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Abstract

A software product line (SPL) is a set of related software systems with well-defined commonality and variability
that are developed by reusing common artifacts. In this paper, we present a novel technique for implementing SPLs
by exploiting mechanisms for fine-grained reuse which are orthogonal to class-based inheritance. We formalize our
proposal by means of FEATHERWEIGHT RECORD-TRAIT JAVA (FRTJ), a minimal core calculus where units of
product functionality are modeled by traits, a construct for fine-grained behavior reuse, and by records, a construct
that complements traits to model the variability of state. Records and traits are assembled in classes that are used to
build products. The composition of product functionality is realized by explicit operators of the calculus, allowing
code manipulations for modeling product variability. The FRTJ type system ensures that the products in the SPL
are type-safe by type-checking the records, traits and classes shared by different products only once. Moreover,
type-safety of an extension of a (type-safe) SPL can be guaranteed by checking only the newly added parts.

Key words: Featherweight Java, Feature Model, Software Product Line, Trait, Type System

1. Introduction

A software product line (SPL) is a set of software systems with well-defined commonality and variability [14, 30].
SPL engineering aims at developing these systems by managed reuse. Products of a SPL are commonly described
in terms of features [18], where a feature is a unit of product functionality. Feature-based product variability has to
be captured in the product line artifacts that are reused to realize the single products. On the implementation level,
reuse mechanisms for product implementations have to be flexible enough to express the desired product variability.
Additionally, they should provide static guarantees that the resulting products are type-safe. In order to be of effective
use, the type-checking has to facilitate the analysis of newly added parts, if the product line evolves, without re-
checking unmodified, already existing parts.

Today, most product implementations of SPLs are carried out within the object-oriented paradigm. Although class-
based inheritance in object-oriented languages provides means for code reuse with static guarantees, the rigid structure
of class-based inheritance puts limitations on the effective modeling of product variability and on the reuse of code (in
particular, code reuse can be exploited only from within a class hierarchy) [27, 16]. Feature-oriented programming
(FOP) [6] allows to flexibly implement product lines within the object-oriented paradigm by complementing class-
based inheritance by class refinement. In FOP, a product implementation for a particular feature configuration is
obtained by composing feature modules for the respective features. A feature module contains class definitions and
class refinements. A class refinement can modify an existing class by adding new fields/methods, by wrapping code
around existing methods or by changing the superclass. Delta-oriented programming (DOP) [32] extends FOP by
the possibility to remove code from an existing product. In DOP, a product implementation is obtained by applying
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modifications specified in delta modules to existing products. Both FOP [4, 15] and DOP [33] are equipped with type
systems that allow establishing the type-safety of the implemented products.

In this paper, we explore another approach to structure the implementation of SPLs in which flexible code reuse
is combined with static guarantees. Instead of implementing products by specifying code modifications, products are
realized by exploiting record and trait composition. The term trait has been used by Ungar et al. [41], in the context
of the dynamically-typed prototype-based language SELF, to refer to a parent object to which an object may delegate
some of its behavior. Subsequently, Schärli et al. [35, 16] introduced traits in the context of the dynamically-typed
class-based language SQUEAK/SMALLTALK, as means for fine-grained code reuse to overcome the limitations of
class-based inheritance. A trait is a set of methods, completely independent from any class hierarchy. Records [11]
have been introduced to represent the counterpart of traits with respect to the state. In the original proposals of traits
in SQUEAK/SMALLTALK [35, 16] (and in most of the subsequent formulation of traits within a JAVA-like nominal
type system [37, 28, 31, 24]) trait composition and class-based inheritance live together. However, class-based inher-
itance introduces an obstacle for flexibly implementing product lines since it limits the possibilities of reusing code.
Therefore, in our approach, class-based inheritance is ruled out. Classes are assembled only by composition of code
artifacts (traits, interfaces and records) that are suitable for reuse in different product implementations.

We formalize our approach in FEATHERWEIGHT RECORD-TRAIT JAVA (FRTJ), a minimal core calculus (in the
spirit of FJ [17]) for interfaces, records, traits and classes. In FRTJ, the concepts of type, state, behavior are separated
into different and orthogonal linguistic concepts: interfaces, records and traits, respectively. FRTJ is an extension of
the trait-based calculus presented in [12] with an enhanced version of the record construct introduced in [11], in order
to model variability in the state part of products explicitly. The type system of FRTJ provides static guarantees on
safe and consistent class assembly from records, traits and interfaces. FRTJ programs may look more verbose than
standard class-based programs; however, the degree of reuse provided by records and traits is higher than the reuse
potential of standard static class-based hierarchies. The intent of this paper is not to present the calculus FRTJ in
itself, but to formalize the implementation of SPLs using linguistic constructs for fine-grained code reuse. SPLs in
FRTJ are implemented in three layers. First, the FRTJ language is used for programming records, traits and interfaces
which are assembled into classes. Second, a product is specified by the classes it uses. Third, a SPL is described by
its products and its artifact base, consisting of the records, traits, interfaces and classes used to build the products of
the SPL. The type system of FRTJ ensures that a SPL is type-safe by type-checking the artifacts in the artifact base
only once. Type-safety of an extension of a (type-safe) product line can be guaranteed by analyzing only the newly
added parts.

The main differences of the trait-oriented approach for implementing SPL presented in this paper with respect
to the approaches based on FOP and DOP relying on class-based inheritance, such as [20, 36, 6, 4, 15, 32], are the
following:

• The modeling of SPL variability and the associated code reuse are only achieved by trait and record composition
operations (for creating new traits/records by removing, aliasing, and renaming members from already defined
traits/records), without introducing feature/delta modules specifying class refinements/modifications.

• The classes, interfaces, records and traits of all the products coexist in the artifact base. Generation of a single
product just amounts to selecting a subset of these artifacts. Therefore, a class/interface/trait/record name refers
to the same definition entity in all the products.

A preliminary version of the results presented in this paper has been presented in [8].
Organization of the Paper. In Section 2, we illustrate traits and records. In Section 3, we show how to use them
to implement the products of a software product line with an example. In Section 4, we present the FRTJ calculus
and state its type soundness. In Section 5, we use FRTJ to formalize software product lines and their type-checking.
Related work is discussed in Section 6. We conclude by outlining some directions for future work. The appendices
contains proofs omitted from the main text.

2. Introducing Records and Traits

Traits have been introduced in the dynamically-typed class-based language SQUEAK/SMALLTALK to play the role
of units for behavior fine-grained reuse: the common behavior (that is, the common methods) of a set of classes can
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interface IAccount { void update(int x); }
record RAccount is { int balance; /∗ provided field ∗/ }
trait TAccount is {

int balance; /∗ required field ∗/
void update(int x) { balance = balance + x; } /∗ provided method ∗/ }

class Account implements IAccount by RAccount and TAccount

Listing 1: Artifacts for the ACCOUNT product

be factored into a trait [35, 16]. Various formulations of traits in a JAVA-like setting can be found in the literature
(see, e.g., [37, 28, 11, 31, 12, 24]). The programming language FORTRESS [1] (which does not contain class-based
inheritance) incorporates a trait construct, while the “trait” construct of SCALA [29] is indeed a form of mixin.

In this paper, we use the concept of trait as described in [12]. A trait can consist of provided methods, that
implement behavior, of required methods, that parametrize the behavior itself, and of required fields, that can be
directly accessed in the body of the provided methods. Traits are the building blocks to compose classes or other,
more complex, traits. A suite of trait composition operations allows the programmer to build classes and composite
traits. A distinguished characteristic of traits is that the composite unit (class or trait) has complete control over
conflicts that may arise during composition and must solve them explicitly. Traits do not specify any state, therefore
a class composed by using traits has to provide the required fields (by means of records). The trait composition
operations considered in this paper are as follows:

• A basic trait defines a set of methods and declares the required fields and the required methods.
• The symmetric sum operation, +, merges two traits to form a new trait. It requires that the summed traits must

be disjoint (that is, they must not provide identically named methods).
• The operation exclude forms a new trait by removing a method from an existing trait.
• The operation aliasAs forms a new trait by giving a new name to an existing method.
• The operation renameTo creates a new trait by renaming all the occurrences of a required field name or of a

required/provided method name from an existing trait.

Note that the actual names of the methods defined in a trait (and also the names of the required methods and fields)
are irrelevant, since they can be changed by the renameTo operation.

A record is a set of fields, completely independent from any class hierarchy. Records have been recently proposed
in [11] as the counterpart of traits with respect to state to play the role of units for state fine-grained reuse. The
common state (i.e., the common fields) of a set of classes can be factored into a record. Records are building blocks
to compose classes or other, more complex, records by means of operations analogous to the ones described above
for traits. The record construct considered in this paper enhances the original one [11] by providing a richer set of
composition operations.

In the following, we illustrate the trait and record constructs by an example implementation of bank accounts
(cf. [15]). We use a JAVA-like notation and a more general syntax (including. e.g., the types void and boolean, the
assignment operator, etc.) than the one of the FRTJ calculus presented in Section 4. We omit the class constructors
in the examples. All constructors are assumed to be of the form

C(I1 f1,..., In fn) {this.f1 = f1;...;this.fn=fn;}

where f1,...,fn are all the fields of the class C. We consider the implementation of a class Account providing the
basic functionality to update the balance of an account with the interface:

interface IAccount { void update(); }

In a language with traits and records, the fields and the methods of the class can be defined independently from the
class itself, as illustrated by the code at the top of Listing 1. The class Account is composed as shown at the bottom
of Listing 1.

A class SyncAccount implementing a variant of the basic bank account that guarantees synchronized access can
be developed by introducing a record RSync that provides a field for a lock and a trait TSync that provides a method
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record RSync is { Lock lock; /∗ provided field ∗/ }
trait TSync is {

Lock lock; /∗ required field ∗/
void m(int x); /∗ required method ∗/
void sync m(int x) { lock.lock(); m(x); lock.unlock(); } /∗ provided method ∗/ }

record RSyncAccount is RSync + RAccount
trait TSyncAccount is TAccount[update renameTo unsyncUpdate]

+ TSync[m renameTo unsyncUpdate, sync m renameTo update]

class SyncAccount implements IAccount by RSyncAccount and TSyncAccount

Listing 2: Artifacts for the SYNC ACCOUNT product

that wraps the code for synchronization around a non-synchronized method. Based on these and the record RAccount

and trait TAccount for the basic account, a record RSyncAccount and a trait TSyncAccount can be defined providing
the fields and methods of the class SyncAccount. The corresponding code is shown in Listing 2.

