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ABSTRACT

Near (NIR) and medium (MIR) infrared reflectance spectroscopy (IR) predictions
of fatty acid (FA) composition, expressed as g/kg of milk or g/100 g of FA, on
fresh and thawed milk were compared. Two-hundred-and-fifty bulk cow milks,
collected from 70 farms in northwest Italy, were scanned by MIR in liquid form
and by NIR in liquid and oven-dried forms. MIR and NIR FA (g/100 g FA)
predictions on oven-dried milk were similar for the sum of even chain-saturated
FA (ECSFA), odd chain-FA (OCFA), unsaturated FA (UFA), conjugated linoleic
acid (CLA), n-3 FA, and C18:1cis9 to C16 ratio. The monounsaturated FA
(MUFA), n-6 to n-3 ratio, polyunsaturated FA (PUFA), and n-6 FA were
predicted better by NIR on oven-dried milk. The NIR showed worse predictions
than MIR for almost all FA, when expressed as g/kg of milk. The NIR predictions
on fresh liquid and oven-dried milk were similar, but the reliability decreased for
thawed liquid milk. The high performance shown by NIR and MIR allows their
use for routine milk FA composition recording.

Keywords: near infrared reflectance spectroscopy (NIR), medium infrared
reflectance spectroscopy (MIR), milk fatty acids.



1. Introduction

Dairy products are an important constituent of human diet in Western Europe,
with a consumption of about 92.9 kg/capita per year, and a contribution of about
30% of total animal fat consumption (Food and Agriculture Organization of the
United Nations, 2012). An excess in consumption of SFA, which are in relatively
large amount in milk, as well as of some trans- and n-6 fatty acids (FA) has been
associated with negative effects on cholesterolemia, obesity, metabolic syndrome,
and coronary heart diseases (Stark, Crawford & Reifen, 2008; Kratz, Baars &
Guyenet, 2013). In contrast, the consumption of dairy products rich in n-3 FA
reduced the risk of cardiovascular disease (Stark, et al., 2008; Dawczynsky,
Martin, Wagner & Jahreis, 2010), and conjugated linoleic acid (CLA) could
inhibit degenerative cellular proliferation and reduce obesity and cardiovascular
diseases (Dilzer & Park, 2012).

The FA composition of milk also influences milk fat melting point, and thus
cheese and butter texture (Martin, Verdier-Metz, Buchin, Hurtaud & Coulon,
2005; Coppa et al., 2011).

In this context, the demand by dairy farmers, dairy industry and consumers for
information on FA composition of milk is growing. In some European countries
(i.e. France, and The Netherlands), FA composition has already been introduced
among the parameters that are considered to determine milk price (Borreani et al.,
2013). This implies a need for rapid and cheap methods to perform milk FA
analysis. However, the reference method for FA analysis is based on gas-
chromatography (GC) determination. The GC analyses are generally expensive
and time-consuming and require great expertise, making them unsuitable for
routine milk recording (Rutten, Bovenhuis, Hettinga, van Valenberg, & van
Arendonk, 2009). On the contrary, Infrared Spectroscopy (IR) techniques are
rapid, cheap (cost of analysis of about 1:100 compared to GC methods) and multi-
parametric, and are routinely used to determine milk fat, protein, and other
parameters considered when determining milk price (Bogomolov, Dietrich,
Boldrini & Kessler, 2012). The most commonly used IR method for milk analysis
is medium IR (MIR), which can analyze a high number of samples daily (up to
500 samples/hour). However, MIR apparatus used for milk analyses is specifically
set up to analyze liquid milk only, and is very expensive. As a consequence, low
analysis costs can be only achieved when a huge number of samples are analyzed
per day. On the contrary, near IR (NIR) has a lower potential of analysis per day
(about 150-200 analysis per day), but the NIR apparatus is cheaper (about 1:20
compared to MIR), and is not set up to analyze a specific product. Thus NIR
could be used in small laboratories, that perform a low number of milk analyses
daily, and use NIR also to analyze other products (i.e. forages or cheese).
Recently, prediction equations have been proposed for milk FA analysis. Soyeurt
et al. (2011) obtained reliable prediction of the main FA (expressed as g/dL of
milk), by calibrating MIR models on a large number of individual fresh milk
samples from commercial farms. These equations, were then validated by
Maurice-Van Eijndhoven, Soyeurt, Dehareng & Claus (2013) on different cow
breeds. De Marchi, Penasa, Cecchinato, Mele, Secchiari & Bittante (2011)



