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Abstract

In this paper we model taxpayers reactions to the possibility of either

reporting income as usual and running the risk of an audit or reporting a

“cutoff” income and paying a threshold tax that gives the certainty of not

being audited. Models of this kind already discussed in the literature as-

sume that taxpayers are risk neutral. We depart from this stream of research

by assuming instead that taxpayers have a Constant Relative Risk Aversion

(CRRA) utility function and differ in relative risk aversion coefficient and in

income. The government can rely upon a signal in order to assess the income

class to which the taxpayer belongs and fix the threshold tax. Our main re-

sult is that, within each class, the threshold tax is paid by taxpayers whose

relative risk aversion lies in a given interval. Taxpayers with high risk aversion

and relatively low income file their report as usual. Unlike analogous models

under risk neutrality, relatively rich taxpayers with low risk aversion might

not pay the threshold tax as well. An equity problem arises.

JEL Classification Numbers: H260, D890, K420.
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1 Introduction

Under a cutoff policy the Tax Administration audits, with a given probability,

each taxpayer who reports an income that falls short of a given threshold; if

the income report instead meets or is above the threshold, it is not audited.

If taxpayers are risk-neutral, and the expected sanction for tax evasion is

large enough, the effects of the cutoff rule are that taxpayers whose income

(and thus whose tax1) is lower than the threshold pay their due tax and risk

audits, while those who owe a tax equal to or higher than the threshold pay the

threshold tax and avoid audits. Overall payments made by taxpayers are non

decreasing in income. This approach has been examined in many respects in

the literature (see e.g. [11], [13],[5], [12], and, for a generalization, [3]), mainly

as an efficient strategy in agency models in which the Tax Administration as a

principal can commit to a given audit policy. A cutoff property has, however,

been shown to hold also for equilibrium in the taxation game under given

conditions [7].

According to the principal-agent approach, the cutoff policy may entail

efficiency gains, as it secures savings in terms of audit costs that might exceed

the revenue losses in taxation. The mechanism has characteristics similar to

those of plea-bargaining in criminal proceedings2, as taxpayers who pay the

threshold tax can be assimilated to those who, by pleading guilty, receive

a milder treatment than the due one according to general rules. As in plea-

bargaining under risk-neutrality, those who accept the threshold offer are those

who would receive a harsher treatment under general rules if the government

possessed full information. There might thus be an equity/efficiency trade-off.

In taxation the cutoff rule has been criticized from an equity point of view, as

it introduces a regressive bias, because taxpayers payments strictly increase in

income only until the threshold level. However, an approach based on audit

classes, as suggested by Scotchmer [13], might countervail this effect.

1For the sake of simplicity the income tax is described as a function of reported income,
disregarding possible differences between reported (gross) income and net taxable income
due to exemptions, deductions etc.

2 See Grossman and Katz [6].
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Cremer, Marchand and Pestieau [5], in their conclusions about the cut-

off policy, put at the top of the agenda for future research the relaxation

of the risk neutrality assumption. Since then, however, as far as we know,

their suggestion has been largely neglected. In this paper we try to address

the problem, even by adopting a partial equilibrium perspective in order to

overcome the technical difficulties involved.

When taxpayers are risk averse, the cutoff system can perform a role which

is by definition excluded under risk neutrality: that of collecting risk premia

for the insurance against audits provided by the cutoff3 . When the tax rate

and the enforcement parameters are such that the expected yield of tax eva-

sion is positive, this characteristic may render the cutoff policy profitable even

disregarding the benefits in terms of reducing the number of audits to run. In

view of the exploitation of this opportunity, we assume that the Tax Admin-

istration, relying upon a signal, forms taxpayers classes, and credibly sets a

threshold tax for each one, by adding a risk premium to the expected payment

of the class under general rules. We assume that taxpayers are informed about

these thresholds and we focus upon the taxpayers’ reaction to such offers.

The signal received by the Tax Administration refers to the optimal report

which the taxpayer would choose to submit under general rules (leaving the

cutoff offer aside), instead than to the taxpayer’s true income, as e.g. in

Scotchmer [13]. Since the Tax Administration has a much larger experience

in receiving income reports than in assessing true incomes through audits, it

seems likely that it should more easily exploit information pertaining to the

former than to the latter in order to shape the cutoff policy.

We aim at capturing in the model some features of the practice of tax

enforcement. In many countries only a minor share of controls is random,

while most are based upon procedures (for the United States, see [2]) that

directly or indirectly refer to predictors of a reference income (and hence tax)

which is compared to the reported one, for deciding whether to start the

control. Thus the taxpayer who meets the tax payment expected from him on

the basis of personal and economic characteristics (the threshold tax in the

3For this approach, see also [4].
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model), does not run the risk of being audited.

The assumption that taxpayers are perfectly informed about the cutoff

system is fully realistic when the threshold tax offer takes an explicit form,

like in the FATOTA (Fixed Amount of Taxes or Tax Audit) system analyzed

by Chu [4], in which the taxpayer must opt for the FAT if she wants to insure

against tax audits. The assumption is quite reasonable also for countries in

which the Tax Administration publishes reference guides for assessing income

on the basis of economic indicators, or largely resorts to the cooperation of

employees, business and professional organizations, which perform a filter role

in assessing incomes and collecting reports (examples can be found in France,

Italy and Spain). Even in countries, like the US, in which the IRS guards the

secret about the details of the mechanisms that trigger controls, taxpayers

gain some information by ex-post observation of the IRS behavior4. The

topic thus seems relevant, as the cutoff approach represents a policy option

that some countries, more or less thoroughly, adopt and others might find it

profitable to take into consideration.

