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The tyrosine kinase human epidermal growth factor receptor 2 (HER2) gene is amplified in approximately 20% of human breast
cancers and is associated with an aggressive clinical course and the early development of metastasis. Its crucial role in tumor growth
and progression makes HER2 a prototypic oncoantigen, the targeting of which may be critical for the development of effective
anticancer therapies. The setup of anti-HER2 targeting strategies has revolutionized the clinical outcome of HER2+ breast cancer.
However, their initial success has been overshadowed by the onset of pharmacological resistance that renders them ineffective.
Since the tumor microenvironment (TME) plays a crucial role in drug resistance, the design of more effective anticancer therapies
should depend on the targeting of both cancer cells and their TME as a whole. In this review, starting from the successful know-how
obtained with a HER2+ mouse model of mammary carcinogenesis, the BALB-neuTmice, we discuss the role of TME in mammary
tumor development. Indeed, a deeper knowledge of antigens critical for cancer outbreak and progression and of the mechanisms
that regulate the interplay between cancer and stromal cell populations could advise promising ways for the development of the
best anticancer strategy.

1. Introduction

Solid tumors are currently considered to be organ-like
structures, composed of cancer cells and other cells that
support tumor development. While deep understanding of
cancer cells has been reached, less light has been shed on the
cell populations that make up the tumor microenvironment
(TME), as they have been ostracized for several decades and
are only now being reappraised as a driving force for tumor
pathogenesis. TME is composed of cells—such as inflamma-
tory cells, mesenchymal stem cells (MSCs), endothelial cells
(ECs), cancer-associated fibroblasts (CAFs), and adipocytes
(CAAs)—and soluble factors, cytokines, and the extracellu-
lar matrix (Figure 1) that bidirectionally communicate with
cancer cells. This continuous and finely tuned interplay
can promote cancer outbreak, sustain tumor development
and invasion, defend a tumor from host immunity, foster
therapeutic resistance, and provide niches for cancer stem

cells (CSCs) and dormantmetastases [1]. In this respect, TME
is now considered to be a good target for anticancer therapies,
as it provides the opportunity to perturb the delicate balance
that promotes tumor progression. In fact, similarly to tumor
cells [2], TME is now thought of as the source of a broad
range of targets, of which the most promising are tumor-
associated antigens that play a key role in cancer development
and progression, called oncoantigens (OAs) [3]. We have
recently classified OAs according to cellular localization
[4]: Class I (cancer cell surface antigens), Class II (soluble
antigens and antigens expressed in the TME), and Class
III (intracellular proteins expressed by cancer cells). They
are currently emerging as ideal targets for a very specific
anticancer treatment, as demonstrated by several studies in
preclinical models [3].

HER2 represents the prototypic Class I OA and is found
to be overexpressed in a variety of human cancers [5]. HER2
amplification or overexpression is found in 15–20% of all
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Figure 1: Interconnections between the population present in TME in breast tumors. Elevated levels of cytokines and growth factors produced
by tumor and stromal cells orchestrate tumor development and progression. Abbreviations: mesenchymal stem cell (MSC), endothelial cell
(EC), cancer-associated fibroblast (CAF), cancer stem cell (CSC) adipocyte (CAA), dendritic cell (DC), natural killer (NK), regulatory T
(Treg) cell, myeloid derived suppressor cell (MDSC), tumor associated macrophages (TAMs), cytotoxic T lymphocytes (CTL), T helper
(Th), interleukin (IL), toll-like receptor (TLR) 2, high mobility group box (HMGB) 1, vascular endothelial growth factor (VEGF), matrix
metalloproteinase (MMP), stromal cell-derived factor- (SDF-) 1, transforming growth factor- (TGF-)𝛽, chemokine (C-C motif) ligand
(CCL)2, angiomotin (Amot), angiomotin-like (AmotL) 1, membrane-bound KitL (mbKitL), tumor necrosis factor- (TNF-)𝛼, interferon-
(IFN-)𝛾, nitric oxide synthase (iNOS), arginase (Arg) 1, indoleamine-2, 3-dioxygenase (IDO), cyclooxygenase- (COX-) 2, transcription
factor signal transducer and activator of transcription (STAT) 3, programmed death (PD) 1, osteopontin (OPN), prostaglandin E- (PGE-)
2, platelet-derived growth factor (PDGF), macrophage inflammatory protein- (MIP-) 2, fibroblast growth factor (FGF), Insulin-like growth
factor- (IGF-) 1, and tyrosine kinase human epidermal growth factor receptor (HER) 2.

new breast cancer cases and is a prognostic marker of poor
outcome [6]. Currently, the identification of HER2 positivity
in tumor tissue specimens allows for patient stratification and
a more reasonable therapeutic strategy. Indeed, a number of
tyrosine kinase inhibitors or monoclonal antibodies (mAbs)
that are directed against HER2 are available, while others are
currently under investigation in several phase I to III clinical
trials [7]. Humanized mAb Trastuzumab is the standard of
care in breast cancer treatment in both preoperatory and
metastatic settings, whether it is used as a single agent or

in association with chemotherapy. Despite initial responsive-
ness, the majority of patients that suffer from either primary
or metastatic breast cancer develop drug resistance within
one year, rendering Trastuzumab completely ineffective [8].
Similarly, prolonged exposition to anti-HER2 tyrosine kinase
inhibitors often results in the development ofHER-2-negative
tumor variants [9]. The mechanisms that underlie primary
and acquired resistance to HER2-targeted therapies are still
under investigation. However, both CSCs and TME seem
to play a crucial role in these phenomena [10]. This fact
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emphasizes the need to consider cancer cells and their TME
as a whole when designing effective anticancer therapies and
tells us that targeting a single OA is not sufficient to freeze
tumor progression, a possibility that can only be explored
thanks to the availability of appropriate in vivo cancermodels.

