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Travelling waves in plankton dynamics

M. Semplice1, E. Venturino1 ∗

1 Dipartimento di Matematica “Giuseppe Peano”,
Università di Torino, Italy.

Abstract. A recently proposed model for the investigation of diffusivity in planktonic sys-
tems containing toxin-producing phytoplanktons is here reconsidered. We show the existence of
planktonic travelling waves. Numerical simulations validate the analytical findings, to elucidate
the sensitivity of the results in dependence of the diffusion coefficients.

Keywords and phrases: competition models, food web, toxic phytoplankton, minimal mod-
els

Mathematics Subject Classification: 92D25, 92D40, 35Q92

1. Introduction

In the past quarter of century research on plankton dynamics has become relevant, both at the biological
level, as well as from the modelling point of view. Plankton has indeed a paramount importance in the
aquatic food webs, since it represents the lower trophic level in such chains. Mathematical models for
planktonic systems including space dependence often lead to the discovery of insurgences of patterns, see
the second half of [7] for an account of these topics, both from the deterministic and stochastic points of
view.

A phenomenon that has negative impact on tourism and the fisheries industries is due to red tides,
the sudden blooms of algae, [1, 6, 11]. Some species of phytoplankton can release poisons that affect
zooplankton as well as possibly, directly or indirectly, also fish. Recent investigations have shown that
movement can sustain inhomogeneous distribution levels of plankton communities composed of non-
toxic phytoplankton, toxic phytoplankton and zooplankton, [3, 10]. An idea that has been proposed
for explaining the insurgence of red tides is that they are side effects caused by these toxin producing
phytoplanktons, [4, 5, 8, 9].

In this paper we develop further the work undertaken in [2] on diffusive plankton movements, for
which the action of the toxin-producing phytoplankton not only damages the grazers, but it can also
cause spatial inhomogeneities. In [2] the steady states of this plankton model have been investigated
and the corresponding spatiotemporal patterns discovered. Here, we study the possible insurgence of
planktonic travelling waves, that ultimately produce these steady state distributions.

The results show that when a new species appears at a single location in a system that is at equilibrium,
it may originate an invading wave. We confirm previous findings and exhibit traveling waves that leave
behind them the non spatially-uniform coexistence equilibrium of the toxic model.

∗Corresponding author. E-mail: matteo.semplice@unito.it, ezio.venturino@unito.it
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The paper has the following structure. The next Section presents the model, which is analysed in
Section 3. Travelling waves are investigated in Section 4 for the nontoxic model and in Section 5 for the
toxic one. Then numerical simulations follow, to substantiate and extend the analytical findings. The
sensitivity of the results on the diffusion coefficients is also investigated.

2. The population model

We consider a model for three interacting plankton species of the form:

∂pk

∂t
= fk(p) +Dk∆pk, k = 1, 2, 3 (2.1)

where ∆ represents the Laplacian and p(t, x) = (p1(t, x), p2(t, x), p3(t, x)) are the densities of each popu-
lation at location x in space, Dk are diffusion coefficients and the reaction terms described by fk model the
interactions among the populations. Since (2.1) represents a population model, the densities must be non-

negative, pi(t, x) ≥ 0, i = 1, 2, 3 for (t, x) ∈ {R+×R+}, as well as the initial conditions, pi(0, x) = p
(0)
i (x)

where the latter represent given functions.
More precisely we consider the model studied in [2] where p1 and p2 are phytoplankton species and

p3 reprents zooplankton that feeds on the other two. In [2] two versions of the model are considered: the
case where p2 is toxic for the zooplankton is compared to the standard situation.

f
(std)
1 (p) = f

(tox)
1 (p) = p1

[
r1

(
1 −

p1 + ψ1p2

K

)
− α1p3

]
(2.2)

f
(std)
2 (p) = f

(tox)
2 (p) = p2

[
r2

(
1 −

p2 + ψ2p1

K

)
− α2p3

]

f
(std)
3 (p) = p3 (βp1 − c+ δp2)

f
(tox)
3 (p) = p3

(
βp1 − c−

θp2
2

m+p2

)

