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Abstract—This paper aims at incorporating the notion of self-
adaptiveness in the context of multiparty sessions, by focusing
on the issue of ensuring correctness for dynamic adaptations.
A formal framework is presented centred around these main
ingredients: global types, monitors and global state. A global
type represents the overall communication choreography. Its
projections are the monitors, which set-up the protocols of the
participants. The association of a monitor with a compliant
process incarnates a single participant. It is the choreography
that is updated at runtime, in response to changing conditions in
the global state. Monitors result to be self-adaptive in the sense
that they react to these changes by modifying themselves, in order
to prescribe new behaviours to the participants.

I. INTRODUCTION

The growing complexity of software systems, intended to
operate in many different scenarios and in highly dynamic
environments, brought out the necessity of managing this
complexity at a reasonable cost. This leads naturally to develop
models of self-adaptive systems, that are able to modify
their behaviours autonomously and dynamically, in response
to changing conditions in the execution environment and in
accordance with evolving policies and objectives. Therefore
(self-)adaptive systems came out as a key research subject
in many fields of Computer Science (e.g., Distributed Sys-
tems, Service-Oriented Architectures, etc..), taking adaptivity
metaphors from natural and social sciences, as for example in
[1].
Most of the approaches in the literature, however, do not
face the main challenge of including formal tools to ensure
correctness of dynamic adaptations. Some approaches address
this issue by providing verification techniques for testing
properties of the performed adaptation (e.g., model checking
in [2] and web services testbed in [3]).

As for a precise definition of self-adaptivity, this is still
a debated question, due to the wide spectrum of the involved
features. In our opinion, a simple, rather deep, characterization
is the one presented in [4]: we define adaptation as the run-
time modification of the control data ...and a component is
self-adaptive if it is able to modify its own control data at
run-time. We follow [4] in claiming that we need to distinguish
between standard data and control data: a change in the system
behaviour is part of the application logic if it is based on
standard data, it is an adaptation if it is based on control data.

The framework is that of multiparty sessions [5], where
each participant can access and modify the global state rep-
resenting those (control) data whose values are critical for

planning the adaptation steps. The system comprises four ac-
tive parties: global types, monitors, processes, and adaptation
functions.

A global type represents the overall communication chore-
ography [6]; its projections onto participants generate the
monitors, which are essentially local types and set-up the
protocols of the participants. The association of a monitor with
a compliant process, dubbed monitored process, incarnates a
participant where the process provides the implementation to
the monitoring protocol. Notably, we exploit intersection types,
union types and subtyping to make flexible this compliance
relation. Processes are able to follow different incompatible
computational paths. For instance, a process could contain both
the code needed to buy a book and the one needed to arrange a
friend meeting, the choice between the two being determined
by the monitor controlling it.

The adaptation strategy is defined by global types and
adaptation functions. The choreography decides when the
adaptation takes place, since its monitors prescribe when some
participants have to check global data, and then send a request
of adaptation to the other participants. The adaptation functions
contain the dynamic evolution policy, since they say how the
system needs to reconfigure itself based on the changes of the
critical data.

Therefore, dynamic adaptations are triggered by control
data and monitors.

Typical scenarios that can benefit from our self-adaptation
framework are those characterised by the following features:
• a community, established for a common task or mission,
has many distributed entities which interact with each other
according to a given operational plan,
• the complex dynamic environment can present unforeseen
events, which require the community to modify its plan dy-
namically,
• those critical events are observed in any separate component
of the system, which can be checked by the session partici-
pants, so that the whole system can react promptly by updating
itself,
• the dynamic changes need to be rather flexible: in each
new phase, other participants can be introduced or some of
the old participants are not longer involved (temporarily or
permanently),
• these dynamic changes need to be safe: community interac-
tions must proceed correctly to pursue the common task.

As an example of such a scenario, let us consider a Com-
pany which has various productive units and sale organisations



scattered around the world. Each factory has a number of
machines and then produces a bunch of products for nearby
markets or for export. However, no plant has all possible
types of machinery, nor produces each possible product. Local
sellers sell products from near or far away plants. The state
of the plants is checked periodically. Communications among
factories and sellers exchange several data about products
and prices, according to a given combination factory-seller
for each product. The company chief supervises the whole
organisation. In particular, she equipped the company with an
adaptation function, which contains potential alternative plans
for moving productions and/or sales of a product to different
entities. All the interactions among these participants run under
the control of the monitors that are originated from a global
type. Finally, a global state contains crucial data, for instance
the performance of machineries, plants and sale organisations.
Unforeseen circumstances, such as the catastrophic event of a
fire incapacitating a whole plant, can require the company or-
ganisation to update itself: new production and sale plans have
to be adopted to maintain uninterrupted supply to customers.