The identification of appropriate murine models that
are able to mimic most of the features of a human cancer
offers considerable potential to give advantages in the race
towards the clinic. In particular, the availability of tumor-
transplantable models and genetically engineered mammary
cancer-prone mice has allowed laboratories to decipher the
most important mechanisms involved in mammary tumor
development and progression, thus permitting current ther-
apies to be refined. A great deal of data has been obtained
by our group from transgenic mice, called BALB-neuT,
that overexpress the rat HER2 (neu) oncogene under the
mouse mammary tumor virus (MMTV) promoter [11], with
this very fact in mind. These mice spontaneously develop
mammary carcinomas with 100% penetrance [12] and display
a histopathologically [13] and transcriptionally [14] well char-
acterized course that closely recapitulates many features of
human breast carcinogenesis. In virtue of the high homology
of BALB-neuT tumors to humanHER2positive breast cancer,
this is an ideal model to use when setting up new anticancer
therapies. Actually, BALB-neuTmice and the cell line derived
from a BALB-neuT adenocarcinoma (TUBO cells) have
provided us with a fascinating tool and one that is used in
many laboratories worldwide to deepen current knowledge
of the pathogenic mechanisms that promote HER2 positive
tumor growth and consequently elaborate more efficacious
antitumor strategies. We herein discuss the lessons learned
about TME, HER2, and other OAs from BALB-neuT mice
and how this knowledge can help develop a winning strategy
against cancer.

2. The Urgency of Defining the Most
Promising TME-Associated OAs

Neoplastic transformation is a multistep process which
involves specific proteins and regulatory pathways at each
stage. The identification of the genes that constitute the
driving force of cancer progression is an extraordinary
opportunity to gain an advantage over cancer. HER2 rep-
resents a paradigm of this conception; its expression at the
neoplastic stage, its overexpression in established tumors,
and its causal role in cancer progression [14] make it the
ideal immunological target. This observation has paved the
way for the development of new immunologically based
therapies against neoplastic cells that overexpress HER2,
which have made some important clinical achievements
[15]; the U.S. Food and Drug Administration (FDA) has
approved mAbs that target HER2, such as Trastuzumab
and Pertuzumab, and several drugs (i.e., TDM1 and ARRY-
380) [16], which have prolonged the disease-free survival
rates in patients with metastatic HER2 positive breast cancer
[17] and are currently under investigation in clinical trials.
However, the majority of patients treated with these agents
develop resistance within one year of treatment, resulting in

disease progression, recurrence, and reduced overall survival
[18]. Similar results have also been obtained using active
immunotherapy against HER2 in preclinical models [19].The
efficacy ofDNAvaccines targetingHER2 inBALB-neuTmice
[20] relies mostly on the direct activity of vaccine-elicited
Abs [21–23] and is strictly dependent on the tumor stage
at the time of vaccination; the sooner the vaccination is
performed, the better the outcome [24]. When the vaccine is
administered to a still healthy BALB-neuT mouse, repeated
boosts keep it tumor free for a period of time that may
well equate to its natural life span. However, when the same
vaccine is administered to a mouse in a more advanced stage
of microscopic lesions, the appearance of palpable tumors
is only slightly delayed. This suggests that targeting a single
oncoantigen is not sufficient to freeze tumor progression,
especially when it is applied to patients that suffer from
advanced cancer, as commonly happens in the clinical setting
[12].

This partial failure of anti-HER2 treatment suggests that
some key elements that drive mammary carcinogenesis must
still be sought out and not only on the tumor cells themselves;
the best chance of defeating cancer that we have is offered by
targeting both cancer cells and TME. TME can dynamically
control cancer progression thanks to its continuous interplay
with cancer cells [25]. Therefore, the identification of addi-
tional OAs that are expressed by either tumor or stromal
cells surrounding HER2 positive lesions is urgently needed
if we are to develop a combined andmore efficient anticancer
approach which may prevent the development of the very
resistance to anti-HER2 therapy that is responsible for tumor
relapse [26].

To address this point, we performed a transcription
profile analysis of BALB-neuT preneoplastic and invasive
lesions, integrated with ameta-analysis of data obtained from
healthy human and neoplastic specimens. Of the 46 putative
OAs identified [27], B7-H4 [28], Claudin 3 [29], Hepsin
[30], CD52 [31], and Desmoglein 2 [32] are Class I OAs,
expressed on the plasma membrane of cancer and TME cells
and therefore constitute promising targets for vaccination.
Class II OAs are another group of identified OAs and
includes cytokines and chemokines copiously released in the
TME. These molecules play important roles in establishing
the strictly tuned relationship between tumor and stromal
cells whose balance is critical for tumor development and
progression, as will be discussed in the following sections of
this review.Moreover, this analysis led us to identifyingmany
Class III OAs that belong to signal transduction pathways
reported to be deregulated in breast and other cancers, such
as mitogen activated protein kinase (MAPK) [33], Survivin
[34], Aurora kinase [35], and src pathway molecules [36].
It is worth noting that some of these networks seem to be
regulatory keys of therapeutic resistance, such as Survivin
[37], Topoisomerase II 𝛼 [38], Desmoglein 2 [39], BCL2-
interacting killer [40], and ribonucleotide reductase M2
polypeptide [41]. In addition, several identified proteins have
a role in CSC self-renewal, which has been demonstrated in
the cases of maternal embryonic leucine zipper kinase [42],
transcription factor AP-2 𝛾 [43], the microtubule associated
TPX2 protein [44], and Aurora kinase A [44]. At present, our
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efforts are focused on the characterization of some of these
targets and our final goal is the setup of new DNA vaccines
that will be tested in BALB-neuT mice in association with
anti-HER2 vaccination, in order to improve the vaccination’s
efficacy against advanced tumor and metastases. A more
detailed analysis of OAs that are selectively expressed by
the various populations that constitute TME may end up
providing us with a sort of tumor Rosetta Stone which could
help unveil the reciprocal connection between tumor, CSCs,
and stroma.