In these models it is assumed that both harmless and toxic phytoplankton live in the same environment
and share common resources, for which the first two equations in (2.2) exhibit the same carrying capacity
K. They do reproduce at different rates, however. Respectively, the latter are r1 and r2. The coefficient ψ1

measures in a sense the competition ability of the phytoplankton p2 over the phytoplankton population p1,
or in other words the damage that the former inflicts to the latter. A similar description holds conversely
for ψ2. The parameters αi, i = 1, 2 represent the grazing rates of zooplankton over each phytoplankton
population. The p1 biomass is then converted into new zooplankton via the uptake rate β. The natural
zooplankton mortality is denoted by c. The last terms in the last two equations of (2.2) differ in sign, as
they model two different situations. The former describes the standard situation, p2 is converted into new
zooplankton biomass at rate δ. The latter instead states that toxic phytoplankton kills the zooplankton
at rate θ. In this case, also the functional form is different. In [2] the linear form has been chosen for the
standard case, while the multiplier

p2

m+ p2

has the form of a Holling type II response function, where m represents the half-saturation constant. Thus
it tends to vanish for a small toxic phytoplankton population, while it exhibits a saturation phenomenon
when the population becomes very large. Hence, the multiplier is not constant, but an implicit nonlinear
function of time. The reason might be due to the fact that for the poison to be effectively released, a small
number of toxic phytoplankton is not sufficient. At the same time, when the harmful phytoplanktons are
in large numbers, the assumption in (2.2) is that there is a maximal toxin release rate. Other options
could have been simply again a linear rate or, alternatively, a Holling type II response function, for which
the square in the numerator would not appear in the last equation of (2.2). Taking these models from the
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Figure 1. Threshold values of the diffusion coefficients for the stability of the spatially
stable uniform coexistence equilibrium in the toxic model. Left: threshold for D1 as a
function D2 and D3. Right: threshold for D2 as a function D1 and D3. In the shaded
region on the right, the stable coexistence equilibrium in always non-uniform.

available literature, in this paper we investigate how the spatial configurations of these systems evolve in
time, disregarding the fact that they do not contain the same functional response.

In [2] it is shown that both models admit a spatially uniform stable state corresponding to a nontrivial
coexistence equilibrium of the three species, but that in the scenario where the second phytoplankton
species is toxic, this is stable only if the mobility D1 of the nontoxic prey is smaller than a threshold
value that depends on the parameters in the reaction terms and on the other two diffusion coefficients.
Figure 1 depicts such threshold as a function of D2 and D3 for the values of the parameters used in [2]
and in the numerical tests of this paper (see Sec. 6)

3. Travelling waves

In this paper we concentrate on the regimes where a spatially uniform coexistence equilibrium is spatially
stable, i.e. we restrict to D1 small enough in the toxic scenario, and show that travelling wave solutions
representing the invasion of the spatial domain by the p2 species are allowed in the model.

By travelling wave solution we mean a solution of the form

pk(t, x) = p̂k(x− vt) = Pk(s) (3.1)

for some constant speed v with p̂k constant away from the origin and “linking” the initial data with the
stable equilibrium:

lim
ξ→−sgn(v)·∞

p̂k(ξ) = p
eq
k lim

ξ→+sgn(v)·∞
p̂k(ξ) = pinitial

k

Ecologically, this means that the appearence of individuals of the p2 population, for instance, in a given
domain (where p1 and p3 are in equilibrium) gives rise to an invasion front moving at constant speed and
separating the initial state (ahead of the front) and the nontrivial equilibrium (behind the front).