The record RSync and the trait TSync are completely independent from the code for the basic account. Because
of the trait and record operations to rename methods and fields, they can be reused for synchronizing any method
(provided the signature is the same as in TSync) or several methods on the same lock (as we will see in Section 3).
FRTJ extends method reusability of traits to state reusability of records, and fosters a programming style relying on
small components that are easy to reuse.

Traits/records satisfy the so called flattening principle [28] (see also [23, 22]), that is, the semantics of a method-
/field introduced in a class by a trait/record is identical to the semantics of the same method/field defined directly
within the class. For instance, the semantics of the class SyncAccount in Listing 2 is identical to the semantics of the
JAVA class:
class SyncAccount implements IAccount
{ int balance;

Lock lock;
void unsyncUpdate(int x) { balance = balance + x; }
void update(int x) { lock.lock(); unsyncUpdate(x); lock.unlock(); } }

3. Implementing Software Product Lines

As a running example to demonstrate how product line variability is implemented in our trait-based approach, we
use the SPL of bank accounts considered in [15]. The products of a SPL are defined by their features. A feature
is a designated characteristic of a product and represents a unit of product functionality. Figure 1 shows the feature
model [18] of the bank account SPL determining the different products by possible combinations of features. The
mandatory Base feature represents the basic functionality of any bank account allowing to store the current balance
and to update it. This functionality can be extended by the optional Sync(hronized) feature guaranteeing synchronized
access to the account. The features Retirement and Investment that provide the possibility to store an additional bonus
for the account are optional and mutually exclusive. The optional feature With Holder adds a reference to the holder
of the account and requires the presence of either the Retirement or the Investment feature.

Products in a SPL are constructed from a common artifact base. In our approach, the artifact base for a SPL
consists of records, traits, interfaces and the classes assembled thereof. Products use different classes depending on
the features they provide. The record, trait, interface and class that capture the functionality of the account providing
the Base feature are given in Listing 1. The product ACCOUNT (providing the mandatory feature Base) is specified by
the declaration
product ACCOUNT uses Account // 1st product

A product providing several features can be realized by composing and/or modifying records, traits and interfaces
contained in the artifact base. Listing 2 contains the records, traits and class required to implement the Sync feature.
The product SYNC ACCOUNT (providing the features Base and Sync) is specified by the declaration
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Base Sync With HolderInvestment Retirement

Bank Account Product Line

« requires »

Figure 1: Feature Model for Bank Account Product Line

interface IBonusAccount extends IAccount {void addBonus(int b);}
record RBonus is RAccount[balance renameTo 401balance]
trait TBonus is TAccount[balance renameTo 401balance, update renameTo addBonus]

interface IRetAccount extends IBonusAccount { }
record RRetAccount is RBonus
trait TRetAccount is TBonus + TAccount[balance renameTo 401kbalance]

class RetAccount implements IRetAccount by RRetAccount and TRetAccount

Listing 3: Artifacts for the RET ACCOUNT product

product SYNC ACCOUNT uses SyncAccount // 2nd product

The Retirement feature is implemented by the code artifacts in Listing 3. An account with the Retirement fea-
ture contains a 401kbalance field that is incremented by the usual update method and by an additional addBonus
method. We introduce the interface IBonusAccount extending the IAccount interface to provide uniform access to
all variants of a basic bank account containing the addBonus method. The record RBonus provides the 401kbalance
field by renaming the balance field of the record RAccount. Trait TBonus provides the addBonus method by re-
naming the balance field and the update method of trait TAccount such that TBonus provides the functionality to
increment the 401kbalance field by the addBonus method. In order to implement the RetAccount class, we use
the record RBonus (the balance field of RAccount is not required) and the traits TBonus and TAccount (where the
balance field is renamed to 401kbalance). The product RET ACCOUNT (providing the features Base and Retire-
ment) is specified by the declaration

product RET ACCOUNT uses RetAccount // 3rd product

Listing 4 contains the code artifacts to implement the Investment feature. The InvAccount class implements a
variant of the basic bank account which has a 401kbalance field in addition to the usual balance of the account. When

trait TInv is TBonus + {
int 401balance; /∗ required field ∗/
void originalUpdate(int x); /∗ required method ∗/
void update(int x) { x = x/2; originalUpdate(x); 401balance += x; } /∗provided method∗/ }

interface IInvAccount extends IBonusAccount { }
record RInvAccount is RBonus + RAccount
trait TInvAccount is TInv + TAccount[update renameTo originalUpdate]

class InvAccount implements IInvAccount by RInvAccount and TInvAccount

Listing 4: Artifacts for the INV ACCOUNT product
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interface IClient { void payday(int x, int bonus); }
record RClient is { IBonusAccount a; /∗provided field∗/}
trait TClient is {

IBonusAccount a; /∗ required field ∗/
void payday(int x, int bonus) { a.addBonus(bonus); a.update(x); } /∗provided method∗/ }

class Client implements IClient by RClient and TClient

Listing 5: Artifacts for the * ACCOUNT WH products

trait TSync2 is TSync + TSync[m renameTo m1, sync m renameTo synch m1]

trait TSyncBonusAccount is TSync2[m renameTo unsyncUpdate,
sync m renameTo update, m1 renameTo unsyncAddBonus, sync m1 renameTo addBonus]

record RSyncRetAccount is RSync + RRetAccount
trait TSyncRetAccount is TSyncBonusAccount

+ TRetAccount[update renameTo unsyncUpdate, addBonus renameTo unsyncAddBonus]

class SyncRetAccount implements IRetAccount by RSyncRetAccount and TSyncRetAccount

Listing 6: Artifacts of the SYNC RET ACCOUNT product

the balance is updated by the update method, the input is split between the basic balance field and the 401kbalance
field. This is realized in the trait TInv. The addBonus method increments the 401kbalance field directly. The
interface IInvAccount, the record RInvAccount and the trait TInvAccount provide the public methods, the fields
and the methods of the class InvAccount. The record RInvAccount is composed from the records RBonus and
RAccount. The trait TInvAccount is built by composing the trait TInv and the trait TAccount where the update

method is renamed to originalUpdate to work with the TInv trait. The product INV ACCOUNT (providing the
features Base and Investment) is specified by the declaration

product INV ACCOUNT uses InvAccount // 4th product

The With Holder feature is implemented by adding a class Client, representing the owner of an account in a
field a of type IBonusAccount. The owner can access his account via the methods update and addBonus of the
IBonusAccount interface. The payday method in the TClient trait increments both the balance and 401kbalance
fields by the input amount. The corresponding artifacts are given in Listing 5. The WithHolder feature requires the
presence of a feature that implements the IBonusAccount interface, i.e., either Retirement or Investment. The
corresponding products INV ACCOUNT WH and RET ACCOUNT WH are specified by the declarations

product INV ACCOUNT WH uses InvAccount, Client // 5th product
product RET ACCOUNT WH uses RetAccount, Client // 6th product

The product SYNC RET ACCOUNT (providing the features Base, Sync and Retirement) implements an account
where all public methods are synchronized (cf. Listing 6). First, we introduce the trait TSync2 that synchronizes two
methods on the same lock. In trait TSync2, trait TSync is duplicated, and in the second version the required method m

record RSyncInvAccount is RSync + RInvAccount
trait TSyncInvAccount is TSyncBonusAccount

+ TInvAccount[update renameTo unsyncUpdate, addBonus renameTo unsyncAddBonus]

class SyncInvAccount implements IInvAccount by RSyncInvAccount and TSyncInvAccount

Listing 7: Artifacts of the SYNC INV ACCOUNT product
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ID ::= interface I extends Ī { S̄; } interfaces
S ::= I m (Ī x̄) method headers

RD ::= record R is RE records
RE ::= { F̄; } | R | RE+RE | RE[exclude f] | RE[f renameTo f] record expressions
F ::= I f fields

TD ::= trait T is TE traits
TE ::= { F̄; S̄; M̄} | T | TE+TE | TE[exclude m] | TE[m aliasAs m] trait expressions

| TE[m renameTo m] | TE[f renameTo f]
M ::= S { return e; } methods
e ::= x | e.f | e.m(ē) | newC(ē) | (I)e expressions

CD ::= class C implements Ī by RE and TE classes

Figure 2: FRTJ: Syntax

is renamed to m1 and the provided method sync m is renamed to sync m1. The trait TSyncBonusAccount customizes
the trait TSync2 to synchronize the update and addBonus methods.

The class SyncRetAccount is realized by the interface IBonusAccount, the record RSyncRetAccount com-
posed from the records RSync (providing the lock) and RRetAccount and the trait TSyncRetAccount. The trait
TSyncRetAccount is composed from the trait TSyncBonusAccount and the trait TRetAccount in which the pro-
vided methods are renamed so that they can be synchronized by TSync2. The product is specified by the declaration

product SYNC RET ACCOUNT uses SyncRetAccount // 7th product

The product SYNC INV ACCOUNT (providing the features Base, Sync and Investment) is implemented in a similar
way by the code artifacts in Listing 7. The product is specified by the declaration

product SYNC INV ACCOUNT uses SyncInvAccount // 8th product

The last two products of the SPL, obtained by adding the Sync feature to the 5th and 6th product, respectively, are
specified by the declarations

// 9th and 10th products
product SYNC INV ACCOUNT WH uses SyncInvAccount, Client
product SYNC RET ACCOUNT WH uses SyncRetAccount, Client

This example shows that the proposed approach can be used to flexibly model product line variability without
limitations by a class hierarchy. The composition operators on records and traits support the fine-grained reuse of
artifacts, e.g., to express different features accessing the same fields, features removing fields that are no longer
required, or different features redefining the same methods.