As reported in several clinical studies, the expression of
noncoding genes, such as microRNAs (miRNAs), correlates
with cancer relapse and metastasis formation [45]. Several
miRNAs contribute to tumor progression in virtue of their
ability to posttranscriptionally modulate the expression of
oncogenes or oncosuppressors.They can act directly onTME,
regulating both the survival of more differentiated cancer
cells and the maintenance of a CSC phenotype [46] and
controlling neoangiogenesis during tumor progression [47].
Results from experimental studies, which have been strength-
ened by the human cancer miRNA expression profile, have
led researchers to the identification of miRNAs as potent
regulators of the crosstalk between cancer and stromal cells
[48]. Even if miRNAs cannot be considered oncoantigens
because of their lack of immunogenicity, the identification
of miRNAs, which are differentially expressed in the tumor,
can lead to the identification of their target genes as potential
oncoantigens or oncosuppressors, nevertheless [19].

Of note among the miRNAs that have recently been
identified is the strong upregulation of miR-135b which has
been found in invasive mammary BALB-neuT carcinomas;
acting on its targets, midline 1 (MID1) and mitochondrial
carrier homolog 2 (MTCH2), it regulates CSC stemness in
vitro and cancer cell metastatization in vivo [49]. This newly
unveiled role for miR-135b in mammary carcinogenesis,
as observed in other tumors such as colon cancer [50],
osteosarcoma [51], ependymoma [52], and hepatocellular
carcinoma [53], can provide the basis for the exploration of
miR-135b, MID1, and MTCH2’s potential as new therapeutic
targets in mammary carcinogenesis.

3. CSCs on Stage

The scientific spotlight has very recently been pointed on
CSCs, the subpopulation of cells endowed with self-renewal
potential and refractoriness to chemo- and radiotherapy that
are capable of sustaining tumor growth and progression by
giving rise to the heterogeneous population of tumor cells
found within a tumor [54]. Even though the initial idea of
CSCs as static entities [55] has been overtaken [56], it is well
accepted that they control cancer development and progres-
sion in amanner that is guided by environmental factors [57].
CSCs are thought to reside in a highly specialized niche that
is made up of stromal, endothelial, and more differentiated
tumor cells that stimulate CSC survival and stemness via cell
to cell contact, paracrine, and other signals [58]. A central
role is played here by interleukin- (IL-) 6, which is produced
by CSCs and noncancerous cells, MSCs, and immune cells.

IL-6 promotes CSC self-renewal, the recruitment of MSCs
and immune cells, and the preservation of an inflammatory
state that favors tumor growth. Moreover, IL-6 promotes
the conversion of more differentiated tumor cells into CSCs,
inducing the epithelial-to-mesenchymal transition (EMT).
Recently, it has been shown that HER2 overexpression in
breast CSCs increases IL-6 secretion [59] which is involved
in Trastuzumab resistance [60].

We have recently demonstrated that an autocrine loop
involving toll-like receptor 2/high mobility group box-
1/NF𝜅B (TLR2/HMGB1/NF𝜅B) induces the enhanced secre-
tion of vascular endothelial growth factor (VEGF) and IL-
6 in Sca1+ [61] CSCs, derived from BALB-neuT TUBO
cells, that in turn activates the transcription factor signal
transducer and activator of transcription 3 (STAT3), thus
promoting CSC self-renewal [62]. This pathway also induces
the secretion of transforming growth factor- (TGF-)𝛽, a
cytokine that induces EMT and the secretion of matrix
components that favor metastatization [63]. Moreover, TGF-
𝛽 recruits endothelial cells and promotes their proliferation,
enhancing angiogenesis [64].Therefore, HER2 positive CSCs
promote their own self-renewal, by upregulating TLR2 and
secreting its endogenous ligand HMGB1, and generate a
favorable microenvironment for tumor progression. This is a
very important observation sinceHMGB1 is not only secreted
by CSCs but also secreted by activated dendritic cells (DCs)
[65] and necrotic cells [66] and thus is one of the most
important molecules driving tumor escape from cytotoxic
treatment.

IL-6 stimulates CSCs, MSCs, and fibroblasts and causes
them to secrete IL-8, another key cytokine that promotes
CSC self-renewal. It is worth noting that HER2 positive
CSCs overexpress IL-8 receptors CXCR1/2 [67], which in
turn induce HER2 phosphorylation and the activation of
its downstream signaling pathway, generating a positive
feedbackmechanism that promotes CSC expansion [68].The
inhibition of CXCR1, either by mAbs or specific inhibitors,
reduces CSC self-renewal, induces cell apoptosis, and inhibits
metastatization in breast cancer, indicating that this receptor
may be a promising target for combined anticancer therapies
[69]. Similar IL-6-dependent upregulation is observed in
the chemokine (C-C motif) ligand (CCL) 2 (also known as
monocyte chemotactic protein-1, MCP-1), whose production
is induced by IL-6 in both tumor cells and stromal cells and
that supports the expansion of the CSC compartment by acti-
vating the Notch1 signaling pathway [70]. We demonstrated,
by microarray analysis, that CCL2 expression increases in
BALB-neuT mice as carcinogenesis progresses [71], and its
causal role in cancer development was further supported by
the observation that BALB-neuTmice, which were knocked-
out (KO) for CCL2, displayed prolonged survival over BALB-
neuT mice wild-type (WT) for this chemokine [72].

The characterization of all the cytokine networks that
connect CSCs, tumor cells, and stromal cells may pave the
way for new therapeutic strategies and provide diagnostic
and prognostic markers for patients. In this regard, many
clinical studies have shown that high serum levels of IL-
8 and IL-6 correlate with poor prognosis in breast cancer
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patients [73, 74]. Therefore, the design of specific cytokine
receptor inhibitors and the assessment of their efficacy in
clinical settings may be a source of great potential for future
research.