predicted milk FA concentration (expressed as g/kg of milk) of individual milk
from Brown Swiss cows reared in different farming systems by MIR. Rutten, et
al. (2009) compared effectiveness of MIR in predicting the concentration of some
FA according to the season in which individual fresh milk samples were collected
and to the way reference data were expressed (g/dL of milk or g/100 g of FA).
The prediction equations developed on FA expressed as g/dL seem to lead to
better predictions, perhaps because this FA prediction by MIR is the combined
effect of predicting fat content and FA composition on the same spectrum
(Soyeurt et al., 2011). However, when used to determine milk price, FA are
expressed as g/100 g FA (Borreani et al., 2013), because milk fat content is still
included in milk price calculations. Equations for a detailed FA composition
expressed as g/100 g of FA developed by Coppa et al. (2010) using NIR. These
equations were based on individual thawed milk samples derived from controlled
trials with experimental diets (including also lipid supplements), studied to
modify milk FA profile to a great extent.

The heterogeneity among milk sample datasets (i.e. fresh or thawed samples,
commercial or experimental milks, variation in cow feeding) and of units in which
reference data have been expressed, together with the heterogeneity of results on
the same FA in the previously cited studies, make it difficult to compare the
reliability of the different IR techniques in predicting milk FA composition.

The aim of this research was to compare effectiveness of NIR and MIR in
predicting FA composition on fresh and thawed milk, expressing reference data as
both g/kg of milk and g/100 g of FA. All the equations were developed on the
same sample dataset, composed of bulk milk from commercial farms, and
designed to be representative of a great variation in production conditions.

2. Materials and Methods

2.1. Milk Sampling and Survey

Two hundred and fifty bulk cow milk samples were collected from 70 farms
located in northwest Italy in 2011 and 2012. In order to explore the maximum
variability in FA composition of milk from commercial farms, samples were
selected to cover the largest possible variety in production conditions and animal
feeding. During each sampling collection, data on production conditions were
recorded by means of on-farm surveys at each sampling collection time according
to Borreani et al., (2013). Surveys included questions on altitude, forage
management, herd size, herd breed composition, and animal feeding during the
indoor period or during pasture utilization, when present.

Bulk milk samples (about 1 L each) were collected on farm, kept at 4°C and
transported to the laboratory where they were divided into seven sub-samples.
One sub-sample was used for FA reference analysis by gas-chromatography,
while the other six sub-samples were used for IR analyses.



2.2. FA Gas-Chromatography Analysis

In order to perform milk FA composition analysis by mean of the reference
gas-chromatography, milk was centrifuged at 4°C and 3700 g for 15 min to
separate the cream. The cream was centrifuged at 35°C and 20000 g for 35
minutes to separate the anhydrous fat. The FA trans-esterification was obtained
according to Revello—Chion, Tabacco, Giaccone, Peiretti, Battelli & Borreani.
(2010). The FA methyl esters (FAME) were analyzed by means of GC as
described by Ferlay et al. (2010), using a 7890A GC-System, gas chromatograph
(Agilent Technologies, Santa Clara, CA, USA) equipped with a flame ionization
detector. The FAME were separated on a 100 m x 0.25 mm i.d. fused-silica
capillary column (CP-Sil 88, Chrompack, Middelburg, The Netherlands). The
injector temperature was maintained at 250°C, and the detector temperature at
255°C. The initial oven temperature was held at 70°C for 1 min, increased by
5°C/min to 100°C (held for 2 min), then increased by 10°C/min to 175°C (held
for 40 min), and 5°C/min to a final temperature of 225°C (held for 15 min). The
carrier gas was hydrogen. The C18:1¢rans isomers, non-conjugated 18:2 FA, and
CLA isomers were identified as described in Borreani et al. (2013). A reference
standard butter (CRM 164, Commission of the European Communities,
Community Bureau of Reference, Brussels, Belgium) was used to estimate
correction factors for short-chain FA (C4:0 to C10:0). The FA concentrations
were measured by the reference GC method as g/100 g FA.