4. The FRTJ Calculus

In this section, we describe the syntax, type system and operational semantics of the FRTJ calculus, a minimal
core calculus (in the spirit of FJ [17]) for interfaces, records, traits and classes that we use for implementing SPLs.

4.1. Syntax
The syntax of FRTJ is given in Figure 2. We use the overbar sequence notation according to [17]. For instance, the

pair “Ī x̄” stands for “I1 x1, ...,In xn”, and “Ī f̄;” stands for “I1 f1; ...;In fn;”. The empty sequence is denoted by “•”
and the length of a sequence S̄ is denoted by “#S̄”. In the FRTJ calculus, trait, record and class names are not types.
The only user defined types are interface names. As pointed out in [12], using trait names as types limits the reuse
potential of traits, because method exclusion and renaming operations would break the type system. Moreover, if class
names are not used as types, interface and record declarations are independent from classes, and the dependencies of
trait declarations on classes are restricted to object creation. By only using interfaces as types, the reuse potential of
traits and records is increased to appropriately capture product line variability.
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mSig(I m (Ī x̄)) = I m (Ī)
mSig(S1; ...;Sn;) = mSig(S1) · ... ·mSig(Sn)

mSig(I) = mSig(Ī)∪mSig(S̄;) if IT(I) = interface I extends Ī {S̄;}
mSig(I1, ...,In) = mSig(I1)∪ ...∪mSig(In)

mSig(S {return e;}) = mSig(S)
mSig(M1...Mn) = mSig(M1) · ... ·mSig(Mn)

mSig(C) = mSig(Ī) if CT(C) = class C implements Ī by · · ·

Figure 3: FRTJ: Function mSig

In FRTJ, there are no constructor declarations. Like in FJ, the syntax of the constructor of a class is fixed with
respect to the field order, types and names: in every class C, we assume the implicit constructor C(Ī f̄){this.f̄= f̄;},
where Ī f̄ are the fields of C.

A class table CT is a map from class names to class declarations. Similarly, an interface table IT, a record table
RT and a trait table TT map interface, record and trait names to interface, record and trait declarations, respectively.
A FRTJ program is a 5-tuple (IT,RT,TT,CT,e), where e is the expression to be executed. For the type system and
the operational semantics, we assume fixed, global tables IT, RT, TT, and CT. We also assume that these tables are
well-formed, i.e., they contain an entry for each interface/record/trait/class mentioned in the program, and that the
interface subtyping and record/trait reuse graphs are acyclic.

Convention 4.1 (On Sequences of Named Elements). A sequence of named elements (e.g., interface declarations,
method headers,...) is well-formed if it does not contain two (or more) elements with the same name. Sequences of
named elements are in general assumed to be well-formed. The fact that a sequence of named elements S̄ is well
formed can be emphasized by writing “S̄ wf”, e.g., in the premise of some typing rules. The sequence of names
of the elements of S̄ is denoted by names(S̄), the subsequence of the elements of S̄ with the names n̄ is denoted by
choose(S̄, n̄), and exclude(S̄, n̄) denotes the sequence obtained from S̄ by removing the elements with the names n̄.
According to [17], a set-based notation for operators over sequences of named elements is used. In the union and
in the intersection of sequences, denoted by S̄∪ Z and S̄∩ Z, respectively, it is assumed that if n ∈ names(S̄) and
n ∈ names(Z) then choose(S̄,n) = choose(Z,n). In the disjoint union of sequences, denoted by S̄ ·Z, it is assumed that
names(S̄)∩names(Z) = /0.

4.2. Typing
The FRTJ type system analyzes each trait definition in isolation from the classes or traits that use it. Some of the

typing rules use the auxiliary function mSig, given in Fig. 3. The function mSig returns method signatures, ranged
over by σ and ζ , i.e., method headers deprived of parameter names. For instance, the signature associated to the
header Im(I1 x1, ...,In xn) is Im(I1, ...,In).

For each method definition in a trait, the constraints on the use of this within the method body are collected by
the type system. Within a basic trait expression { F̄; S̄; M̄}, each method M ∈ M̄ is type-checked by assuming for this
the structural type 〈 F̄ p σ 〉, where F̄ are the required fields and σ = mSig(S̄) ·mSig(M̄) is the (disjoint) union of the
signatures of the required methods and of the provided methods of the basic trait expression, respectively. The typing
judgment for method definitions is this : 〈 F̄ p σ 〉 ` M : µ to be read: “under the assumption that this has fields F̄

and methods σ , the method declaration M is well-typed with type µ”, where µ = I m (Ī) p 〈 F̄′ p σ
′ p Ī′ 〉 is such that

1. I m (Ī) is the signature of the method;
2. F̄

′ and σ
′ specify that the body of the method (the expression e) selects the fields F̄′ (⊆ F̄) and the methods with

signatures σ
′ (⊆ σ ) on this, respectively; and

3. Ī
′ specifies that the use of this in the body of the method assumes that the class of the this object implements

the interfaces Ī′.

The triples 〈 F̄ p σ p Ī 〉, ranged over by γ , represent the constraints on this inferred from the body of the method.
The typing rule for classes will check that a class satisfies the constraints inferred for the bodies of the methods
provided by the composing traits.
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Interface declaration typing:
mSig(I) wf

` interface I extends J̄ { S̄ }
(I-OK)

Record declaration and trait declaration typing:
` RE : F̄

` record R is RE : F̄
(R-OK)

` TE : µ̄

` trait T is TE : µ̄
(T-OK)

Class declaration typing:

` RE : Ḡ ` TE : µ1...µp p≥ 0 ∀i ∈ 1..p, µi = ζi p 〈 F̄(i) p σ
(i) p Ī(i) 〉

∪i∈1..pF̄
(i) = Ḡ ((∪i∈1..pσ

(i))∪mSig(Ī))⊆ ζ1...ζp ∀I′ ∈ ∪i∈1..pĪ
(i), ∃I ∈ Ī, I<: I′

` class C implements Ī by RE and TE
(C-OK)

Basic record expression and basic trait expression typing:
` { F̄; } : F̄ (T-REBAS)

mSig(S̄) = σ mSig(M1...Mp) = ζ1...ζp

p≥ 0 ∀i ∈ 1..p, this : 〈 F̄ p σ ·ζ1...ζp 〉 ` Mi : µi, µi = ζi p 〈 F̄(i) p ζ
(i)
p Ī(i) 〉

F̄= ∪i∈1..pF̄
(i)

σ = exclude((∪i∈1..pζ
(i)
),names(ζ1...ζp)) (σ ·ζ1...ζp)∪mSig(∪i∈1..pĪ

(i)) wf
` { F̄; S̄; M1...Mp } : µ1...µp

(T-TEBAS)

Method declaration typing:
this : 〈 F̄ p σ 〉, x̄ : J̄ ` e : θ p 〈 F̄′ p σ

′ p Ī 〉
θ = 〈 F̄ p σ 〉 implies Ī

′ = Ī∪J θ , 〈 F̄ p σ 〉 implies ( θ <: J and Ī
′ = Ī )

this : 〈 F̄ p σ 〉 ` J m (J̄ x̄){return e;} : J m (J̄) p 〈 F̄′ p σ
′ p Ī′ 〉

(M-OK)

Figure 4: FRTJ: Typing rules for interfaces, records, traits, classes, basic record expressions, basic trait expressions and methods

Nominal types, ranged over by η , are either class names or interface names. The syntax of nominal types is
as follows: η ::= C | I . A nominal type is either a class name or an interface name. The syntax of types for

expressions is as follows: θ ::= 〈 F̄ p σ 〉 | η . The type of the expression this is a pair 〈 F̄ p σ 〉, specifying that
this has the fields F̄ and methods with signatures σ . The type of an object creation expression newC(· · ·) is the class
C. The type of any other expression e is an interface name.

The (nominal) subtyping relation is the reflexive and transitive closure of the union of the immediate implements
relation and extends relation declared by the implements clauses in the class table CT and by the extends clauses in
the interface table IT, respectively. We will write η1 <: η2 to mean that η1 is a subtype of η2.

An environment Γ is either a finite mapping from variable names (including this) to types, written “x̄ : Ī, this :
〈 F̄ p σ 〉”, or the empty mapping, written “•”. We write ` (IT,RT,TT,CT,e) : η , to be read: “the program
(IT,RT,TT,CT,e) is well-typed with type η”, to mean that the interfaces in IT, the records in RT, the traits in TT

and the classes in CT are well-typed, and the expression e is well-typed with type η .

4.2.1. Typing Rules for Interfaces, Records, Traits, Classes, Basic Record and Trait Expressions, and Methods
The typing rules for interface, record, trait and class definitions, for basic record and trait expressions, and for

methods definitions are given in Fig. 4.
The typing judgement for interface definitions is ` interface I extends Ī { S̄; } , to be read: “the declaration

of the interface I is well-typed”. The associated typing rule checks that the sequence of method signatures belonging
to the interface is well-formed. The typing judgement for record definitions is ` record R is RE : F̄ , to be read:
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“the declaration of record R is well-typed with type F̄”. The associated typing rule assigns to the record declaration
the type of the record expression RE. Since the record reuse graph is acyclic, no use of R may be encountered when
typing RE. The typing judgment for trait definitions is ` trait T is TE : µ̄ , to be read: “the declaration of trait T is
well-typed with type µ̄”. The associated typing rule assigns to the trait declaration the type of the trait expression TE.
Since the trait reuse graph is acyclic no use of T may be encountered when typing TE. The typing judgment for class
declarations is ` class C implements Ī by RE and TE OK , to be read: “the declaration of the class C is well-
typed”. The associated typing rule checks that the constrains in the types of the methods provided by TE are satisfied.
Namely, that the class C provides the fields and the methods required by TE, that TE provides all the methods of the
interfaces implemented by C, and that C is a subtype of each interface required by the methods provided by TE.