In this paper we analyze one component of the problem of a cutoff policy

under risk aversion: the taxpayers reaction to the threshold tax offer. This is

a limited but not trivial task, as we assume that taxpayers are heterogenous

in terms of income and relative risk aversion. Hence, for given parameters

that characterize the tax system (tax function, penalty and probability of

control), a given tax report that does not meet the threshold may hide many

possible tax evasion levels. Our model aims at characterizing those taxpayers

who choose to pay the threshold tax, in comparison with those who refuse it,

in terms of income and relative risk aversion.

The main result of the paper is that, when taxpayers have a CRRA utility

function, the threshold tax is paid by an intermediate interval of taxpayers.

Taxpayers with low income relative to their class and high risk aversion file

their report as usual and evade only a small amount of their due tax. Unlike

4We have found on the Internet free-of-charge sites that provide statistics about factors
that increase the audit probability and, on the basis of the declaration one submits, assess
the audit probability.
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in models under risk neutrality, rich taxpayers with low risk aversion might

also refuse to pay the threshold tax. This fact gives rise to equity problems

within each class, while among classes vertical equity, in a mild sense that will

be clarified in Section 5, is being preserved. The taxpayers reaction takes at

any rate a clearly predictable pattern, which can form the basis for assessing

the equity-efficiency trade-off of the cutoff policy.

The paper is organized as follows. In Section 2 we describe the taxpayer’s

problem with reference to both the optimal income report and the conditions

needed for the acceptance of a cutoff proposal. In Section 3 we characterize,

in terms of both true income and relative risk aversion, those who pay the

threshold tax, within each class. A numerical example referred to a single class

is presented in Section 4. In Section 5 the general properties of a cutoff policy

based on classes are characterized. Some conclusions are drawn in Section 6,

while the Appendix contains most of the proofs.

2 Modelling the Taxpayer’s Problem

Let us study the taxpayer’s optimal report, with reference only to general

tax rules, and setting the cutoff policy aside for the moment. It is assumed

that the taxpayer’s true income is a random variable bw, whose realization
w is known only by himself. The utility that the taxpayer enjoys out of her

income w is assumed to be of the standard CRRA form, with constant relative

risk-aversion coefficient α:

u (w) =
w1−α − 1
1− α

. (1)

In this class we also include the case α = 1 by taking the limit of the right

hand side in (1) for α→ 1, obtaining u(w) = lnw.

A proportional tax system5 is considered: the income tax is given by

t(y) = ty, where y denotes the reported income and 0 < t < 1. We assume

5A version considering a progressive tax and a sanction linear in concealed income,
available from the authors upon request, leads to the same main results of the present
paper and is much more cumbersome.
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also that the sanction to be paid in case of audit6 is proportional to the

amount of the evaded tax:

S (w, y) = (1 + s)t (w − y) , (2)

where s > 0 is a penalty rate.

As we rule out rewards to honest taxpayers by assumption7, a taxpayer will

report y ≤ w, where w > 0 denotes the true income. A rational taxpayer who

earned a true income w will choose to report the income y∗ that maximizes
her expected utility

Eu(y) =
(1− p) (w − ty)1−α + p [w − ty − (1 + s)t (w − y)]1−α − 1

1− α
(3)

with respect to y, where 0 < p < 1 is the probability of detection. Note that,

by considering u(w) = lnw when α = 1, Eu(y) is well defined for all α > 0

and for all feasible y.

The feasible set contains values for y that satisfy

(1 + s)t (w − y) < w − ty. (4)

In other words, we need to assume that the taxpayer can always bear the

loss in case of detected evasion. Inequality (4) defines a lower bound for the

feasible reported income

mw =
[(1 + s) t− 1]w

ts

such thatmw < y. Since we are interested in a strictly positive income report,

we shall assume that

(1 + s) t > 1.

6We stick to the standard assumption that detection of tax evasion occurs with proba-
bility 1 whenever the tax report is false and an audit is run.

7This is also a standard assumption, even if the theory of optimal auditing provides
reasons in favor of rewards to audited honest risk-averse taxpayers (see Mookherjee and
Png [10]).
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This implies that sanctions are large enough to exclude full evasion8. There-

fore, the feasible set of values for the reported income y is the interval (mw, w] ⊂
R++.
In accordance with empirical evidence, we assume that the tax system

parameters have values such that cheating in reporting income has a positive

expected return. In other words, the expected sanction is assumed to be less

than the expected gain for each dollar invested in tax evasion: sp < 1 − p.

Hence, also the case of full compliance, y = w, is ruled out, as it is readily seen

by noting that the limit of the marginal expected utility [Eu(y)]0 as y → w−

is negative whenever sp < 1− p.

Since, on the other hand, limy→m+
w
[Eu(y)]0 = +∞ and Eu(y) is strictly

concave over (mw, w) for all α > 0, there exists a unique value mw < y∗ <
w that maximizes the expected utility, which is completely characterized in

terms of F.O.C. applied to (3). That is,

w − ty∗ − (1 + s)t (w − y∗)
w − ty∗

= r
1
α (5)

where

0 < r =
ps

1− p
< 1.

By solving (5) for y∗ it turns out that the optimal reported income is a
fixed share of the taxpayer’s true income w, that depends on the risk aversion

coefficient α:

y∗ =
(1 + s)t+ r

1
α − 1

t
³
s+ r

1
α

´ w. (6)

Note that a larger risk aversion implies a larger share.

2.1 Introducing a Cutoff

For simplicity of presentation we assume in this Section that the Tax Admin-

istration is able to exactly identify all the taxpayers whose optimal reported

8The literature that considers optimal income report under risk aversion has routinely
focussed upon strictly positive reports, see, e.g., Allingham and Sandmo [1].
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income is y∗, independently on the actual submission of the report. This
assumption shall be relaxed in Section 5.

For future use, we note that the government can make some inference

about the true income w of taxpayers whose optimal reported income is y∗.
By solving equation (5) for w, when y∗ is reported, we obtain a relation
expressing the true income of (optimizing) taxpayers as a function of their

relative risk aversion α:

w (α) =

³
r
1
α + s

´
ty∗

r
1
α + (1 + s) t− 1 (7)

As can be easily checked, the function w (α) in (7) is strictly decreasing.

