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Abstract 

Inhibitors of EGFR are currently approved for the therapy of metastatic colorectal cancer (as well as other 

tumors), but their benefits are limited by inherent and acquired resistance, whose mechanisms are the subject 

of intense investigation. It is known that such resistance relies on a handful of genetic lesions and/or 

extracellular signals bypassing the requirement of EGF for cell proliferation and survival. As recently shown, 

these mechanisms may imply oncogenic activation of MET or its stimulation by the ligand hepatocyte growth 

factor. However, it is still largely obscure if sensitivity or resistance to EGFR inhibitors operates in cancer stem 

cells. Convincing evidence indicates that this elusive cell subpopulation is present at the roots of colorectal 

cancer. Conceivably, cancer stem cells accumulate the genetic lesions driving tumor onset and progression, 

as well as the genetic determinants of sensitivity or resistance to conventional and targeted therapies. Recent 

studies enlighten the expression of functional EGFR and MET in colorectal cancer stem cells and the outcome 

of their inhibition. Evidence is provided that, in patients sensitive to EGFR therapy, association of MET 

inhibitors fosters cancer stem cell eradication and durable tumor regression. Cancer Res; 74(14); 3647–51.  

 

EGFR Is a Therapeutic Target in Colorectal Cancer 

Targeted therapies are usually effective when they hit the product of an activated oncogene that plays an 

indispensable role in cell proliferation and survival, thereby sustaining the so-called “oncogene addiction” (1). 

However, this rule has apparent exceptions. Colorectal cancer is an example, where antibodies targeting 

EGFR offer clinical benefits even in the presence of a wild-type receptor (2, 3). This benefit is explained, at 

least in part, by the observation that EGFR signaling is crucial for homeostasis of intestinal stem cells, the 

putative origin of colorectal cancer (4, 5). However, colorectal cancer is frequently resistant to EGFR therapy, 

often as a result of genetic lesions that constitutively activate signal transduction pathways downstream 

EGFR, namely the RAS–ERK and PI3K–AKT pathways, controlling cell proliferation and survival. Direct 

stimulation of these pathways by activated oncogenes affords a “bypass track”—or compensatory signaling 

mechanism—that subtracts cell proliferation and survival from EGFR control, making EGFR inhibition 

ineffective (2). Such a resistance can manifest ab initio (“intrinsic” or “primary” resistance) or after the selective 

pressure imposed on tumor subclones by EGFR therapy itself (“acquired” or “secondary” resistance). It is not 

surprising that the same oncogene can be the protagonist of both intrinsic and acquired resistance to EGFR 

therapy, as it was shown in the case of RAS (6–8) or ERBB2 (9, 10). The same could occur for other genes 

implied in resistance such as PIK3CA (11), BRAF,PTEN (12), and MET (13). 
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MET Activation Is a Mechanism of Resistance to EGFR Inhibition 

The MET oncogene, encoding the tyrosine kinase receptor for hepatocyte growth factor (HGF; ref. 14), was 

first recognized as a factor of resistance to EGFR inhibitors in lung cancers driven by EGFR mutations. 

Amplification of this oncogene was found in 20% of patients that developed acquired resistance to the 

selective EGFR kinase inhibitor gefitinib (15, 16). In experimental settings, MET amplification emerged 

concomitantly with resistance in an “EGFR-addicted” cell line treated with increasing concentration of gefitinib. 

In these cells, MET was shown to reactivate the proliferative/antiapoptotic MEK–ERK and PI3K–AKT 

pathways, quenched by the inhibitor, thereby conferring bypass track resistance (15). These studies also 

provided the proof of principle that the combination of EGFR and MET inhibitors could be beneficial in lung 

cancers driven by EGFR mutations (15, 16). Interestingly, later, it was shown that rare subclones 

harboring MET amplification may pre-exist in EGFR-mutated lung cancers. These subclones are not driven by 

EGFR mutations and thus are positively selected by therapy with EGFR inhibitors (17). 