2.3. IR Analysis

Three of the six subsamples were scanned immediately as fresh (F) milk by
NIR 1) as liquid milk and i1) as oven-dried milk, according to Coppa et al., (2010),
and by MIR iii) as liquid milk. The three other subsamples were frozen at -20°C,
thawed (T) after 2 to 3 months and scanned by NIR iv) as liquid milk, and v) as
oven-dried milk, and by MIR vi) as liquid milk. Subsample i) was scanned in its
native form at 2 nm intervals from 400 to 2498 nm using a Foss NIRSystems
model XDS (Foss NIRSystems, Silver Spring, MD, USA) and controlled via
ISIscan software version 2.21 (Infrasoft International LLC, State College, PA,
USA) by placing 1 mL of milk in a 50 mm-diameter, 0.2 sample thickness
camlock cell. Each spectrum was time-averaged from 32 scans and it was
compared with the 32 average-measurements of a ceramic reference. The
absorbance was recorded as log (1/R). Subsample i1i) was oven-dried at 40°C for
24 h on a glass microfiber filter (Whatman GF/A, 55 mm O, Cat. No. 1820 055,
Whatman International Ltd, Maidstone, UK) and placed in a 50 mm-diameter ring
cup according to Coppa et al. (2010). Spectra were obtained for these second
subsamples using the same instrument in reflectance mode. The subsample iii) of
50 mL was analyzed using a Fourier transform mid infrared spectroscopy
(MilkoScan FT6000, Foss System, Hillerod, Denmark), working within the MIR
region from 1000 to 5000 cm™, and following the International Dairy Federation
141C:2000 procedure (2000). Milk samples was kept at room temperature for 20
min, then placed in a water bath at 40+2°C for 15 min, and mixed thoroughly,



before to be analyzed. Three spectra were generated for each sample by using the
calibration mode of the spectrometer, then averaged to obtain one spectrum for
each milk sample using ISIscan software, version 2.21. The same subsample
scanned by MilkoScan FT6000 was also used to predict milk fat content, which
was considered as the reference fat content value. The slope and bias of the
equation used for milk fat prediction were 0.992 and 0.030, respectively, whereas
the repeatability standard deviation (s;) and standard error of prediction (SEP)
were 0.004 and 0.03, respectively.

Once thawed, subsamples iv), v) and vi) (1 mL, 0.5 mL, and 50 mL,
respectively) were agitated at 2500 rpm for 1 min, using a vortex mixer, then
scanned by NIR in liquid and oven-dried forms, and by MIR in liquid form. The
same methods previously described for fresh milk were applied to thawed milk.

2.4. Calibration and Statistics

The main chemical groups of FA and rations of interest for human nutrition
and for cheesemaking technology were selected to compare the calibration
performance of the different IR methods. The sum of even chain-saturated FA
(ECSFA) included the straight and even chain-SFA from C4:0 to C24:0; the sum
of odd chain saturated FA (OCFA) included the strait and odd chain-SFA from
C5:0 to C23:0; the sum of branched chain FA (BCFA) included the branched
chain SFA (iso and anteiso configurations) from C13:0 to C18:0. The total SFA
included the sum of ECSFA, OCFA, and BCFA; the sum of monounsaturated FA
(MUFA) included C10:1cis9, C12:1cis9, Cl4:1trans9, Cl14:1cis9, Cl6:1transl1;
Cl16:1cis9, Cl6:1cisll, C17:1cis9, C18:1trans4 to C18:1transl6, C18:1cis9 to
Cl18:1cisl6, C19:1cis10, C20:1cis9, C20:1cisl1, and C24:1c¢is9; the sum of PUFA
included C18:2cis9trans13, C18:2cis9trans12, C18:2cis9trans14,
Cl18:2transl1cisl5, C18:2n-6, C18:3n-6, C18:3n-3, CLAcis9trans11,
CLAcis9cis11, CLAtransll1trans13, CLAtrans9transll, C20:2n-6, C20:3n-6;
C20:4n-6, C20:5n-3, C22:3n-3, C22:4n-6, C22:5n-3, and C22:6n-3. The sum of
UFA resulted from the sum of MUFA and PUFA. The sum of C18:1cis and
C18:1trans isomers included all the previously cited C18:1cis and C18:1trans
isomers, respectively. The sum of trans FA included all the previously cited UFA
with at least one trans double bond. Similarly, the sum of CLA, n-6 and n-3 FA
grouped all the previously cited PUFA belonging to respective chemical groups.
To test possible relationships between milk fat content and milk FA concentration
in g/100 g FA (as obtained by the GC analyses) a Pearson’s correlation analysis
was performed by using the SPSS for Windows software package (version 17.0;
SPSS Inc., Chicago, IL).

Calibrations were performed using WinISI II Project Manager, version 1.50
(Infrasoft International, South Atherton St. State College, PA, USA). The samples
were divided into calibration (n = 200) and validation (n = 50) sets. Samples from
different farms from those included in the calibration set were selected for
validation set, with the aim of making the validation dataset completely
independent. Calibration and validation samples were chosen in order to maintain
the same proportion of different feeding types in both datasets.