On differentiating (3.1) we have

∂p̂k

∂t
= −vP ′

k,
∂2p̂k

∂x2
= P ′′

k
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We can now rewrite the first two equations in the systems in terms of the new functions Pk as follows

−vP ′

1 = P1

[
r1 −

r1

K
(P1 + ψ1P2) − α1P3

]
+D1P

′′

1 (3.2)

−vP ′

2 = P2

[
r2 −

r2

K
(P2 + ψ2P1) − α2P3

]
+D2P

′′

2

while the third equation in the non-toxic case is

−vP ′

3 = P3 [βP1 + δP2 − c] +D3P
′′

3 (3.3)

and in the toxic case instead is

−vP ′

3 = P3

[
βP1 −

θ

m+ P2
P 2

2 − c

]
+D3P

′′

3 . (3.4)

Defining Qk = P ′

k for k = 1, 2, 3, we obtain the systems

P ′

k = Qk (3.5)

Q′

1 =
1

D1
P1

[
α1P3 +

r1

K
(P1 + ψ1P2) − r1

]
−

v

D1
Q1

Q′

2 =
1

D2
P2

[
α2P3 +

r2

K
(P2 + ψ2P1) − r2

]
−

v

D2
Q2

Q′

3 =
1

D3
P3 [c− βP1 − δP2] −

v

D3
Q3,

in the non-toxic case and instead for the toxic case

P ′

k = Qk (3.6)

Q′

1 =
1

D1
P1

[
α1P3 +

r1

K
(P1 + ψ1P2) − r1

]
−

v

D1
Q1

Q′

2 =
1

D2
P2

[
α2P3 +

r2

K
(P2 + ψ2P1) − r2

]
−

v

D2
Q2

Q′

3 =
1

D3
P3

[
c− βP1 +

θ

m+ P2
P 2

2

]
−

v

D3
Q3.

4. Waves for the non-toxic model

We investigate the equilibria of (3.5) at first. For all of them we must have Qk = 0, and then seek the
population levels Pk that annihilate the right hand sides of the system. Restricting just to the P1−P2−P3

phase subspace, we find the points X0 ≡ (0, 0, 0), X1 ≡ (K, 0, 0), X2 ≡ (0,K, 0), always feasible,

X3 ≡

(
0,
c

δ
,
(
1 −

c

δK

) r2

α2

)
, X4 ≡

(
c

β
, 0,

(
1 −

c

βK

)
r1

α1

)
,

which are feasible respectively for

δK > c (4.1)

and

βK > c. (4.2)

We find also

X5 ≡

(
K

∆
(1 − ψ1),

K

∆
(1 − ψ2), 0

)
, ∆ = 1 − ψ1ψ2
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feasible when either one of the two following alternative sets of conditions holds

1 > ψ1, 1 > ψ2; 1 < ψ1, 1 < ψ2. (4.3)

In addition there is the point X6 with all populations at nonzero levels.
The Jacobian of (3.5) in the phase space P1 −P2 −P3 −Q1 −Q2 −Q3 is a partitioned matrix in 3× 3

blocks

J =

(
O I
A B

)
(4.4)

where

A =




A11
r1ψ1

KD1

P1
α1

D1

P1
r2ψ2

KD2

P2 A22
α2

D2

P2

− β
D3

P3 − δ
D3

P3 A33




with

A11 =
1

D1

(
α1P3 + r1

2

K
P1 +

r1ψ1

K
P2 − r1

)
,

A22 =
1

D2

(
α2P3 + r2

2

K
P2 +

r2ψ2

K
P1 − r2

)
,

A33 =
1

D3
(c− βP1 − δP2) ,

and

B = diag

(
−
v

D1
,−

v

D2
,−

v

D3

)
.

Exchanging the pairs of rows and columns 2 and 4, then 4 and 6, followed by a block interchange of the
last two rows and columns, and finally exchanging the rows and columns 3 and 4, the matrix J − λI is
reduced to block form, in which each block is a 2 by 2 matrix. Its final form is as follows

J − λI =




−λ 1 0 0 0 0
A11 − v

D1

− λ A12 0 A13 0
0 0 −λ 1 0 0
A21 0 A22 − v

D2

− λ A23 0
0 0 0 0 −λ 1
A31 0 A32 0 A33 − v

D3

− λ



.