The finding that MET amplification (or another genetic alteration, ref. 3) confers acquired resistance to EGFR 

therapy links the concept of resistance to the presence of a cell-autonomous, selectable genetic lesion, 

mirroring the mechanism of oncogene addiction. On the other hand, sensitivity to targeted therapy may rely on 

the normal activity of an essential pathway—such as the one downstream EGFR in colorectal cancer—and 

refractoriness may be sustained by physiologic, inherent signaling circuits. Indeed, it has recently emerged 

that resistance to targeted therapies may be sustained by growth-promoting cues coming from the tumor 

microenvironment. As an example, in cancer cell lines addicted to mutationally active kinases, the response to 

specific inhibitors was efficiently counteracted by a variety of growth factors (18–20). In this context, among 

the many factors screened, HGF displayed a prominent role in protecting BRAF-mutant melanomas or 

ERBB2-driven carcinomas from their respective inhibitors (18, 19). Consistently, an association between high 

levels of HGF expression and resistance to kinase-targeting agents was found also in bioptical samples of 

BRAF-mutant melanomas (18,19). Again, in an experimental setting, HGF, EGF, and FGF were shown to 

reciprocally rescue cells from inhibition of their respective receptors (20), a compensation mechanism that may 

be critical for resistance of colorectal cancer stem cells to targeting agents (see below). 

The specific role of HGF in sustaining resistance to EGFR inhibition was first shown in lung adenocarcinomas 

driven by EGFR mutations (17, 21). Lately, it was shown that HGF protects colorectal cancer cells from 

inhibition of wild-type EGFR (13, 22, 23). Recently, by analyzing microarrays of colorectal tumors treated with 

an anti-EGFR antibody as monotherapy, a correlation between increased expression of HGF and poor 

therapeutic response was highlighted (24, 25). 

As MET is widely expressed in human tumors (14), and HGF is abundantly produced by cancer-associated 

fibroblasts (26, 27), activation of the wild-type receptor by its ligand may have a widespread role, sustaining 

both biologic aggressiveness and protection from antibodies or drugs targeting kinases, EGFR in particular. So 

far, however, the contribution of HGF may have been underestimated in the experimental setting, for a 

limitation inherent in cancer cell xenografting: murine HGF does not efficiently cross-react with human MET 

(28, 29). 

 

Colorectal Cancer Stem Cells: The Root of the Tumor Resistance to Therapy 

Colorectal tumors contain cells endowed with heterogeneous tumorigenic potential (30, 31). Indeed, different 

cell subpopulations were isolated from whole tumors by cell surface markers and cell sorting: only a minor cell 

subset displayed the distinctive properties of “cancer stem cells” such as (i) to generate a xenograft that 

phenocopies the original tumor, (ii) to self-renew in vivo, that is to sustain serial passages of xenografting, and 

(iii) to give rise to a progeny that, although proliferating, cannot establish or propagate a xenografted tumor 

(30). 
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From colorectal tumors, it was also possible to isolate cells—retaining the above properties—which were not 

prospectively isolated through cell surface markers, but were selected in a stem cell culture medium (25, 32). 

This methodology generated the so-called “colospheres”: spheroid colonies growing in suspension, each 

virtually clonal, and originated by cells with stem properties. As they were not prospectively isolated by cell 

surface markers, such cells should be more appropriately referred to as “cancer-initiating cells” (C-IC; 

refs. 30, 32). 

It is debated whether cancer stem cells (or C-IC) are fixed entities, or represent a transient functional status, 

and if there is interconversion between the nonstem and the stem status; if so, it is unclear which extracellular 

cues could mediate such interconversion (30). Interestingly, among a few hints, it has been shown that 

induction of the so-called “epithelial–mesenchymal transition” by exogenous signals reprograms cells to 

reactivate latent stem properties (33). HGF, also known as “scatter factor,” is a well-known inducer of cell 

dissemination and invasive growth, a complex process starting with epithelial–mesenchymal transition 

(14, 34). Moreover, HGF induces Wnt signaling in colorectal C-IC (35). These features whisper that HGF 

sustains the cancer stem cell phenotype, as envisioned by considering the role of its receptor MET during 

development and tissue regeneration (36). 

At present, the dilemma about the “stem status” (fixed vs. transitory and interchangeable) is largely 

unresolved, and the “cancer stem cell model” is burdened with controversy on the relative extent of the stem 

cell subpopulation in individual tumors (30). However, whatever the outcome of the arguments, the relevance 

of stem cells in cancer therapy is increasingly evident. It is quite established that cancer cells obeying to the 

operational definition of “stem cells” are highly resistant to conventional therapies, and thus are the most likely 

cause of tumor recurrence (30). In colorectal C-IC, chemoresistance has been associated with the activity of 

autocrine IL4 (37), or the paracrine stimulation by IL17A, a factor that promotes also self-renewal (38), or the 

activity of transcription factors ID1 and ID3, critical for sustaining the stem phenotype (32). Altogether, these 

data support the conclusion that “determinants of stemness” deeply contribute to therapeutic resistance (30) 

and enhance the interest in the stemness promoting activity of HGF as a cause of failure of conventional and 

targeted therapy. 