4. Fighting against Proangiogenic OAs

Vascular ECs thoroughly govern angiogenesis, a process that
supports the growth of many kinds of solid tumors including
breast cancer, providing nutrients and oxygen to proliferating
cells, thereby allowing cancer cells to invade tissues and
develop metastases. Tumor cells have been observed to
preferentially align towards and associate with ECs, even
prior to the angiogenic switch [75]. Thanks to this strategic
tidiness, ECs and tumor cells can bidirectionally communi-
cate through a complex network of both soluble and insoluble
signaling molecules that drive cellular differentiation and
find ways to foster the tumor. Moreover, ECs are the most
important interface between circulating blood cells, tumor
cells, and extracellular matrix and play a pivotal role in
controlling leukocyte recruitment and tumor cell behavior
during angiogenesis.

A great deal of effort has been poured into attempts
to block tumor angiogenesis. In this respect, VEGF-A is
nowadays the most renowned therapeutic target. The inter-
action between VEGF ligands and their EC expressed recep-
tors stimulates angiogenesis and promotes EC permeability,
survival, migration, and the invasive potential of cancer
cells [76]. Bevacizumab is a recombinant humanized mAb
developed against VEGF-A [77], which has been broadly
studied in phase III clinical trials and is now FDA-approved
for the treatment of metastatic colorectal cancer, nonsmall
cell lung cancer, and breast cancer [78]. Other drugs that
inhibit the tyrosine kinase activity of VEGFRs, like sunitinib
[79], sorafenib [80], axitinib [81], pazopanib [82], vande-
tanib [83], cabozantinib [84], tivozatinib [85], and linifanib
[86], have been developed. Sorafenib has been approved for
the treatment of unresectable hepatocellular carcinoma and
advanced renal cell carcinoma (RCC), whereas sunitinib has
been approved for the treatment of gastrointestinal stromal
tumors andmetastatic RCC, but onlymodest benefit has been
observed in other types of cancer [87].

Despitemany steps forward in the setup of antiangiogenic
protocols being made, the development of tumor resistance
and the occurrence of relapse in a high percentage of patients
have prompted clinicians and researchers to join forces and
find new targets for the development of more efficacious
therapies. For these reasons, the immune-targeting of OAs
expressed on ECs seems to be a successful direction to move
towards. As described below, we have tested various DNA
vaccination strategies that target tumor angiogenesis; all these
vaccines have demonstrated high efficacy without any toxic
effect, further stressing the therapeutic potential of targeting
tumor ECs in HER2 positive tumors.

Of the class II OAs found to be overexpressed in tumor
ECs during BALB-neuT cancer progression [88], the most
promising is angiomotin (Amot), a member of the Motin
protein family. Using a construct that encodes the kringle

domains 1–4 of angiostatin to screen a yeast two-hybrid
placenta cDNA library for angiostatin-binding peptides [89],
Amot was originally identified as one of the angiostatin
receptors. Amot is normally expressed on ECs, where it
exerts its proangiogenic activity and stimulates ECmigration
during angiogenesis [90]. Amot is overexpressed compared
to normal tissues in human breast tumors and its presence
correlates with poor prognosis and metastatic disease [90].
These findings suggest that Amot has an important role
to play during breast tumor progression and may be an
optimal target for anticancer therapy [91]. In virtue of these
features, we decided to elicit an immunological response
against Amot, by means of DNA vaccination, in mice that
bear microscopic invasive mammary cancers. This strategy
was successfully applied in BALB-neuT mice as well as in the
PyMTmousemodel of breast cancer, in which carcinogenesis
is driven by the polyoma middle T oncoantigen [92]. The
therapeutic effect of anti-Amot vaccination was mediated by
the induction of specific antibodies that induced increased
tumor vessel permeability, which, in turn, resulted in both
an increase in chemotherapy efficacy and major epitope
spreading, which was accompanied by the induction of a
specific anti-HER2 antibody response that further contrasted
tumor growth [93].

Another member of the Motin family, angiomotin-like 1
(AmotL1), is an attractive target for antitumor interventions.
AmotL1 is endowed with proangiogenic properties that affect
EC polarization, directional migration, and the stability of
tight junctions during angiogenic sprouting; it may com-
pensate for the absence of Amot and vice versa [94]. Even
though our preliminary data indicate that DNA vaccination
against AmotL1 is not effective in the prevention ofmammary
tumor appearance in BALB-neuT mice, encouraging data
have come from a combined DNA vaccine against HER2 and
AmotL1. Even more promising results have been obtained
using a combined DNA vaccine against HER2, Amot, and
AmotL1 (Barutello G et al., unpublished data). This kind of
vaccination exploits the synergistic effect which stems from
the combined action of antibodies which target both the ECs
of neoformed tumor vessels and the tumor cells themselves.

Membrane-bound KitL (mbKitL), which is involved in
the c-Kit/KitL system required for tumor angiogenesis [95],
is an additional promising target for antiangiogenic cancer
immunotherapy. mbKitL is expressed on tumor ECs and is
essential for providing themwith survival signals, as is clearly
exploited in the role that c-Kit signaling network plays in
maintaining breast cancer cells [96]. A DNA vaccine that
targets mbKitL is able to inhibit the growth of a mouse HER2
positive transplantable tumor; vaccination impairs tumor
vessel formation and stabilization and thus interferes with
tumor cell-derived VEGF bioavailability [97].