The typing judgement for record expressions is ` RE : F̄ , to be read: “the record expression RE is well-typed with
type F̄”, i.e., RE provides the fields F̄. The typing judgement for trait expressions is ` TE : µ̄ where µ̄ = µ1...µn (n≥
1), to be read: “the trait expression TE is well-typed with type µ̄”, i.e., TE provides n methods with constrain-based
types µ1, ...,µn, respectively. The typing judgment for method definitions is described at the beginning of Section 4.2.

4.2.2. Typing Rules for Non-Basic Record Expressions and Non-Basic Trait Expressions
The typing rules for non-basic record and trait expressions are given in Fig. 5. Both, the typing rule for record

names (T-RE) and the typing rule for trait names (T-TE), lookup the typing of the corresponding record and trait
definition, respectively. The typing rules for non-basic record expressions are straightforward (remember that, by
Convention 4.1, in the disjoint union of sequences, S̄ ·Z, it is assumed that names(S̄)∩names(Z) = /0).

The rules for typing non-basic trait expressions are as follows. The rule for method exclusion, (T-TEEX), simply
removes the type of the excluded method. The rule for symmetric sum of traits, (T-TESUM), assigns to the composed
trait the type resulting from the concatenation of the types of the summed traits. Thus, it has to be checked that
there are no conflicts among the methods provided by the summed traits. Moreover, in the two wf statements, it is
ensured that there are no conflicts among the fields required by the summed traits and among the provided methods
(ζ1...ζp+q), the required methods (∪i∈1..p+qσ

(i)) and the method signatures of the interfaces that this must implement
(mSig(∪i∈1..p+qĪ

(i))). The rule for method aliasing, (T-TEAL), besides ensuring that the method to be aliased exists, it
also checks that the new name does not create conflicts. The type of the alias method is added to the final type. The
rule for method renaming, (T-TEREM), is similar, but since renameTo renames also the recursive occurrences of method
names, it must perform the substitution also on the signatures of required/provided methods (and also on the resulting
type). Rule (T-TEREF) is similar, but it acts on field names.

4.2.3. Typing Rules for Expressions
The typing rules for expressions are given in Fig. 6. The rules are syntax directed, with one rule for each term,

except that there are two different rules for casts (to distinguish between upcasts and downcasts). The typing judgment
is Γ ` e : θ p γ , to be read: “under the assumption in Γ, the expression e is well-typed with type θ and constraints
γ”. The meaning of the constraints γ has been illustrated at the beginning of Section 4.2.

The rule for variables, (T-VAR), is standard; no constraints on this have to be collected (even when x is this).
The rule for field selection, (T-FIELD), looks up the type of this in Γ, extracts the type I of f and collects the constraint
that this must have a field f of type I. When the expression e to be checked is a method body, Γ(this) contains
the required fields declaration of a basic trait expression { F̄; S̄; M̄} which comprises the method definition. The
constraints collected by means of rule (T-FIELD) are a subset of the assumptions F̄ provided by Γ(this): they describe
the fields that are selected on this by the checked expression. Collecting this information is crucial in order to
be able to check trait expressions TE by considering only the constraints enforced by the methods provided by the
trait expressions. Such constraints, due to the presence of the method exclusion operation, are more liberal than the
constraints corresponding to the required fields declarations of the basic trait expressions used by TE.

In the rule for method invocation, (T-INVK), the actual parameters (e1, ...,en) are checked and the inferred con-
straints are collected in the conclusion of the rule. It has to be distinguished whether the receiver is this or different
from this. In the former case, the signature Im(I1, ...,In) of m is extracted from the sequence of signatures σ in the
type assumed for this, and the constraint that this must have a method m with signature Im(I1, ...,In) is collected
in the conclusion of the rule (since ζ = Im(I1, ...,In)) . For the types of the actual parameters that are different from
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Non-basic record expression typing:
` record R · · · : F̄

` R : F̄
(T-RE)

` RE : F̄ ` RE′ : F̄′

` RE+RE′ : F̄ · F̄′
(T-RESUM)

` RE : F̄ ·F · Ḡ names(F) = f

` RE[exclude f] : F̄ · Ḡ
(T-REEX)

` RE : F̄ f ∈ names(F̄) f′ < names(F̄) Ḡ= F̄[f
′
/f]

` RE[f renameTo f′] : Ḡ
(T-REREF)

Non-basic trait expression typing:
` trait T · · · : µ̄

` T : µ̄
(T-TE)

` TE : µ̄ ·µ · µ̄ ′ names(µ) = m

` TE[exclude m] : µ̄ · µ̄ ′
(T-TEEX)

` TE1 : µ1...µp ` TE2 : µp+1...µp+q

∀i ∈ 1..p+q, µi = ζi p 〈 F̄(i) p σ
(i) p Ī(i) 〉 ∪i∈1..p+q F̄

(i) wf
ζ1...ζp+q∪ (∪i∈1..p+qσ

(i))∪mSig(∪i∈1..p+qĪ
(i)) wf

` TE1 +TE2 : µ1...µp+q
(T-TESUM)

` TE : µ1...µn n≥ p≥ 1 ∀i ∈ 1..n, µi = ζi p 〈 F̄(i) p σ
(i) p Ī(i) 〉

names(ζp) = m m′ < names(ζ1...ζn) ζp[m
′
/m]∪ (∪i∈1..nσ

(i)) wf
µ = ζp[m

′
/m] p 〈 F̄(p) p σ

(p) p Ī(p) 〉
` TE[m aliasAs m′] : µ1...µnµ

(T-TEAL)

(m ∈ names(ζ ∪σ) implies m′ < names(ζ ∪σ))

` TE : µ1...µn ∀i ∈ 1..n, µi = ζi p 〈 F̄(i) p σ
(i) p Ī(i) 〉 σ = ζ1...ζn∪σ

(1)∪ ...∪σ
(n)

m ∈ names(σ) (σ [m/m′]∪mSig(∪i∈1..nĪ
(i))) wf

∀i ∈ 1..n, µ
′
i = ζi[m

′
/m] p 〈 F̄(i) p σ

(i)[m
′
/m] p Ī(i) 〉

` TE[m renameTo m′] : µ
′
1...µ

′
n

(T-TEREM)

` TE : µ1...µn ∀i ∈ 1..n, µi = ζi p 〈 F̄(i) p σ
(i) p Ī(i) 〉

F̄= F̄
(1)∪ ...∪ F̄(n) f ∈ names(F̄) F̄[f

′
/f] wf ∀i ∈ 1..n, µ

′
i = ζi p 〈 F̄(i)[f

′
/f] p σ

(i) p Ī(i) 〉
` TE[f renameTo f′] : µ

′
1...µ

′
n

(T-TEREF)

Figure 5: FRTJ: Typing rules for non-basic record expressions and non-basic trait expressions

this (θi such that i <T ), the subtyping check between actual and formal parameter types is performed (θi <: Ii). The
check is not performed when the actual parameter is this (θi such that i∈T ); instead, the types of the corresponding
actual parameters (Ii such that i ∈ T ) are included in the required interfaces for this collected in the conclusion of
the rule. The case when the receiver is different from this is similar. The only difference is that the signature of m
is extracted from the type θ of the receiver, that is, either from the signatures of θ (if θ is an interface) or from the
signatures of the interfaces implemented by θ (if θ is a class). Moreover, ζ is set to the empty sequence.

The rule (T-NEW) for object creation is similar. It uses the field declarations in the class C to check the type of
the arguments of the constructor. The rules for cast (T-UCAST) and (T-DCAST) are a straightforward adaptation of the
corresponding rules proposed in [17]. Note that expressions like (C)e where the type of e is not a subtype of C (called
stupid casts in [17]) are ill-typed.

4.3. Operational Semantics

Following a standard approach in the literature on traits [16] (see also [28, 23]), we specify the semantics of FRTJ
by defining a “flattening” translation (that provides a canonical semantics for records and traits by compiling them
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Expression typing:

Γ ` x : Γ(x) p 〈• p • p •〉 (T-VAR)

Γ ` this : 〈 F̄ p ... 〉 p 〈• p • p •〉 choose(F̄,f) = If

Γ ` this.f : I p 〈 If p • p • 〉
(T-FIELD)

Γ ` e : θ p 〈 F̄(0) p σ
(0) p Ī(0) 〉 ∀i ∈ 1..n, Γ ` ei : θi p 〈 F̄(i) p σ

(i) p Ī(i) 〉
θ = Γ(this) = 〈 ... p σ 〉 implies ( choose(σ ,m) = Im(I1, ...,In) and ζ = Im(I1, ...,In) )

θ , Γ(this) implies ( choose(mSig(θ),m) = Im(I1, ...,In) and ζ = • )
T = {i | i ∈ 1..n and θi = Γ(this)} ∀i ∈ 1..n−T , θi <: Ii

Γ ` e.m(e1, ...,en) : I p 〈 ∪i∈0..nF̄
(i) p (∪i∈0..nσ

(i))∪ζ p (∪i∈0..nĪ
(i))∪ (∪i∈T Ii 〉)

(T-INVK)

fields(C) = I1 f1; ...;In fn; ∀i ∈ 1..n, Γ ` ei : θi p 〈 F̄(i) p σ
(i) p Ī(i) 〉

T = {i | i ∈ 1..n and θi = Γ(this) = 〈 ... p σ 〉} ∀i ∈ 1..n−T , θi <: Ii

Γ ` newC(e1, ...,en) : C p 〈 ∪i∈1..nF̄
(i) p ∪i∈1..nσ

(i) p (∪i∈1..nĪ
(i))∪ (∪i∈T Ii 〉)

(T-NEW)

Γ ` e : η p γ η <: I
Γ ` (I)e : I p γ

(T-UCAST)
Γ ` e : J p γ I<: J I , J

Γ ` (I)e : I p γ
(T-DCAST)

Figure 6: FRTJ: Typing rules for expressions

away) and by providing a semantics for the subset of the language without records and traits. To this aim, we introduce
FFRTJ (FLAT FRTJ), the subset of FRTJ where there are no record and trait declarations and the syntax of record
and trait expressions is simplified as follows:

RE ::= { F̄; }
TE ::= { F̄; •; M̄}

A FFRTJ program is a FRTJ program with empty record and trait tables. The translation removes the record and
trait tables and replaces the class table with a class table containing only FFRTJ classes.

