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SUMMARY

There are no effective therapies for the �30% of
human malignancies with mutant RAS oncogenes.
Using a kinome-centered synthetic lethality screen,
we find that suppression of the ERBB3 receptor tyro-
sine kinase sensitizes KRAS mutant lung and colon
cancer cells to MEK inhibitors. We show that MEK
inhibition results in MYC-dependent transcriptional
upregulation of ERBB3, which is responsible for
intrinsic drug resistance. Drugs targeting both
EGFR and ERBB2, each capable of forming hetero-
dimers with ERBB3, can reverse unresponsiveness
to MEK inhibition by decreasing inhibitory phos-
phorylation of the proapoptotic proteins BAD and
BIM. Moreover, ERBB3 protein level is a biomarker
of response to combinatorial treatment. These data
suggest a combination strategy for treating KRAS
mutant colon and lung cancers and a way to identify
the tumors that are most likely to benefit from such
combinatorial treatment.
INTRODUCTION

Cancer treatment is gradually changing from an organ-centered

to a pathway-centered approach. Cancer cells are often

addicted to signals generated by cancer-causing genes. Conse-

quently, targeted cancer drugs that selectively inhibit the

products of activated oncogenes can have dramatic effects on

cancer cell viability (Weinstein, 2002). This approach has yielded

significant clinical results for non-small-cell lung cancer (NSCLC)

that have activating mutations in EGFR (Lynch et al., 2004) or

translocations of the ALK kinase (Kwak et al., 2010) and for mel-
anoma patients with BRAFmutant tumors (Flaherty et al., 2010).

Some 20%–30% of all human malignancies have oncogenic

mutations in a RAS gene family member (Bos, 1989), but phar-

macological inhibition of RAS proteins in the clinic remains

challenging. An alternative approach to targeting mutant RAS in-

volves using small molecule inhibitors targeting downstream

RAS effectors: the RAF-MEK-ERK kinases. However, to date,

the results of MEK inhibition in cancer have been modest, both

in the clinic and in patient-derived xenograft models (Adjei

et al., 2008; Jänne et al., 2013; Migliardi et al., 2012). Such a

lack of response to inhibition of a pathway that is activated in

cancer may result from feedback activation of the inhibited

pathway or a secondary pathway that supports cancer cell

viability in the presence of the inhibitory drug (reviewed in Ber-

nards, 2012).

Therefore, we set out to search for kinases whose inhibition is

synthetic lethal with MEK inhibition in both KRAS mutant

NSCLC, a form of cancer in which this gene is activated with a

frequency of around 30% (Bos, 1989), and inKRASmutant colon

cancer, where KRAS mutational activation occurs in more than

40% of cases (Pylayeva-Gupta et al., 2011). Using a kinome-

centered synthetic lethality screen in a KRAS mutant NSCLC

cell line, we now identify kinases whose inhibition is synthetic

lethal when combined with MEK inhibition.

RESULTS

KRAS Mutant Cancer Cell Lines Are Unresponsive to
MEK Inhibitors
To study how KRASmutant cancer cells respond in vitro to MEK

inhibition, we determined the efficacy of the MEK inhibitor selu-

metinib (AZD6244) in four NSCLC and four colon cancer cell lines

using a long-term proliferation assay. Figure 1A shows that all

but one colon cancer cell line were relatively insensitive to selu-

metinib. Consistent with this, the vast majority of the KRAS
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Figure 1. A Synthetic Lethal shRNA Screen

Identifies that ERBB3 Inhibition Confers

Sensitivity to MEK Inhibitor in KRAS Mutant

NSCLC

(A) Sensitivity of indicated KRAS mutant NSCLC

(H358, H2030, H2122, and H23) and CRC (H747,

SW480, SW620, and SW837) cell lines to selu-

metinib. Drug sensitivity was determined by clono-

genic assay. Cells were treated with increasing

concentration of selumetinib as indicated for

18 days. Afterward, the cells were fixed with 4%

formaldehyde solution in PBS, stained with 0.1%

crystal violet, and photographed.

