xIV 5eλ

+xIV 5h2em
2 +mλδbxIV 5 − xIV 5mh2qb+ δa2mλ+ δa2mh1 − h2qa

2m,

d1 = a2λ2q + a2δh2
1 + x2

IV 5λ
2q + x2

IV 5δh
2
1 − xIV 5emh1h2p− xIV 5h1λpqb

+xIV 5h1h2pqb+ a2h1h2pq − a2h1λpq + x2
IV 5h1h2pq − x2

IV 5h1λpq

+xIV 5h
2
1emp

2 + xIV 5h1δbλ− xIV 5h2λqb− xIV 5h
2
1δbp+ xIV 5h1h2em

+xIV 5h2λem− xIV 5h1h2qb+ xIV 5λh1qb− xIV 5λh1em− xIV 5h
2
1emp

+a2λδh1 + a2λqh1 − a2h1h2q − a2h2
1δp− a2λh2q + x2

IV 5δλh1 + x2
IV 5h1λq

−x2
IV 5h1h2q − x2

IV 5h
2
1δp− x2

IV 5λh2q − xIV 5λ
2em+ xIV 5λ

2qb+ xIV 5h
2
1δb

.
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