This corresponds also to a rearrangement of the vector of the unknown populations, as follows:
(P1, P

′
1, P2, P

′
2, P3, P

′
3)
T . Although for our purposes the case of the origin is not very much interest-

ing, we present it nevertheless, in order to better illustrate the procedure we use in the relevant cases
that follow. At the origin, only the diagonal blocks in the Jacobian are nonzero,

J − λI =




−λ 1
− r1
D1

− v
D1

− λ

−λ 1
− r2
D2

− v
D2

− λ

−λ 1
c
D3

− v
D3

− λ



.

The determinant is thus the product of the determinants of each such block, giving therefore

[
λ

(
v

D3
+ λ

)
−

c

D3

]
Π2
i=1

[
λ

(
v

Di

+ λ

)
+

ri

Di

]
= 0
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The eigenvalues are immediately readable, as roots of the quadratic equations arising from each block.
For i = 1, 2 we have

Diλ
2 + vλ+ ri = 0,

from which using Descartes’ rule of signs, we thus find two negative roots. But from the last one, we have

D3λ
2 + vλ− c = 0,

which instead has always a positive root. Thus we have shown the following result.

Proposition 4.1. The origin is unstable.

We have further:

Proposition 4.2. X1 and X2 are also unstable.

Proof. For these cases it is also easy to establish instability.
In fact for X1 we have A21 = A23 = A31 = A32 = 0 and A11 = r1D

−1
1 . With the same procedure we

find that the Jacobian is a block upper triangular matrix, from which the eigenvalues again come from
the 2 × 2 diagonal blocks. In particular the equation

D1λ
2 + vλ− r1 = 0,

by Descartes’ rule has one positive eigenvalue.
At X2 the Jacobian has the same structure as for X1. Instead we have A31 = A32 = A12 = A13 = 0

and A22 = r2D
−1
2 , so that this time it is the equation

D2λ
2 + vλ− r2 = 0 (4.5)

that has a positive eigenvalue. �

Remark 4.3. These results are somewhat expected, since they show that perturbing a system with no
populations or only one by adding another one, the system will thrive.

Consider now X3.

Proposition 4.4. X3 is an unstable equilibrium point.

Proof. Since A12 = A13 = 0, here the Jacobian factorizes and the characteristic equation is the product
of a quadratic and a quartic. The former,

D1λ
2 + vλ−D1A11 = 0,

has roots of uncertain sign, while the latter is

λ4 + a3λ
3 + a2λ

2 + a1λ+ a0 = 0. (4.6)

The coefficients ak, k = 0, . . . 4 are known. We provide here the most important ones: a0 = A22A33 −
A23A32 and

a3 =
v

D2D3
(D2 +D3) > 0, a1 = −

v

D2D3
(A22 +A33) = −

cr2v

D2D3Kδ
< 0.

In view of Descartes’ rule, we have at least one negative and one positive root; the latter thus provides
instability. �

Proposition 4.5. X4 is also unstable.
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Proof. We find A21 = A23 = 0, so that from the central block of the partitioned Jacobian a quadratic
characteristic equation arises, with roots of uncertain sign

D2λ
2 + vλ−D2A22 = 0.

The remaining quartic is again (4.6). Its most important coefficients are a0 = A11A33 −A13A31 and

a3 =
v

D1D3
(D1 +D3) > 0, a1 = −

v

D1D3
(A11 +A33) = −

cr1v

D1D3Kβ
< 0.

In view of Descartes’ rule, we again find at least one negative and one positive root; the latter thus
provides instability. �

Proposition 4.6. X5 is an unstable equilibrium.

Proof. Note that A31 = A32 = 0, so that again the Jacobian factorizes. The quadratic characteristic
equation is now

D3λ
2 + vλ−D3A33 = 0.

but the signs of the roots are not clear. The quartic originating from the remaining part of the Jacobian
is once more (4.6). Again, we provide the coefficients whose signs are known, a0 = A11A22 −A12A21,

a3 =
v

D1D2
(D1 +D2) > 0, a1 = −

v

D1D2
(A11 +A22) .