In order to find the best performance of all the applied IR methods, several
mathematical treatments were tested to compute the prediction models.
Regressions were calculated with both partial least square (PLS) and modified
partial least square (MPLS) (Shenk & Westerhaus, 1995). Five different
correction procedures were applied to the raw data for both regression types: no
correction, standard normal variate (SNV), detrend (D), standard normal variate
and detrend (SNVD), and multiple scatter correction (MSC). Three different
mathematical treatments were performed for each scatter correction: no
mathematical treatment (0,0,1,1, where the first digit is the number of the
derivative, the second is the gap over which the derivative is calculated, the third
is the number of data points in the first smoothing, and the fourth is the number of
data points in the second smoothing), first-order gap derivation (1,4,4,1), and
second-order gap derivation (2,10,10,1). In order to improve calibration equations
and decrease possible repeatability error due to instrumental derives, temperature
or sample preparation-related variations and variations in pathlength, a
repeatability file was included for each IR calibration during the development of
equations, as described by Soyeurt et al., (2011) and Westerhaus (1990). The main
advantage to including the repeatability file in a calibration is to develop an
equation that gives the same predicted value across all conditions represented in
the scans (Westerhaus, 1990). Regressions were developed for FA reference data
expressed both as g/100 g FA and as g/kg of milk for each mathematical
treatment. The FA concentration expressed as g/kg of milk were calculated using
the milk fat content predicted by MIR, and considering the FA available for
esterification on glycerol in average as 97% of the total milk lipid (Chilliard,
Ferlay, Mansbridge & Doreau, 2000). A 12 latent variable calculation was set for
each regression calculation, critical values (Student’s T) for removing potential
calibration outliers were T = 2.5, two elimination passes were allowed, and full
cross-validation (6 cross validation groups) was used. On completion of
calibration, the model was applied to the validation set. The statistics used to
develop and evaluate the calibration models included standard error of cross-
validation (SECV), coefficient of determination for cross-validation (R*CV),
coefficient of determination in external validation (R*V), SEP, the slope and the
bias of validation set, and the ratio of standard deviation of reference data to the
SECV (RPD). The RPD statistics provide a basis for standardizing the SEP
(Williams & Sobering, 1993). The RPD should be as high as possible. To
facilitate the comparison of the performance of different IR methods, predictions
were classified poor, approximate, promising and reliable for an R* (both R’*CV
and sz) value lower than 0.66, between 0.67 and 0.81, between 0.82 and 0.90
and higher than 0.91, respectively (Coppa et al., 2010). A principal component
analysis (PCA) was also performed on NIR liquid milk, NIR oven-dried milk and
on MIR spectra, on both fresh and thawed milk, to identify the wavelengths
showing having the highest loadings.

3. Results and Discussion
3.1. Milk Samples and FA Reference Dataset



Production conditions of milk samples are given in Table 1. The bulk milk
dataset was composed of milk from more than 7700 cows, from 5 main breeds
(Italian Holstein, Italian Red Pied, Piemontese, Valdostana Red Pied, and Bara-
Pustertaler), but cows of 8 other breeds (Jersey, Brown Swiss, Montbéliarde,
Alpine Grey, Valdostana Castana, Abondance, and Tarantaise) and several
crossbreeds (including Belgian Blue crossbreeds) were also present in the herds.
The average daily milk yield per cow ranged from very low values (less than 5
kg/cow x day) that are typical of dual-purpose local breeds to the high values (up
to 40 kg/cow X day) of high-yielding, genetically-selected breeds. Herd size
varied from small herds diffused in mountain areas to large herds that are typical
of intensive dairy farming systems (Coppa et al., 2013).

Cow feeding also varied to a great extent (Table 1) and included full fresh
herbage or hay diets, corn silage- or grass or legume silage-based diets and diets
in which concentrates represented more than 50% of the DM. Production
conditions in northwest Italy are highly inhomogeneous (especially in terms of
feeding systems), due to the proximity of the Alps, whose pastures are grazed by
dairy herds, and to the presence of the fertile Po Plain, where the high yield per
hectare of corn silage allows energy density of cow diet to be increased and dairy
farming systems to be strongly intensified (Borreani et al., 2013). This
heterogeneity of territory is well described by the very large altitude range in our
dataset: from 150 to 2500 m a.s.l.. Such a wide variation in production conditions
is difficult to find in any other European country, as can be seen by the narrower
range of variation in production conditions reported in literature (i.e. Ferlay,
Agabriel, Sibra, Journal, Martin & Chilliard, 2008; Stergiadis et al. 2012). Only
Coppa et al. (2013), describing a large European dataset, that also included farms
from Northern Italy, have reported a similar range of variation in production
conditions.

This variety of production conditions was reflected on the great variation in
milk FA composition (Table 2).

