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Abstract 

Previous research has shown that performing joint actions can lead to the representation of both 

one’s own and others’ actions. In the present study we explored the influence of co-representation 

on response stopping. Are joint actions more difficult to stop than solo actions? Using a variation of 

the stop-signal task, we found that participants needed more time to stop a planned joint action 

compared to a planned solo action (Experiment 1). This effect was not observed when participants 

performed the task in the presence of a passive observer (Experiment 2).  A third transcranial 

magnetic stimulation experiment (Experiment 3) demonstrated that joint stopping recruited a more 

selective suppression mechanism than solo stopping. Taken together these results suggest that 

participants used a global inhibition mechanism when acting alone; however, they recruited a more 

selective and slower suppression mechanism when acting with someone else.  
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Introduction 

Many every-day activities require the ability to efficiently adjust and coordinate actions with 

others to achieve a common goal (Sebanz et al., 2006). Lifting a table up a narrow staircase, singing 

a duet or shaking hands are prime examples of what can be referred to as shared cooperative 

activities (Bratman, 1992) or joint actions (Sebanz et al., 2006).  

Previous research has shown that performing joint actions can lead to the representation of 

both one’s own and others’ actions. This occurs, for example, when the two stimulus-response 

mappings of a two-choice task are distributed between two actors. Even when there is no need to 

take the other’s mapping into account to perform the instructed task, a response conflict is observed 

when a task-irrelevant aspect of a stimulus activates a response corresponding to the task-relevant 

response of the other actor (Sebanz et al., 2003). In line with ideomotor theories (Greenwald, 1970; 

Jeannerod & Frak, 1999; Prinz, 1997), this has been taken to suggest that in planning joint actions, 

participants form task representations that specify not only their own part, but also the part to be 

performed by the co-actor (Sebanz et al., 2003; Sebanz et al., 2005). The action alternatives at the 

other’s disposal might become represented in a functionally similar way as their own and have a 

specific impact on their own acting (for a review see Sebanz et al., 2006).  

Co-representation of others’ actions during coordinated planning has been shown to influence 

stimulus processing (Heed et al., 2010), action monitoring (Schuch & Tipper, 2007), control 

(Sebanz et al., 2006; Tsai et al., 2006), and prediction processes during the ensuing interaction 

(Ramnani & Miall, 2004; for review see Knoblich et al., 2011). A far less explored issue is whether 

co-representation also influences task performance when people are asked to stop rather than to 

perform a joint action.  

 

 

Joint action inhibition: the stop-signal paradigm 
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 A useful tool for studying the processes involved in stopping a motor response is the stop-

signal paradigm (Lappin & Eriksen, 1966), a choice reaction time (RT) task which asks participants 

to occasionally withhold their ongoing response when a stop-signal appears. Performance in the 

stop-signal paradigm is modelled as a race between a ‘go process’, triggered by the presentation of 

the Go stimulus, and a ‘stop process’, triggered by the presentation of the Stop stimulus (Logan, 

1981; Logan & Cowan, 1984; for a review see Verbruggen & Logan, 2009). According to the race 

model, only when the cognitive process triggered by the Stop signal terminates before the end of the 

‘go’ cognitive process, can participants correctly suppress their movement. By constantly 

modifying the latency between the Go signal and the Stop signal in a way that the overall 

movement prevention probability is approximately 50%, the latency of the stop process (stop-signal 

reaction time; SSRT) can be estimated (Lappin & Eriksen, 1966; Ollman, 1973; Logan, 1981). Here 

we adapted the stop-signal paradigm to determine whether and how performing the task with 

someone else influences the stopping processes. In three experiments, participants performed the 

stop-signal task alone (Solo condition) and alongside a co-actor (Joint condition) or a passive 

observer. In Experiment 1, we used a variation of the stop-signal task to behaviourally dissociate 

solo and joint stopping. In Experiment 2 we tested whether the dissociation between solo and joint 

stopping might be explained by the mere presence versus absence of a person sitting next to the 

participant. In Experiment 3, using transcranial magnetic stimulation (TMS), we probed whether 

solo stopping and joint stopping recruit different neural mechanisms of movement suppression. We 

tested our results against three hypotheses. 

No effect on stopping. First, as the co-actor’s task was irrelevant (see below), the co-actor’s 

actions may be not represented at all and may therefore exert no influence on the participant’s 

performance. If so, performance should be the same in the Solo and in the Joint conditions.  