(B) Pooled shRNA screen identified ERBB3 as

synthetic lethal with MEK inhibition. Each dot in the

plot represents an shRNA from the screen experi-

ment. The y axis shows the fold change in abun-

dance (ratio of shRNA frequency in selumetinib

treated sample to that in the untreated sample). The

x axis represents the frequency (the average counts

of sequencing reads in the untreated sample).

(C–E) Suppression of ERBB3 by shRNA enhances

response to MEK inhibitor. H358 KRAS mutant

NSCLC cells were infected with two independent

shRNAs targeting ERBB3 as indicated. pLKO.1

vector served as a control vector. After puromycin

selection, (C) cells were cultured in the absence or

presence of 1 mM selumetinib for 21 days. The cells

were fixed, stained, and photographed. (D) Crystal

violet was extracted from the stained cells by

10% acetic acid and quantified by measuring the

absorbance at 600 nm. Error bars represents SD.

(E) The level of ERBB3 knockdown was determined

by western blot. HSP90 protein level served as a

loading control.

(F) MEK inhibition induces ERBB3 activation and

upregulation. H358 cells were cultured in the

absence or presence of 1 mM selumetinib, and the

cell lysatewas collected at the indicated time points.

p-ERBB3, ERBB3, p-ERK, ERK, p-p90RSK, and

RSK1 were determined by western blot analysis.

(G) ERBB3 suppression enhances the potency of

MEK inhibitor. shRNA targeting ERBB3 were intro-

duced into H358 cells by lentiviral transduction.

Cells were cultured in medium either with or without

1 mM selumetinib for 24 hr before the harvest for

western blot analysis.
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mutant cancer cell lines present in the Sanger and CCLE cell line

encyclopedias (Barretina et al., 2012; Garnett et al., 2012) have

an IC50 for selumetinib of over 1 mM (Figures S1A and S1B).

Together, these cell line data recapitulate the animal studies

and the early-phase clinical trial data that show only a modest

activity of MEK inhibition in KRAS mutant tumors (Adjei et al.,

2008; Jänne et al., 2013; Migliardi et al., 2012).

A Synthetic Lethal Screen with MEK Inhibitor
We have recently described the use of a kinome-centered syn-

thetic lethal screening approach, which enables the identifica-

tion of kinases whose inhibition is strongly synergistic with a

cancer drug of interest (Prahallad et al., 2012). In brief, in such

a genetic screen a collection of 3,530 short hairpin RNA (shRNA)

vectors that collectively target all 518 human kinases for sup-

pression through RNA interference is introduced into cancer
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cells through lentiviral infection. Each of these knockdown vec-

tors has a unique DNA-based molecular bar code identifier,

which allows quantification of the relative abundance of each

of the shRNA vectors in the presence and absence of drug (Pra-

hallad et al., 2012). To find kinases whose suppression syner-

gizes with selumetinib in KRAS mutant NSCLC, we infected

selumetinib-resistant H358 cells with the kinome shRNA library

and cultured cells both in the presence and absence of selume-

tinib. After 21 days, genomic DNAwas isolated from both cells of

the treated and untreated populations, and the bar codes con-

tained in the shRNA cassettes were recovered by PCR, and their

abundance was determined by deep sequencing. For hit selec-

tion, only shRNAs were included for which total mean read fre-

quencies were over 1,000. To minimize the chance in identifying

off-target effects, hits were selected based on the presence of at

least two individual shRNAs targeting the same gene in the top



Figure 2. Simultaneous Suppression of

EGFR and ERBB2 Sensitizes KRAS Mutant

Cancer Cells to MEK Inhibitor

(A) MEK inhibitor treatment increases ERBB3-EGFR

and ERBB3-ERBB2 heterodimers. H358 cells were

cultured with or without 1 mM selumetinib for 36 hr.