Besides representing good targets for anticancer thera-
pies, antigens expressed on tumor ECs may also be exploited
for tumor diagnosis. In this context, we have recently
demonstrated that both ECs and cancer cells in mammary
tumors arising in BALB-neuT mice express 𝛼V𝛽3 integrin,
a receptor for several extracellular matrix proteins which
harbor an arginine-glycine-aspartic acid (RGD) sequence
[98]. 𝛼V𝛽3 integrin is widely considered to be a marker of
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the angiogenesis, tumor progression, and invasion of different
types of cancer. Since its level of expression correlates with
cancer progression [99], we have developed a probe for the
optical imaging detection of 𝛼V𝛽3 integrin and have shown
that it can successfully detect microscopic in situ carcinomas
inBALB-neuTmice, therefore proving itself to be a promising
tool for the early diagnosis of breast cancer [98].

5. The Controversial Role of Inflammation and
Immune Cells in the TME

Despite the fact that natural immune surveillance mecha-
nisms are activated during the early stages of BALB-neuT
carcinogenesis [100–103], tumors finally acquire the three
immune hallmarks required to progress: the ability to thrive
in a chronically inflamed TME, to suppress immune reactiv-
ity, and to evade immune recognition [104].Thefight between
natural immune surveillancemechanisms and these acquired
capabilities is mirrored by the important, yet controversial,
role that immune cell infiltrates play in the TME. The
tumor stroma of BALB-neuT mice is infiltrated by CD4
and CD8 T lymphocytes and a few B, natural killer (NK),
and 𝛾𝛿 T lymphocytes, but mostly by regulatory T (Tregs)
cells, myeloid derived suppressor cells (MDSCs), and tumor
associated macrophages (TAMs) that are recruited into TME
in response to inflammatory molecules and cytokines being
released in the tumor milieu [105, 106].

The acquired ability of BALB-neuT tumors to thrive in
a chronically inflamed microenvironment has been high-
lighted by microarray analyses that have shown the occur-
rence of an upregulation in four transcriptional networks,
in advanced as compared to preneoplastic lesions, whose
hub genes code for proinflammatory cytokines IL-1𝛽, tumor
necrosis factor- (TNF-)𝛼, interferon- (IFN-)𝛾, and CCL2
[71]. The final outcome of the activation of these four
networks is tumor promotion; however, how each individual
network influences tumor progression is neither simple nor
unequivocal. For instance, increased IFN-𝛾 release in TME
during tumor progression appears to play a major tumor
inhibitory role and is a marker of the M1 TAMs that express
immunostimulatory, antiangiogenic, and tumoricidal func-
tions [107]. Accordingly, IFN-𝛾 KO BALB-neuTmice display
faster tumor progression, associated with a more intense
tumor angiogenesis [71, 108, 109].Moreover, chronic systemic
administration of recombinant IL-12 in BALB-neuT mice
induced high and sustained IFN-𝛾 production, as detected in
the sera of treated mice that in turn caused a delay in tumor
onset and a reduction in the number of mammary glands
affected by the tumor [109, 110]. The role that the other three
networks play in tumor progression is the opposite. They can
initially show antitumor activity, but the incipient tumor soon
uses them to provide itself with a shortcut for progression.
In reality, the activation of CCL2 is directly associated with
enhanced progression [72], as discussed above. Similarly,
increases in IL-1𝛽 and TNF-𝛼 in TME may favor cancer
progression either directly [71, 111] or by recruiting suppressor
cells [112, 113].

A tumor’s ability to exploit inflammation to its own
benefit is strictly related to the second immune hallmark
of cancer, the capability to suppress the immune response
directly or via the recruitment of suppressor cells [104].
IL-1𝛽 released by stromal cells together with other tumor-
derived factors, including granulocyte macrophage colony-
stimulating factor (GM-CSF), cyclooxygenase 2 (COX-2), IL-
6, and VEGF, induce the accumulation and expansion of
MDSCs [112, 113] by triggering Janus kinase (JAK)/STAT3
pathways [114]. MDSCs are a phenotypically heterogeneous
population with an immunosuppressive capacity that are,
in normal conditions, generated from the bone marrow
and rapidly differentiates into mature DCs, macrophages,
or granulocytes, while, in cancer bearing patients, present
a partial block of maturation [115]. In BALB-neuT tumors,
VEGF was detected in the supernatant from primary tumor
cultures and from tumor cell lines as well as in the sera
of BALB-neuT tumor-bearing mice. A possible explanation
may lie in the increase of matrix metalloproteinase-(MMP-)
9 within the tumor mass, as previously shown [116], that
mediates the release of growth factors, such as VEGF, stromal
cell-derived factor- (SDF-) 1, and mbKitL [117]. Accordingly,
any interference with VEGF ormbKitL activity, besides ham-
pering the angiogenic process [97, 118], has been reported to
induce MDSC shrinkage [97, 119].

MDSCs exhibit immunosuppressive functions that occur
via multiple mechanisms, such as inducible nitric oxide
synthase (iNOS) and arginase-1 (Arg-1) production, which
suppresses the T-cell immune response in TME via the
release of nitric oxide and reactive oxygen species that
cause T cell receptor (TCR) nitration and T cell apoptosis
and the depletion of L-arginine required for T cell func-
tions [120]. As indoleamine-2, 3-dioxygenase (IDO) appears
to be involved in MDSC-mediated T cell inhibition [121]
and cyclooxygenase- (COX-) 2 is required to induce, via
prostaglandin E- (PGE-) 2, Arg-1 expression by MDSCs
[122, 123], a considerable amount of effort is going into
inhibiting these molecules [124]. In this respect, we are
testing a therapeutic protocol that consists of the concomitant
administration of anti-HER2 DNA vaccines and plasmids
that code for IDO [125] or COX-2 or short hairpin (sh)RNAs
in BALB-neuT mice [24].