Example In order to give a preliminary intuition of our
system, we simplify the above scenario in the case of a
Company which has two factories, iF (Italian factory) and aF
(American factory), and two sellers, iS (Italian seller) and aS
(American seller). We use a simplified and incomplete syntax
(w.r.t. the formal presentation of next section). Then we show
how self-adaptation works when a fire incapacitates a factory.
The global state contains for each of the two plants either OK
or KO. When both plants are OK the global type is:

G1 =


iS→ iF : (item,amount).
aS→ aF : (item,amount).
Ada→{iS, iF,aS,aF} : check

Each seller requires to the corresponding factory some
products and then the chief Ada sends a checking flag to all,
as an alert for a possible adaptation. When the Italian factory
is OK, while the American factory is KO, the global type is:

G2 =


Ada→ Bob : contract.
iS→ iF : (item,amount).
aS→ Ada : (item,amount).
Ada→{iS, iF,aS,Bob} : check

where Bob is in charge of rebuilding factories. In the
symmetric case the global type G3 is as expected. Finally,
when both the factories are KO, Ada just closes down the
business:

G4 = Ada→{iS,aS} : bye.end
The processes in Table I are correct implementations for
the monitors generated by projection from all the above
global types. For instance, the monitor of Ada for G2
is Bob!Contract.aS?(Item,Amount).{iS, iF,aS,Bob}!check,
where ! represents output, ? represents input, Contract denotes
the type of contract, etc. The Seller has two alternative
behaviours. He can send on channel y (item,amount), receive
the check and then restart. Otherwise, he can receive bye and
stop. The control data can be modified by the Factory, writing
KO when it is uncapacitated, and by Bob, writing OK when
he accomplished the rebuilding task. The adaptation function
F in Ada code gives the new global type when applied to the
pair (state iF,state aF), i.e.

Seller = (µX .y!(item,amount).y?check.X)+(y?bye)
Factory = µX .y?(item,amount).if . . . then y?check.X

else write KO.y?check
Ada = (µX .y!check(F).X)

+(µX .y!contract.y?(item,amount).y!check(F).X)
+(y!bye)

Bob = µX .y?contract.if . . . then write OK.y?check
else y?check.X

TABLE I. PROCESSES FOR THE COMPANY EXAMPLE

F(OK,OK) = G1 F(OK,KO) = G2
F(KO,OK) = G3 F(KO,KO) = G4

Notice that the senders and the receivers are omitted in
processes and this allows a process to fill several different
monitors. For instance, the process Seller can fill both the
monitors that are generated by projecting the above global
types onto the participants iS and aS.

Let us consider the system choreographed by G1 with the
global data (OK,OK). The American factory changes its state
to KO and then, when the chief checks the global data, the
function F generates the adaptation step which produces the
global type G2. After this adaptation Bob is a new participant,
while the American factory is out. Then the American seller,
as prescribed by his monitor, sends his requests to the chief.
When process Bob writes OK for the American factory and
the Italian factory is still OK, the adaptation reverses to the
global type G1. Then the American factory comes back into
the scene.

Structure of the paper Sections II and III present the
syntax of our calculus and the type system, respectively.
The dynamic evolution is given in Section IV together with
the main properties of the whole system. Related works are
discussed in Section V.

II. A SELF-ADAPTIVE SYSTEM

Global types Following a widely common approach, the
set-up of protocols starts from global types. Global types
establish overall communication schemes. In our setting they
also control the reconfiguration phase, in which a system
adapts itself to new environmental conditions.

Let L be a set of labels, ranged over by `, which mark
the exchanged values as in [7] and Λ be a set of flags, ranged
over by λ , which transmit the adaptation information. We
assume to have some basic sorts, ranged over by S, i.e.

S ::= bool || nat || . . ..

Definition 2.1: Global types are defined by:
G ::= p→Π : {`i(Si).Gi}i∈I ||

p→Π : {λi}i∈I || end

In writing {`i(Si).Gi}i∈I and {λi}i∈I we implicitly assume that
`i 6= ` j and λi 6= λ j for all i 6= j. There are only two kinds of
communications: value exchange and adaptation flag exchange.
Each value exchange is characterised by a label which allows
to represent choices. The sender is p, while Π is the set of the
receivers, which does not contain p and cannot be the empty
set. The participants of a global type G are all the senders
and the receivers in G, ranged over by p,q, . . .. We denote by
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(p→Π : {`i(Si).Gi}i∈I)�q =


p?{`i(Si).Gi �q}i∈I if q ∈Π

Π!{`i(Si).Gi �q}i∈I if q= p

Gi0 �q where i0 ∈ I if q 6= p and q /∈Π

and Gi �q = G j �q for all i, j ∈ I

(p→Π : {λi}i∈I)�q =


p?{λi}i∈I if q ∈Π

Π!{λi}i∈I if q= p

end if q 6= p and q /∈Π

end�p = end

TABLE II. PROJECTION OF A GLOBAL TYPE ONTO A PARTICIPANT

pa(G) the set of all participants in G.
Global types can end in two ways: either with the usual

end or with the exchange of adaptation flags. In the latter case
the adaptation flags are sent by a participant to all the other
ones. Adaptation flags can be seen as synchronisation points,
interleaved in a conversation, at which different interaction
paths can be taken. Note however that, given a global type, we
can always insert adaptation flags in some points preserving
also the original interaction protocol.

There is no recursion operator, but recursive protocols can
be obtained through adaptation.

Notably we do not allow parallel composition of global
types, which is quite common in the literature [5], [6], [8],
[9]. As a matter of fact many papers [5], [6], [8] require that
two global types can be put in parallel only if their sets of par-
ticipants are disjoint, so parallel composition can be expressed
by interleaving. Without this condition parallel composition
of global types requires some care, that is orthogonal to the
present development [9].