Non-specific effect of social facilitation. Second, in line with social facilitation, the mere 

presence of a co-actor may exert a general effect on task performance (e.g., Aiello & Douthitt, 

2001). It has been shown, for example, that when participants are engaged in a dialogue, social 
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facilitation can increase alertness and counter the effects of sleep deprivation (Bard et al., 1996). 

Social facilitation effects are not moderated by the specific actions carried out by others. Rather, the 

mere presence of others often leads to similar effects as when a group of individuals engage in the 

same actions (Bond & Titus, 1983). Under this account, a non-specific effect of the other’s presence 

should thus be expected.  

Specific effect of action co-representation. Finally, in line with the joint action literature, it is 

possible that the participants represent the other’s specific task demands, even when the co-actor’s 

task is irrelevant (Sebanz et al., 2003; Sebanz et al., 2005). Such representation would create an 

additional task set in which the stimuli are associated with the co-actor’s responses: that is, the Go 

stimulus would now activate representations of both the participant’s responses and those of the co-

actor. In this case, on stop-signal trials, participants may require a more selective mechanism to 

control their own responses independently of those of the co-actor (Aron, 2011). As selective 

stopping has been shown to be slower than global stopping (e.g. Claffey et al., 2010; Coxon et al., 

2007; Majid et al., 2012; for a review see Stinear et al., 2009), one would expect that the time which 

participants require to stop their response is lengthened in the joint condition compared to the 

individual condition. In line with this account, the distinctive finding would thus be that stopping is 

more selective and also slower when performing the task alongside a co-actor than when 

performing the task alone.  

 

Experiment 1 

In Experiment 1 we used the stop-signal paradigm to behaviourally dissociate solo stopping 

and joint stopping. Participants were asked to perform a choice RT task alone (Solo condition) and 

alongside a co-actor (Joint condition). In this task they had to respond to a target (i.e. press either a 

left or a right key depending on the stimulus shape) as quickly as possible. Occasionally, the target 

stimulus was followed by an auditory tone which served as a Stop signal. We measured the speed 

with which participants stopped their response, i.e., the stop signal reaction time (SSRT). SSRT 
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represents the time interval between the start and the end of the stopping process and can be 

estimated on the basis of the RT distribution observed on no-signal trials (Go RT) and the 

probability of responding during stop-signal trials observed for a given stop-signal delay (SSD) (for 

a review, see Logan, 1994). If the presence of the co-actor facilitates performance in a general way, 

then we would expect a general speeding up of both go and stop processes. In contrast, if co-

representation specifically influences stopping, then we would expect SSRT to be longer in the 

Joint condition than in the Solo condition.  

 

Material and Methods 

Participants. Twelve healthy participants (8 female; aged 21-34 years, mean age = 25.58) with no 

history of neurological or hearing problems took part in the experiment. They were all right-handed 

and had normal or corrected-to-normal vision. Before the experimental session each participant was 

naïve as to the purposes of the study and signed an informed consent; information about the 

experimental hypothesis was given only at the end of the experiment. The experimental procedures 

for both experiments were approved by the local Ethics Committee and were carried out in 

accordance with the principles of the revised Helsinki Declaration (World Medical Associations 

General Assembly, 2008). 

 

Task and Procedure. Participants performed a standard stop-signal task (based on Verbruggen et al., 

2008). Stimuli were presented on a 17-inch monitor (1600 x 900 pixels, refresh frequency, 60 Hz) 

at a viewing distance of 70 cm. Participants were seated in a comfortable chair, with their left and 

right index fingers on the ‘A’ and ‘L’ keys of a standard keyboard. Each participant performed the 

stop-signal task alone (Solo condition) and alongside a female experimenter acting as a co-actor 

(Joint condition). In the Joint condition the participant and the co-actor sat side-by-side in front of 

the monitor with a distance of about 40 cm between them. In the Solo condition, the chair next to 

the participant remained empty. The monitor was equidistant from the two chairs. Task and 
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procedure were identical in the Solo and in the Joint conditions, except that in the Joint condition 

instructions required both agents to perform the task. The co-actor was introduced to the participant 

as another participant. The participant was told that the co-actor would complete the solo part of the 

experiment at another time. Participants were not required to pay attention to or to coordinate their 

actions with those of the co-actor. 