Here, observe that the feasibility conditions (4.3) imply that A11 > 0 and A22 > 0, because we have

A11 =
r1

D1∆
(1 − ψ1), A22 =

r2

D2∆
(1 − ψ2).

Thus a1 < 0 and by Descartes’ rule, there is at least one negative and one positive root, for which
instability follows. �

Thus, all the boundary equilibrium points in the six-dimensional phase space are unstable, so that any
trajectory leaving near them has to remain away from the coordinate hyperplanes.

To complete our analysis, we need to show that the trajectories emanating from these unstable equi-
libria remain in the feasible region.

Proposition 4.7. The trajectories originating from the unstable boundary equilibria enter into the fea-

sible orthant {(P1, P2, P3) : Pi ≥ 0, i = 1, 2, 3}.

Proof. Let us consider first the origin. Let λ∗ > 0 be the positive eigenvalue, which originates from the
lower right block of the Jacobian. Evidently, (J − λ∗I)u = 0 will give a nontrivial solution with ui = 0,
for i = 1, . . . 4, because λ∗ is not an eigenvalue of the other two diagonal blocks. In the bottom right block
of J − λ∗I, however, the two rows are linearly dependent. We delete the second one, and are left with
the equation −λ∗u5 + u6 = 0, which in terms of our original variables is −λ∗P3 + Q3 = 0, and finally,
recalling the definition of Q3, it becomes the differential equation P ′

3 = λ∗P3. Its solution is therefore
P3(s) = P3(0) exp(λ∗s). Thus any trajectory leaving from a point near the origin has to lie away from
the coordinate hyperplanes, because of the instability of the equilibrium, but it also must remain within
the feasible region because biologically we must take the initial condition in this domain, P3(0) > 0.

Because of the upper triangular block structure of the Jacobian, for the equilibria X1 and X2 the
proof follows the same steps, in turn giving two differential equations whose solutions respectively are
P1(s) = P1(0) exp(λ∗s) and P2(s) = P2(0) exp(λ∗s).

At the equilibriaX3,X4 andX5, the positive eigenvalue λ∗ > 0 is a root of a quartic equation stemming
therefore from a suitable 4×4 submatrix J̃ of J . To be specific, let us take the case of X5. The submatrix
is the top right 4 × 4 block of J . If λ∗ is an eigenvalue coming from this submatrix, then P3 = 0.
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As remarked earlier in Proposition 4.6, the eigenvalues arising from the bottom right block could be
of opposite sign, or both negative. In the former case, as argued above, let us take λ+ > 0. A sufficient
condition for this to occur would be

[c(1 − ψ1ψ2) − βK(1 − ψ1) − δK(1 − ψ2)]∆ > 0.

We have the equation P ′
3 = λ+P3, whose solution is always positive, P3(s) = P3(0) exp(λ+s), so that the

trajectory coming out of the equilibrium remains in the first orthant. If both eigenvalues are negative,
λ± < 0, the same equation shows that P3 approaches zero with positive values. But the plane P1 − P2

cannot be crossed because of the existence and uniqueness theorem for ordinary differential equations.
The trajectory approaching X5 will then move away from it along a direction parallel to the P1 − P2

plane, given by the eigenvector relative to the positive eigenvalue λ∗ of the quartic characteristic equation
of the submatrix J̃ . Thus, the trajectory coming out of the steady state remains in the feasible region.

The cases for the other two equilibria X3 and X4 are treated in a similar way. Note that sufficient
conditions for having λ+ > 0 in these cases are respectively ψ1c ≥ δK, for X3 and ψ1c ≥ βK, for X4.
These combined with the feasibility conditions (4.1) and (4.2) gives possible ranges for the zooplankton
mortality to ensure positivity of one eigenvalue

δK

ψ1
< c < δK;

βK

ψ2
< c < βK.

�

Therefore we have demonstrated that the necessary conditions of existence of travelling waves are
satisfied. They would originate by perturbing anyone of these boundary equilibrium points and progress
toward points in the phase space in which all the populations have nonzero values. In particular, they
would reach the interior coexistence equilibrium, when the latter is stable.