Immunoprecipitation was performed using EGFR-,

ERBB2-, or ERBB3-specific antibody. Rabbit and

mouse immunoglobulin G (IgG) served as control

antibodies. The precipitates were immunoblotted

for EGFR, ERBB2, and ERBB3. Two exposures of

the ERBB2 western blot are shown.

(B) Dual EGFR/ERBB2 inhibitors potentiate MEK

inhibitor. H358 NSCLC cell and SW837 CRC cell

were cultured in increasing concentration of MEK

inhibitor selumetinib alone, EGFR inhibitor gefitinib

alone, ERBB2 inhibitor CP724714 alone, EGFR/

ERBB2 dual inhibitor afatinib alone, or their combi-

nations as indicated. Cells were harvested, fixed,

and stained after 21 days.

(C) Effects of pharmacological inhibition of EGFR,

ERBB2, MEK, and their combinations. Cells were

treated with selumetinib, gefitinib, CP724714, afa-

tinib, and their combinations as indicated for 36 hr.

Responses of cells were examined by western blot

analysis with the indicated antibodies.
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list. Two independent shRNA vectors targeting the EGFR-related

kinase ERBB3 were among the top depleted shRNA vectors on

this list (Figure 1B; Table S1). To validate this finding, we infected

H358 cells with two ERBB3 shRNA vectors (both of which

reduced ERBB3 levels [Figures 1C–1E]) and cultured these cells

with or without selumetinib for 21 days. Inhibition of ERBB3 only

had minor effects on proliferation of H358 cells, but suppression

of ERBB3 in combination with selumetinib caused a marked

inhibition of proliferation in H358 cells (Figures 1C and 1D).

Consistently, we observed that MEK inhibitor treatment lead to

ERBB3 activation and upregulation, which coincided with ERK

reactivation (Figure 1F); ERBB3 suppression enhanced MEK in-

hibitor efficacy by further reducing ERK activity (Figure 1G).
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Similar results were obtained in KRAS

mutant SW480 and SW837 colon cancer

cells and H2030 and H2122 NSCLC cells

(Figures S1C–S1F).

Dual EGFR/ERBB2 Inhibitors
Synergize with MEK Inhibitors
ERBB3 is the only kinase-defective mem-

ber of the ERBB RTK gene family that con-

sists of four members: ERBB1–4. ERBB3

can form heterodimeric active kinase

complexes with other members of the

ERBB family (Sithanandam and Anderson,

2008). We found that selumetinib treat-

ment of H358 cells caused a marked in-

crease in both ERBB3 and ERBB2 protein

(Figures 2C and 3A). Similar results were

obtained in SW837 colon cancer cells

and H2030 NSCLC, suggesting this is a
common response to MEK inhibition in both KRAS mutant lung

and colon cancer (Figures 3A and S2B). This resulted in an in-

crease in EGFR-ERBB3 and ERBB2-ERBB3 heterodimeric com-

plexes, as judged by coimmunoprecipitation (Figure 2A). To ask

which of these two heterodimeric complexes could be respon-

sible for the poor response to selumetinib, we treated both

H358 cells and SW837 cells with a combination of selumetinib

and gefitinib (an EGFR inhibitor) or the combination of selumeti-

nib and CP724714 (an ERBB2 inhibitor). Neither of these two

combinations showed strong synergy in long-term proliferation

assays, but the dual EGFR-ERBB2 inhibitors afatinib and daco-

mitinib each showed strong synergy with MEK inhibition, both in

the H358 cells and in SW837 cells (Figure 2B). Similar results
7, 1–8, April 10, 2014 ª2014 The Authors 3



Figure 3. MEK Inhibition Relieves a MYC-

Dependent Transcriptional Repression of

ERBB3

(A and B) MEK inhibition causes MYC degradation

and ERBB2 and ERBB3 upregulation. Cells were

treated with 1 mM selumetinib for 24–48 hr before

the cell lysate was collected for (A) western blot

analysis with the indicated antibodies or (B) qRT-

PCR analysis for expression of ERBB2 and ERBB3.