Each trial began with a white fixation cross lasting 250 ms, followed by the imperative Go 

signal. The Go signal was either a white circle or square. Participants were instructed to press the 

‘A’ key for the circle, and the ‘L’ key for the square. They were asked to respond to the Go signal 

as fast and accurately as possible. Stimuli remained on the screen until a response was made, or 

until 1250 ms had elapsed. In 25% of trials (Stop trials), the imperative Go signal was suddenly 

followed by an auditory Stop signal (750 Hz, 75 ms), 24 times for the circle and 24 times for the 

square, instructing participants to withhold their responses. The Stop signal was presented after a 

variable delay (SSD) initially set at 250 ms. The SSD was adjusted continuously with the staircase 

converging tracking procedure (Band et al., 2003): when stopping succeeded, SSD increased by 50 

ms; when stopping failed, SSD decreased by 50 ms. This tracking procedure yields a probability of 

.50 of stopping to a stop signal [p(stop|signal); p(S|S)] (Levitt, 1971). In both the Solo and the Joint 

condition the tracking procedure was based on the actual participant responses so that the SSD was 

exclusively adapted to follow the participant’s performance. The SSRT was calculated using the 

integration method: for each participant, each SSD was subtracted from the nth RT, where n is the 

number of RTs in the RT distribution multiplied by the overall probability of responding at a given 

delay [p(respond|signal); p(R|S)]. Thus, SSRT was estimated for every SSD and was then averaged 

across SSDs. (Verbruggen et al., 2013; Verbruggen & Logan, 2009). The intertrial interval (ITI) 

lasted 2000 ms. Each condition (Solo and Joint) consisted of 192 randomly presented trials (144 Go 

trials and 48 Stop trials) equally distributed across four mini blocks of 48 trials each. Before each 

condition, participants completed a practice phase, in which they were presented with 32 trials (24 
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Go and 8 Stop). The order of the Solo and Joint conditions was counter-balanced across 

participants. The experiment lasted approximately 25 minutes. 

 

Data analysis. The accuracy of Go trials, the mean RT of correct Go trials (Go RT), the probability 

of stopping [p(S|S)], the mean SSD, and the SSRT were calculated separately for both the Solo and 

Joint conditions. One sample t-tests revealed that the p(S|S) was not significantly different from .50 

in both the Solo (t11 = -0.966, p= .355) and the Joint (t11 = -1.401, p= .189) conditions, indicating 

that the staircase converging tracking procedure was successful.  

Paired t-tests (2-tailed) on the above indices were performed to ascertain whether there were 

significant differences between the Solo and Joint conditions. 

 

 

Results 

Table 1 summarizes the key measures for both conditions. Participants required more time to 

stop an initiated response when they performed the task alongside another person. The SSRT was 

significantly longer (t11 = -2.470, p=.031) in the Joint condition compared to the Solo condition. 

Similarly, the SSD was significantly shorter in the Joint condition compared to the Solo condition 

(t11 = -2.996, p=.012). In contrast, no difference in Go RTs was observed between the Solo and 

Joint conditions (t11= 0.722, p= .457). Relative to our predictions, this finding of a longer latency of 

the stopping process in the Joint condition compared to the Solo condition is compatible with the 

hypothesis that in the Joint condition, participants represented the other’s responses as well as their 

own, and were thus induced to use a more selective, but slower mechanism to stop their own 

response.  

 

Experiment 2 
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A potentially relevant difference between the Joint condition and Solo condition was the 

presence versus absence of a person sitting next to the participant. This difference, rather than 

action co-representation, could be the source of the longer SSRT obtained in Experiment 1. To rule 

out this possibility, in Experiment 2 we asked participants to perform the stop-signal paradigm 

alone or in the presence of a passive observer. If the mere presence of another person is responsible 

for the effect, then a longer SSRT should also be obtained when the passive observer was seated 

next to the participant. In contrast, if stopping is specifically influenced by the co-actor’s responses, 

then no effect on the stopping process should be expected. 

 

 

 

Material and Methods 

Participants. Twelve new healthy participants (7 female; aged 20-27 years, mean age = 23.17) with 

no history of neurological or hearing problems took part in the experiment. They were all right-

handed and had normal or corrected-to-normal vision. Participants were naïve as to the purpose of 

the study and signed an informed consent; information about the experimental hypothesis was given 

only at the end of the experiment.  