We assume also that, in order to implement the cutoff policy, the Tax

Administration, which is risk neutral, sets a threshold tax that amounts to

C(y∗) = ty∗ + x, where the premium x is strictly positive and is aimed at

cashing the expected value of the sanction plus the risk premium.

The expected reactions of the taxpayer are as follows. She will accept

the offer if she is at least indifferent as whether to pay the requested amount

C(y∗) or to pay only ty∗ and risk an audit. Thus, for a given premium x > 0,

in order to choose to pay the threshold tax the following condition must be

met:

[w − (ty∗ + x)]
1−α

1− α
≥ (1− p) (w − ty∗)1−α

1− α
(8)

+
p [w − ty∗ − (1 + s)t (w − y∗)]1−α

1− α
,

where the additive constants − (1− α)
−1 have already been dropped from

both sides.

By considering jointly the optimal condition (7) and the threshold condi-
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tion (8), we are led to the following system:

w =

³
r
1
α + s

´
ty∗

r
1
α + (1 + s) t− 1

(w − ty∗ − x)1−α

1− α
≥ (1− p) (w − ty∗)1−α

1− α

+
p [w − ty∗ − (1 + s)t (w − y∗)]1−α

1− α

(9)

where the reported income y∗ and premium x are given and α and w are the

unknowns. The first equation of system (9) links the taxpayer’s true income w

to y∗ according to (5). The second equation is the weak preference condition
for paying the threshold tax instead of reporting y∗ and risking an audit. All
pairs (α,w) solving system (9), characterize in terms of relative risk-aversion

α and true income w the subset of taxpayers whose optimal reported income

is y∗ and who prefer to pay the threshold tax instead of optimally filing a tax
report and risking audits.

2.2 Who pays the threshold tax?

By plugging the first equality in system (9) into the second inequality, we

obtain a single inequality where the unknown is the sole variable α:

1

1− α

³
A−Br

1
α

´1−α
≥ 1

1− α

·
1− p+ p

³
r
1
α

´1−α¸
, (10)

where A, B and r are constants defined by

A = 1− [(1 + s) t− 1]x
(1 + s) (1− t) ty∗

(11)

B =
x

(1 + s) (1− t) ty∗
(12)

r =
ps

1− p
. (13)
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Since (1 + s) t > 1, A < 1; moreover, B > 0 as long as x > 0. To study

inequality (10), we need also 0 < x < (1− t) y∗ to hold. That is, the premium
x must be smaller than the disposable income when tax evasion is small, i.e.,

y∗ is very close to w. Note that this bound implies 0 < B < A < 1, and thus

also 0 < A − B < A − Br < 1 holds. Therefore, inequality (10) - and thus

system (9) - is equivalent to(
f(α) ≥ 0 if 0 < α ≤ 1
f(α) ≤ 0 if α ≥ 1. (14)

where f : R++ → R is defined by

f(α) =
³
A−Br

1
α

´1−α
− p

³
r
1
α

´1−α
− (1− p). (15)

Note that f(α) is well defined for all α > 0 and is C∞. Moreover, f(1) = 0.
However, since the original system (9) is defined for α 6= 1, it is readily under-
stood from system (14) that a sufficient condition for a nonempty solution set,

that is, a positive measure of taxpayers (described by a non trivial interval of

values of relative risk aversion α) opting for the cutoff, is that f crosses the

horizontal axis from above at α = 1.

Function f defined in (15) does not allow for a closed form solution of (14).

Hence, we shall characterize solutions of a slightly simplified system and under

some further conditions. Specifically, we shall use a suitable lower bound l < f

for 0 < α < 1, while for α ≥ 1 we will be able to characterize solutions only
for a subclass of models. However, we shall see that our technique covers the

most meaningful cases.

We now decompose function f(α) in three parts in order to single out the

most problematic ones and replace them with a suitable approximation. Let

φ(α) =
³
A−Br

1
α

´1−α
ϕ(α) = −p

³
r
1
α

´1−α
.

Clearly f = φ+ ϕ− (1− p). Now define

ψ(α) = 1− ln(A−Br)(α− 1)
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and

l(α) =

(
ψ(α) + ϕ(α)− (1− p) for 0 < α < 1

f(α) for α ≥ 1.
We shall characterize solutions of the system(

l(α) ≥ 0 if 0 < α ≤ 1
l(α) ≤ 0 if α ≥ 1. (16)

The construction of function l is motivated as follows. Since function φ is

not well behaved over (0, 1), being neither convex nor concave over the whole

interval, we substitute it with the convex lower bound (A−Br)
1−α, then we

further lower it by taking its first order approximation centered on α = 1

(Lemma 1 in the Appendix shows that ψ(α) < φ(α)). Thus, l turns out to

be a lower bound9 for f on the interval (0, 1), with an improved (linearized)

shape for component φ in f ; while, by construction, l = f for all α ≥ 1.

Therefore, solutions of (16) are a subset of solutions of (14); in particular,

some points in the “left-side” solution set of (14), a subset of interval (0, 1), are

lost through our approximation. Note that, by construction, l0(1) = f 0(1) =
− ln(A−Br) + p ln r.

3 The Main Result

The following result completely describes the solution set of our simplified

model, system (16). Following the discussion in the previous sections, we

need to restrict the range of the parameters of the model, as summarized

below.

A. 1 The sanction rate s and the tax rate t satisfy

(1 + s) t > 1.

9A lower (as opposed to a higher) bound is the basis for prudentially assessing the
government revenue under a cutoff policy.
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A. 2 The premium x satisfies

0 < x < (1− t) y∗.

Moreover, the following restriction is necessary in the proof of Proposition

1.

A. 3 Probability of detection p and the sanction rate s satisfy

r =
ps

1− p
≤ e−2.