(C and D) MYC suppression leads to ERBB2 and

ERBB3 upregulation. Cells were infected with two

independent shRNAs targeting MYC. pLKO.1 vec-

tor served as control. After puromycin selection,

cells were subjected to (C) western blot or (D) qRT-

PCR analysis to measure expression of MYC,

ERBB2, and ERBB3.

(E and F) Ectopic expression of MYC(S62) blocks

MEK inhibitor induced ERBB2 and ERBB3 upregu-

lation. MYC(S62D) was introduced to H2030

NSCLC cells by retroviral transduction. pBabe

empty vector served as control. Cells were treated

with 1 mMselumetinib for 36 hr before the harvest for

(E) qRT-PCR and (F) western blot analysis for

ERBB2 and ERBB3 expression.

(G) Induction of ERBB2 and ERBB3 in KRASmutant

CRC patient-derived xenografts (PDX) following

in vivo treatment with selumetinib. The 19 cases

were derived from different patients, either un-

treated or treated with selumetinib (25 mg/kg QD)

for 3 or 6 weeks. Mice were systematically sacri-

ficed no later than 4 hr after the last drug adminis-

tration. Tumor samples were fresh frozen and

subjected to RNA isolation and human-specific

TaqMan probe-based gene expression analysis

afterward.

(H) Induction of ERBB2 and ERBB3 byMEK inhibitor

treatment in paired biopsies (before and during

trametinib treatment) from a KRAS mutant NSCLC

patient. Tumor biopsy specimens were formalin

fixed, paraffin embedded. After RNA isolation,

ERBB2 and ERBB3 expression levels were deter-

mined by TaqMan probe-based gene expression

analysis. Error bars represent mean ± SD.

Please cite this article in press as: Sun et al., Intrinsic Resistance to MEK Inhibition in KRAS Mutant Lung and Colon Cancer through Transcriptional
Induction of ERBB3, Cell Reports (2014), http://dx.doi.org/10.1016/j.celrep.2014.02.045
were seen in three additional KRAS mutant cells lines: SW620

(colon), H2030 (lung), and H2122 (lung, Figure S2A). Moreover,

a second MEK inhibitor (GSK1120212, trametinib) also showed

strong synergy with afatinib in four different KRAS mutant colon

and lung cancer cell lines (Figure S4A). We conclude that MEK

inhibition leads to the formation of kinase-active EGFR-ERBB3

and ERBB2-ERBB3 heterodimeric complexes and that both

need to be inhibited to enable colon cancer and lung cancer cells

to respond to MEK inhibition. This conclusion is further sup-

ported by the notion that only the combination of shRNA vectors

against both EGFR and ERBB2 synergize with selumetinib, but

not either shRNA vector alone (Figures S2E and S2F).

MYC Inhibition Relieves Transcriptional Repression of
ERBB3

Selumetinib caused an increase in both total ERBB3 and active

phospho-ERBB3 (p-ERBB3) in both H358 and in SW837 cells,
4 Cell Reports 7, 1–8, April 10, 2014 ª2014 The Authors
and similar effects were seen for ERBB2 (Figures 2C and 3A).

MEK-ERK signaling is known to enhance stability of MYC

through phosphorylation of the serine 62 residue (Sears et al.,

1999, 2000). Moreover, MYC has been shown to be a nega-

tive regulator of ERBB2 transcription (Suen and Hung, 1991).

Induction of ERBB3 was first seen around 12–24 hr postselu-

metinib exposure, indicating that a transcriptional response

may be involved in the activation of this receptor (Figures 1F

and S1G). Indeed, inhibition of MEK by selumetinib caused a

decrease in MYC protein in both NSCLC and colon cancer

cells, and this was accompanied by an increase in both

ERBB2 and ERBB3 mRNA expression in multiple KRAS

mutant cell lines of lung and colon (Figures 3A, 3B, S3A, and

S3B). In addition, knockdown of MYC by two independent

shRNAs caused a reduction in MYC protein and an increase

in both ERBB2 and ERBB3 mRNA and protein (Figures 3C,

3D, and S3C).
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Consistent with a role for MYC SER62 phosphorylation in