Monitors Monitors can be viewed as local types that are
obtained as projections from global types onto individual par-
ticipants, as in the standard approach of [5] and [10]. The only
syntactic differences are the presence of the adaptation flags
and the absence of recursion and delegation. In our calculus,
however, monitors are more than types: they have an active
role in system dynamics, since they guide communications and
adaptations.

Definition 2.2: The set of monitors is defined by:
M ::= p?{`i(Si).Mi}i∈I || Π!{`i(Si).Mi}i∈I ||

p?{λi}i∈I || Π!{λi}i∈I ||
end

The constructs in the first line correspond to output and input
actions. An input monitor p?{`i(Si).Mi}i∈I fits with a process
that can receive, for each i∈ I, a value of type Si, labelled by `i,
having as continuation a process which agrees with Mi. This
corresponds to an external choice. Dually an output monitor
Π!{`i(Si).Mi}i∈I fits with a process which, with an internal
choice, can send, for each i∈ I, a value of type Si, distinguished
by the label `i, and then continues as prescribed by Mi. The
constructs in the second line similarly fit with the sending and
receiving of adaptation flags. The monitor end fits with all
processes.

The projection of global types onto participants is given
in Table II. A projection is undefined when two participants
not involved in a choice have different projections in different
branchings (condition Gi �q = G j �q for all i, j ∈ I). Monitors

are the results of such projections.
A global type G is well formed if its projections are defined

for all participants and all occurrences of p→Π : {λi}i∈I are
such that Π∪{p} = pa(G). I.e. all participants are involved
in flag exchanges. In the following we assume that all global
types are well formed.

Processes Processes represent code that is associated to
monitors in order to implement participants.

Differently from session calculi [11], [12], [13], [5], [10],
[14], [7], [15], [16], [8], processes do not contain the partici-
pants involved in sending and receiving actions. The associated
monitors determine senders and receivers. Processes represent
flexible code that can be associated to different monitors and
participants.

Besides communicating, processes can access the global
state to read or change it.

The communication actions of processes are performed
through channels. Each process has a unique channel. We
convene to use y to denote this channel in the user code. As
usual, the user channel y will be replaced at run time by a
session channel s[p] (where s is the session name and p is the
current participant). Let c denote a user channel or a session
channel. We could avoid to write the unique channel in the
user syntax, but not in the run-time syntax. We have chosen
to write all channels to simplify the definition of processes.

Definition 2.3: Processes are defined by:
P ::= 0 || op.P || X || µX .P ||

c?`(x).P || c!`(e).P ||
c?(λ ,T).P || c!(λ (F),T).P ||
if e then P else P || P+P

The syntax of processes is rather standard, but note that in
the sending and receiving actions the involved participant are
missing. For instance, c!`(e).P denotes a process which sends
via the channel c the label ` and the value of the expression e
and then has P as continuation. Notably, a system has a global
state (see Definition 2.5) and the op operator represents an
action on this global state, like for instance a “read” or “write”
operation. We leave unspecified the kind of actions since we
are interested only in the dynamic changes of this state, which
plays the role of the control data for the self-reconfiguration
of the whole system.

Types, which are statically assigned to processes, will be
formally introduced in Section III. Process types are mainly
aimed at checking the matching between processes and mon-
itors. Indeed it is convenient to include a type annotation in
the syntax of the adaptation flag. The input flag c?(λ ,T).P
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lin(?`(S).T ) = lout(!`(S).T ) = {`}
lin(?λ ) = lout(!λ ) = {λ}

lin(!`(S).T ) = lin(!λ ) = lout(?`(S).T ) = lout(?λ ) = /0
lin(T1∧T2) = lin(T1∨T2) = lin(T1)∪ lin(T2)

lout(T1∧T2) = lout(T1∨T2) = lout(T1)∪ lout(T2)

TABLE III. THE MAPPINGS lin AND lout .

represents a process that, after receiving the adaptation flag λ ,
has a continuation of type T. Thus the explicit annotation T
makes it easy to dynamically check if, after the adaptation,
the current process can continue with that type inside the
new monitor. The output flag c!(λ (F),T).P contains also the
adaptation function F . The application of F to the global
state will generate the new global type, which provides a new
choreography for the system reconfiguration.

Network The sessions are initiated by the new constructor
applied to global types (session initiator), denoted by new(G).
In carrying on a multiparty interaction a process is always
controlled by a monitor, which assures that all performed
actions fit the protocol prescribed by the global type. Each
monitor controls a single process. So participants correspond
to pairs of processes and monitors. We write M [P] to represent
a process P controlled by a monitor M , dubbed monitored
process. In a reconfiguration phase the monitor controlling
the process is changed according to the new global type
resulting from the application of the adaptation function to
the global state. At this point some processes can leave the
system and new ones can enter it. The data exchange among
the participants is done by means of runtime queues (one for
each active session). We denote by s : h the named queue
associated with the session s, where h is a message queue.
The empty queue is denoted by ø. Messages in queues can
be either value messages (p,Π, `(v)), indicating that the label
` and the value v are sent by participant p to all participants
in Π, or adaptation messages (p,Π,λ (G)), indicating that the
flag λ and the global type G are sent by participant p to all
participants in Π. Queue concatenation, denoted by “·”, has ø
as neutral element. A queue is λ -free if it contains no flag.