 

EGFR: A Master Regulator of Colorectal Cancer Stem Cells 

In cancer stem cells, the role of EGFR and MET signaling is largely obscure, as well as the outcome of their 

targeted inhibition. To shed light on these issues, we systematically isolated C-IC from a previously 

established ample cohort of patient-derived xenografts of metastatic colorectal cancer (“xenopatients”). These 

xenografts were validated as faithful representatives of the original tumors, able to retain their genetic and 

phenotypic features across multiple serial passages, and displaying a therapeutic response to EGFR inhibitors 

comparable with that of matched patients, and correlated with the genotype (9). As expected, mutations in 

genes encoding signal transducers of the RAS pathway conferred primary resistance. Moreover, this 

xenopatient cohort was used to perform population-based studies, resulting in the identification of two new 

mechanisms of resistance to therapy with the anti-EGFR antibody cetuximab: ERBB2 amplification (for primary 

resistance; ref. 9) and MET amplification (for acquired resistance; ref. 13). Colospheres were generated from 

xenopatient tumors by culture in stem cell–selective medium. These cells, for brevity called “xenospheres,” 

displayed the operational properties of C-IC (see above). Indeed, xenospheres long-term self-propagated in 

vitro and generated phenocopies of the original tumors after transplantation in mice (“spheropatients”; Fig. 1). 

Notably, xenospheres retained the most essential property of C-IC, as they could be rederived from the 

spheropatient and sustain serial transplantation. Finally, the matched human patient, xenopatient, xenosphere, 

and spheropatient retained the genetic determinants of response to anti-EGFR therapy. Altogether, these 
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findings provide a proof of concept that therapeutic sensitivity/resistance of colorectal cancer to EGFR 

inhibitors resides in C-IC (25). 

 

In the majority of colorectal C-IC, isolated as xenospheres, EGFR was highly expressed. However, those 

harboring RAS mutations (RASmut) were completely autonomous in their growth, insensitive to EGF, and 

refractory to EGFR inhibitors (even when cultured in the presence of EGF). This confirmed that, in colorectal 

C-IC, RAS constitutive activation sustains a bypass track compensatory mechanism of cell proliferation and 

survival. On the contrary, xenospheres harboring wild-type RAS pathway genes and normal ERBB2 gene copy 

number (for brevity referred to as RASwt) displayed strong dependence on EGF for their growth and survival, 

and, in some cases, expressed autocrine loops of EGFR ligands. As expected, when RASwt xenospheres were 

grown in the presence of exogenous or autocrine EGF as the sole growth factor, cetuximab was sufficient to 

fully prevent proliferation and survival. However, when the same cells were cultured in a medium produced by 

cancer-associated fibroblasts, secreting a plethora of cytokines and growth factors, and mimicking the tumor 

microenvironment (27), a strong inherent resistance to EGFR inhibition became evident (25). 

 

MET: A Dangerous Coregulator of Colorectal Cancer Stem Cells 

Among factors produced by cancer-associated fibroblasts, HGF is prominent (25, 27). Its receptor MET was 

widely expressed, at high levels, in all xenospheres, and, unlike EGFR, was mostly downregulated when cells 

were cultured in prodifferentiating conditions. This observation strongly associates MET functions with the 

stem/progenitor status. When RASwt xenospheres were cultured in the medium produced by cancer-

associated fibroblasts, in spite of the presence of multiple growth factors, MET inhibition was sufficient to 

abolish proliferation, survival, and the underlying RAS/ERK and PI3K/AKT signaling. On the contrary, in the 

same setting, EGFR inhibition was ineffective (25). These results prompted us to reconsider the importance of 

MET inhibitors for colorectal cancer therapy. Indeed, previous preclinical models, based on xenografts in 

regular NOD/SCID mice, failed to show a response to MET inhibitors (39). However, as mentioned (see 

above), dependence of HGF is difficult to assess in the mouse, because murine HGF does not efficiently 

cross-react with human MET expressed by colorectal C-IC. Thus, a preclinical model was set up to ensure the 

presence of human HGF, either by inducing an HGF autocrine loop in xenospheres or by transplanting 

xenospheres in a genetically engineered NOD/SCID mouse, where the endogenous gene was replaced by the 

humanHGF gene. In this setting, the superior efficacy of the combination of EGFR and MET inhibitors for the 

therapy of RASwt tumors was striking. Interestingly, this combination treatment was accompanied by signs of 

stem cell marker loss and increased tumor differentiation (25). 