 

Task, Procedure and Data Analysis. Task, procedure, and data analysis were the same as those used 

in Experiment 1 except that here participants performed the stop-signal task alone (Solo condition) 

and alongside a passive observer (Passive observer condition) who sat beside them without acting. 

As in Experiment 1, participants were told that the co-actor would complete the Solo part of the 

experiment at another time.  

 

Results 
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One sample t-tests revealed that the p(S|S) was not significantly different from .50 in both the 

Solo (t11 = 0.581, p= .573) and the Passive observer (t11 = 1.239, p= .241) conditions, indicating 

that the staircase converging tracking procedure was successful.  

Paired t-tests (2-tailed) on the Go RT (t11 = 0.234, p=.819), the SSRT (t11 = 0.155, p=.879), 

and the SSD (t11 = 0.050, p=.961) revealed no differences between the Solo and the Passive 

observer conditions (Table S1). This indicates that the mere presence vs. absence of a person sitting 

next to the participant was not sufficient to influence task performance.  

  

Experiment 3 

The finding of a longer latency of the stopping process when participants performed the task 

alongside a co-actor (Experiment 1), but not when they performed the task in the presence of a 

passive observer (Experiment 2) is compatible with the hypothesis that in the Joint condition, 

participants represented the other’s responses as well as their own, and were thus induced to use a 

more selective, but slower mechanism to stop their own response. However, differences in SSRT do 

not prove on their own that a more selective mechanism was engaged during joint stopping (Aron & 

Verbruggen, 2008). To obtain a direct measure of the selectivity of the joint stopping mechanism, in 

a third TMS experiment, we measured the corticospinal modulation of a task-irrelevant muscle 

during the stop-signal task. 

When a global mechanism is used to stop the hand, ‘widespread pulses’ inhibit the motor 

system generally and a significant decrease in excitability is observed not only in the hand muscle, 

but also in task-irrelevant effectors (Badry et al., 2009). Consistent with this, Majid and colleagues 

(2012) demonstrated that for standard, non-selective stopping, stopping the hand led to suppression 

of a task-irrelevant leg muscle. This diffuse suppression effect was not observed when participants 

were required to stop selectively, i.e., when they were cued in advance about which response to 

stop. 
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Following the same logic, in Experiment 3 we used TMS to probe the corticospinal 

excitability of a task-irrelevant leg muscle while participants performed a stop-signal task alone or 

alongside a co-actor. We treated task-irrelevant leg suppression as a ‘TMS signature’ of global 

versus selective stopping. We predicted that if joint stopping engages a more selective mechanism, 

then stopping should be slower and leg suppression reduced (i.e. corticospinal excitability should be 

greater) for the Joint compared to the Solo condition. Such a result would corroborate the 

hypothesis that a different suppression mechanism is recruited for jointly performed actions relative 

to individually performed actions. 

 

 

 

Materials and Methods 

Participants. Twenty-one new healthy volunteers (16 female) aged 18-31 (mean 21.8) took part in 

Experiment 3. All were right-handed, had normal or corrected-to-normal visual acuity and were free 

from any contraindication to TMS (Wassermann, 1998; Rossi, Hallett, Rossini, & Pascual-Leone, 

2009). Before the experimental session each participant was naïve as to the purposes of the study 

and signed an informed consent; information about the experimental hypothesis was given only at 

the end of the experiment. Participants were financially compensated for their time. None 

experienced discomfort during TMS. 

 

Task and Procedure. Participants performed a TMS-adapted version (based on Majid et al., 2012) 

of the standard stop-signal task. Stimuli were presented on a 19-inch monitor (resolution 1280 x 

1024 pixels, refresh frequency, 60 Hz) at a viewing distance of 90 cm. A chinrest was used to 

provide support and minimise head movements during TMS. Each trial began with a 500 ms yellow 

fixation cross, followed by a 500 ms blank screen. The imperative Go signal (circle: ‘A’ response; 

square: ‘L’ response) was then presented. On Go trials (67% of all trials), the Go signal remained 
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on the screen until a response was made, or until 900 ms had elapsed (Figure 1A). On Stop trials 