The parallel composition of session initiators, processes
with the corresponding monitors and runtime queues form a
network. Networks can be restricted on session names.

Definition 2.4: Networks are defined by:

N ::= new(G) || M [P] || s : h || N | N || (νs)N

System A system includes a network, a global state and
a collection of processes together with their types (according
to the typing rules of Section III). We use σ to range over
global states and we denote by P the collection of processes
with types. Since only networks and global states change at
run time, we represent systems as their composition (via “||”),
without mentioning the process collection.

Definition 2.5: Systems are defined by:

S ::= N || σ

III. PROCESS TYPES

Process types (called simply types where not ambiguous)
describe process communication behaviours [11]. They have
prefixes corresponding to sending and receiving of labels and
flags (input and output types). The external choice is typed
by an intersection type, since an external choice offers both
behaviours of the composing processes. Dually a conditional is
an internal choice, and so it is typed by an union type. We do
not allow intersection between input types with the same label,
since we want choices to be unambiguous: the types following
a same input prefix could be different and this would lead
to a communication mismatch, as illustrated in Example 4.1.
For the same reason we do not allow intersections between
output types with the same label. Since we want to match
types with monitors where internal choices are always taken
by participants sending a label or a flag, we force unions to take
as arguments output types (possibly combined by intersections
or unions). We start with the more liberal syntax of pre-types.
We formalise the above restrictions by means of two mappings
from pre-types to sets of labels and flags (Table III) and then
we define types.

Definition 3.1: The set of pre-types is inductively defined
by:

T ::= ?`(S).T || !`(S).T || ?λ || !λ || T ∧T || T ∨T || end
where ∧ and ∨ are considered modulo idempotence, commu-
tativity and associativity.

Definition 3.2: A type is a pre-type satisfying the following
constraints:

• all occurrences of the shape T1 ∧ T2 are such that
lin(T1)∩ lin(T2) = lout(T1)∩ lout(T2) = /0
• all occurrences of the shape T1 ∨ T2 are such that

lin(T1) = lin(T2) = lout(T1)∩ lout(T2) = /0.

We use T to range over types and T to denote the set of
types. An environment Γ is a finite mapping from expression
variables to sorts and from process variables to types:

Γ ::= /0 || Γ,x : S || Γ,X : T
where the notation Γ,x : S (Γ,X : T) means that x (X) does not
occur in Γ.

Typing rules are given in Table IV. We assume that
expressions are typed by sorts, as usual. Observe that the
type of a process after a reconfiguration is memorised in
the (input or output) action in which the adaptation flag
is exchanged. In rules IF and CHOICE we require that the
applications of union and intersection on two types form a type
(conditions T1∨T2 ∈T and T1∧T2 ∈T ). Adaptation allows
us to avoid recursive types. A recursion variable is always
preceded by an adaptation action, i.e. c?(λ ,T).X (rule RV1)
and c!(λ (F),T).X (rule RV2). In typing a recursive process
µX .P, rule REC assures that the type of P is the same as
the type associated to X in the environment. Note that µX .P
is equivalent to P{µX .P/X} and so, unfolding the process,
P will always be associated to all the reconfiguration flags
which precede the occurrences of X . For example, writing
the process Ada (considered in the Introduction) using the
formal syntax, but leaving out labels, y!check(F) is replaced
by y!(check(F),TAda), where TAda is the type of the whole
process Ada:
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Γ ` 0� c : end END
Γ ` P� c : T

OP
Γ ` op.P� c : T

Γ,X : T ` c?(λ ,T).X � c :?λ RV1 Γ,X : T ` c!(λ (F),T).X � c :!λ RV2

Γ,X : T ` P� c : T
REC

Γ ` µX .P� c : T

Γ,x : S ` P� c : T
RCV

Γ ` c?`(x).P� c :?`(S).T

Γ ` P� c : T Γ ` e : S
SEND

Γ ` c!`(e).P� c :!`(S).T

Γ ` P� c : T
FRCV

Γ ` c?(λ ,T).P� c :?λ

Γ ` P� c : T
FSEND

Γ ` c!(λ (F),T).P� c :!λ

Γ ` e : bool Γ ` P1 � c : T1 Γ ` P2 � c : T2 T1∨T2 ∈T
IF

Γ ` if e then P1 else P2 � c : T1∨T2

Γ ` P1 � c : T1 Γ ` P2 � c : T2 T1∧T2 ∈T
CHOICE

Γ ` P1 +P2 � c : T1∧T2

TABLE IV. TYPING RULES FOR PROCESSES

(!check)∧ (!Contract.?(Item,Amount).!check)∧ (!bye.end)
The matching between process types and monitors (ade-

quacy) is made rather flexible by using the subtyping relation
defined in Table V. The intuitive meaning of subtyping is that
a process with a smaller type has all the behaviours required
by a bigger type and more. Therefore, end is the top type.
Subtyping is monotone, for input/output prefixes, with respect
to continuations and it follows the usual set theoretic inclusion
of intersection and union.