Assumption A.3 is purely technical. The idea behind the proof of Propo-

sition 1, however, can be easily replicated through a symmetrical argument

to obtain analogous results for the case r > e−2.

Proposition 1 Suppose Assumptions A.1, A.2 and A.3 hold true. Then the
solution set S ⊆ R++ of system (16) has the following properties.

i) If A.3 holds with equality, then S is a nonempty interval10 : S = [α, α],

with 0 ≤ α < 1 < α < +∞, if and only if

x <
(1 + s) (1− t) ty∗

(1 + s) t− (1− e−2)
¡
1− e−2p

¢
. (17)

ii) If A.3 holds with strict inequality, a sufficient condition for S to be non-
empty and of the form S = [α,α] with 0 ≤ α < 1 < α < +∞, is the
following:

x ≤ (1 + s) (1− t) ty∗

(1 + s) t− (1− e−2)

(
1−

·
1 + p (ln r)

µ
ln r

2
+ 1

¶¸ 2
2+ln r

)
= x.

(18)

iii) If

x >
(1 + s) (1− t) ty∗

(1 + s) t− (1− r)

·
1− exp

µ
4e−2p
r ln r

¶¸
, (19)

then S is empty.

10To be precise S = (0, α] whenever α = 0, since Eu(·) is not defined for α = 0.
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Proof. See the Appendix.

Proposition 1 characterizes the solution set S of system (16) by focussing

on the properties of the function l. If A.3 holds with equality, then l(α) =

ψ(α) + ϕ(α)− (1− p) turns out to be strictly concave over (0, 1) and strictly

convex over [1,+∞), and has a unique flex-point at α = 1. In order to have
a non-trivial solution of system (16) we need l(α) to cross the abscissa from

above, or l0(1) to be negative, which is the same as condition (17). If A.3
holds with strict inequality, the flex point of l(α) is at some value c > 1. We

extend the same argument of case (i) by constructing a function h(α) that is

as similar as much as possible to l but is better shaped than l over the interval

(1, c) where the required convexity property of l cannot be verified directly.

Condition (18) now ensures that h(α) crosses the abscissa from above. Finally

condition (19) characterizes the case in which l crosses the abscissa at α = 1

from below and thus the solution set S is empty11.

3.1 Discussion

Proposition 1 is only theoretically meaningful: it provides the intrinsic shape

of the solution set of a model that approximates (14). It basically states

that taxpayers who pay the threshold tax, if any, have a relative risk aversion

coefficient belonging to some interval which contains 1. According to the

length of this interval, the following three cases can occur.

1. If x → 0 then the cutoff tend to be accepted by all the taxpayers.

This case is degenerate as it would not provide extra revenue for the

government.

2. If α = 0 and α > 1, relatively rich taxpayers with low risk aversion, i.e.

with α ≤ α, pay the threshold tax, while relatively poor ones with high
11Clearly, in this last case, in order to let assumption A. 2 to be satisfied,

(1 + s) (1− t) ty∗

(1 + s) t− (1− r)

·
1− exp

µ
4e−2p
r ln r

¶¸
< (1− t) y∗

must hold. We shall see in the example provided in the Section 4 that this is the case for
reasonable values of all parameters.
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risk aversion, that is with α > α, do not accept the cutoff. The latter

prefer to submit their optimal report y∗, which, by (7), conceals only a
relatively small income amount, and risk audits. This finding parallels a

similar result about the effect of the cutoff rule under risk neutrality. In

our case, the result can be explained as follows. As reported income y∗

approaches true income w for very risk averse taxpayers, the expected

sanction decreases, while the increase in risk premium under a CRRA

utility function does not countervail the former effect.

3. If α > 0 and α > 1, besides the reaction already discussed in the last

point, the cutoff is refused also by taxpayers with a risk aversion coeffi-

cient below some lower bound α < 1, whose optimal income report y∗,
again by (7), conceals a relatively large income amount. These taxpay-

ers too prefer to risk audits instead of paying the threshold tax. Hence

there are two groups of taxpayers who refuse the cutoff, one character-

ized by relatively high and the other by relatively low true income. This

finding is new and does not correspond to the results reached under the

assumption of risk neutrality. It deserves further investigation which

will be tackled separately in the next Paragraph.

One might also consider the possibility of a refusal of the cutoff only by

relatively rich and low risk averse taxpayers, that is a lower bound α that

remains strictly positive while α → ∞. However, this is ruled out by the
consideration that a premium x→ 0 is needed to ensure that taxpayers with

risk aversion α→∞ accept the cutoff; in this case also taxpayers with α→ 0

would accept it.

3.2 The Reaction of Rich Taxpayers with LowRisk Aver-
sion

The refusal of paying the threshold tax by rich taxpayers with low risk aver-

sion arises under given conditions, as the following proposition shows. For

simplicity, we consider only the general case (ii) of Proposition 1, that is when

15



assumption A.3 holds with strict inequality and the solution set S = [α, α] is

nonempty.

Proposition 2 Under A.1 and A.2, assume that A.3 holds with strict in-
equality. Moreover, assume that s ≥ 1. If the tax rate t is such that

(1 + s) t >
1− p

¡
1− e−2

¢− £1 + p (ln r)
¡
ln r
2 + 1

¢¤ 2
2+ln rn

1− p− £1 + p (ln r)
¡
ln r
2 + 1

¢¤ 2
2+ln r

o , (20)

then there exist values of premium x such that α > 0. Specifically, α > 0 for

all values of x satisfying

p (1 + s) (1− t) ty∗

(1 + s) t− 1 < x ≤ x, (21)

where x is defined in (18).

Proof. See the Appendix.

Proposition 2 states that for a large enough sanction rate there exist

(small) values of α - corresponding to high values of true income w - charac-

terizing a group of taxpayers who do not pay the threshold tax.