(33% of all trials) a red cross Stop signal appeared 35 times over the circle and 35 times over the 

square indicating that the participant and co-actor should withhold their responses. The Stop signal 

remained on the monitor until the end of the trial (Figure 1B). As in Experiment 1 and 2, the SSD 

was initially set at 250 ms and was then adjusted continuously with the staircase converging 

tracking procedure (Band et al., 2003). The SSD was calculated based on the participant’s 

responses. The ITI ranged from 4 to 6 s (mean 5 s). The experimental procedure was divided into 3 

sessions: i) ‘Practice’ without TMS; ii) ‘Solo’ condition; and iii) ‘Joint’ condition. For each 

participant, in order to calculate the timing of the TMS pulse, the experiment started with the 

Practice session (66 trials; 44 Go and 22 Stop) in which the co-actor was not present. After the 

Practice, the Solo and the Joint conditions (each including two blocks of 105 trials; 70 Go and 35 

Stop) were run in a counterbalanced order across participants. TMS pulses were delivered on 90 out 

of 105 trials in each block (60 Go trials and 30 Stop trials) during the response period calculated by 

subtracting 100 ms from mean Go RT obtained during the Practice session (Training Go RT - 100 

ms; Badry et al., 2009; Majid et al., 2012). 15 additional motor evoked potentials (MEPs) were 

recorded 300 ms before the onset of the Go signal for 10 Go trials and 5 Stop trials and served as a 

baseline for the response period MEPs. The entire experimental procedure (Practice, two Solo 

blocks, two Joint blocks) lasted approximately 100 minutes. Stimulus-presentation timing, EMG 

recording and TMS triggering, as well as stimulus randomisation, were controlled by E-Prime V2.0 

Software (Psychology Software Tools Inc., Pittsburgh, PA, USA) running on a PC. 

 

Electromyographic and TMS Recording. TMS pulses were administered using a Magstim Rapid2 

stimulator (Magstim, Whitlan, Dyfed, Wales, UK) connected to a 70 mm figure-of-eight coil 

initially positioned 2 cm anterior to the vertex of the head of the participant (Cz; the point half-way 

between the nasion and the inion) approximately corresponding to the midline primary motor cortex 

(M1) representations of the Tibialis Anterior (TA) muscles. During TMS preparation, the coil was 
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positioned in correspondence with the optimal scalp position (OSP), defined as the position from 

which MEPs with maximal amplitude were recorded in either of the 2 TA muscles (Majid et al., 

2012). To find the individual OSP, the coil was moved in steps of 0.5 cm over the motor cortex and 

the OSP was marked on a bathing cap worn by participants. To increase the likelihood of finding 

the OSP, participants were requested to slightly activate their TA muscles by placing their heels on 

the floor and the toes upon a low-rise step. Once the OSP was found, the individual resting motor 

threshold (rMT) was determined as the lowest stimulus intensity able to generate MEPs (no less 

than 50μV peak-to-peak amplitude) in five out of ten consecutive TMS pulses (Rossini et al. 1994). 

Five participants were excluded due to difficulty in finding either individual OSP or rMT. During 

the recording sessions, stimulation intensity was 115% of the rMT and it ranged from 53% to 85% 

(mean 76.3%) of the maximum stimulator intensity. The OSP was located over the right motor 

cortex (stimulating the left leg) in 13 participants; in 3 participants it was located over the left motor 

cortex (stimulating the right leg). MEPs were recorded from the TA muscles (muscles responsible 

for the feet dorsoflexion) through pairs of Ag-AgCl surface electrodes (10 mm diameter) placed 

over the muscle belly (active electrode) and over the associated joint or tendon (reference electrode) 

in a classical belly-tendon montage. Electrodes were connected to an isolated portable ExG input 

box linked to the main EMG amplifier for signal transmission via a twin fiber optic cable 

(Professional BrainAmp ExG MR, Brain Products, Munich, Germany). The ground electrodes were 

placed over the participants’ lateral malleoli of both legs and were connected to the common input 

of the ExG input box. A notch filter (50 Hz) was used and responses were sampled (5000 Hz), 

amplified, band-pass filtered (3 Hz-3000 Hz), and stored on a PC for off-line analysis. A 

prestimulus recording of 100 ms was used to check for the presence of EMG activity before the 

TMS pulse. In order to prevent contamination of MEP measurements by background EMG activity, 

trials with any background activity greater than 100 µV in the 100ms window preceding the TMS 

pulse were excluded from the MEP analysis (e.g. Duque & Ivry 2009; Cavallo et al., 2012). EMG 

data were collected for 200 ms after the TMS pulse. 
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Data analysis. EMG data were analyzed off-line using Brain Vision Analyzer software (Brain 