We can exploit standard distributivity laws for intersection
and union types, in order to verify the decidability of subtyp-
ing. By distributivity, any subtyping relation can be reduced to
a set of subtyping relations, where we have only intersections
on the left and only unions on the right. Moreover, since end is
the top type, if end occurs in an intersection it can be erased,
if end is the type on the left then the subtyping fails and,
conversely, if end is the type on the right then the subtyping
holds. Furthermore, in our context unions of input types are
not types, then we have to only deal with subtyping relations
in which the right side is either a union of output types or a
single input type. Thus it is easy to prove that subtyping is
decidable.

An input monitor naturally corresponds to an external
choice, while an output monitor naturally corresponds to an
internal choice. So intersections of input types are adequate
for input monitors and unions of output types are adequate for
output monitors. Formally, we say that a type is adequate for
a monitor if the conditions of the following definition hold.

Definition 3.3: A type T is adequate for a monitor M
(notation T ∝ M ) if T ≤ |M |, where the mapping | | is
defined by:

|p?{`i(Si).Mi}i∈I |=
∧

i∈I?`i(Si).|Mi|
|Π!{`i(Si).Mi}i∈I |=

∨
i∈I!`i(Si).|Mi|

|p?{λi}i∈I |=
∧

i∈I?λi |Π!{λi}i∈I |=
∨

i∈I!λi

|end|= end

For instance, the type TAda defined above is adequate for the
monitor of Ada discussed in the Introduction.

Adequacy is clearly decidable, being subtyping decidable.

≤ is the minimal reflexive and transitive relation on T such that:
T≤ end T1∧T2 ≤ Ti Ti ≤ T1∨T2 (i = 1,2)

T1 ≤ T2 implies !`(S).T1 ≤!`(S).T2 ?`(S).T1 ≤?`(S).T2
T≤ T1 and T≤ T2 imply T ≤ T1∧T2
T1 ≤ T and T2 ≤ T imply T1∨T2 ≤ T
(T1∨T2)∧T3 = (T1∧T3)∨ (T2∧T3)
(T1∧T2)∨T3 = (T1∨T3)∧ (T2∨T3)

where = stands for ≤ and ≥.

TABLE V. SUBTYPING

IV. SAFE ADAPTATIONS AND COMMUNICATIONS

The evolution of a system depends on the evolution of its
network and global state. The basic components of networks
are the openings of sessions (though the new on global
types) and the processes associated with monitors. So we
start by describing how processes can evolve inside monitors.
Monitors guide the communications of processes by choosing
the senders/receivers and by allowing only some actions
among those offered by the processes. This is formalised by
the following LTS for monitors:

p?{`i(Si).Mi}i∈I
p?` j−−→M j Π!{`i(Si).Mi}i∈I

Π!` j−−→M j j ∈ I

p?{λi}i∈I
p?λ j−−→ Π!{λi}i∈I

Π!λ j−−−→ j ∈ I

Processes can communicate labels and values, flags,
adaptation functions and types, or can read/modify the
global state trough op operations. These behaviours are
made explicit by the LTS in Table VI, where the treat-
ment of recursions and conditionals is standard. In the
rules for external choice we convene that α ranges over
s[p]?`(v),s[p]!`(v),s[p]?(λ ,T),s[p]!(λ (F),T), and we omit the
symmetric rules. The choices are done by the communication
actions, while the operations on the global state are transparent.
This is needed since the operations on the memory are recorded
neither in the process types nor in the monitors. An operation
on the state in an external choice can be performed also
if a branch, different from that containing the operation,
is executed. For example, op.s[p]?`1(x).P1 + s[p]?`2(x).P2

op−→
s[p]?`1(x).P1 + s[p]?`2(x).P2

s[p]?`2(v)−−−−−→ P2.

We assume a standard structural equivalence on networks,
in which the parallel operator is commutative and associative.
The structural equivalence erases any monitored process with
end monitor, since it is idle:
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op.P
op−→ P µX .P τ−→ P{µX .P/X}

s[p]?`(x).P
s[p]?`(v)−−−−−→ P{v/x} s[p]!`(e).P

s[p]!`(v)−−−−−→ P e ↓ v

s[p]?(λ ,T).P
s[p]?(λ ,T)−−−−−−→ P s[p]!(λ (F),T).P

s[p]!(λ (F),T)−−−−−−−−→ P

if e then P else Q τ−→ P e ↓ true,

if e then P else Q τ−→ Q e ↓ false

P α−→ P′

P+Q α−→ P′

P
op−→ P′

P+Q
op−→ P′+Q

TABLE VI. LTS OF PROCESSES

h · (q,Π,ζ ) · (q′,Π′,ζ ′) ·h′ ≡ h · (q′,Π′,ζ ′) · (q,Π,ζ ) ·h′

if Π∩Π′ = /0 or q 6= q′

h · (q,Π,ζ ) ·h′ ≡ h · (q,Π′,ζ ) · (q,Π′′,ζ ) ·h′

if Π = Π′∪Π′′ and Π′∩Π′′ = /0
where ζ ::= `(v) || λ (G).

TABLE VII. EQUIVALENCE ON MESSAGE QUEUES

end[P] | N ≡ N

For message queues, we need an equivalence for commuting
independent messages and another one for splitting a message
to multiple receivers, see Table VII. The equivalence on
message queues induces an equivalence on labelled queues in
the obvious way:

h≡ h′ implies s : h≡ s : h′.
We can distinguish between the transitions which do or do
not involve the global state. For simplicity, Table VIII lists the
reduction rules of the networks and Table IX lists the reduction
rules of the systems, in which all rules need the global state.