In order to curb the significant MDSC contribution
to suppressing the immune system, we have looked for
additional targets that these cells express both in tumor
bearing mice and in cancer patients. As discussed above,
B7-H4, a member of the B7 family, has been identified as
being overexpressed in BALB-neuT mouse invasive lesions
and appears to be an excellent target candidate, thanks to
its critical role in the regulation of antigen specific immune
responses [3]. Indeed, within TME, the expression of B7-
H4 by tumor cells and MDSCs seems to be involved in
the inhibition of the T cell response to tumor associated
antigens [126]. In the light of these considerations, we are
developing DNA plasmids that code for both HER2 and B7-
H4 shRNAs, and we propose an evaluation of their efficacy
in the inhibition of mammary carcinogenesis (Macagno M,
unpublished data). Another important pathway that con-
tributes to tumor mediated immune suppression is found in
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the CD28 family member, programmed death 1 (PD-1) and
its ligand PD-L1 [127]. PD-L1 is expressed by both MDSCs
and tumor cells [128] and its interaction with activated
T cell expressed PD-1 promotes T cell tolerance by suppress-
ing their cytotoxic capacity and cytokine secretion [127]. We
were among the first to show that the PD-1 blockade results
in an increased response to antitumor vaccination. In these
experiments BALB-neuTmice were vaccinated against HER2
and concomitantly treated with the administration of anti-
PD-1 mAb BAT [129].

In response to IL-1𝛽 stimulation, MDSCs also produce
the suppressive cytokine IL-10 [130] which acts on TAMs
inducing their reprogramming and polarization towards
an M2 phenotype. M2 TAMs support tumor progression
through the release of immunosuppressive (i.e., CCL2 and IL-
10), proangiogenic (i.e., IL-8 and VEGF), and tissue remod-
eling (i.e., MMP-2 and MMP-9) factors. Their expansion in
breast cancer tissues has been correlated with poor prognosis
[131]. In BALB-neuTmiceM2TAMs are themain tumor infil-
trating population [105]. The administration of zoledronic
acid to BALB-neuT mice can revert M2 polarization by
interferingwith themevalonate pathway and thus hamper IL-
10 and VEGF production, recovering the release of IFN-𝛾 in
the mammary glands of treated mice [105].

HER2 and the other OAs expressed by mammary tumors
in BALB-neuT mice are self-molecules toward which the
immune system is tolerant [132]. As a consequence, the
predominant effector T-cells in the TME are presumably
constituted of low avidity OA-specific T cells whose activity
is inhibited by Tregs that first expand in the spleen and tumor
draining lymph nodes during cancer progression and in TME
in later phases [100, 132, 133]. This situation reproduces what
normally happens in tumor bearing patients [134] and is
part of the ability to suppress immune reactivity that the
tumor acquires during progression [104]. Indeed, natural
immune surveillance somehow counteracts Treg expansion
in the early phases of carcinogenesis in BALB-neuT mice.
In complement C3 KO BALB-neuT mice, tumor progression
occurs earlier and this is associated with the increased
expansion of Treg cells over complement competent BALB-
neuT mice [102]. This increased Treg expansion is prompted
by a lack of C3a and C5a, whose receptor signaling is required
during the early events of effector T cell activation [135]
and negatively modulates Treg function by inducing FoxP3
downregulation [136]. Its absence in BALB-neuTC3KOmice
deflects naı̈ve T cells into Treg [137] and potentiates their
function [136].

The down modulation of MHC class I (MHC I) [138]
is the mechanism most frequently exploited by tumor cells
to escape from immune recognition [139]. It is intriguing
that an inverse correlation exists between HER2 overex-
pression and the expression of MHC I and of the com-
ponents of the antigen-processing machinery [140]. MHC
I down modulation, albeit incomplete, means that cancer
cells are more susceptible to NK cell-mediated lysis, if NK
receptor activating ligands are present. This may have an
impact on cancer progression at least in the initial stages of
carcinogenesis. The fundamental role that NK cells play in
hampering the expansion of incipient BALB-neuT tumors

has been investigated in perforin (PFP) KO BALB-neuT
mice, as the majority of NK mediated protection relies on
the release of PFP on target cells. In fact, both female [103]
and male [141] BALB-neuT PFP KO mice show fourfold
increases in mammary carcinoma incidence. Nevertheless,
preliminary results also indicate that advanced BALB-neuT
tumors downregulate the expression of ligands that activate
NK receptors (Lanzardo S, unpublished data), suggesting that
advanced tumors reach a balance between a loss of sensitivity
to CD8+ T cell killing and the maintenance of NK-cell-
inhibitory specificities. We are now evaluating the expression
of MHC I and of some NK ligands in TUBO-derived CSCs
to assess whether NK cells recognize and more efficiently kill
CSCs than their differentiated counterparts, as has already
been shown for colon cancer-derived CSCs [142].

6. Role of Adipocytes and Fibroblasts in
Breast Cancer Progression

While immune cells are well recognized as major players in
the orchestration of a permissive TME, other cell populations
have only recently been recognized as active parts of the
tumor promoting ability of TME. These include CAAs and
FACs.

Besides its classical definition as a fat reservoir, adipose
tissue is now considered to be a fully functioning endocrine
organ [143] that secretes growth factors and cytokines, known
as adipokines, which are involved in angiogenesis, immunity,
and endocrine signaling [144]. Adipocytes enshroud the
mammary gland, regulating epithelial cell growth during the
hormonally controlled courses of mammary gland develop-
ment, from pubertal maturation to involution after lactation
[145].

The understanding of the important, but still underes-
timated, role of adipocytes in cancer stems from several
studies which highlight the anatomical proximity of many
tumors to adipose tissues and point to the positive correlation
between obesity and higher cancer risk [146–149]. Adipocytes
can, under the pressure of cancer cell stimuli, abdicate their
physiological role in favor of tumor promoting activities in
breast cancers that grow in an adipose tissue dominated
context. In this way they becomeCAAs that exhibit decreased
lipid content, reduced adipocytes marker expression, and an
overexpression of proinflammatory cytokines and MMPs,
such as MMP-11 and MMP-9 [150, 151]. It is worth noting
that MMP-9 has been identified as being overexpressed in
BALB-neuT mammary cancer which would seem to point to
its important role during tumor progression.