Products GmbH, Munich, Germany). Background EMG level prior to TMS was checked for each 

trial. Individual mean peak-to-peak amplitudes of MEPs recorded from TA muscles were calculated 

separately for Go and Stop trials. MEP amplitudes deviating more than 2 standard deviations (SD) 

from the mean of each experimental condition (< 2%), single trials contaminated by muscular 

preactivation (< 2%) and Stop trials in which the TMS trigger was delivered before the Stop signal 

(41 out of 1920 trials) were excluded from the analysis. Additionally, to ensure that any effect on 

MEP amplitude was not due to differences in background EMG level prior to TMS, the root mean 

square (rms) EMG obtained from the 100 ms window before the TMS pulse was calculated. A 

repeated measure 2 (Solo, Joint) x 2 (Go, Stop) ANOVA was then performed. Neither main effects 

[Condition p= .775 (rms Solo = 4.49; rms Joint = 4.32); Trial type p= .289 (rms Go = 4.26; rms 

Stop = 4.54)] nor an interaction (Condition x Trial type, p= .242) were observed in the rms data (see 

Figure S1 for a representation of rms prior to TMS pulse). 

To allow unbiased comparison between sessions, for each participant, MEP amplitudes were 

converted into a proportion of the baseline value. To simplify data presentation and allow 

comparison across conditions, Stop Ratios, as shown below, were calculated for each condition by 

dividing the baseline normalized mean MEP amplitude of the Stop trials by the mean MEP 

amplitude resulting from the Go trials. 

 

݋݅ݐܽݎ	݌݋ݐܵ ൌ 	
ݏ݈ܽ݅ݎݐ	݌݋ݐܵ	ܲܧܯ
ݏ݈ܽ݅ݎݐ	݋ܩ	ܲܧܯ

 

 

The lower the value of this index, the stronger the task-irrelevant leg suppression. 

To compare the MEP Stop Ratios for the Solo and the Joint conditions, a paired-sample t-

test (2-tailed) was performed.  
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Results 

Table 2 summarizes the key measures computed for both the Solo and the Joint conditions. As 

in Experiment 1, SSRT was prolonged (t15 = -2.369, p=.032) for the Joint condition compared to the 

Solo condition. Consistent with our prediction, during Stop trials leg suppression was reduced (t15 = 

-2.372, p=.032) for the Joint relative to the Solo condition (Figure 2). Critically, no difference in Go 

MEPs was observed (t15= .389; p=.352, one tailed), therefore excluding the possibility that 

differences in Stop Ratios may arise from larger Go MEP amplitudes in the Solo than Joint 

condition. 

Taken together, behavioural and TMS data suggest that, compared to the Solo condition, 

participants employed a more selective and slower suppression mechanism when responding 

alongside a co-actor.  

 

Discussion 

The present stop-signal study was designed to test the hypothesis that joint context modulates 

stopping processes. Performing joint actions can lead to the representation of both one’s own and 

others’ actions (e.g., Sebanz et al., 2003). We reasoned that if participants represent the stimulus-

response mappings of the co-actor alongside their own, then they may require a more selective but 

also slower mechanism to control their own responses when performing the task alongside a co-

actor. Under this account, stopping should thus be more selective and slower in the Joint condition 

compared to the Solo condition. Experiment 1 demonstrated that the latency of the stop process 

(SSRT) was indeed prolonged in the Joint condition relative to the Solo condition. This effect was 

not observed when participants performed the task in the presence of a passive observer 

(Experiment 2). This pattern of results is compatible with the hypothesis that participants used a 
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selective mechanism to stop when they performed the task together with a co-actor. However, the 

significant difference in SSRT obtained in Experiment 1 is not sufficient on its own as evidence 

that, at a neurocognitive level, two different mechanisms of stopping were activated (Aron & 

Verbruggen, 2008). To obtain a direct measure of stopping selectivity in Experiment 3, we used 

TMS to probe the corticospinal excitability of a task-irrelevant leg muscle while participants 

performed a stop-signal task alone or alongside a co-actor. In line with predictions, results showed 

that task-irrelevant leg suppression was significantly reduced for the Joint condition compared to 

the Solo condition. When participants acted alone, stopping the hand had global suppressive effects 

across effectors not related to the task. When they performed the stop-signal task alongside a co-

actor, they used a more selective mechanism that allowed the suppression of a specific response 

tendency. In combination, the prolonged SSRT and the significant reduction in leg suppression 

provide strong evidence in favour of the recruitment of a more selective stopping mechanism in the 

Joint condition compared to the Solo condition.  