The translation is specified by the function J·K, given in Figure 7, that maps a FRTJ class declaration to a FFRTJ
class declaration, a record expression to a sequence of field declarations, and a trait expression to a sequence of method
declarations. We write JCTK to denote the class table containing the translation of all the classes in CT. The clauses in
Figure 7 are self-explanatory. Note that, in the translation of trait expressions, the clause for field renaming is simpler
than the clause for method renaming (which uses the auxiliary function mR); this is due to the fact that fields can be
accessed only on this.

A FFRTJ program is a 5-tuple (IT,•,•,CT,e). Following FJ [17], the semantics of FFRTJ is given by means of a
reduction relation of the form e→ e′, to be read “expression e reduces to expression e′ in one step”. We write→? to
denote the reflexive and transitive of→. Values are defined by the following syntax: v ::= newC(v̄) . The FFRTJ
lookup functions, evaluation contexts/redexes and reduction rules are given in Figure 8.

4.4. FRTJ Type Soundness
The proof of the type soundness result for FRTJ consists of two steps. First, we show that the flattening translation

preserves types. Second, we prove type soundness for FRTJ.

Theorem 4.2. (Flattening Preserves the Type of Programs)
If ` (IT,RT,TT,CT,e) : η , then ` (IT,•,•,JCTK,e) : η .

PROOF. See Appendix A.
�

Theorem 4.3. (FRTJ Type Soundness) If ` (IT,RT,TT,CT,e) : η and e→? e′ with e′ a normal form, then e′ is: either
a value v of type C and C<: η; or an expression containing (I)new C(v̄) where C≮: I.

PROOF. See Appendix B.
�
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Jclass C implements Ī by RE and TEK =
class C implements Ī by { F̄; } and { F̄; •; JTEK} if JREK = F̄

J{ F̄; }K = F̄

JRK = JREK if RT(R) = record R is RE

JRE1 +RE2K = JRE1K · JRE2K
JRE[exclude f]K = exclude(JREK,f)
JRE[f renameTo f′]K = JREK[f′/f]

J{ F̄; S̄; M̄}K = M̄

JTK = JTEK if TT(T) = trait T is TE

JTE1 +TE2K = JTE1K · JTE2K
JTE[exclude m]K = exclude(JTEK,m)
JTE[m aliasAs m′]K = M̄ · (I m′(Ī x̄){return e;}) if JTEK = M̄ and I m(Ī x̄){return e;} ∈ M̄
JTE[f renameTo f′]K = JTEK[f′/f]
JTE[m renameTo m′]K = mR(JTEK,m,m′)

mR(I n(Ī x̄){return e;},m,m′) = I n[m
′
/m](Ī x̄){return e[this.m′/this.m];}

mR(M1 · ... ·Mn,m,m
′) = (mR(M1,m,m

′)) · ... · (mR(Mn,m,m
′))

Figure 7: Flattening FRTJ to FFRTJ

Fields, methods and interfaces lookup functions

fields(C) = F̄ if CT(C) = class C · · · by { F̄; } and · · ·
methods(C) = M̄ if CT(C) = class C · · · by · · · and {· · · ; •; M̄}
interfaces(C) = Ī if CT(C) = class C implements Ī by · · ·

Evaluation contexts and redexes:

E ::= [] | E.f | E.m(ē) | v.m(v̄,E, ē) | (I)E | newC(v̄,E, ē)
r ::= (newC(v̄)).f | (newC(v̄)).m(v̄) | (I)(newC(v̄))

Reduction rules:
fields(C) = I1 f1; ...;In fn

E[(newC(v1, ...,vn)).fi]→ E[vi]
(R-FIELD)

Im(Ī x̄) {returne; } ∈ methods(C)
E[(newC(v̄)).m(ū)]→ E[e[ū/x̄,newC(v̄)/this]]

(R-INVK)

∃J ∈ interfaces(C), J<: I
E[(I)(newC(v̄))]→ E[newC(v̄)]]

(R-CAST)

Figure 8: FFRTJ: Operational Semantics
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5. Implementing Type-safe Software Product Lines in FRTJ

In this section, the methodology how to implement type-safe SPLs in FRTJ is presented. Following [40], we say
that a SPL is type-safe if all its product are well-typed programs (according to the type system of the language in
which they are implemented). The implementation of SPLs in FRTJ relies on the fact that the FRTJ type system
supports the type-checking of traits in isolation from the traits and classes that use them.

Theorem 5.1. (FRTJ Type-checking)
An FRTJ program can be type-checked by type-checking only once its interfaces, record, traits, and classes.

PROOF. Recall that the interface subtyping and record/trait reuse graphs are acyclic and observe that the FRTJ
typing rules are such that:

• each interface can be type-checked in isolation from the interfaces, records, traits and classes that use it (by
relying on the typing of the interfaces that it extends and on the information contained in the interface table);

• each record can be type-checked in isolation from the records and classes that use it (by relying on the typing
of the records that it uses and on the information contained in the interface and record tables);

• each trait can be type-checked in isolation from the code of the traits and classes that use it (by relying on the
typing of the traits that it uses and on the information contained in the interface, trait and class table tables);

• each class can be type-checked in isolation from the code of the other classes (by relying on the typing of the
records, traits and interfaces that it uses and on the information contained in the interface, record, trait and class
tables).

�

5.1. Formalizing Software Product Lines in FRTJ
A SPL consists of a set of products that are constructed from common artifacts in the SPL artifact base. A product

is specified by the set of classes it uses. A product specification PS is a declaration

product P uses C̄

where P is the name of the product and C̄ is a sequence of class names. The set of products contained in the SPL
is captured in its product table. A product table PT is a map from product names P to product specifications PS.
A SPL L is a 5-tuple (IT,RT,TT,CT,PT) where PT is the product table of the SPL and (IT,RT,TT,CT) represents
the artifact base. The artifact base contains the interfaces, records, traits and classes used to specify products. We
assume that the tables IT, RT, TT and CT are well-formed, i.e., the tables IT/RT/TT/CT contain an entry for each
interface/record/trait/class used in the SPL and the interface subtyping and record/trait reuse graphs are acyclic.

The code of a product P is the 4-tuple (ITP,RTP,TTP,CTP), where ITP, RTP, TTP and CTP are the subtables of IT,
RT, TT and CT containing exactly the entries for the interfaces, records, traits and classes reachable from the classes
contained in the product P. We assume that each product specification product P uses C̄ of PT is well-formed, that
is: C̄ contains exactly the classes in CTP.

Figure 9 depicts the relations between a SPL artifact base, the products and the SPL. On the lowest level, the
traits T1,T2,T3, the records R1,R2,R3 and interfaces I1, I2, I3 are used to built classes C1,C2,C3 constituting the SPL
artifact base. The classes are used to built the products P1,P2 and P3. which are contained in the SPLs L1 and L2.

Example 5.2. Consider the bank account SPL introduced in Section 3. The SPL BankLine, described by the feature
model in Figure 1, where the feature Sync is removed, is formalized as a 5-tuple (IT,RT,TT,CT,PT) containing the
entries for all interfaces/records/traits/classes given in Listings 1, 3, 4 and 5 and the five product specifications

product ACCOUNT uses Account
product INV ACCOUNT uses InvAccount
product RET ACCOUNT uses RetAccount
product INV ACCOUNT WH uses InvAccount, Client
product RET ACCOUNT WH uses RetAccount, Client
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Figure 9: Relation between Artifacts, Products and SPL

The type system of FRTJ supports the development of type-safe product lines. We write ` L, to be read: “the SPL
L is well-typed”, i.e., the code of every product P in L is well-typed. As a consequence of Theorem 5.1 ,the type safety
of a FRTJ SPL can be verified without type-checking all its products individually, since it is enough to type-check
each artifact in the artifact base only once.

Theorem 5.3. (FRTJ SPL Type-checking)
A SPL L can be type-checked by type-checking only once its interfaces, records, traits and classes.

PROOF. Immediate from Theorem 5.1.
�

5.2. Extending FRTJ Software Product Lines
The proposed formalization of SPL in the FRTJ calculus easily allows extending a SPL with further products.

These products can also use traits, records, interfaces and classes that are not contained in the original artifact base.
The SPL L′ = (IT′,RT′,TT′,CT′,PT′) is an extension of the SPL L = (IT,RT,TT,CT,PT) if L has been obtained from
L by adding interfaces, records, traits, classes and products (that is if IT ⊆ IT′, RT ⊆ RT′, TT ⊆ TT′, CT ⊆ CT′ and
PT⊆ PT′ hold). In Figure 9, the SPL L2 is an extension of SPL L1.

Example 5.4. The SPL BankLine′, described by the feature model in Figure 1 with the Sync feature, extends the
SPL BankLine of Example 5.2. It can be formalized by adding to the SPL BankLine the code in Listings 2, 6 and 7
and the five product specifications

product SYNC ACCOUNT uses SyncAccount
product SYNC INV ACCOUNT uses SyncInvAccount
product SYNC RET ACCOUNT uses SyncRetAccount
product SYNC INV ACCOUNT WH uses SyncInvAccount, Client
product SYNC RET ACCOUNT WH uses SyncRetAccount, Client

A further consequence of Theorem 5.1 is that for ensuring the type safety of the extended SPL BankLine′ only
the newly added records, traits, interfaces, classes, and products must be type-checked.
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Theorem 5.5. (FRTJ SPL Extension Type-checking) Let the SPL L′ = (IT′,RT′,TT′,CT′,PT′) be an extension of the
SPL L = (IT,RT,TT,CT,PT). If L has already been type-checked (so that the typings of all its artifacts are available),
then the products in PT′−PT can be type-checked without type-checking the artifacts of L and by type-checking only
once the interfaces, records, traits, classes in IT′−IT, RT′−RT, TT′ − TT, CT′−CT, respectively.