Let us provide an intuitive explanation of the possible refusal of paying the

threshold tax by rich taxpayers. For any optimal reported income y∗, there
is an upper bound to the values that the true taxpayer’s income can assume.

Since 0 < r < 1, by taking the limit in (7) for α→ 0+, one gets:

lim
α→0+

w (α) =
sty∗

(1 + s) t− 1 = w < +∞. (22)

The upper bound w decreases in the sanction rate (1 + s) t. Hence, when the

sanction rate is high, and thus w is low, it is possible that the requested x

is too large relatively to the expected sanction plus the (about nil in relative

terms) risk premium the agent is willing to pay, thus discouraging the payment

of the threshold tax.

To summarize: since taxpayers with a CRRA utility function cannot bear

ruin, even at low values of the risk aversion coefficient they might not bet very
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large sums in tax evasion12, while on the other hand their low risk aversion

coefficient might imply the refusal of an insurance offer. Proposition 2 shows

the conditions under which a high enough value of the sanction rate (1 + s) t

can originate this effect.

4 A Numerical Example

Let us study an example, with the following values of parameters: t = 0.44,

p = 0.01, s = 1.7 and y∗ = 1000. Assumptions A.1 and A.3 are verified since
(1 + s) t = 1.188 > 1 and r ' 0.017 < 0.135 ' e−2. In particular, condition
A.3 holds with strict inequality and thus parts (ii) and (iii) of Proposition 1

will be relevant.

The upper bound for x in condition (18) turns out to be x ' 80, which

clearly satisfies assumption A.2. Therefore any fixed premium that satisfies

x ≤ 80 produces a nonempty interval [α, α] of relative risk aversion coefficients
characterizing agents who pay the threshold tax. For example, with x = 50,

the interval has α ' 0.357 and α ' 5.645 as its extremes, as shown in figure
1 (a). These two values, through (7), correspond to a minimum true income

w ' 1426 (corresponding to α ' 5.64) and a maximum true income w '
3946 (corresponding to α ' 0.64), which imply an evasion (in terms of share
of concealed income when y∗ is reported) of around 30% and around 75%

respectively.

The true income of taxpayers reporting y∗ = 1000 lies in the interval

(1000, 3979). The lower value refers to full compliance, while the higher one

to the maximal evasion compatible with limited liability, as a taxpayer with

a true income of 3979 who reports 1000 would receive zero net income in case

of detection.

In view of inequality (20), to observe some rich and low risk-averse tax-

payers who refuse to pay the threshold tax, the sanction rate (1 + s) t must be

such that (1 + s) t & 1.0467, given the values of the other parameters shown
above, a condition which is met in this example as (1 + s) t = 1.188.

12That is, the concealed amount cannot encompass w − y∗.
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The lower bound for x expressed by condition (19) in (iii) of Proposition 1

is x ' 242, hence any fixed premium that satisfies 242 < x < 560 = (1− t) y∗

is in the range of assumption A.2 and produces an empty solution set. This

means that function l is strictly increasing and crosses the x axis at the unique

point α = 1, as is shown in figure 1 (b) for x = 292.

For any value between x ' 80 and x ' 242 Proposition 1 cannot be

applied and, in principle, nothing can be said. The sufficient condition (18)

fails to detect the existence of a nonempty interval of values of relative risk

aversion coefficients even if such an interval exists for some values of parameter

x ∈ [x, x]. We have worked out, however, many numerical counterexamples
which support the robustness of Proposition 1; these counterexamples show

that Proposition 1 proves to be useless only in special cases where the possible

interval is extremely tiny, a circumstance that does not seem very appealing

for the government. Note also that the error on the lower bound α introduced

by considering the approximated model (16) in place of (14) affects only the

side on the left of α = 1 and seems negligible.

5 Classes

When the Tax Administration faces a taxpayer whose optimal reported income

is y∗, thanks to (22), it can infer that the true taxpayer’s income w belongs to
the open interval (y∗, w), which we define from now on as a taxpayers’ class. In
other words, in the sequel each taxpayer is identified by the tax Administration

through her class (y∗, w), or, equivalently, through her reported income y∗.
We do not tackle here the choice problem of designing an optimal threshold

tax offer function specifying the cutoff assigned to each class, that the Tax

Administration might select having in mind some social or governmental goal.

We simply assume that some basic threshold tax value is chosen for the bottom

class, while for the upper classes the threshold tax is proportionally adjusted

with respect to the optimal reported income.
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5.1 A Proportional Tax System

Let V (y∗0) = ty∗0+x0 be the cutoff payment chosen by the Tax Administration
for the bottom class represented by a reported income y∗0 . For values of

reported income y∗ larger than y∗0 we assume that the premium increases

accordingly, that is,

x(y∗) =
y∗

y∗0
x0. (23)

Thus, the threshold tax requested from a taxpayer whose optimal reported

income is y∗ is now

V (y∗) = ty∗ + x(y∗) = ty∗ +
y∗

y∗0
x0. (24)

This approach not only seems coherent with a proportional tax system,

but it allows for an important extension of Proposition 1 to all taxpayers’

classes.

Proposition 3 Under A.1, A.2 and A.3, suppose that x0 verifies either (i)
or (ii) or (iii) of Proposition 1. Then also the premium x(y∗) defined in (23)
satisfies (i) or (ii) or (iii) of Proposition 1 for any reported income y∗.

Proof. It is immediately seen that inequalities (17), (18) and (19) remain
unchanged if the threshold tax V (y∗) is defined as in (24), as both sides of
the inequalities vary proportionally to y∗.

Proposition 4 characterizes the tax system under the previously described

cutoff policy with reference to vertical equity.

Proposition 4 The revenue collected by the Tax Administration from each

taxpayer with risk aversion coefficient α, turns out to be proportional to her

true income w, with a factor of proportionality that depends on α itself and

is lower than the legislated tax rate t.