 

Selective joint stopping 

How was the selective stopping mechanism activated in the Joint condition?  

Recent studies indicate that when people do not have foreknowledge about the particular response 

they may need to prevent, they use a fast-acting stopping mechanism that suppresses both the 

prepared response and other potential responses. However, when they have foreknowledge 

regarding which response they may have to stop, they use a more selective, but also slower 

mechanism (e.g. Claffey et al., 2010; Majid et al., 2012). This occurs, for instance, when they are 

cued in advance about which hand response to stop (“Maybe stop right” or “Maybe stop left”): 

participants represent two response alternatives and selectively prepare to stop a specific response 

(e.g. Aron & Verbruggen, 2008). One possibility therefore is that in the joint task participants 

represented separate stimulus-response mappings for each agent, and selectively prepared to stop 

their own response. 
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The ideomotor theory predicts that observing somebody perform an action should activate 

corresponding motor representations in the observer and create an action tendency (Greenwald, 

1970; Jeannerod & Frak, 1999; Prinz, 1997). During a joint stopping task, action possibilities at the 

other’s disposal might thus become represented, influencing the mechanism used to stop one’s own 

response. Participants may be slower to stop their response tendency because they use a more 

selective stopping mechanism to control their own action independently of what the co-actor is 

doing. If this is correct, then one would expect joint SSRT to correlate with SSRT as measured in a 

task requiring selective stopping. Moreover, joint stopping may be expected to be even more 

selective in social conditions that emphasize behavioral selectivity, e.g. when the participant and the 

co-actor have different task instructions. This prediction could be tested by using stopping 

paradigms which require one to withhold their action when it is the other’s turn to act.  

An alternative, yet not mutually exclusive, possibility is that participants engaged a more 

selective stopping mechanism when acting alongside the co-actor because the presence of the co-

actor acted as a reference frame for the spatial coding of their own action. In the cued selective 

stopping task participants are explicitly instructed to prepare to stop a particular hand (“Maybe Stop 

Right” or “Maybe Stop Left”; e.g. Aron & Verbruggen, 2008). Similarly to this cueing of the 

possibility of stopping the left/right hand response, the co-actor may provide a spatial frame for 

referential response coding – just as one’s own action alternatives provide a reference frame for 

relative response coding in two-choice tasks (Dolk et al., 2011; Dolk et al., 2013; Guagnano et al., 

2010). For instance, when the co-actor’s response occurs on the right side, the participant’s 

response is coded as left. According to this referential-coding account, the key enabler of selective 

stopping in the Joint condition would thus be the encoding of the participant’s own action with 

reference to the other person’s action. The effect observed in the Joint condition would not be 

specific for social actions, but should be observed for both social action and non-social action 

events, as long as they provide a spatial reference frame which allows for referential coding. In line 

with this, Dolk and colleagues (2013) recently demonstrated that spatial compatibility effects such 
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as the Social Simon effect do not necessarily require social nor movement features to occur, but can 

be elicited by any event salient enough to draw spatial attention. Studies modifying the social nature 

of the stop-task situation – in terms of both action and procedural characteristics – may help to 

clarify whether in the absence of foreknowledge cues, co-representation of a human co-actor’s 

action is necessary for a transition from global to selective inhibition to occur. 

 

What are the neural mechanisms for joint stopping?  

Modulation of leg suppression in Experiment 3 indicates that stopping the hand had global 

suppressive effects when acting alone, but not when acting alongside a co-actor. When combined 

with previous evidence, we speculate that this finding argues in favour of two different neural 

mechanisms for stopping. Global stopping has been proposed to engage a hyperdirect neural 

pathway characterized by fast and direct projections from the cortex (i.e., right inferior frontal 

cortex and presupplementary motor area) to the subthalamic nucleus of the basal ganglia (Aron et 

al., 2007; Aron & Poldrack 2006). The subthalamic nucleus is a deep brain structure with diffuse 

excitatory projections to output nuclei of the basal ganglia (including the globus pallidus pars 

interna), which, in turn, exert a diffuse inhibitory influence over M1 via the thalamus. Therefore, 

recruitment of the subthalamic nucleus could result in the rapid suppression of activity throughout 

the motor system. 