induction of ERBB2 and ERBB3, we found that expression of

the phosphomimetic mutant MYC (SER62D) (Wang et al.,

2010) effectively blocked induction of both ERBB2 and

ERBB3 by selumetinib (Figures 3E and 3F). The induction of

ERBB2 and ERBB3 is most likely primarily at the level of

transcription, as ectopic expression of V5-tagged versions

of these proteins were not affected in their abundance by

MEK inhibition (Figure S3D). Moreover, we could exclude a

role for CtBP1 and CtBP2 as well as FOXD3 in regulation of

the ERBB proteins in response to MEK inhibition (Figures S3F

and S3G), because these genes have been implicated in

ERBB3 regulation in other cancer types (Abel et al., 2013;

Montero-Conde et al., 2013). Induction of ERBB2 and ERBB3

was also seen in half of 19 independent patient-derived xeno-

grafts from KRAS mutant colorectal cancers in response to

MEK inhibition in vivo (Figures 3G and S3E) (Migliardi et al.,

2012). Finally, we were able to obtain a paired biopsy from a

patient having a KRAS mutated adenocarcinoma of the lung

before and after 1 week of treatment with the MEK inhibitor tra-

metinib in the context of a randomized phase II clinical trial.

Here, we observed induction of both ERBB2 and ERBB3 by

MEK inhibitor treatment, suggesting that this transcriptional

RTK activation is potentially also limiting responses to MEK in-

hibition in the clinic (Figure 3H).

Synergistic Inhibition of ERK Causes Apoptosis through
Activation of BAD and BIM
To address the mechanism by which selumetinib and afatinib

synergize to reduce viability of KRAS mutant lung and colon

cancer cells, we assayed induction of apoptosis over a 4 day

period in real time in the presence of selumetinib, afatinib, or

the combination of both drugs. Both the H358 and SW837 cells

displayed only modest evidence of apoptosis following drug

monotherapy, but strongly synergistic induction of apoptosis

when selumetinib and afatinib were combined (Figures 4A and

4B). Consistently, both drugs were also highly synergistic in in-

duction of cleaved PARP, a hallmark of apoptotic cells (Figures

4C and 4D).

The RAF-MEK-ERK signaling cascade inhibits apoptosis in

part through induction of proapoptotic factors BAD and BIM

(Zha et al., 1996) (Corcoran et al., 2013). MEK-ERK inhibition in-

duces BIM and decreases inhibitory phosphorylation of the

BAD, which can heterodimerize with BCL-XL and BCL-2,

neutralizing their protective effect and promoting cell death.

Only the nonphosphorylated BAD forms heterodimers that

promote cell death (Zha et al., 1996). BAD can be phosphory-

lated both by the MEK-ERK and the PI3K-AKT signaling

routes on SER112 and SER136, respectively (Bonni et al.,

1999; Datta et al., 1997; Scheid et al., 1999). Consistent with

the finding that afatinib and selumetinib synergize to inhibit

ERK signaling (Figures 2C, 4C, and 4D), we also observed a

clear synergistic inhibition of p-BAD SER112 by these two

drugs. Moreover, adding afatinib suppressed AKT signaling

and also BAD SER136 phosphorylation (Figures 4C and 4D).

In addition, we see induction of BIM by MEK inhibition and

decreased p-BIM SER69 upon ERK inhibition (Figures 4C

and 4D).
In Vivo Validation of the Combination Therapy
We tested the effects of the drug combinations discussed above

on KRAS mutant NSCLC and CRC cells in vivo. We used the

MEK inhibitor trametinib, which showed the same synergy with

afatinib in vitro as selumetinib (Figure S4A). As can be seen in

Figures 4E and 4F, we observed a modest inhibition of tumor

growth when theMEK inhibitor and the dual EGFR-ERBB2 inhib-

itor afatinib were used alone and a complete inhibition of tumor

growth over prolonged time when the two drugs were given

together. The drug combination was well tolerated over the

4week treatment period (Figure S4D). Moreover, in two indepen-

dent patient-derived xenograft models of KRASmutant CRC, we

also observed that both drugs combined were more effective in

the inhibition of tumor growth than either drug alone (Figures S4F

and S4G). In these models, we also observed increases in

ERBB2 and ERBB3 mRNA and protein upon MEK inhibition (Fig-

ures S4B, S4C, and S4H–S4K).