Proof. We must establish the result separately for taxpayers accepting
the cutoff and for those who refuse it.
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For the former group, Proposition 3 ensures that the interval of α values is

the same in each class. As V (y∗) is proportional to y∗, while y∗ is a constant
share of w for each given α (recall (6) in Section 2), the assert is proven with

reference to these taxpayers.

For each taxpayer who refuses the cutoff, the expected payment in taxes

and fines is

ty∗ + p(1 + s)t(w − y∗). (25)

By substituting (6) into (25) proportionality of the expected payment to w

for each given α is readily seen.

The factor of proportionality is lower than the legislated tax rate for all the

taxpayers, as, on the basis of the second inequality in (9), u (w − ty∗ − x) =

Eu(y∗) > u (w − tw), and hence w− ty∗ − x > w− tw, while y∗ < w, that is,

ty∗ + x < tw.

Proposition 4 states that, whenever income classes are considered, the

actual tax system turns out to be vertically equitable in a mild sense, as

there is a proportional relationship between expected total payments and true

income, but only among taxpayers who have the same relative risk aversion.

Since taxpayers with the same true income but different relative risk aversion

pay different amounts, horizontal equity is at any rate violated. Moreover,

specific equity problems are raised by the cutoff policy. On the one hand,

taxpayers who accept the cutoff pay larger sums than under a regime without

a cutoff, thus providing a larger contribution to government revenue. On the

other hand, they gain from voluntarily insuring against controls, and thus in

utility terms they are favored in comparison with other taxpayers who do not

receive a suitable offer.

5.2 Signals and Classes

In a more realistic scenario, the Tax Administration does not know each tax-

payer’s y∗ before the actual submission of the report. In order to formulate
the threshold tax offer independently of the report’s availability, some cor-

related variables such as profession, age, geographical location, etc., might
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be exploited. In the followings it is shown that the implementation of the

cutoff policy under imperfect information, when the Tax Administration only

receives a signal, can have the same effects already discussed for the case of

perfect information about y∗.
Fix a given optimal reported income y∗ (that is, consider a taxpayer be-

longing to the class (y∗, w)), and assume that the Tax Administration ob-
serves some signal z associated to y∗ (that is, the signal produced by that
specific taxpayer). Following Scotchmer [13], let us assume that the sig-

nal is uniformly distributed over the interval [k0y∗, k1y∗] with density h(z |
y∗) = [(k1 − k0) y

∗]−1, where k0 and k1 are multiplicative factors13 such that

0 ≤ k0 < k1.

Under this setting, we assume that the government is only able to put the

taxpayer within a fork of optimal reported income, and the taxpayer is equally

likely to be put in classes k0y∗, k1y∗, or in all intermediate classes. Since the
threshold tax offer is adjusted to the optimal reported income as perceived

by the Tax Administration, the taxpayer can receive a better or worse offer

according to the class to which she is assigned; e.g., she could refuse paying

the threshold tax in class k1y∗ while accepting it if put in a lower class.
The expected payment of the taxpayer with risk aversion coefficient α and

reporting the optimal income y∗ depends on whether the amount requested
for the cutoff by the Tax Administration satisfies the second inequality in

system (9), or, in view of Proposition 1, on whether α belongs to the interval

[α, α]. However, the interval [α, α] depends on the amount V (z) requested

for the cutoff, which, in turn, depends on the signal z perceived by the Ad-

ministration. Therefore it is useful to relabel the extremes of the interval as

functions of V (z): α [V (z)] and α [V (z)], which also stresses dependence of

the interval [α, α] on the signal z. Two cases are possible.

13This assumption implies that the range of possible percentage mistake in assessing y∗ is
constant. Following Scotchmer [13], one could assume instead that the signal is distributed
on the interval [y∗ − a, y∗ + a], where a > 0 is some additive constant, which, however,
implies that the percentage error shrinks as y∗ increases.
Note that in our case, even if it is not relevant for the subsequent analysis, one might

reasonably assume that k0 < 1 and k1 > 1; specifically, if k0+k1 = 2 one gets E [z | y∗] = y∗.
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1. Recall that by (24) V (z) is increasing in its argument and Propo-

sition 1, roughly speaking, essentially states that the interval [α, α]

shrinks as V (z) increases (specifically, as x (z) increases). Therefore,

since z ≥ k0y
∗, [α, α] is the largest interval for the class y∗ whenever

α ≡ α [V (k0y
∗)] and α ≡ α [V (k0y

∗)]. Thus, all taxpayers lying out-
side, i.e. characterized by α < α [V (k0y

∗)] or α > α [V (k0y
∗)], will

reject the cutoff and pay

E [T (α, y∗)] = ty∗ + p(1 + s)t(w − y∗) (26)

to the Tax Administration for all admissible values of the signal k0y∗ ≤
z ≤ k1y

∗.

2. If α [V (k0y∗)] ≤ α ≤ α [V (k0y
∗)], then there exist values z ≥ k0y

∗

such that the cutoff will be paid. Specifically, the cutoff will be paid

for all signals z such that α [V (z)] ≤ α ≤ α [V (z)]. By monotonicity

of the interval [α, α] with respect to z, there will be some zα,y∗ such

that either α = α [V (zα,y∗)] or α = α [V (zα,y∗)], and the taxpayer

(characterized by risk coefficient α) will accept the cutoff offer whenever

k0y
∗ ≤ z ≤ zα,y∗ , while she will reject it for all values zα,y∗ < z ≤ k1y

∗.
Hence, the expected payment is given by

E [T (α, y∗)] =

zα,y∗Z
k0y∗

V (z)h(z | y∗)dz (27)

+
k1 − zα,y∗

k1 − k0
[ty∗ + p(1 + s)t(w − y∗)] .