The total SFA ranged from 51.64 to 72.51 g/100 g FA, whereas the UFA
ranged from 26.73 to 47.49 g/100 g FA. Total trans-FA were between 2.82 and
13.03 g/100 g FA, and total CLA were between 0.39 and 2.98 g/100 g FA. Higher
maximum values were observed for MUFA, total C18:1cis isomers, PUFA, and n-
3 FA, and were 41.28, 33.27, 10.34, and 3.12 g/100 g FA, respectively. A similar
variation in FA composition of milk in our dataset was also found when FA
concentrations were expressed as g/kg of milk. Similar ranges of variation were
observed by Soyeurt et al. (2011) on individual milk for almost all the studied FA,
except for MUFA, PUFA, and n-3 FA, which reached higher maximum values in
our dataset. The greater concentration of these FA in our dataset can be explained
by the presence of milk produced by herds grazing on biodiversified highland
pasture, which are known to give milk rich in MUFA, PUFA, and n-3 FA
(Chilliard, Glasser, Ferlay, Bernard, Rouel & Doreau, 2007). Larger variations in
milk FA composition have also been reported by Coppa et al. (2010) in a dataset
that included individual milk derived from diets supplemented with different lipid
sources. The range of milk fat content that has been found in the present research
was narrower than that presented by Soyeurt et al., (2006) (29.2 to 46.4 vs. 28.8 to



75.1 g/kg of milk), but could be considered representative of the range of
variation of fat content of commercial bulk milk.

3.2. Calibrations

The calibration and validation statistics obtained from NIR on liquid milk, NIR
on oven- dried milk, and MIR were presented in Tables 3, 4, and 5, respectively.
The differences in calibration performance among scatter correction and spectra
mathematical treatment within each regression type were narrow, suggesting that
the main source of spectra variability is due to milk composition. Thus we
presented in tables the statistical treatment that showed the best average results in
calibration results, but we reported also the best calibration performance for each
individual FA, sum of FA, or FA ratio for all the calibration sets.

3.2.1. NIR on liquid milk

The statistics of models for FA prediction by NIR on liquid milk (fresh and
thawed) are given in Table 3. The best average results on fresh milk for FA
concentration expressed in g/100 g FA and g/kg of milk were obtained with the
MPLS - SNV - 2,10,10,1 models. The best average results on thawed milk were
obtained with MPLS - D - 2,10,10,1, and MPLS - SNVD - 2,10,10,1 models for
FA concentrations expressed in g/100 g FA and g/kg of milk, respectively. For
fresh liquid milk, the predictions calculated on FA expressed as g/100 g FA were
reliable for the sum of ECSFA, total SFA, and UFA (R2 CV and R*V > 0.91; RPD
> 2.5), were promising for MUFA, PUFA total trans-FA, n-3 FA, C18:1cis9 to
C16 ratio, and total CLA (R* CV > 0.81; RPD > 2.5), whereas poor predictions
were found for OCFA and n-6 FA (R* CV < 0.66). For thawed liquid milk, the
prediction quality of FA concentration expressed in g/100 g FA was lower than
for fresh liquid milk for all the FA. Promising predictions were found for the sum
of ECSFA, total SFA, PUFA, UFA, total trans-FA, and total CLA isomers (RzCV
> 0.81), while approximate or poor predictions were observed for the other FA.
Our coefficient of determinations (g/100 g FA) for almost all the FA parameters
were lower than those presented by Coppa et al. (2010) on thawed milk. This
could be due to the original dataset structure of Coppa et al. (2010), which
included milk samples produced by cows receiving lipid supplement, which are
known to deeply affect milk FA composition (Chilliard et al., 2007). The
prediction for milk fat content were poor on thawed milk. When FA were
expressed in g/kg of milk, excellent predictions were only found on fresh milk for
the sum of ECSFA, total SFA, MUFA, and UFA (RzCV and R*V > 0.91; RPD >
2.5), while promising predictions were found for PUFA, total C18:1cis isomers,
total C18:1trans isomers, total trans-FA, n-3 FA, C18:1cis9 to C16:0 ratio, and
total CLA on fresh milk, and total trans-FA and total CLA on thawed milk.

The highest loadings of the three principal component (PC) axes of the PCA on
liquid milk were at wavelengths around 450-560, 880-1200, 1320-1500, 1600-
2050 and 2200-2450 nm (Figure 1). The 450- 560 nm could be related to
carotenoids pigment (Coppa et al., 2012). Pasture derived milk is known to have
great concentration of carotenoids (Noziere Graulet, Lucas, Martin, Grolier, &
Doreau, 2006), whose absorption is in the visible wavelength interval (Coppa et