In contrast to the proposed global stopping mechanism, selective stopping may instead be 

implemented via an indirect pathway from the striatum to the globus pallidus pars externa and then 

to the globus pallidus pars interna. The termination pattern of striatal neurons onto the globus 

pallidus pars interna, and from globus pallidus pars externa to the globus pallidus pars interna has a 

very focused effect and may therefore lead to suppression of specific representations in M1 (for a 

review of neural systems underlying motor stopping see Aron, 2011; Jahfari et al., 2012, 2011; 

Chikazoe, 2010; Chambers et al., 2009; Eagle et al., 2008).  
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Cued stopping when participants have foreknowledge about which response they may need 

to stop has been proposed to target the motor system via the slower, indirect pathway. The current 

results provide further evidence for different modes of stopping, a global mechanism and a selective 

one, and suggest that a more selective pathway may be used not only when participants are cued in 

advance about which response to stop, but also when they act alongside another person. While 

future studies will be necessary to clarify whether joint stopping is implemented via the same 

fronto-striatal-pallidal pathway involved in cued stopping, these results provide novel insights into 

the circumstances which may activate global versus selective mechanisms in the stopping of action. 

 

Conclusions 

Acting together requires the recruitment of control processes which ensure joint stopping of 

action. Our results provide the first demonstration that the social context exerts a specific influence 

on the mechanisms underlying stopping. Participants use a fast global inhibition mechanism when 

acting alone; however, they recruit a more selective and slower stopping mechanism when acting 

with someone else. These findings motivate a richer model of how people control their 

inappropriate response tendencies and suggest that joint stopping and solo stopping recruit different 

suppression mechanisms.  
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Table 1. Experiment 1: comparison between Solo and Joint conditions 

 Solo Joint 

Go trials accuracy (%) .983 ± .022 .976 ± .022 

Probability of stopping p(S|S) .495 ± .055 .487 ± .056 

Go RT (ms) 508 ± 79 501 ± 73 

SSD (ms)* 291 ± 73 251 ± 60 

SSRT (ms)* 231 ± 50 267 ± 59 

 
Behavioural indices obtained from Experiment 1. All values represent mean ± standard deviation. 

Asterisks indicate significant differences between conditions (p < .05) 

 

Table 2. Experiment 3: comparison between Solo and Joint conditions 

 Solo Joint 

Go trials accuracy (%) .955 ± .030 .954 ± .037 

Probability of stopping p(S|S) .524 ± .060 .515 ± .049 

Go RT (ms) 420 ± 72 434 ± 59 

SSD (ms) 157 ± 69 165 ± 63 

SSRT (ms)* 

MEP Stop Ratio* 

279 ± 52 

.97 ± .13 

310 ± 55 

1.05 ± .11 

 
Behavioural and EMG indices obtained from Experiment 3. All values represent mean ± standard 

deviation. Asterisks indicate significant differences between conditions (p < .05) 
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Figure legends 

Figure 1. Example of experimental procedure for Experiment 3. Each trial began with a 500 ms 

fixation cross, followed by a 500 ms blank screen. The imperative Go signal was then presented. On 

Go trials (A) the Go signal remained on the screen until participants responded, or until 900 ms had 

elapsed. On Stop trials (B), following a variable SSD, a red cross Stop signal appeared over the 

circle/square indicating participants to withhold their responses and this remained on the monitor 

for the duration of the trial. The SSD was initially set at 250 ms and was then adjusted continuously 

with the staircase converging tracking procedure. The timing of the TMS pulse was calculated by 

subtracting 100 ms from mean Go RT obtained during the Practice session. 15 additional MEPs 

(TMS pulse, baseline) were recorded 300 ms before the onset of the Go signal for 10 Go trials and 5 

Stop trials and served as a baseline. 

 

Figure 2. (A) Peak-to-peak amplitude scores recorded from TA muscles during Solo and Joint 

conditions. MEP amplitudes are expressed as a Stop Ratio ± s.e.m. calculated for each condition by 

dividing the mean MEP amplitude of the Stop trials by the mean MEP amplitude resulting from the 

Go trials. (B) Individual MEP Stop Ratio difference was calculated for each participant by 

subtracting the MEP Stop Ratio of the Joint condition from the MEP Stop Ratio of the Solo 

condition.  
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Figure 2 

 