Thus, case 1 refers to taxpayers whose risk aversion coefficient implies the

refusal of the cutoff even when the signal z is at its lowest level k0y∗ and
the requested threshold tax is small. They report income as usual and pay

taxes and fines that are proportional to their true income according to (25)

in Proposition 4. Case 2 refers to taxpayers who instead are ready to accept

the cutoff when the signal is k0y∗ and might confirm this choice also in upper

classes. They shall however refuse the cutoff when the requested threshold
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tax becomes so high that they drop out from the risk aversion interval [α, α]

relevant for acceptance. Thus, for the latter group, the expected payment

depends also on the probability (k1 − zα,y∗) (k1 − k0)
−1 of paying taxes and

expected fines according to general rules.

Proposition 5 Let the (proportional) class system be defined as in Section

5, with the threshold tax defined, according to (24), as

V (z) =

µ
t+

x0
y∗0

¶
z. (28)

Consider all taxpayers with risk coefficient α and optimal reported income

y∗ ≥ y∗0 . Assume that the signal z associated to y∗ is uniformly distributed
over the interval [k0y∗, k1y∗] with density h(z | y∗) = [(k1 − k0) y

∗]−1, 0 ≤
k0 < k1. Then, for each fixed α, the expected total payment of such taxpayers

is proportional to y∗, and thus, thanks to (7), to the true income w.

Proof. Proportionality is obviously verified for the first case, i.e. when
α < α [V (k0y

∗)] or α > α [V (k0y
∗)] and the expected payment is (26).

To see that also in the second case proportionality holds, note that, by

Proposition 3 since the class system is proportional, with no loss of generality

the value zα,y∗ may be written in product form: zα,y∗ = zαy
∗. Hence, by

using (28), the integral in (27) is

zαy
∗Z

k0y∗

V (z)h(z | y∗)dz = 1

2

¡
z2α − k20

¢
(t+ x0/y

∗
0)

k1 − k0
y∗,

and the proof is complete.

The last result states that, under the assumption of uniform distribution

for the signals z supported on intervals which are spreading as y∗ increases,
the mild vertical equity of our tax system is being preserved also in a more

general framework including classes and asymmetric information. Since the

signal distribution is the same at each y∗ level, all taxpayers run the same
proportional risk of gaining or losing as a consequence of mistakes in the class

assignment.
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6 Conclusions

In this paper we have shown that a cutoff policy cum taxpayers’ classes, when

taxpayers are risk averse and have a CRRA utility functions, is compatible

in a mild sense with vertical equity: taxpayers’ expected payments are pro-

portional to true income, for each given value of the coefficient of relative

risk aversion. Horizontal equity, however, is violated, as taxpayers with equal

income (and different risk aversion) pay different amounts. When the CRRA

utility function is considered, these features would characterize also a propor-

tional tax system without a cutoff policy. However, there are specific equity

problems introduced by the cutoff. Within each class, only some taxpayers

accept paying the threshold tax. While they make larger payments than those

who refuse the cutoff, they also benefit from the possibility of insuring against

the risk of audits. Those who refuse the cutoff are thus in a less favorable

position, as they do not receive a suitable insurance offer. From the efficiency

point of view, taxpayers who pay the threshold tax provide an extra source of

income for the government, while less resources are needed for running audits.

Summing-up, the policy involves a specific equity-efficiency trade-off.

The literature about the cutoff rule under risk neutrality has been largely

concerned with the regressive bias of this policy and with the ways of cor-

recting it, in particular through the introduction of taxpayers’ classes. In our

model the regressive bias need not exist as the taxpayers who accept paying

the threshold tax might have intermediate characteristics in terms of income

and relative risk aversion.

Unlike in models that assume risk neutrality, the cutoff policy when tax-

payers are risk averse does not necessarily imply a full separation of types

(relatively poor taxpayers who report as usual and relatively rich ones who

pay the threshold tax). Indeed, we have highlighted cases in which also rel-

atively rich taxpayers refuse the cutoff. Self revelation of types through the

cutoff policy, as is well known, is problematic, as it implies the temptation for

the Tax Administration of reneging its promises ex post. This problem does

not arise in our model.
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Admittedly, our paper is limited in scope, as we do not discuss how to

shape an optimal cutoff policy, but only which reactions would arise given

that a simple one is used. Our specific contribution pertains to determining

the pattern of the reaction of taxpayers under the widely used CRRA utility

function. Results could be used for describing the cutoff policy as part of

a standard welfare maximization problem with taxation. This more general

approach, which could provide further insight for assessing the equity and

efficiency implications of the cutoff policy under risk aversion, is left for future

research.

Appendix: Proofs

The proof of Proposition 1 will be accomplished through several steps. First

we need two preliminary lemmas.

Lemma 1 ψ(α) < φ(α) for all 0 < α < 1.

Proof. Since r < 1 and assumption A.2 implies B < A,

(A−Br)
1−α

<
³
A−Br

1
α

´1−α
= φ(α) (29)

for all 0 < α < 1. Since (A−Br)
1−α is strictly convex for all α > 0, by the

superdifferentiability property the following is true:

ψ(α) = 1− ln(A−Br)(α− 1) < (A−Br)
1−α

for all 0 < α < 1, which, coupled with (29), proves the assert.

Lemma 2 Under A.1, A.2 and A.3, the function φ(α) =
³
A−Br

1
α

´1−α
is

strictly convex for α ≥ 1, while the function ϕ(α) = −p
³
r
1
α

´1−α
is strictly

concave for 0 < α ≤ − (1/2) ln r and is strictly convex for α ≥ − (1/2) ln r.