5. Waves for the toxic model

Now we examine (3.6). In this case the equilibrium X3 = (0, P2, P3) is never feasible, contrary to the
former case, while all the other ones present in (3.5) arise here too. As for the other equilibria, we find
again the very same points X0, X1, X2, X4 and X5. The coexistence point instead is different, in fact a
double equilibrium stemming from the roots of a quadratic equation, see [2] for more details.

The Jacobian (4.4) changes only in some elements of the last row of A, which now becomes

[
A31Ã32Ã33

]
≡

[
−
β

D3
P3

θ

D3
P2P3

(
2

m+ P2
−

P2

(m+ P2)2

)
1

D3

(
c− βP1 +

θ

m+ P2
P 2

2

)]

The main result of this Section parallels the findings of the former one.

Proposition 5.1. All the equilibria lying on the boundary of the six dimensional phase space are unstable.

Proof. The origin is unstable, we get the same Jacobian as in the former case.
For X1, we find A31 = 0, Ã32 = A32 = 0, Ã33 = A33, so that the eigenvalue analysis remains the same.
At X2 the positive eigenvalue comes from the equation (4.5) which is unchanged, and therefore the

instability result still holds.
At X4 we find Ã32 = 0, Ã33 = A33 = 0, and the relevant coefficients of the characteristic equation

(4.6), in this case denoted by ãi, coincide with the ones for the non toxic model,

ã1 = a1 = −
cr1v

D1D3Kβ
< 0, ã3 = a3 =

v

D1D3
(D1 +D3) > 0,

so that again we have at least one positive and one negative eigenvalue.
For X5 again Ã32 = 0 but Ã33 6= A33. In the quartic (4.6) there is no change in the two relevant

coefficients, namely ã1 = a1 and ã3 = a3. Hence the existence of at least one positive and one negative
eigenvalue is ensured in this case as well. �
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Again, we have shown that all the boundary equilibria in the phase space are unstable, so that the
trajectories must remain away from them. We address now the issue that the trajectories must remain
in the feasible region.

Proposition 5.2. The trajectories originating from the unstable boundary equilibria enter into the pos-

itive orthant.

We omit the proof of this result, as it parallels the one of the nontoxic case.

6. Numerical results

In this section we confirm numerically the emergence of the travelling wave solutions studied earlier and
investigate further situations that were not covered by the previous theoretical study.

Equations (2.2) are solved by means of a numerical scheme that employs a spatial discretization based
on piecewise-linear continuous finite elements and a fully implicit timestepping scheme (Crank-Nicolson).
Mass lumping is employed in order to avoid spurious oscillations arising from the reaction terms.

The parameters in the model are set to the same values used in the one dimensional simulations of [2],
namely: ψ1 = 0.6, r1 = 4.0, α1 = 0.6, ψ2 = 0.8, r2 = 5.0, α2 = 0.7, K = 56.0, for the phytoplanktons
and β = 0.4, δ = 0.08, c = 3.0, for the zooplankton in the non-toxic case and θ = 0.2, m = 5.0 in
the toxic model. For both the non-toxic and the toxic model, simulations are generally performed in the
[0, 100] spatial domain. The diffusion coefficients of the zooplankton is set as in [2] to D3 = 0.1. The
diffusion coefficients for both phytoplankton species are varied in order to investigate the dependence of
the behaviour described here on the relative mobility of the species.

In order to confirm the existence of travelling waves, in each simulation we choose an unstable equi-
librium Er and set the initial value to be p(x)|t=0 = Er + ǫ(x) where ǫ(x) is a local perturbation whose
role is to throw the system off equilibrium in a small neighborhood of the left domain boundary. The
perturbation ǫ(x) was always chosen to be nonzero only for one species and in particular for one of the
species which is absent in Er. In this way, all simulations presented in this section have the ecologi-
cal interpretation of “invasion” by one species of an ecosystem where one or two other species already
coexist in a spatially uniform equilibrium. If the solution is a travelling wave with p(−∞) = Eℓ and
p(+∞) = Er, for an equilibrium Eℓ 6= Er, the invasion was successfull and the system moves towards
the equilibrium Eℓ which includes a nonzero density of the new population. If, moreover, the solution of
(2.2) with components equal to Eℓ is spatially homogeneous, at the left of the travelling wave we will
observe a “flat” solution corresponding to the new equilibrium of the ecosystem that includes the newly
arrived population.