al., 2012), but also great concentrations of PUFA, MUFA, C18:1cis isomers, and
n-3 FA, as well as lower concentration of n-6 FA, and lower of n-6 to n-3 ratio
(Chilliard et al., 2007), suggesting a correlation between carotenoids content and
FA concentration in milk. The loadings at 1320-1500 and 1650-2050 nm could be
related to the milk water content, being the two bands with maxima of water
spectrum at 1450 and 1940 nm (Osborne & Fearn, 1988). However, the maxima at
wavelengths between 1650 and 1950 nm and between 2200 and 2500 nm may be
related to differences in the FA composition of milk fat. Indeed, the absorption
bands in the near infrared region of the fat (C—H stretching first overtone at 1726
and 1760 nm, C-H combination bands at 2310 and 2350 nm, C-H stretching
second overtone at 1212 nm) are related to the hydrocarbon bonds in the fatty
acids (Osborne & Fearn, 1988). The overlap between water and fat adsorption
bands could create interfering phenomena and thus limit the detection of milk fat
composition (Villar, Gorritxategi, Aranzabe, Fernandez, Otaduy & Fernandez,
2012) and was indicated by Coppa et al (2010) as the origin of lower performance
on FA prediction using NIRS on thawed milk.

3.2.2 NIR on oven-dried milk

The statistics of models for FA prediction by NIR on oven-dried milk (fresh
and thawed) are given in Table 4. The presented best average results on fresh milk
for FA concentration expressed in g/100 g FA and g/kg of milk were obtained
with the PLS - MSC - 1,4,4,1 models. The best average results on thawed milk for
FA concentration expressed in g/100 g FA and g/kg of milk were obtained with
PLS - MSC - 2,10,10,1 models. Calibrations calculated on FA expressed as g/100
g FA were reliable for the sum of ECSFA, total SFA, MUFA, UFA, total
C18:1trans isomers, total trans-FA, and total CLA (R2CV <0.91; RPD > 2.5), and
promising for BCFA, PUFA, total C18:1cis isomers, n-3 FA, and C18:1cis9 to
C16:0 ratio (R’CV > 0.81), on both fresh and thawed milk. Only OCFA, n-6 FA,
and milk fat content were poorly predicted (R’CV < 0.66). The poor prediction of
milk fat content did not appear in contradiction with the reliable and promising
prediction of milk concentration of almost all FA expressed as g/100 g FA, as
correlations between milk fat content and milk FA concentration, when
significant, were very low (Pearson’s correlation coefficients between -0.13 and
0.18; data not shown). As observed for liquid milk, coefficients of determination
of our NIR equations were similar to those proposed by Coppa et al. (2010) on
thawed milk for almost all FA, but slightly lower for C18:1cis isomers and total
C18:1trans isomers, because their dataset included milk from cows receiving lipid
supplement. When expressing FA concentration in g/kg of milk, only total trans-
FA showed reliable predictions on both fresh and thawed milk. Promising
predictions were found for PUFA, total C18:1cis isomers, n-3 FA, C18:1cis9 to
C16:0 ratio, and total CLA on fresh milk, and for total CI18:1cis isomers,
C18:1cis9 to C16:0 ratio, and total CLA for thawed milk. All the other FA were
approximately or poorly predicted.
The highest loadings of the three principal component (PC) axes of the PCA on
oven-dried milk were at wavelengths around 450-560, 1600-1800, 1850-2150 and
2200-2400 nm, but all the near IR spectrum highly contributed to the loadings
(Figure 1). The loadings at the visible wavelength interval were lower than those
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observed for fresh liquid milk, probably because of carotenoids partial oxidative
losses during milk drying process (Noziére et al., 2006). The other highest
loadings may be related to differences in the FA composition of milk fat (Osborne
& Fearn, 1988). Removing water from milk samples, made the whole NIR spectra
contributing more to the PC axes of the PCA performed both on fresh and thawed
milk spectra.