Proof. A tedious direct computation of the second derivatives of both φ

and ϕ gives the result.
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Proof of Proposition 1. Part (i). Since equality in A.3 is equivalent
to − (1/2) ln r = 1, by Lemma 2 function l(α) = ψ(α) + ϕ(α)− (1− p) turns

out to be strictly concave over (0, 1) and strictly convex over [1,+∞). This
is true since l is the sum of a constant, and functions ψ and ϕ, which are

linear and strictly concave respectively over (0, 1), and both strictly convex

over [1,+∞). In other words, l has a unique flex-point at α = 1. Moreover,
since l(1) = 0, S is non-empty and has the form S = [α, α] if and only if its

derivative is strictly negative in α = 1, that is,

l0(1) = − ln(A−Br) + p ln r < 0

which, after some algebra, is the same as condition (17). Note also that

α < +∞ since l(α)→ +∞ as α→ +∞.
Part (ii). Strict inequality in A.3 is equivalent to

− ln r
2

> 1. (30)

To simplify notation, let c = − (1/2) ln r > 1. In this case we extend the

argument above by constructing a function h(α) that is as similar to l as

possible but is better shaped than l over the interval (1, c) where the required

convexity property of l cannot be verified directly. Define

χ(α) = 1 +
φ (c)− 1
c− 1 (α− 1)

and

h(α) =

(
l(α) for 0 < α ≤ 1 and α ≥ c

χ(α) + ϕ(α)− (1− p) for 1 < α < c.

As in the construction of function l, where we substituted the badly shaped

function φ with a linear one, ψ, over (0, 1), function h constitutes an improve-

ment of function l again by linearizing φ, which, by Lemma 2, is convex for

all α ≥ 1. As a result, h turns out to be strictly concave over (1, c), being the
sum of a constant, a linear and a concave function.

Function h(α) turns out to be the same as l(α) outside the interval (1, c),

where the same argument of Part (i) applies. Specifically, h is strictly concave
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over (0, 1) and l(α) ≥ 0 has a non-empty interval [α, 1) as the solution as long
as l0−(1) = l0(1) < 0; while h is strictly convex over (c,+∞). Inside interval
(1, c), we have seen that h(α) = χ(α) + ϕ(α) − (1 − p) is strictly concave.

Moreover, since h is obtained by replacing the strictly convex function φ with

the segment joining two points of its graph, h(α) > l(α) holds true for all

α ∈ (1, c), while h(1) = l(1) and h (c) = l (c). Note that h is not differentiable

at points α = 1 and α = c, where is only left and right-differentiable, while

l0(1) exists.
Hence, h0+(1) ≤ 0 =⇒ h(α) < 0 =⇒ l(α) < 0 for all α ∈ (1, c]. Fur-

thermore, l(c) < 0 plus its convexity over (c,+∞) implies l(α) ≤ 0 for all

α ∈ [c, α], where c < α < +∞. To conclude, h0+(1) ≤ 0 =⇒ l(α) ≤ 0 for all
α ∈ (1, α], while, on the other side, h0+(1) ≤ 0 =⇒ l0+(1) = l0(1) < 0, thus also
establishing the non-emptiness of the interval [α, 1). A direct computation

shows that condition h0+(1) ≤ 0 is equivalent to condition (18), and the proof
is complete. Note that again, under our construction, we obtain a function h

with a unique flex point at α = c.

Part (iii). By construction, ψ0(α) = φ0(1) = − ln(A−Br) over (0, 1]. By

Lemma 2,

φ0(α) ≥ φ0(1) = − ln(A−Br) ∀α ≥ 1 and

ϕ0 (α) ≥ ϕ0
µ
− ln r
2

¶
=
4e−2p
r ln r

∀α > 0.

Therefore,

l0 (α) ≥ φ0(1) + ϕ0
µ
− ln r
2

¶
= − ln(A−Br) +

4e−2p
r ln r

and l0 (α) > 0 if − ln(A−Br) +
¡
4e−2p

¢
(r ln r)−1 > 0, which is equivalent to

(19); hence, (19) =⇒ l0 (α) > 0 for all α > 0. Since l(1) = 0, l0 > 0 means

that l “crosses” level zero increasingly at α = 1, and system (16) has empty

solution set, as was to be shown.

The proof showed how A.3 forces the unique flex-point of function ϕ to lie

to the right of α = 1. Clearly, it is possible to reproduce a similar technique

for the case r > e−2.
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Proof of Proposition 2. In order to have α > 0 the following condition

on function f(α) defined in (15) must hold:

lim
α→0+

f(α) = A− (1− p) < 0,

that is, function f(α) must have a negative intercept. By substituting A as

in (11), this proves equivalent to:

x >
p (1 + s) (1− t) ty∗

(1 + s) t− 1
However, the above inequality, to be meaningful, requires a nonempty solution

set S, that is, (18) of Proposition 1 must be met as well. Thus, we need to

find values for the tax rate t such that
p (1 + s) (1− t) ty∗

(1 + s) t− 1 < x,

where x is defined in (18).

By plugging x as in (18) into the above inequality, we get

g (1 + s) t > 1− p
¡
1− e−2

¢− ·1 + p (ln r)

µ
ln r

2
+ 1

¶¸ 2
2+ln r

(31)

where

g = 1− p−
·
1 + p (ln r)

µ
ln r

2
+ 1

¶¸ 2
2+ln r

.

To study the sign of g, it is convenient to rewrite it in terms of parameters r

and s rather than p and r by using (13), which yields

p =
r

s+ r
.

Graphical inspection of the function

g (r, s) = 1− r

s+ r
−
·
1 +

r (ln r)

s+ r

µ
ln r

2
+ 1

¶¸ 2
2+ln r

shows14 that g (r, s) > 0 for 0 < r < e−2 and s ≥ 1. Thus, dividing by

g ≡ g (r, s) > 0 in (31), yields (20).
14Clearly, inequality g (r, s) > 0 does not allow for a closed form solution, thus we have

checked it directly by plotting the graph of g (r, s) through Maple 7 for the relevant values
of parameters r and s.
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Figure 1: illustration of Proposition 1: a) plot of the function h (approximat-

ing the function f) for x = 50: the solution set is the interval [0.36,5.64]; b)

plot of the approximating function l for x = 250: a case of empty solution set.
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