PROOF. Immediate from Theorem 5.1.
�

6. Related Work

In object-oriented programming languages, class-based inheritance allows reusing code by subclassing. However,
inheritance is often too restrictive to implement feature-based variability of SPLs since it allows code reuse only
within the class hierarchy. Furthermore, inheritance does not support the removal of product functionality. Hence,
there are several approaches providing other linguistic constructs than inheritance for flexibly implementing the vari-
ability of SPLs in the object-oriented paradigm. The approaches to implementing SPLs can be classified into two main
directions [21]. First, annotative approaches, such as conditional compilation, frames [5] and COLORED FEATHER-
WEIGHT JAVA (CFJ) [19], mark the source code of the whole SPL with respect to product features and remove marked
code depending on the feature configuration. Second, compositional approaches (like the calculus FRTJ presented in
this paper) assemble products from artifacts in a common artifact base.

Compositional implementations of SPLs in the object-oriented paradigm use a variety of program modularization
mechanisms, such as aspects [20], framed aspects [26], mixins [36], or hyperslices [39]. In these approaches, feature-
based variability is restricted to the expressivity of the underlying programming paradigm. For instance, aspects only
allow to add code at defined pointcuts, but cannot remove code. In [25], product line variability is implemented
in SCALA [29] using mixin-based inheritance. While SCALA provides means to modularize classes and to extend
them by adding classes, fields and methods via mixins (called “traits” in SCALA), the specification of the desired
composition is less flexible than in FRTJ.

Traits are well suited for designing libraries and enable clean design and reuse which has been shown using
SMALLTALK/SQUEAK (see, e.g., [10, 13]). Recently, [7] pointed out limitations of the trait model caused by the
fact that methods provided by a trait can only access state by accessor methods (which become required methods
of the trait). To avoid this, traits are made stateful (in a SMALLTALK/SQUEAK-like setting) by adding private fields
that can be accessed from the clients possibly under a new name or merged with other variables. In FRTJ traits are
stateless. By their required fields, however, it is possible to directly access state within the methods provided by a
trait. Moreover, the names of required fields (in traits) and provided fields (in records) are unimportant because of
the field rename operation. Since field renaming works synergically with method renaming, exclusion and aliasing,
FRTJ has more reuse potential than stateful traits.

In feature-oriented programming (FOP) [6], the implementation of a product line is modularized into feature
modules, each referring to one product feature. Feature modules can define new classes and refine existing classes.
In order to realize a particular feature configuration, the respective feature modules are composed. The calculus
LIGHTWEIGHT FEATURE JAVA (LFJ) [15], based on LJ (LIGHTWEIGHT JAVA) [38] provides a formalization of FOP
together with a constraint-based type system (similar to the one in [2]) that supports the type-checking of feature
modules in isolation. For each feature module, a set of constraints is inferred that are imposed by the introduction and
refinement operations of the feature modules. The type safety of a SPL in LFJ can be verified by checking the validity
of a generated propositional formula expressing the type safety of all products that can be derived according to the
constraints of the feature model. The FEATHERWEIGHT FEATURE JAVA for Product Lines (FFJPL) calculus [3] pro-
poses an independently developed type checking approach for feature-oriented product lines. FFJPL relies on FFJ [4],
a calculus for stepwise-refinement, that is not explicitly bound to implementing SPLs. In FFJPL, feature-oriented
mechanisms, such as class/method refinements, are modeled directly by the dynamic semantics of the language in-
stead of by a translation into JAVA code. The FFJPL typing rules do not generate constraints, but directly consult the
feature model. Modular type-checking is not supported in FFJPL since each feature module is analyzed by relying on
information of the complete product line.

Delta-oriented programming (DOP) [32, 34] is an extension of feature-oriented programming. The implemen-
tation of a SPL in DOP is split into delta modules which extend feature modules by including removal of classes,
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methods and fields. A delta module refers to a set of feature configurations for which the specified modifications
have to be carried out. In order to generate a particular product, the modifications of the applicable delta modules are
applied in an ordering that is compatible with an explicitly specified application ordering. In [32], product generation
starts from a designated core product, while in [34], the product line is derived by applying delta modules to the
empty product which makes DOP a true generalization of FOP. In [33], a compositional type system for IF∆J, a core
calculus for delta-oriented product lines of JAVA programs based on IFJ (IMPERATIVE FEATHERWEIGHT JAVA), an
imperative version of FJ [17], is presented. Similar to LFJ, it is equipped with a constraint-based type system that
infers constraints for each delta module in isolation. Instead of generating one propositional formula for all derivable
products, an abstraction representation of delta modules and a corresponding abstract product generation is defined
such that the type safety of products can be established by only considering the delta module constraints and the
product abstractions.

Both LFJ [15] and IF∆J [33] are equipped with a constraint-based type system that supports compositional type-
checking by analyzing in isolation each feature module or delta module, respectively. This makes it possible to
type-check extensions of a SPL with new products by analyzing only the code of the newly added feature or delta
modules. Also FRTJ supports efficiently type-checking extensions of a SPL. If new artifacts are added to the artifact
base, the existing class/trait/record/interface tables do not have to be considered, but it suffices to type-check the
code of the new classes/traits/records/interfaces. FOP and DOP techniques for implementing SPLs provide explicit
mechanisms for relating product features and code artifacts implementing them. The idea of replacing class-based
inheritance by the more flexible trait and record composition (which is at the basis of the calculus presented in this
paper) and the idea of complementing class-based inheritance by class refinement/modification (which is at the basis
of FOP/DOP) are indeed orthogonal. In particular, we believe that adding a notion similar to feature/delta modules on
top of FRTJ represents an interesting direction for future work.

7. Conclusions and Future Work

In this paper, we presented a novel approach to implement product line variability by trait and record composition.
FRTJ programs may look more verbose than standard class-based programs; however, the degree of reuse provided
by records and traits is higher than the reuse potential of standard static class-based hierarchies. The FRTJ type
system is able to ensure type-safety of a SPL by type-checking its artifacts only once and to ensure type-safety of an
extension of a (type-safe) SPL by checking only the newly added parts. A prototypical implementation of a language
based on the FRTJ calculus, called SWRTJ (SUGARED WELTERWEIGHT RECORD-TRAIT JAVA) [9], containing
some syntactic sugar not present in the underlying calculus, is available at http://swrtj.sourceforge.net.

For future work, we plan to investigate the possibility of adding a feature module [15] or a delta module [34]
construct to FRTJ in order to explicitly represent the link between product features and code artifacts implementing
them. Additionally, we aim at developing a process for building up an artifact base supporting as much code reuse
as possible for implementing a particular SPL and evaluate this at larger case examples. The process will include
guidelines on how features in a feature model can be represented best by traits, records and interfaces and how the
resulting classes should be assembled. An IDE that allows viewing the different code artifacts from the perspective of
the feature model of the SPL has to be developed assisting the programmer in managing the created artifacts.
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[19] C. Kästner and S. Apel. Type-Checking Software Product Lines - A Formal Approach. In ASE, pages 258–267. IEEE, 2008.
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A. Proof of Theorem 4.2 (Flattening Preserves the Type of Programs)

Notation A.1. The sequence of the field names and the sequence of the method names selected on this in the ex-
pressions e are denoted by fN(e) and mN(e), respectively. The sequence of the field names and the sequence of the
method names selected on this in the method declaration M = Im(Īx){return e} are given by fN(M) = fN(e) and
mN(M) = mN(e). The definitions of fN and mN naturally extend to sequences of expressions and sequences of method
definitions.

Recall that the flattening JTEK of a trait expression TE yields a sequence of methods and that the flattening JREK of
a record expression RE yields a sequence of fields.
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Notation A.2. Given a sequence of methods M̄, we will write “this : 〈 F̄ p σ 〉 ` M1...Mn : µ1...µn” as short for
“this : 〈 F̄ p σ 〉 ` M1 : µ1, . . ., this : 〈 F̄ p σ 〉 ` Mn : µn.

Lemma A.3. Let this : 〈 F̄ p σ 〉 ` M : µ , where µ = I m (Ī) p 〈 F̄′ p σ
′ p Ī′ 〉. Then this : 〈 F̄′′ p σ

′′ 〉 ` M : µ for
all F̄′′ ⊇ F̄

′ and σ
′′ ⊇ σ

′.

PROOF. By structural induction on typing derivations.
�

Lemma A.4. Let ` TE : µ1 · · ·µn, where µi = ζi p 〈 F̄(i) p σ
(i) p Ī(i) 〉 (for all i ∈ 1..n). Then this : 〈 F̄ p ζ 〉 `

names(JTEK) : µ1 · · ·µn, where F̄= F̄
(1)∪·· ·∪ F̄(n) and ζ = ζ1 · · ·ζn∪σ

(1)∪·· ·∪σ
(n).

PROOF. By case induction on the flattening translation for trait expressions defined in Fig. 7.

Case J{ F̄; S̄; M̄}K. This is the base case of the induction. The fact that M̄ is well-typed follows directly from the fact
that { F̄; S̄; M̄} is well-typed, in particular M̄ is well-typed under the assumption this : 〈 F̄ p mSig(S̄)∪mSig(M̄) 〉.

Case JTK. Straightforward, by induction hypothesis.

Case JTE1 +TE2K. By induction hypothesis we have that this : 〈 F̄′ p σ
′ 〉 ` JTE1K : µ̄1 and this : 〈 F̄′′ p σ

′′ 〉 `
JTE2K : µ̄2. Then the result follows by Lemma A.3.

Case JTE[exclude m]K. By induction hypothesis we have that this : 〈 F̄ p σ 〉 ` JTEK : µ̄ . Then we have two
possible cases for the type of this in the typing of the sequence of methods JTE[exclude m]K: (i) m <
mN(JTE[exclude m]K). Then for each method n , m in names(JTE[exclude m]K) we have that this : 〈 F̄ p
exclude(σ ,m) 〉 ` I n (Ī x̄){return e;} : µ , where I n (Ī x̄){return e;} = choose(JTE[exclude m]K,n) and
µ = choose(µ̄,n), by Lemma A.3. So this : 〈 F̄ p exclude(σ ,m) 〉 ` JTE[exclude m]K : exclude(µ̄,m). (ii)
m ∈ mN(JTE[exclude m]K). Then we have that this : 〈 F̄ p σ 〉 ` JTE[exclude m]K : exclude(µ̄,m).