A number of studies have shown that CAAs support and
expedite breast cancer progression [152–154] by providing
proinflammatory cytokines, such as IL-6, TNF-𝛼, and reac-
tive oxygen species [155]. On the other hand, IL-6 in breast
TME seems to stimulate the proinvasive effects of CAAs,
besides promotingCSC self-renewal as discussed above [150].
Moreover, CAAs in TME can differentiate in fibroblast-
like cells that, together with other stromal cell populations,
participate in the generation of dense collagenous stroma, the



8 BioMed Research International

so called desmoplastic response, typically observed in breast
cancer [156].

CAAs functions are mainly mediated by leptin and
adiponectin, two functionally opposite members of the
adipokine family, that seem to play a pivotal role in cancer
progression [157]. Leptin promotes tumor growth, eliciting
the activity of several signaling pathways such as insulin-
like growth factor-1 (IGF-1) and HER2 and inducing the
expression of MMP-2, MMP-9, and VEGF, which finally
promote cell migration and metastatic spreading [158, 159].
Furthermore, leptin exerts a chemoattractant effect on
macrophages and monocytes [160] and stimulates them to
produce the inflammatory cytokine TNF-𝛼 that in turn
manifests proangiogenic activity [161]. On the other hand,
adiponectin acts as an antiangiogenic and anti-inflammatory
factor that is able to repress proliferation and induce apop-
tosis in breast cancer cells [147, 162]. Interestingly, some
studies have found that caloric restriction can exert an
anticancer effect via alterations in systemic IGF-1 and NF-𝜅B
levels [163].

Altogether these data suggest that the recently discov-
ered therapeutic potential of adipocytes could open new
and promising perspectives in breast cancer treatment. One
example of this comes from the preclinical experience gained
with adipokine osteopontin (OPN), also called “early T
cell-activation gene 1,” a multifunctional component of the
extracellular matrix that has been linked to a plethora of
autoimmune diseases [164]. OPN has very recently been
rediscovered as a diagnostic and prognostic marker in
HER2 positive breast cancer [165] and one whose abnormal
expression in patients is linked to poor prognosis [166].
It has also been proposed that the autocrine production
of OPN by tumor cells may be an important factor that
allows invasion and survival to occur [167]. In fact, the
interaction between extracellular matrix deposited OPN and
cell adhesion molecules, such as 𝛼V𝛽3 integrins which are
overexpressed in BALB-neuT tumors [98], increases both
the expression of VEGF in ECs, allowing neovascularization,
and the activation of connective tissue growth factor and
cysteine-rich angiogenic inducer 61(CYR61), which enhances
neovascularization and mammary tumor growth in vivo
[168].

As previously mentioned, CAAs can differentiate into
fibroblast-like cells that share many properties with CAFs
[169]. CAFs promote tumor growth and invasion secreting
proangiogenic factors (i.e., VEGF-A and MMP-9) [170],
proinflammatory molecules (i.e., SDF-1, IL-6, and IL-1𝛽)
[171], and several growth factors (i.e., TGF-𝛽, platelet-derived
growth factor, PDGF, and basic fibroblast growth factor,
bFGF) [172, 173]. In particular, the aberrant production of IL-
6 and CCL2 in mammary cancer activates STAT3 in CAFs,
which finally sustains tumor-associated inflammation and is
required for breast cancer cell migration [174]. Certainly, in
BALB-neuTmice this network seems to be particularly inter-
esting, as in a BALB-neuT mice knock-in for a constitutively
active Stat3 allele, we observed an earlier and more invasive
onset of mammary tumors [175].

7. MSCs Are Key Players in the TME Orchestra

Adult multipotent MSCs make for a fascinating TME popu-
lation which is able to control the interplay between cancer
cells and tumor stroma. Physiologically, MSCs are located
predominantly in the bone marrow and contribute to the
maintenance and regeneration of a variety of connective
tissues [176]. During injury and inflammation, they are
recruited to damaged sites via the release of solublemolecules
and operate in tissue remodeling [177].

MSCs also localize into different types of solid tumors
which they first migrate towards then integrate into the
tumor-associated stroma [178]. Recent studies have provided
direct evidence that MSCs are recruited in TME by a broad
range of soluble factors which are secreted by cancer cells
and CSCs, including IL-6 [179], VEGF and bFGF [180], CCL2
[181], SDF-1𝛼 [182], and HMGB1 [183]. Moreover, stressful
conditions, such as irradiation [184], hypoxia [185] and,
cellular damage [183], can enhance the recruitment of MSCs
to the site of growing tumors. Once there,MSCs contribute to
the development of an active TME, in which bone marrow-
derived MSCs generate CAFs, while local adipose tissue-
derivedMSCs contributemainly to the vascular and fibrovas-
cular stroma (pericytes, myofibroblasts, and ECs) [186]. In
addition, MSCs interact with tumor cells and with all other
stromal cells through a broad range of signaling molecules,
generating complex crosstalk whose net effect is to stimulate
tumor progression. For example, MSCs can promote breast
cancer neoangiogenesis, possibly thorough the secretion of
macrophage inflammatory protein 2 (MIP-2), VEGF, TGF-
𝛽, and IL-6 [187] and display potent immunomodulatory
properties [188] that enable them to inhibit CTLs and NK
cells by stimulatingTregs through the release of TGF-𝛽1 [189].