6.1. Existence of travelling waves

In the first set of tests we fixed D1 = 1.0 and D2 = 0.5 as in [2] in order to investigate the existence of
travelling waves between different pairs of equilibria. We start from an empty environment (equilibrium
E0) and show that a travelling wave linking E0 to E1 exist by setting the initial value to

p1(x) = e−x
2

p2(x) = 0.0 p3(x) = 0.0 for x ∈ [0, 100].

The top-left panel of Figure 2 shows a series of snapshots of the solution at increasing times. Of course
only the first population is present and it tends to invade the whole domain, leaving behind the equi-
librium E1 = (56.0, 0.0, 0.0). Similarly the top-right panel of Figure 2 shows the travelling wave solution
corresponding to the invasion by a second phytoplankton species p2 of an environment where p1 is at the
spatially uniform equilibrium E1. We remark that the speed of this wave is much slower than the previous
one. Finally, these two kinds of waves are identical in both the toxic and in the non-toxic models, the
third population p3 is in fact absent and thus no difference arise between the models.
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Figure 2. Travelling waves between spatially uniform stable equilibria (D1 = 1.0,D2 =
0.5,D3 = 0.1). Top: initial value and six snapshots up to t = 25 for the invasion of p1

into an empty environment (right frame) and for the invasion of p2 into an environment
where p1 is in equilibrium (left frame). Bottom: snapshot at t = 50 for the invasion of p3

into an environment where p1 and p2 coexist in equilibrium.

The lower panels of Figure 2 show the transitions between E5 and E∗. The initial data are

p1(x) = 43.08 p2(x) = 21.54 p3(x) = e−x
2

for x ∈ [0, 100]

In this case, the interaction between p2 and p3 plays a role and thus the difference between the toxic and
non-toxic model is apparent. However, for D1 = 1, the spatially homogeneous internal equilibrium E∗ is
stable also for the toxic model and thus the travelling wave leaves behind a spatially homogeneous state,
namely (5.47, 10.14, 5.29) for the non-toxic model (bottom left in the figure) and (11.75, 12.05, 4.41) for the
toxic model (bottom right in the figure). The snapshots shown are taken at t = 50 and the computational
domain has been enlarged to [0, 300] in order to show completely the whole transition, which has a much
more complex shape than the previous ones.
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6.2. The role of the diffusion coefficient

Next we investigate the transition from E4 to E∗ for both models, varying the diffusion coefficients D1

and D2. Initial data were set as a small perturbation of E4, namely:

p1(x) = 7.50 p2(x) = e−x
2

p3(x) = 5.77 for x ∈ [0, 100] (6.1)

The ecological interpretation of this initial condition is the arrival (from the left boundary at x = 0) of a
second phytoplankton species into an ecosystem where one phytoplankton and the zooplankton population
already coexist in equilibrium. In all cases we observe the emergence of a travelling wave solution that
represents the invasion of the ecosystem by the new phytoplankton population. The solution has a right-
moving front that separates the internal coexistence equilibrium E∗ (on its left) and the unstable E5

equilibrium (on its right). The evolution of the travelling waves is rendered by a sequence of snapshots in
Figure 3 for the cases of D1 = 1 (left) and D1 = 100 (right). One can note that the diffusion coefficient
does not change the speed of the wave, but it influences the shape of the transition. This is even more
evident in Figure 4, where the solutions at t = 60 are compared for D1 ranging from 1 to 103. In all
four cases the “center” of the transition is located at around x = 50, while the width of the transition
and the presence of oscillations inside it increases remarkably with the increase of the relative mobility of
the species p1 with respect to the other ones. We also note that changing the value of D2 does not have
significant effects on the shape of the waves.