Case JTE[m aliasAs m′]K. This case is similar to the case JTE1 +TE2K.

Case JTE[m renameTo m′]K. By induction hypothesis we have that this : 〈 F̄ p σ 〉 ` JTEK : µ̄ . Then we have
two possible cases for the type of this in the typing of the sequence of methods mR(JTEK,m,m′): (i) 〈 F̄ p
exclude(σ ,m)∪ (choose(σ ,m)[m

′
/m]) 〉, if m′ is fresh; (ii) 〈 F̄ p exclude(σ ,m) 〉, if m′ ∈ names(JTEK). Note

that case (ii) can happen only if m and the occurrence of m′ already in TE have the same signature, and it is
not the case that both m and m′ are supplied (they can be both required or one of them required), otherwise
TE[m renameTo m′] would have not been well-typed, which contradicts the hypothesis. In both cases the result
can be proved straightforwardly by induction on typing derivations.

Case JTE[f renameTo f′]K. By induction hypothesis we have that this : 〈 F̄ p σ 〉 ` JTEK : µ̄ . Then we have two
possible cases for the type of this in the typing of the sequence of methods JTEK[f′/f]: (i) 〈 exclude(F̄,f)∪
(choose(F̄,f)[f′/f]) p σ 〉, if f′ is fresh; (ii) 〈 exclude(F̄,f) p σ 〉, if f′ ∈ fN(JTEK). Note that case (ii) can happen
only if f and the occurrence of f′ already in TE have the same type, otherwise TE[f renameTo f′] would have
not been well-typed, which contradicts the hypothesis. In both cases the result can be proved straightforwardly
by induction on typing derivations.

�

Lemma A.5. If the class declaration class C by J̄ by RE and TE is well-typed, then its translation
Jclass C by J̄ by RE and TEK is well-typed.

PROOF. We have Jclass C by J̄ by RE and TEK = class C implements Ī by { F̄; } and { F̄; •; JTEK}, where
F̄ = JREK. By Lemma A.4, the sequence of methods JTEK is well-typed. The proof follows then by observing that
all method requirements present in a trait expression TE are enforced by the rule (C-OK), therefore the basic trait
{ F̄; •; JTEK} is well-typed, and so it is the translation.

�
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∆ `′ x : ∆(x) (T-VAR′)

∆ `′ e : C fields(C) = F̄ choose(F̄,f) = If

∆ `′ e.f : I
(T-FIELD′)

∆ `′ e : η mSig ′(η) = σ choose(σ ,m) = Im(I1, ...,In) ∀i ∈ 1..n, ∆ `′ ei : ηi ηi <: Ii

∆ `′ e.m(e1, ...,en) : I
(T-INVK′)

fields(C) = I1 f1, ...,In fn ∀i ∈ 1..n, ∆ `′ ei : ηi ηi <: Ii

∆ `′ newC(e1, ...,en) : C
(T-NEW′)

∆ `′ e : η η <: I
∆ `′ (I)e : I

(T-UCAST′)
∆ `′ e : J I<: J I , J

∆ `′ (I)e : I
(T-DCAST′)

∆ `′ e : η η ≮: I I≮: η stupid warning
∆ `′ (I)e : I

(T-SCAST′)

Figure 10: FFRTJ: Typing rules for runtime expressions

Lemma A.6. If a class table CT is well-typed, then its translation by flattening JCTK is well-typed.

PROOF. This follows from Lemma A.5.
�

Lemma A.7. Let e be an expression. If there exists an interface table IT, a record table RT, a trait table TT, and a
class table CT for which the judgement Γ ` e : θ p γ holds, for a basis Γ, a type θ , and constraints γ , then, by using
the interface table IT and the class table JCTK, there exists a basis Γ′ such that:

1. if e , this: the judgement Γ′ ` e : θ p γ holds;
2. if e= this: the judgement Γ′ ` this : Γ′(this) p 〈• p • p •〉 holds.

PROOF. By induction on the typing derivation Γ ` e : θ p γ using Lemma A.6. Notice that the basis Γ′ is constructed
as shown in Lemma A.4.

�

PROOF OF THEOREM 4.2 (Flattening Preserves the Type of Programs). This is a straightforward corollary of
Lemma A.7.

�

B. Proof of Theorem 4.3 (FRTJ Type Soundness)

To prove the type soundness result, we need to consider a suitable notion of typing for runtime expressions. As
for FJ [17], the syntax of runtime expressions is the same as the one for expressions. Constraints are not required to
prove the type soundness for FFRTJ, therefore, the typing for runtime expressions does not consider constraints. An
environment for runtime expressions ∆ is either a finite mapping from variable names (including this) to types, writ-
ten “x̄ : Ī, this : C”, or the empty mapping, written “•”. The typing judgement for runtime expressions is ∆ `′ e : η

to be read: “under the assumption in ∆, the runtime expression e is well-typed with type η”. The typing rules for
runtime expressions are given in Fig. 10.

The expression e in rule (T-FIELD
′) of Fig. 10 can be either this or new ...(...); this is enforced by the shape of

the premises of the rule itself. The lookup function fields used in rules (T-FIELD
′) and (T-NEW

′) is the one defined in
Figure 8, and the lookup function mSig ′ used in rule (T-INVK

′) is defined by

mSig ′(η) =

{
mSig(methods(C)) if η is a class C
mSig(η) otherwise
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where methods is the lookup function defined in Figure 8 and mSig is the lookup function defined in Figure 3. Note
that, following FJ [17], we introduce a rule for dealing with stupid casts, that is, expression of the form (I)e where
the type of e is not related with the type I. In fact, although not present in well-typed programs, stupid casts may be
introduced during reduction. The relation between the FFRTJ type system and the type system for runtime expressions
is stated by the following theorem.

Theorem B.1. (Well-typed expressions are well-typed at runtime) If • ` e : η p 〈• p • p •〉, then • `′ e : η .

PROOF. By induction on expressions. We show only the case new C(ē). The other cases are straightforward. Since
• ` newC(ē) : C p γ , then by rule (T-NEW) for flattened expressions (that is the same as rule (T-NEW) in Fig. 6 but with
a translated class table) we have that

fields(C) = I1 f1; ...;In fn; ∀i ∈ 1..n, • ` ei : ηi p 〈• p • p •〉 ηi <: Ii.

Notice that, since the environment is •, the set T defined in rule (T-NEW) is empty. By induction hypothesis on ei we
have that ∀i∈ 1..n, • `′ ei : ηi. Therefore we can apply runtime rule (T-NEW

′) and we have that • `′ newC(e1, ...,en) : C.
�

Type soundness is proved by using the standard technique of subject reduction and progress theorems.

Theorem B.2. (Subject Reduction) If ∆ `′ e : η and e→ e′, then ∆ `′ e′ : η ′ and η ′ <: η .

PROOF. See Appendix C.
�

Theorem B.3. (Progress) Suppose e is a well-typed expression.

1. If e= E[(newC(v̄)).f], then fields(C) = Ī f̄ and f ∈ f̄ for some Ī and f̄.
2. If e= E[(newC(v̄)).m(ū)], then

class C · · · { · · · m(I1 x1, ...,In xn) { return e0; } · · · } and #ū= #x̄, for some Ī, x̄ and e0.

PROOF. See Appendix C.
�

Theorem B.4. (FFRTJ Type Soundness)
If • `′ e : η and e→? e′ with e′ a normal form, then e′ is (i) either a value v with • `′ v : C and C <: η , or (ii) an
expression containing (I)newC(ē) where C≮: I.

PROOF. Immediate from Theorems B.2 and B.3.
�

PROOF OF THEOREM 4.3 (FRTJ Type Soundness). Immediate from Theorems 4.2, B.1 and B.4.
�

C. Proof of Theorems B.2 (Subject Reduction) and B.3 (Progress)

Lemma C.1. (Unique Decomposition) Suppose that the runtime expression e is not a value and is such that ∆ `′ e : η

for some ∆ and η . There is a unique evaluation context E such that e= E[r] for some redex r.

PROOF.

Case e.f. If e is a value then the evaluation context is [ ]. Otherwise we can apply the induction hypothesis to e

deriving that there is a unique evaluation context E such that e = E[r] for some redex r. Therefore, E.f is the
unique evaluation context for e.f.
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Case e′.m(ē). Either e′ = v or we can apply the induction hypothesis to e′ deriving that the unique evaluation context
for e′.m(ē) is E.m(ē). If e′ is a value, either for all e ∈ ē we have that e = v for some v in which case the
expression is a redex and the evaluation context is [ ], or there is a minimum j such that e j is not a value and
for all k < j the expression ek is a value. In this case we apply the induction hypothesis to e j deriving that
v.m(v1, . . . ,v j−1,E,e j+1, . . .) is the unique evaluation context for e′.m(ē).

Cases newC(ē) and (I)e. Similar to the previous ones.
�

Lemma C.2. If ∆ `′ E[r] : η , then for some η ′ we have that ∆ `′ r : η ′.

PROOF. Straightforward induction on the derivation of ∆ `′ E[r] : η .
�

Lemma C.3. Let ∆ `′ E[r] : η where ∆ `′ r : η1, and let e be such that ∆ `′ e : η ′1 for some η ′1 such that η ′1 <: η1.
Then ∆ `′ E[e] : η ′ for some η ′ such that η ′ <: η .

PROOF. By induction on evaluation contexts E.

Case [ ]. Immediate.

Case E.f. Let ∆ `′ E[r].f : η where ∆ `′ r : η1, and let e be such that ∆ `′ e : η ′1 for some η ′1 such that η ′1 <: η1.
From ∆ `′ E[r].f : η , by rule (T-FIELD

′), we have that

∆ `′ E[r] : C fields(C) = F̄ choose(F̄,f) = If η = I.

By induction hypothesis on E we have that ∆ `′ E[e] : C, since C <: C. Applying rule (T-FIELD
′) we get that

∆ `′ E[e].f : η which proves the result.