Biomarker of Response to the Combination Therapy
To ask whether KRASmutant CRCs and NSCLCs are heteroge-

neous in their responses to combined MEK and EGFR+ERBB2

inhibition, we determined the degree to which combination of

MEK inhibitor and afatinib were synergistic in inhibition of prolif-

eration of 21 CRC and NSCLC cell lines. We calculated the syn-

ergy scores for the combination of MEK inhibition and afatinib for

all cell lines (Table S2). The synergy score was low in cells having

low basal levels of ERBB3 protein and high for cells having high

basal ERBB3 expression (Figures 4G, 4H, and S4E). Altogether,

our data suggest a combination therapy for the treatment of

KRAS mutant NSCLC and colon cancers. Moreover, tumors

having high basal ERBB3 expression are most likely to benefit

from this combination.

DISCUSSION

We have used a kinome-centered synthetic lethality screen to

identify potential kinases whose inhibition is synergistic with

MEK inhibition in the treatment of KRAS mutant NSCLC and

colon cancers. Our data identify the Receptor Tyrosine Kinase

family member ERBB3 as a prominent ‘‘hit’’ in this screen with

the MEK inhibitor selumetinib. ERBB3 is not an active kinase

itself but forms active heterodimeric complexes with one of the

three other gene family members: ERBB1 (EGFR), ERBB2

(HER2), and ERBB4 (which is primarily expressed in the brain).

Our data indicate that MEK inhibition in KRAS mutant cancer

cells of lung and colon leads to degradation of MYC, consistent

with the established role for MEK-ERK signaling in stabilizing

MYC through phosphorylation of MYC serine 62 (Sears et al.,

1999, 2000). MYC is also known to act as a transcriptional

repressor of ERBB2 (Suen and Hung, 1991). We find that sup-

pression of MYC not only activates ERBB2, but also ERBB3,

indicating that MYC also acts as a repressor of ERBB3. Conse-

quently MEK inhibition causes a transcriptional upregulation of

both ERBB2 and ERBB3 and the formation of kinase-active

ERBB1-ERBB3 and ERBB2-ERBB3 heterodimeric complexes

that activate downstream PI3K-AKT and MEK-ERK signaling.

We found that inhibition of EGFR or ERBB2 alone with small

molecules did not synergize with MEK inhibition, whereas dual
Cell Reports 7, 1–8, April 10, 2014 ª2014 The Authors 5



Figure 4. EGFR/ERBB2 Inhibitor and MEK In-

hibitor Induce Apoptosis through Activation

of BAD and BIM

(A and B) H358 or SW837 cells were cultured

with normal medium or medium containing 1 mM

selumetinib, 1 mM afatinib or their combination.

Apoptotic cells were determined by CellPlayer ki-

netic caspase-3/7 apoptosis assay according to

the user manual.

(C and D) Cells were treated with 1 mMafatinib, 1 mM

selumetinib, or the combination for 48 hr. Western

blot analysis was performed with indicated anti-

bodies to determine the biochemical response.

(E) H2122 KRAS mutant NSCLC cells were injected

subcutaneously in nude mice. Once tumors were

established, animals (five per group) were treated

with vehicle, afatinib (12.5 mg/kg daily), trametinib

(1 mg/kg daily), or both drugs in combination

(TRA+AFA). The mean percentage change in tumor

volume relative to initial tumor volume is shown.

Error bars represent mean ±SEM.

(F) Waterfall plot showing the percentage change in

tumor volume (relative to initial volume) for individual

mice following 31 days of continuous treatment with

the indicated drugs.