In the toxic case, the situation is very different, since the initial datum (6.1) represents the arrival in
the ecosystem of a phytoplankton species p2 on which the zooplankton p3 feeds but which is toxic for p3.
Depending on the value of the diffusion coefficients D1 and D2, from [2] it is known when the internal
equilibrium is spatially homogeneous. For D2 = 0.5 and D3 = 0.1, the threshold for instability is found
at D1 = 1.02, while for D1 = 1.0 and D3 = 0.1, the threshold for instability is found at D2 = 0.23

The left column of Figure 5 shows snapshots of the evolution in the caseD1 = 1. In this case, apart from
the numerical values of the internal equilibrium, the solution is comparable with the non-toxic case shown
in Figure 3. The right column of 5 shows snapshots of the evolution for a value of the diffusion coefficient
(D1 = 100) that is above the threshold for instability of the internal equilibrium. This situation is not
covered by the theory exposed in the previous sections, but nevertheless we observe a sort of travelling
wave, except that at the left of the transition the non spatially uniform equilibrium already observed in
[2] emerges.

Figure 6 shows the solutions at t = 60 for different values of the diffusion coefficients. For D1 = 1
we observe the appearence of the (stable) spatially uniform internal equilibrium, while for the other
cases the solution at the left of the transition is stationary but not spatially uniform. The population
densities present oscillations that alternate areas of high concentrations of the toxic species p2 with high
concentrations of the zooplankton p3. In areas where p3 is less present, also p1 has higher concentrations,
due to reduced feeding by p3. Increasing D1, the wavelength of the spatial oscillations increases. It is
remarkable that the mobility of p1, on its own, can influence the wavelength of the oscillations between
the populations p2 and p3. The two lower panels of Figure 6 present the case where D1 is kept at the
value used in [2], but D2 is lowered below the instability threshold. We observe the emergence of another
non spatially-uniform equilibrium, with characteristics similar to the ones observed above.

7. Conclusions

We investigate spatially-dependent models of the interaction between two phytoplankton species and
one zooplankton population that feeds on the previous two. In particular we consider two cases, dis-
tinguished by the toxicity of the second phytoplankton species for the zooplankton. A previous paper
[2] had already investigated the stability of spatially uniform equilibria, showing that, when one of the
phytoplankton species is toxic for the zooplankton, the spatially uniform coexistence equilibrium is stable
only for moderate values of the relative mobility of the phytoplankton species. This result was confirmed
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Figure 3. Snapshpots for the travelling wave linking E4 and E∗ for the non-toxic model.
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Figure 4. Snapshpots at t = 60 for the travelling wave linking E4 and E∗ in the non-
toxic model.

numerically, showing that random initial conditions could lead to the emergence of non spatially-uniform
stable equilibria and this result was related to the ecological phenomenon of red tides.

In this paper we consider the more realistic situation in which the system is in equilibrium when a new
species appears at a single location in the domain, either due to a point contamination of the environment
or coming from a nearby ecosystem. Mathematically, this perturbation throws the system off equilibrium
at a single location in space (e.g. on the boundary) and may give rise to an invasion wave. The existence of
such travelling waves are investigated both analytically and numerically. The analytical study shows the
existence of travelling waves linking pairs of equilibria of the system and is limited to the regimes where
spatially uniform equilibria exist. The numerical study confirms the previous findings and additionally
investigates the other regime too, showing examples of traveling waves that leave behind them the non
spatially-uniform coexistence equilibrium of the toxic model.
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Figure 5. Snapshpots for the travelling wave linking E4 and E∗ for the toxic model for
D2 = 0.5. Note the different vertical scales.
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Figure 6. Snapshpots at t = 60 for the travelling wave linking E4 and E∗ in the toxic
model. In the first four panels, D1 was varied, D1 = 1.0, D1 = 10, D1 = 100, D1 = 1000;
in the lower two, D2 is changed, D1 = 1.0, D2 = 0.1 and D1 = 1.0, D2 = 0.2, .
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