A session starts by reducing a network new G (rule INIT).
For each p in the set pa(G) of the participants in the global type
G we need to find a process Pp with a type Tp in the collection
P such that Tp is adequate for the projection of G onto
p. Then the process (where the channel y has been replaced
by s[p]) is associated to the corresponding monitor and the
empty queue s is created. Lastly, the name s is restricted. In
this way we assure the privacy of the communications in a
session (as standard in session calculi [5]). We are interested
here in modelling the overall adaptation strategy, based on
decoupling interfaces (i.e. monitors) and implementations (i.e.
processes) rather than in the details related to the choice of the
processes which are associated to monitors. So we have left
this choice arbitrary, putting as only condition type adequacy.
Note however that a natural way of controlling the processes
associated to the monitors is given by the choice of the labels
and flags which relate them.

The rules IN and OUT define the exchange of messages
though queues. The type assignment system assures both that
the type of P is adequate for M and that the type of P′ is
adequate for M ′. Following [15], [8], the agreement between
monitors and processes is required; the novelty is that only the
monitors define the senders and the receivers of messages.

The rules ADAINCONT and ADAINNEW of Table VIII
deal with adaptations, for the session participants which re-
ceive the adaptation flag with the new global type. The new
global type is needed to compute the new monitor M ′ by

projection. In the first rule the continuation of the current
process inside the monitor has a type which is adequate for
M ′, so this process will fill M ′. In the second rule, instead,
it is needed to take from P a different process with a type
adequate for M ′.

Evaluation contexts are defined by

E ::= [ ] || E | N || (νs)E

The reduction rules for networks can be used for reducing
systems thanks to rule SN in Table IX. Rule CXT is a standard
contextual rule. Rule OP allows processes to read/modify the
global state.

The more interesting rules are ADAOUTCONT and
ADAOUTNEW. In both rules participant p sends an adaptation
flag and an adaptation function, whose application to the global
state gives a new global type G. The global type G may involve
new participants (in Π′ \ (Π∪{p})) which are added to the
network by taking processes in P as in rule INIT. As regards
to participant p, the new monitor G�p will be associated or not
to the current process according to whether its type is adequate
or not for G�p , as in rules ADAINCONT and ADAINNEW. In
both rules ADAOUTCON and ADAOUTNEW the message with
the reconfiguration flag and the global type G will be sent to
all participants of the session before the reconfiguration. This
is assured by the well-formedness of global types.
The restriction to λ -free queues deserves some comments. It
ensures no new adaptation flag can be thrown until all the
receivers of the previous adaptation flag adapted themselves.
A design choice of our framework is to allow a participant
to skip an adaptation phase (since it does not appear in the
corresponding global type) and then to appear again in the
following adaptation. This models a common scenario in which
a component is temporarily unavailable and so a new chore-
ography is needed. In the introductory example, the American
factory becomes temporarily out of the current choreography.
Without the given restriction, when the component becomes
available again, we could have two monitored processes with
the same session channel, so loosing channel linearity. Ob-
serve, however, that this restriction allows some participants to
finish their communications before performing an adaptation,
while other participants have already self-adapted and then
started the new communications.

We use −→∗ with the usual meaning and we write −→P ,
−→∗P when we want emphasise the use of P in rules INIT,
ADAINNEW, ADAOUTNEW.

Example 4.1: We can show now the necessity of the condi-
tions on local types given in Definition 3.2. For readability we
omit {,} in writing global types and monitors. Take the global
type G = 1 → 2 : `(int).2 → 1 : `′(int).end, whose projec-
tions on participants 1 and 2 are M1 = 2!`(int).2?`′(int).end
and M2 = 1?`(int).1!`′(int).end, respectively. Without the
conditions of Definition 3.2, P could contain (P1,T1)
and (P2,T2) where P1 = y!`(3).y?`′(x).0+ y!`(true).0, P2 =
y?`(x′).y!`′(−x′).0, T1 =!`(int).?`′(int).end∧!`(bool).end, and
T2 =?`(int).!`′(int).end. The pre-type T1 is not a type, since
the intersection is between output types with the same label.
Notice that T1 and T2 are adequate for M1 and M2, respec-
tively. It is easy to verify that the network new(G) can reduce
to (νs)(s[2]1!`′(−true).0 | s : ø), which is stuck.
On the other hand, taking P′1 = y!`(3).y?`′(x).0+y?`(x).0 with
type T′1 =!`(int).?`′(int).end∧?`(bool).end, we still have that
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Π = pa(G) Mp = G�p ∀p ∈Π. (Pp,Tp) ∈P & Tp ∝ Mp
INIT

new(G) −→ (ν s) (∏
p∈Π

Mp[Pp{s[p]/y} | s : ø)
P τ−→ P′

TAU
M [P]−→M [P′]

M
q?`−−→M ′ P

s[p]?`(v)−−−−−→ P′
IN

M [P] | s : (q,p, `(v)) ·h−→M ′[P′] | s : h

M
Π!`−−→M ′ P

s[p]!`(v)−−−−−→ P′
OUT

M [P] | s : h−→M ′[P′] | s : h · (p,Π, `(v))