 

Studying the Therapeutic Response at Cancer Stem Cell Level: Opportunities and Pitfalls 

To date, a major limitation to study the therapeutic response of cancer stem cells has been the lack of 

integration between genomic and functional traits (30). We can now move ahead and bridge the gap by 

isolating cancer stem cells (or C-IC) from individual tumors, by validating the correspondence between the 

genetic profile of the original tumor and the stem cell derivatives, and by studying in this setting the 

mechanism of sensitivity or resistance to targeted therapies. 

In the past, cell lines have been invaluable for identifying and validating targets for cancer therapy, but C-IC 

growing in cultures may open a new era of discovery, as they more faithfully retain the genetic make-up of the 

original tumor (40). This is essential when assessing the mechanisms of intrinsic and acquired resistance, 

which often depend on cell-autonomous–specific genetic lesions. Besides the conceptual implications, the 

practical value of C-IC in vitro cultures resides in their property to indefinitely propagate while retaining a 

remarkable genetic stability. This value is independent of the definition of “cancer stem cells,” a concept still 
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controversial and suffering from prejudicial interpretation that leaves uncomfortable many researchers working 

at the interface between bench and bed. Of course, drawbacks exist, first of all the cumbersome technology 

for isolating stem cells from human tumors. However, the improvement of platforms of patient-derived 

xenopatients—feasible for the majority of tumors—may significantly increase the efficiency of cell derivation. 

By characterizing cancer stem cells in vitro, the interplay between the genetic make-up and the signaling 

circuits inherently operating in these cells can be recognized. Many of these circuits are expected to depend 

on extracellular cues emanated from the tumor microenvironment, which often plays the role of a “cancer stem 

cell niche.” The impact of these cues on the response to targeted therapies may be underestimated in 

classical xenopatients, if, as in the case of HGF, murine environmental factors weakly cross-react with human 

receptors. This limitation can be now circumvented by genetic modification of either cancer stem cells or the 

murine host, the spheropatient (Fig. 1). In sum, the population-based studies in xenopatients can be integrated 

by a reductionist approach in isolated cancer stem cells, and a new hypothesis emerging in vitro can be 

assessed by a further xenografting step in a more sophisticated mouse recipient. The hope is that such a 

xenopatient–xenosphere–spheropatient system, in colorectal as well as in other tumors, may offer a more 

rapid and robust flux of information reverberating to the patient. This information should contribute to rigorously 

define the sensitivity of the critical cellular target (the cancer stem cell) to the targeting agent, to recognize the 

factors supporting primary and secondary resistance, and to identify biomarkers for monitoring target 

inhibition. Sad to notice, but these obvious actions, required to predict and control the therapeutic response, 

are often slackly implemented in the translational setting, and fail to guide the design of clinical trials. As a 

result, the clinical and molecular interpretation of the therapeutic outcomes may remain inconclusive. The case 

of combined inhibition of EGFR and MET in lung cancers (41), recently discontinued for lack of clinical benefit, 

is one of the last, paradigmatic examples. 
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Figure 1. 
The xenopatient–xenosphere–spheropatient platform. The patient's surgical sample (1) is xenografted in 
NOD/SCID mice and propagated (xenopatient, 2). From these xenografts, cancer-initiating cells (cancer stem 
cells) are selected and expanded in stem cell medium (xenospheres, 3). After transplantation in mice 
(spheropatient, 4), these cells generate tumors that faithfully retain the genotypic and phenotypic features of 
the original tissues. Xenospheres provide an in vitro model to identify the cell-autonomous and non–cell- 
autonomous determinants of sensitivity and resistance to therapies that cannot be fully elucidated in vivo. Both 
xenospheres (5) and the recipient mice (6) are amenable to genetic manipulation so as to assess experimental 
hypothesis. Integrated information (dotted arrows) among the patient and the different experimental settings 
fosters discovery and validation of new therapeutic targets. 
 