3.2.3. MIR

The statistics of models for the FA prediction by MIR on fresh and thawed
milk are given in Table 5. The presented best average results on fresh milk for FA
concentration expressed in g/100 g FA and g/kg of milk, and on thawed milk for
FA concentration expressed in g/100 g FA and g/kg of milk were obtained with
MPLS - no corrections - 1,4,4,1 models. Calibrations calculated on FA expressed
as g/100 g FA were reliable for the sum of ECSFA, total SFA, MUFA, UFA, total
Cl18:1trans isomers, total trans-FA, C18:1cis9 to C16:0 ratio, and total CLA
(R’CV > 0.91, RPD > 2.5), while they were promising for BCFA, PUFA, total
C18:1cis isomers, and n-3 FA (R*CV > 0.81), for both fresh and thawed milk.
Poor predictions were only observed for OCFA and n-6 FA. Milk fat content
prediction was reliable also for thawed milk (R?CV = 0.95). The prediction
quality of FA concentrations, expressed as g/kg of milk, were similar to those
obtained for FA concentration expressed in g/100 g FA, on both fresh and thawed
milk. The prediction was only improved for OCFA that showed approximate
instead of poor predictions. The determination coefficients and RPD of our MIR
equations based on FA concentrations expressed as g/kg of fresh milk are higher
or similar than those presented by De Marchi et al. (2011) and by Soyeurt et al.
(2011) for almost all FA. On the contrary, the coefficients of determination found
with MIR in predicting FA concentration expressed as g/100 g FA are
significantly higher than those presented by Soyeurt et al., (2011) for all the FA
parameters.
The highest loadings of the three principal component (PC) axes of the PCA were
at wavelengths around 1550-1750, 2800-3020, 3020-3500, and 3500-3700 cm’!
(Figure 1). The loadings at 1550-1750 and 3020-3500 cm™ could be related to the
milk water content, being the two bands with maxima of water spectrum at 1600-
1700, and 3040-3470 cm™ (Jorgensen & Nas 2004). However, also the FA
carbonyl group vibrate at 1745 cm” (and at 2855 and 2928 cm’™) and the
wavelengths between 1050 and 1600 cm” have been associated with C—H
bending and C-O stretching (Lefévre & Subirade, 2000). Furthermore, the
wavelengths between about 950-1600, 1700-1800, and 2500-3000 cm” were also
found by Soueurt et al., (2006), Rutten et al. (2009), Maurice-Van Eijndhoven et
al., (2013) as the most informative form milk FA prediction by MIR.

3.3. NIR vs. MIR

To the authors’ knowledge, the quality of milk FA prediction using NIR and
MIR on the same pool of samples has never been compared before. Although, the
relatively low sample number compared to other studies (Maurice-Van
Eijndhoven et al., 2013; Rutten et al., 2009) makes our models not yet suitable for
routine applications, the quality of prediction of almost all the FA, calibrating
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with both NIR and MIR, was on average high and allowed a reliable IR method
comparison. When considering FA concentration expressed as g/100 g FA, MIR
predictions were similar to NIR predictions on oven dried milk for the sum of
ECSFA, OCFA, total SFA, UFA, n-3 FA, C18:1cis9 to C16 ratio, and total CLA,
for both fresh and thawed milk. The prediction quality using NIR on oven dried
milk was higher than those of MIR on fresh and thawed milk for MUFA, n-6 to n-
3 ratio, and especially for PUFA, Cl18:1cis, and n-6 FA, whereas the opposite
trend was observed for BCFA. A possible reason for the better prediction found
for NIR than MIR could be related to the contribution of visible spectrum (400-
760 nm) (Figure 1), especially considering fresh milk. The important role played
by the visible wavelength interval in discrimination by NIR of milk derived from
cow fed different diets, which is known to determine different milk FA
composition, have been shown by Coppa et al. (2012).

When FA concentrations were expressed as g/kg of milk, MIR coefficients of
determination were better than those obtained by NIR on oven dried milk for
almost all FA, for both fresh and thawed milk, except for total C18:l1trans
isomers, total trans-FA, and C18:1cis9 to C16:0 ratio, for which coefficients of
determination were similar, and for n-6 to n-3 ratio, for which coefficients of
determination were slightly lower. The FA concentration expressed as g/kg of
milk were predicted by MIR from the same spectra on which the milk fat content
was reliably predicted with a very high performance. As these values of milk fat
content were used to convert FA concentrations from g/100 g FA to g/kg of milk,
autocorrelation phenomena occurred among spectra, fat content, and FA
concentration in g/kg of milk (Rutten et al., 2009; Soyeurt et al., 2006), which
explain the better prediction performances obtained by MIR than by NIR.

3.4. Fresh vs. thawed milk

The reliability of prediction equations obtained with MIR and NIR on fresh and
thawed oven-dried milk was similar for all FA parameters, but was significantly
lower for thawed milk when using NIR on liquid samples, both for FA
concentration expressed as g/100 g FA or as g/kg of milk (Table 3). Results are
consistent with observation reported by Coppa et al. (2010). Milk fat and protein
fractions separate from water fraction during freezing and thawing processes,
making the liquid samples less homogeneous when thawed. This separation of
phases could have increased the interfering phenomena related to water in the fat
absorption peaks on NIR spectra, thus reducing the prediction reliability (Villar et
al., 2012). Furthermore, the 450-560 nm loading picks of PC present in the fresh
milk almost disappeared on thawed milk PC loadings (Figure 1), probably
because of carotenoids oxidation processes during freezing and thawing. The low
weight of the visible wavelength interval for liquid thawed milk, could also be at
the origin of the lower FA prediction performance, compared to liquid fresh milk.
This lack of precision was not observed for oven-dried milk, because the water
fraction had been eliminated during drying, or for MIR, perhaps due to the mixing
and homogenizing tools inside the MIR apparatus.