M
q?λ−−→ P

s[p]?(λ ,T)−−−−−−→ P′ G�p = M ′ T ∝ M ′

ADAINCONT
M [P] | s : (q,p,λ (G)) ·h−→M ′[P′] | s : h

M
q?λ−−→ P

s[p]?(λ ,T)−−−−−−→ P′ G�p = M ′ T 6∝ M ′ (Q,T′) ∈P T′ ∝ M ′

ADAINNEW
M [P] | s : (q,p,λ (G)) ·h−→M ′[Q{s[p]/y}] | s : h

N1 ≡ N′1 N′1 −→ N′2 N2 ≡ N′2
EQUIV

N1 −→ N2

TABLE VIII. NETWORK REDUCTION

N −→ N′
SN

E [N] || σ −→ E [N′] || σ

N || σ −→ N′ || σ
′

CTX
E [N] || σ −→ E [N′] || σ

′

P
op−→ P′

OP
M [P] || σ −→M [P′] || op(σ)

M
Π!λ−−→ P

s[p]!(λ (F),T)−−−−−−−−→ P′ F(σ) = G Mp = G�p T ∝ Mp h λ -free
Π′ = pa(G) ∀q ∈Π′.Mq = G�q ∀q ∈Π′ \ (Π∪{p}). (Pq,Tq) ∈P & Tq ∝ Mq ADAOUTCONT
M [P] | s : h || σ −→Mp[P′] | ∏

q∈Π′\(Π∪{p})
Mq[Pq{s[q]/yq}] | s : h · (p,Π,λ (G)) || σ

M
Π!λ−−→ P

s[p]!(λ (F),T)−−−−−−−−→ P′ F(σ) = G Mp = G�p Tp 6∝ Mp h λ -free
Π′ = pa(G) ∀q ∈Π′.Mq = G�q ∀q ∈Π′ \Π. (Pq,Tq) ∈P & Tq ∝ Mq ADAOUTNEW

M [P] | s : h || σ −→ ∏
q∈Π′\Π

Mq[Pq{s[q]/yq}] | s : h · (p,Π,λ (G)) || σ

TABLE IX. SYSTEM REDUCTION

T′1 and T2 are adequate for M1 and M2, but the network
new(G) smoothly terminates the computation. Note that T′1 is
a type since it satisfies Definition 3.2, so there is no possible
ambiguity on which branch of the external choice must be
chosen.

In order to prove the correctness of our framework, we need
to assign types to systems. The typing judgements for systems
are of the shape `Σ S �∆, where Σ is a set of session names
(the names of the queues which occur free in the network)
and ∆ is a session typing. Session typings associate session
channels to suitable types, that generalise process types. We
introduce the notion of consistency of session typings, to
assure that each pair of participants in a conversation performs
mutual communications in a dual way. Since session typings
represent the forthcoming communications, also typings can
change by reducing systems. This can be formalised as in [5]
by introducing the reduction of session typings, denoted by
=⇒. We can state the subject reduction property of systems
under the condition that they are typed by consistent session
typings.

Theorem 4.2 (Subject Reduction): If `Σ S � ∆ with ∆

consistent and S −→∗ S ′, then `Σ S ′�∆′ for some con-
sistent ∆′ such that ∆ =⇒∗ ∆′.

As an immediate consequence of subject reduction we get
communication safety according to [5], i.e. systems “never
go wrong” since every delivered value matches the receiving
monitored process and channel linearity is preserved.

We say that a system is initial when its network is a
parallel composition of session initiators, which is always
typeable. The type system can guarantee progress proviso that
the collection of processes and types contains at least one
process for each monitor which is created at run time in
the adaptations. This can also be statically checked when the
domains of the adaptation functions which occur in processes
are finite. We say that a collection P is complete if, for every
global type G in the domain of an adaptation function which
occurs in a process belonging to P , there are processes in
P whose types are adequate for the monitors obtained by
projecting G onto its participants.

Theorem 4.3 (Progress): If P is complete, S is an initial
system and S −→∗P S ′, then S ′ has progress, i.e.

1) every input monitored process will always (eventually)
receive a message, and

2) every message in a queue will always (eventually) be
received by an input monitored process.
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The proof of progress relies on the observation that an initial
system is well typed, so by subject reduction S ′ is well typed
too. The completeness of P assures that all session partici-
pants are present also after an adaptation, and the consistency
of session typings guarantees that communications are dual.
Duality ensures that each message in the queue will have a
receiver and each input will find a corresponding message in
the queue.

V. RELATED WORK

The literature includes several works aimed at studying
adaptive systems in different application contexts and by
different perspectives on the conceptual notion of adaptation.
The paper [4] provides a valuable discussion on this issue and
an interesting classification of various approaches. For space
reasons we focus here on the papers which are more related
to the distinguishing features of our approach.

Adaptable processes In [17] Bravetti et al. present a cal-
culus in which adaptable processes can be modified by “update
patterns”. Run-time adaptation of structured communications is
approached in [18] by combining the constructors for adaptable
processes of [17] with the session type system of [19] for the
Boxed Ambient calculus [20]. Session behaviours are never
disrupted by adaption actions, since processes engaged in
active sessions cannot be updated. This calculus deals with
adaptations of single processes, not with adaptations of the
choreography of communicating processes. Dyadic sessions
and synchronous communications are further differences with
our calculus.