Case E.m(ē). Similar to the previous one.

Case v.m(v̄,E, ē). Let ∆ `′ v.m(v̄,E[r], ē) : η , where ∆ `′ r : η1, and let e be such that ∆ `′ e : η ′1 for some η ′1 such that
η ′1 <: η1. From ∆ `′ v.m(v̄,E[r], ē) : η , by rule (T-INVK

′), we have that ∆ `′ E[r] : η2. By induction hypothesis
on E we have that ∆ `′ E[e] : η ′2 for some η ′2 <: η2. Then, applying rule (T-INVK

′) (and for the transitivity of
subtyping) we get that ∆ `′ v.m(v̄,E[e], ē) : η which proves the result.

Case newC(v̄,E, ē). Similar to the previous one.

Case (I)E. Let ∆ `′ (I)E[r] : I where ∆ `′ r : η1, and let e be such that ∆ `′ e : η ′1 for some η ′1 such that η ′1 <: η1.
From ∆ `′ (I)E[r] : I, by rules (T-UCAST

′), (T-DCAST
′) and (T-SCAST

′), we have that ∆ `′ E[r] : η . By induction
hypothesis on E we have that ∆`′ E[e] : η ′ for some η ′<: η . Applying the one of the rules (T-UCAST

′), (T-DCAST
′)

or (T-SCAST
′), depending on the subtyping relation between η and I, we get ∆ `′ (I)E[e] : I.

�

Lemma C.4. (Weakening) If ∆ `′ e : η , then ∆,x : I `′ e : η .

PROOF. Straightforward induction on the derivation of ∆ `′ e : η .
�

Lemma C.5. (Substitution) If ∆, x̄ : η̄ ′ `′ e : η and ∆ `′ v̄ : η , where η <: η̄ ′, then ∆ `′ e[v̄/x̄] : η ′, for some η ′ <: η .

PROOF. By induction on expressions.

Case x. Since ∆, x̄ : η̄ ′ `′ x : η for some η , we have that x ∈ x̄ that is x= x j for some j. Therefore, ∆, x̄ : η̄ ′ `′ x : η ′j
and x[v̄/x̄] = v j. From ∆ `′ v j : η j where η j <: η ′j we derive the result.
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Case e.f. Since ∆, x̄ : η̄ ′ `′ e.f : η for some η , we have that

∆, x̄ : η̄ ′ `′ e : C fields(C) = F̄ choose(F̄,f) = If η = I

for some I, F̄ and C. By induction hypothesis on e we have that ∆ `′ e[v̄/x̄] : C since C <: C. Applying rule
(T-FIELD

′) we get that ∆ `′ (e[v̄/x̄]).f : η which proves the result.

Case e.m(ē). Since ∆, x̄ : η̄ ′ `′ e.m(ē) : η for some η , we have that

∆, x̄ : η̄ ′ `′ e : η
′ choose(mSig ′(η ′),m) = Im(I′1, ...,I

′
n) ∀i ∈ 1..n, ∆, x̄ : η̄ ′ `′ ei : ηi ηi <: I′i

for some η̄ , and where η = I. By induction hypothesis on e we have that ∆ `′ e[v̄/x̄] : η ′′ for some η ′′ such that
η ′′ <: η ′. By rules (I-OK) and (I-OK) we have that choose(mSig ′(η ′′),m) = choose(mSig ′(η ′),m). By induction
on ei ∈ ē we have that ∆ `′ ei[v̄/x̄] : η ′′i for some η ′′i such that η ′′i <: ηi <: I′i. Applying rule (T-INVK

′) we get
that ∆ `′ (e.m(ē))[v̄/x̄] : η which proves the result.

Case new C(ē). Similar to the previous one.

Case (I)e. Since ∆, x̄ : η̄ ′ `′ (I)e : I, we have that ∆, x̄ : η̄ ′ `′ e : η for some η . By induction hypothesis on e we
have that ∆ `′ e[v̄/x̄] : η for some η . Applying the one of the rules (T-UCAST

′), (T-DCAST
′) or (T-SCAST

′), depending
on the subtyping relation between η and I, we get ∆ `′ (I)e : I.

�

Lemma C.6. If ` class C implements Ī by { Ḡ; } and { F̄; •; M̄} OK, and this : 〈 F̄ p mSig(M̄) 〉, x̄ : J̄ ` e : θ p γ ,
then this : C, x̄ : J̄ `′ e : η for some η such that: if θ = 〈 F̄ p mSig(M̄) 〉 then η = C, else η <: θ .

PROOF. By straightforward induction on the derivation of this : 〈 F̄ p mSig(M̄) 〉, x̄ : J̄ ` e : θ p γ .
�

Lemma C.7. If ` class C implements Ī by { Ḡ; } and { F̄; •; M̄} OK, and J m (J̄ x̄){return e;} ∈ M̄, then this :
C, x̄ : J̄ `′ e : η for some η such that η <: J.

PROOF. From hypothesis and rule (C-OK) we have

` { F̄; •; M̄} : µ1...µp p≥ 0 ∀i ∈ 1..p, µi = ζi p 〈 F̄(i) p σ
(i) p Ī(i) 〉

∪i∈1..pF̄
(i) = F̄ ((∪i∈1..pσ

(i))∪mSig(Ī))⊆ ζ1...ζp ∀I′ ∈ ∪i∈1..pĪ
(i), ∃I ∈ Ī, I<: I′.

From rule (T-TEBAS) we have

this : 〈 F̄ p ζ1...ζp 〉 ` J m (J̄ x̄){return e;} : J m (J̄) p 〈 F̄( j) p σ
( j) p Ī( j) 〉,

for some j. From rule (M-OK) we have

this : 〈 F̄ p ζ1...ζp 〉, x̄ : J̄ ` e : θ p 〈 F̄( j) p σ
( j) p J̄′ 〉,

where if θ = 〈 F̄ p ζ1...ζp 〉 then (ζ1...ζp)∪mSig(J) wf and Ī
( j) = J̄

′∪J, else θ <: J and Ī
( j) = J̄

′.
If θ = 〈 F̄ p ζ1...ζp 〉 then, by Lemma C.6, we have this : C, x̄ : J̄ `′ e : C. Since, from rule (C-OK) we have that

∃I ∈ Ī such that I <: J, and since C <: I by definition of subtyping for runtime expressions, then C <: J, again by
subtyping rules for runtime expressions.

If θ , 〈 F̄ p ζ1...ζp 〉 then, by Lemma C.6, we have this : C, x̄ : J̄ `′ e : η , where η <: θ <: J.
�

PROOF OF THEOREM B.2 (Subject Reduction). By Lemma C.1 we get that e= E[r] for some r. The proof is by case
analysis on the operational semantics rule used.

23



Case (R-FIELD). Then
E[(newC(v̄)).fi]→ E[vi]

where fields(C) = Ī f̄, for some Ī and f̄. Since ∆ `′ E[(newC(v̄)).fi] : η , from Lemma C.2 we get ∆ `′
(newC(v̄)).fi : η ′ for some η ′. From rule (T-FIELD

′) we have that

∆ `′ newC(v̄) : C choose(Ī f̄,fi) = Ii fi η
′ = Ii.

From rule (T-NEW
′) we have that

∀i ∈ 1..n, ∆ `′ vi : ηi ηi <: Ii

We can then apply Lemma C.3 and conclude that ∆ `′ E[vi] : η ′′ for some η ′′ <: η .

Case (R-INVK). Then
E[(newC(v̄)).m(ū)]→ E[e[ū/x̄,newC(v̄)/this]]

where class C · · · { · · · m(Ī x̄) { return e; } · · · }, for some e and Ī. Since ∆ `′ E[(newC(v̄)).m(ū)] : η , from
Lemma C.2 we get ∆ `′ (newC(v̄)).m(ū) : η ′ for some η ′. From rule (T-INVK

′) we have that

∆ `′ newC(v̄) : C choose(mSig ′(C),m) = Im(J1, ...,Jn) ∀i∈ 1..n, ∆ `′ ui : ηi ηi <: Ji η
′ = I.

From rule (T-NEW
′) we have that

∀i ∈ 1..n, ∆ `′ vi : η
′
i η

′
i <: Ii

Since class C is well-formed, then method m is well-typed and then, from Lemma C.7, we have that this : C, x̄ :
J̄ `′ e : η0, where η0 <: η ′ = I. Therefore, by Lemma C.5, we have that ∆ `′ e[ū/x̄,newC(v̄)/this] : η ′0, where
η ′0 <: η0. We can then apply Lemma C.3 and conclude that ∆ `′ E[e[ū/x̄,newC(v̄)/this]] : η ′′ for some η ′′ <: η .

Case (R-CAST). Then
E[(I)(newC(ē))]→ E[newC(ē)]

where class C implements J̄ by { · · · } and ∃J ∈ J̄ such that J <: I. Since ∆ `′ E[(I)(newC(ē))] : η , from
Lemma C.2 we get ∆ `′ (I)(newC(ē)) : η ′ for some η ′. The proof of ∆ `′ (I)(newC(ē)) : η ′ must end with rule
(T-UCAST

′), since the derivation ending with (T-SCAST
′) or (T-DCAST

′) contradicts the assumption ∃J ∈ J̄ such that
J<: I. By the rules (T-NEW

′), and (T-UCAST
′), we have that η ′ = I and ∆ `′ newC(ē) : C, where C<: J<: I. We

can then apply Lemma C.3 and conclude that ∆ `′ E[newC(ē)]] : η ′′ for some η ′′ <: η .
�

PROOF OF THEOREM B.3 (Progress). If e = E[(newC(v̄)).f], then, by Lemma C.2, (newC(v̄)).f is well-typed, and
then it is easy to check that fields(C) is well defined and f appears in it. Similarly, if e= E[(newC(v̄)).m(ū)], then, by
Lemma C.2, (newC(v̄)).m(ū) is well-typed, and then it is also easy to show that I m(I1 x1, ...,In xn){return e0} is
defined in C, for some e0 and I, and the property #x̄= #ū derives directly from the typing rule (T-INVK

′), since #Ī= #ū.
�
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