Conflicting data have led to the hypothesis that two
opposing immunological MSC phenotypes exist, one proin-
flammatory and one immunosuppressive, which are depen-
dent on the engagement of specific TLRs [190]. The role of
TLR2 is still debated, with some studies claiming that TLR2
activation on MSCs inhibits their immunosuppressive prop-
erties [191], while others argue that TLR2 stimulation does
not affect this capability [192]. Notably, these considerations
are mostly based on in vitro experiments. Therefore, BALB-
neuT mice may well be a suitable tool for the difficult task
of definitely clarifying the role of TLR2 in MSCs. Starting
from our observation that TLR2 drives mammary CSC self-
renewal [62], we are developing BALB-neuTmice that areKO
for TLR2, in which we would like to characterize the role of
TLR2 not only in CSCs but also in MSCs and other stromal
populations.

MSCs are thought to contribute to CSC niche generation,
thus regulating cancer cell stemness through multiple path-
ways and secreted factors (i.e., IL-6 and CXCL7 [193], PGE-2
[194], EGF, bFGF, bone morphogenic protein (BMP) 4, TGF-
𝛽1, SDF-1𝛼, andCCL5 [195], among others) that increase CSC
self-renewal and expand the CSC population.

Furthermore, MSCs promote various malignant features;
they control the metastatic ability of breast cancer cells by
inducing EMT through the secretion of PDGF-D [196], TGF-
𝛽1 [197], IL-6, and VEGF [198] and promote cancer cell
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migration through the release of a plethora of chemokines
such as CCL5 [199], CXCL1 and CXCL5 [200], CXCL9,
CXCL10, and CXCL11 [201] or SDF-1 [202]. For all these
reasons, MSCs represent an attractive target when consider-
ing the design of new and promising anticancer treatments.
However, the lack of specificmarkers that discriminateMSCs
from other cell types makes the direct targeting of the MSC
population an unrealistic approach. An attempt to disrupt
signaling pathways betweenMSCs and CSCs is more feasible.
In fact, the experience we have gained with the BALB-neuT
model suggests that some of the molecules released byMSCs,
such as IL-6, TGF-𝛽, and HMGB1, are key molecules in
CSC self-renewal and cancer progression [62]. The targeting
of these molecules or their receptors, which are somehow
redundant in different malignant processes, may be a means
by which to interfere with tumor pathogenesis on multiple
levels.

In recent years, there has been growing interest in the
use of MSCs as a tool for the target-specific delivery of
therapeutic agents, because their avid tumor tropism means
that they can act as a sort of Trojan horse. MSCs can be
genetically engineered to express antitumor cytokines, such
as IFN-𝛽 [203], IL-12 [204], and TRAIL [205], or prodrugs
such as cytosine deaminase [206], which are then released
directly into the tumor milieu, thus greatly reducing their
systemic toxicity. These approaches have been shown to be
effective in the management of various preclinical tumor
models. However, these killer MSCs may still maintain all
the protumoral features here described and some concerns
still exist about the potential conversion of MSCs into cancer
cells themselves [207]. Therefore, the actual exploitation of
MSCs as a tool for anticancer therapy still needs more study,
and BALB-neuTmice represent a goodmodel throughwhich
to evaluate the feasibility of this approach, in the context of
HER2 positive breast cancers.

8. Conclusions

The growth and progression of breast cancer cells depend
not only on their intrinsic malignant potential but also
on a mutual and continuous dialogue between cancer cells
and stromal, immune, and endothelial cells within TME.
Multidirectional interactions between several substances,
such as cytokines, MMPs, and growth factors, secreted by
all these populations closely cooperate for the generation
of a permissive TME that is crucial for successful cancer
progression.This complex and finely tuned interplay between
cancer and stromal cells during breast cancer development is
summarized in Figure 1.

Experimental studies, conducted on preclinical models,
have provided significant hints as to how TME affects tumor
progression and response to therapy. BALB-neuT mice are
an emblematic example in this regard. Over the years, the
exploitation of this model has allowed the identification of
novel molecular targets to be carried out and has prompted
us to develop new, promising therapeutic approaches. On the
other hand, it has provided evidence that the direct targeting
of cancer cells is not enough to obtain complete disease

remission. This highlights the need to extend antitumor
intervention beyond the tumor bulk, as targeting both cancer
cells and other TME cell populationsmay be amore complete
and effective strategy.

Given the significant role that CSCs play in the various
steps of tumor development and TME modulation, we have
recently focused on the identification of pathways that regu-
late CSC self-renewal and influence, on TME as well as on the
investigation of CSC-specific antigens. Another promising
field of study can be found in action on tumor angiogenesis;
in particular, strategies thatmodulate vessel permeabilitymay
also stabilize tumor vessels and favor both the distribution
of traditional drugs into the tumor milieu and immune
cell accessibility. As in the BALB-neuT model, the tumor
infiltrate is mainly composed of immunosuppressive cells.
The addition of immunomodulatory strategies to standard
anticancer approaches could be essential for a therapeutic
success.

Other TME cell populations, which are still almost
unexplored in this model and whose involvement in tumor
pathogenesis is still in its infancy, are found in CAAs and
CAFs. Given the tissue organization of mammary glands and
of the tumor within, which is rich in adipose cells and fibrous
tissue, the identification of markers that are overexpressed
by CAFs and CAAs may lead to the eradication of these
cells which favor cancer progression through the production
of various cytokines and extracellular matrix proteins. The
blockade of these soluble molecules or their receptors may
be an interesting option, as the disruption of the TME
signaling network may make cancer cells themselves more
amenable to traditional approaches. The drugs used in these
combined treatments may be successfully delivered to TME
by exploiting the avid tropism of MSCs, which may be
engineered in order to produce molecules that inhibit the
different populations present into the TME.

In conclusion, the targeting of multiple TME populations
may represent the best strategy for setting up innovative anti-
cancer treatments that significantly improve patient survival
and shrink the development of drug resistance; in this regard,
BALB-neuT mice provide a suitable experimental setting,
thanks to the high translational value of this model.
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