Adaptable choreographies The paper more similar to our
is [21], where global and session types are used to guarantee
deadlock-freedom in a calculus of multiparty sessions with
asynchronous communications. Only part of the running code
is updated. Two different conditions are given for assuring
liveness. The first condition requires that all channel queues
are empty before updating. The second condition requires a
partial order between the session participants with a unique
minimal element. The participants are then updated following
this order. Our adaptation flags allow the progress property to
be guaranteed without assuming such conditions.

The paper [22], building on [23] and [24], proposes a
rule-based approach in which all interactions, under all pos-
sible changes produced by the adaptation rules, proceed as
prescribed by an abstract model. In particular, the system is
deadlock-free by construction. The adaptive system is com-
posed by interacting participants deployed on different loca-
tions, each executing its own code. Adaptation is performed
by distributed adaptation servers, which are repositories of
adaptation rules. Rules can be added or removed at any
moment, while the system is running. Applicability depends
on execution environment and properties of the code region to
be replaced. If a rule is applied, it replaces part of the code of
(some of) the participants with a newer version, able to better
meet the requirements. Adaptations of different participants
are coordinated ensuring coherent behaviour. Data and control
flow statements are done in a Java-style syntax. Central to
the technical development are the notions of adaptive inter-
action oriented choreography and adaptive process oriented
choreography, which resemble our global types and monitors.

Although there are many analogies between this and our paper,
there are important differences. In [22] auxiliary communica-
tions are needed to assure that all participants take the same
branch in conditionals, and new participants cannot be added
by an adaptation. Moreover in [22] adaptation involves only a
part of the choreography and can be applied in any moment,
while in our calculus the interaction protocols contain the
adaptation points and the reconfiguration step applies to the
whole system.

Monitors In the literature there are many calculi in which
the process behaviour is statically and/or dynamically con-
trolled by means of monitors, for example [25], [26]. The
works that more influenced the present paper are [15], [8].
The calculus in those papers is a multi-party session calculus
with assertions, and therefore it is much more expressive than
our calculus. In fact the monitors in [15], [8] prescribe not
only the types of the exchanged data, but also that the values
of these data satisfy some predicates. Another main difference
is that those monitors contain information on the behaviours
of all session participants, while our monitors represent the
behaviour of single participants.

Intersection and union types In the present paper we type
processes with intersections and unions taking inspiration from
[14]. The type syntax in that paper is more liberal than our, for
example not requiring that labels in an intersection and in an
union be different, so more processes can be typed. Anyway
also in [14] the more interesting processes are external choices
between inputs and internal choices between outputs.

Subtyping for intersections and unions is naturally inspired
by their set-theoretical interpretation. Considering the mapping
between monitors and types of Definition 3.3, in this paper we
give a subtyping for branchings and selections which is the
opposite of that considered in [14]. Both subtypings have been
largely used [12], [13], [16], [27], [28], [29], [6], [30], [31].
The main reason of this difference is that in typing processes
one can either assume or derive the types of channels. In
the simple case of a process P with only one channel y the
typing judgments have the shapes y : T ` P and ` P�{y : T},
respectively. This is the reason why subtyping in [12] and in
[31] is defined in opposite ways. Branching with less choices
are smaller in the subtyping of [12] and bigger in the subtyping
of [31]. Selections behave dually.

VI. CONCLUSION

We have presented a formal model of self-adaptation in
multiparty sessions. The framework is based on self-adaptive
monitors and global types.

Differently from approaches focusing on adaptation as
code modification in software systems, our approach is
choreography-centred (similar to [22] for this aspect). When
dynamic conditions demand a change, the global choreography
updates itself together with the new monitors which prescribe
the new behaviours to the participants. A process fills (im-
plements) a given monitor if its type is adequate for that
monitor, otherwise a different implementation (process) need
to be found. Then, once the adaptation has been performed, all
monitored processes behave correctly and interact with each
other in a safe way.
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As a main feature, we achieve a decentralised control of the
adaptation and a notable flexibility in the dynamic system self-
reconfiguration. According to its monitor, any participant can
be in charge of checking global data and sending the adaptation
request, instead of devoting a centralised mechanism to this
task. Furthermore, the dynamic system reconfiguration can add
new participants, while some of the old participants are not
longer involved. Finally, processes, that are simply implemen-
tation code, can follow different incompatible computational
paths, thus each participant can be differently implemented in
the various adaptation steps.

One apparent limitation of our calculus is that processes are
single-threaded, have no delimitations and can only operate on
a single channel/session. This limitation can be addressed by
extending the process language and its typing rules, without
major consequences on the rest of the development.

We plan to experiment with implementations of our ap-
proach, to evaluate its feasibility.

We are working toward a quantitative version of our model,
where the global state also contains dynamically evolving
semantic information about processes, such as reputation or
performance rates. Using this information, adaptation functions
will be able to choose a single process among all the processes
matching a monitor, as one of the best implementations for
that participant. In the present calculus, this issue results in
an arbitrary choice, since processes can be taken solely on
the basis of their compatibility with monitors from the point
of view of safe adaptations. In a realistic application, instead,
it would be interesting to involve other requests concerning
quantitative aspects.
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