3.5. Reference data unit g/kg vs. g/100 g FA
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A new finding of this study is the reliable performance of MIR when predicting
FA concentration expressed as g/100 g FA. A real and important variation in milk
FA profile have assured a high performance in prediction of milk FA
concentrations as g/100 g FA. Thus, the structure of our reference dataset was
determinant to obtain these high predicting performance. Indeed, as production
conditions have been found to be the greatest factor affecting FA composition of
milk (Chilliard et al., 2007; Coppa et al., 2013) and our dataset showed a great
variability of production conditions, the same variability was reflected on milk FA
concentrations, expressed in g/100 g FA. When this variability is scarcely
explored, but milk fat content has a wide range of variation, the range of variation
of FA, expressed as g/kg of milk, could seem apparently larger. Samples with a
similar FA profile, but very high or very low milk fat content, result to have
apparent (but no real) high or low FA. This occurs in particular for milk samples
from individual cows in which milk fat content can varies considerably among
individuals. These extreme values, when FA concentrations are expressed as g/kg
of milk, can have a high leverage in developing prediction equations, that can
results in high prediction performance. However, when FA are converted in g/100
g FA on the same pool of samples, the prediction resulted less reliable (Soyeurt et
al., 2011; Rutten et al., 2009). Considering that FA concentrations in g/100 g FA
of our dataset had an important variability, and that milk fat content of our
samples were within a normal range for commercial bulk milk, the variability of
our reference dataset and the reliability of our predictions was maintained when
FA concentrations were expressed as g/kg of milk. Even though, this unit appears
less interesting for application purposes. Milk FA supplementary premiums, when
applied, are calculated on milk FA concentrations expressed as g/100 g FA
(Borreani et al., 2013), because milk fat is still one of the parameters considered
to determine milk price. Supplementary premium calculations based on FA
concentration expressed in g/kg of milk would favour milk richer in fat, but may
not having a more favourable FA profile. The same is true for breeding programs,
for which milk fat content is still included among the selection parameters, and
expressing FA concentrations as g/kg of milk would not allow comparisons to be
made on real FA profiles among individuals. Furthermore, predicting milk FA
concentrations as g/kg of milk, and then recalculating milk FA concentrations in
g/100 g FA, through dividing by milk fat content, has been shown to give less
reliable results than predicting milk FA concentrations directly as g/100 g FA
(Soyeurt et al., 2011). Finally, expressing FA concentrations as g/kg of milk is
also of scarce interest for dairy industry, because milk fat content is usually
standardized during milk processing.

4. Conclusions

This work has highlighted the key role of the structure of the reference dataset in
obtaining reliable predications of FA concentrations, both by NIR and MIR, on
fresh and thawed milk, even for a relative low number of samples. The prediction
performance for thawed milk were lower than for fresh milk only using NIR on
liquid milk, but were maintained high using NIR on oven-dried milk and using
MIR. Both IR techniques showed good prediction performance for milk FA
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concentrations, both when expressed as g/100 g FA and as g/kg of milk, and
expressed a great potential for routine milk recording after further implementation
for calibration with larger number of samples: MIR could be used in labs that
process a great number of milk samples daily, while NIR could be used in small
labs that can also use this IR apparatus to analyze different products. Thus, IR
methods could become an useful prediction tool that will allow milk FA
composition to be widely used as parameter for milk payment (application of
supplementary premiums), for farm and herd management, for cow diet
formulation and for breeding programs.
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FIGURE CAPTIONS

Figure 1. Loadings for the first three principal component (PC) axes for the near
infrared reflectance (NIR) spectra of fresh and thawed milk in liquid or oven-dried
form and for the medium infrared reflectance( MIR) spectra of fresh and thawed

milk.
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1 TABLES

2 Table 1. Descriptive statistics of production condition of milk samples..

Item Mean Min Max _SD'
Dairy cows per farm (n) 115 5 550 98
Days in milk (d) 191 100 295 28
Milk yield (kg/cow x day) 234 35 405 103
Total roughage (% of diet DM) 66 37 100 19
Total concentrates (% of diet DM) 34 0 63 19
Corn silage (% of diet DM) 22 0 63 17
Grass or legume silage (% of diet DM) 8 0 42 12
Hay (% of diet DM) 15 0 93 20
Fresh herbage (% of diet DM) 19 0 100 36
Total forages (% of diet DM) 24 0 100 19
Altitude (m a.s.l.) 546 95 2500 572

3 'SD: standard deviation
4
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