(G and H) Correlation between ERBB3 levels and

response to the combination of MEK and dual

EGFR/ERBB2 inhibitors.

(G) Western blot analysis of ERBB3 and HSP90

levels in a panel of KRAS mutant CRC and NSCLC

cell lines. HSP90 served as a loading control.

ERBB3-high and ERBB3-low cell lines are color

coded as black and red, respectively.

(H) High ERBB3 expression correlates with high

sensitivity to the treatment containing dual EGFR/

ERBB2 inhibitor (afatinib) and MEK inhibitor (tra-

metinib). Sensitivity of each cell line to the combi-

nation treatment was presented as synergy score

that is calculated based on Lehár et al. (2009).
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inhibitors of EGFR and ERBB2, such as afatinib and dacomitinib,

did show strong synergy with MEK inhibition. This explains why

only the common dimerization partner of these two active com-

plexes was identified in the synthetic lethality screen. Upregula-

tion of RTKs in colon cancer in response to MEK inhibition was

also seen by others (Ebi et al., 2011). More specifically, ERBB3

upregulation as a consequence of MEK inhibitor was seen in

BRAF mutant thyroid carcinomas and melanomas, but the pro-

posed mechanisms differs from what we observe here (Abel

et al., 2013; Montero-Conde et al., 2013).

Due to increased signaling from the active ERBB3 kinase com-

plexes, MEK inhibitors only caused a partial suppression of

MEK-ERK signaling in KRAS mutant tumors, whereas AKT
6 Cell Reports 7, 1–8, April 10, 2014 ª2014 The Authors
signaling was even increased in the pres-

ence of MEK inhibitors. In contrast, in the

presence of both selumetinib and afatinib,

MEK-ERK signaling was more completely

inhibited, and AKT signaling was also sup-

pressed strongly. We observed a highly

synergistic induction of apoptosis when

afatinib and selumetinib were combined
in KRAS mutant colon and lung cancer cells. This may be ex-

plained by the finding that the combination of afatinib and

selumetinib leads to a more complete inhibition of the phosphor-

ylation of two key inhibitory residues on the proapoptotic BH3-

only proteins BAD and BIM. It has been shown previously that

phosphorylation of BAD at serine residues 112 and 136 seques-

ters BAD in 14-3-3 protein complexes at the plasma membrane,

thereby inhibiting its proapoptotic action, and a similar model of

inhibition by phosphorylation has been proposed for BIM (Datta

et al., 1997; Harada et al., 2004; Scheid et al., 1999; Zha et al.,

1996). Our data are consistent with a model in which selumetinib

and afatinib synergize to unleash the proapoptotic activity of

BAD and BIM, resulting in cell death. A similar conclusion was
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reached by others (Corcoran et al., 2013). It is possible that

cooperative induction of apoptosis through ERK inhibition also

underlies the greater efficacy of the combination of BRAF and

MEK inhibitors for the treatment of BRAF mutant melanoma

(Flaherty et al., 2012). Whether the combination therapy we iden-

tify here will be successful in the clinic will depend to a large

extent on how well the patients tolerate this drug combination.

EXPERIMENTAL PROCEDURES

Synthetic Lethality shRNA Screen

A kinome-centered shRNA library targeting 535 human kinases and kinase-

related genes was assembled from The RNAi Consortium (TRC) human

genome-wide shRNA collection (TRCHs1.0). The kinome shRNA library was

introduced to H358 cells by lentiviral transduction. Cells stably expressing

shRNA were cultured in the presence or absence of selumetinib. The abun-

dance of each shRNA in the pooled samples was determined by Illumina

deep sequencing. shRNAs prioritized for further analysis were selected by

the fold depletion of abundance in selumetinib-treated sample compared

with that in untreated sample. Further details are described in Prahallad

et al. (2012).

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures,

four figures, and two tables and can be found with this article online at

http://dx.doi.org/10.1016/j.celrep.2014.02.045.
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