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Abstract

We study a one-sector stochastic optimal growth model where productidfecsea by a
shock taking one of two values. Such exogenous shock may enter multiglgati additively. A
result is presented which provides sufficient conditions to ensure thaitttactor of the iterated
function system (IFS) representing the optimal policy, is a generalizedogipal Cantor set.
To indicate the role of the strict monotonicity condition on the IFS in this resulineles of
attractors, which are not of the Cantor type, are constructed with itenatetdn systems, whose
maps are contractions and satisfy a no overlap property.
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1 Introduction

In this paper we provide a further generalization of the fwork introduced by Mitra and Privileggi
[11], where a stochastic one-sector discounted optimalironodel with an iso-elastic utility func-
tion, and a Cobb-Douglas production function affected by #iplicative random exogenous shock
taking one of two values, was investigated. This, in turnswa expansion of the specific exam-
ple thoroughly studied in Mitra, Montrucchio and Privileg#0], where utility was assumed to be
logarithmic.

Here, the general setting of Brock and Mirman [3] is considdsze also [9]): both the utility
function and the production function are any increasingcawa twice differentiable functions satis-
fying the standard assumptions of neoclassical discowytchal growth models. Two specifications
of the model are considered: the case in which the randonksladtect production multiplicatively,
and the case in which random shocks are additive. The assumygdfta discrete random variable
taking one of two values to describe the uncertainty of thelehcs maintained as in [11]. In such
a setting, suitable sufficient conditions on the parameatéithe model under which the invariant
distribution is supported on a generalized Cantor set aabkstied.

The paper is organized in two main parts. In the first pargrdfhding a lower bound for the
largest fixed point of the lower map of the Iterated Functiget&mn (IFS) generated by the optimal
policy, we establish a sufficient condition for the crucialoverlap propertyf the IFS, which in turn
is a necessary condition to obtain an attractor of the IF8,itha stable invariant set of the stochastic
process of optimal output, with the features of a generdlispological Cantor set.

In the second part we study topological properties of thaettr of the IFS describing the optimal
dynamics. We first define thgeeneralized topological Cantor sé set which is totally disconnected
and contains no isolated points) as the attractor of an IESmanlinear maps, as opposed to the well
known linear ‘middle«” Cantor setobtained as the limit of iterations of linear maps. Then, we u
the general theory of IFS to establish that whenever the edayy property holds and the maps of the
IFS are strictly monotone and contractive, the attractaheflFS is a generalized topological Cantor
set. This result applies directly to the findings of the firattpf the paper, thus yielding ranges
for the values of the parameters of our stochastic one4sgctovth model such that its invariant
distribution is supported on a generalized topological Gaset, provided that the maps of the IFS
are contractions.

A section of the second part is devoted to construct couxaenples that test robustness of the
main result. We focus on the essential role played by strimbatonicity: whenever it is relaxed,
while the no overlap property is kept in place and the mapsangractions, it becomes straightfor-
ward to construct attractors which contain isolated paimtson-trivial intervals, and thus cannot be
topological Cantor sets.

The outline of the paper is as follows. Section 2 contains scigtion and basic properties
of the model with the assumptions that hold throughout al shbsequent sections. Section 3 is
concerned with the no overlap property of the maps constguhe optimal IFS: sufficient conditions
for the no overlap property in terms of the parameters of tleelehare established, both for the
multiplicative shocks and for the additive shocks case&dection 4 the notion of topological Cantor
set is discussed and the main result, establishing conditimder which such a set is the attractor
of the IFS describing the optimal dynamics of our growth mpepresented. Some examples of
attractors which are not of the Cantor type are illustrate8ection 4.3. Finally, Section 5 reports
some concluding remarks. All proofs are gathered in the Adpe



2 Preliminaries

We consider the standard model of optimal growth under waitey as presented in [3] and [9]: the
production functionf (z, ) depends on the amount of capitaemployed and on some exogenous
shockr which is a random variable taking one of two values, r € {rq,m}, ro < r1, Wherer,
occurs with probabilityp € (0,1) andr; with probability 1 — p, independently through time. We
shall study two specifications of the production functione evith multiplicative shocks and one with
additive shocks. So, there is a functién, R, — R, such thatf (z,r) = rh (z) in the first case and
f(z,r) = h(z) + rin the second, fofz,r) € R, x {rg,r}. Both the production functiorf;, and
the utility function,u, are continuous of®,., and areC? functions onR . satisfying the following
standard assumptions:

h(0) =0, h' () >0, R" () <0, lim A’ (x) = +oo, lim A'(x)=0, (1)
z—07t T—r+00
u' (+) >0, u” (1) <0, lim «' (z) = +o0. 2
x—07F

Under (1), there is a unique number> 0 such thath (k) = k, h(z) > kforall 0 < z < k and
h(z) < k forall x > k. Thus, a closed interval of the forif), k,,| can be taken as the state space
for our model. Thus, the “primitives” of our model are the ¢tions/ andu, the values, r, the
probability p and the discount facter € (0, 1).

One can apply the standard theory of stochastic dynamicranaging to obtain an (optimal)
value functionV : R, — R, and two (optimal) policy functiong; : R, — R, andv : R, — R,,
which we will interpret as the consumption and the investnfigmctions respectively. That is, given
any output levely > 0, the optimal consumption out of this output is givenddy), while the optimal
input choice (for production in the next period) is thefy) = v — g (y). In both specifications for
the exogenous shocks (multiplicative and additive), weotkelfi (v (v) ,70) by Gy (y), which gives
the output obtained in the next period whetakes the value,, and f (v (y),r1) by G (y), which
gives the output obtained in the next period whrdakes the value;. The inverse of)’ will play an
important role in our analysis, and will be denotediy

Following [3] and [9], one can establish several useful praps of the value and policy func-
tions. We summarize these results (without proofs) in thieweng Proposition, where we denote

(9/0x) (x,7) by [, (z,7).
Proposition 1 The value functionl/, and the policy functiory, satisfy the following properties:
() Visconcave orR,, and continuous o, . ;
(i) ¢ is continuous ok, and0 < g (y) <y fory > 0;
(iii) ¢ (y) and~ (y) are both strictly increasing i onR ;
(iv) fory > 0, we have
u' (g (y) =0 {pu' (9(Go (W) fo (v (y),70) + (L = p)u' (9 (G1 () fu (v (), r1)}. (3)
The optimal policy function leads to the stochastic process

[ Go(y)  with probabilityp
e { Gi(y)  with probabilityl —p 17120 @

Alternately, one might say that the optimal policy functieads to an iterated function system (IFS)
{Gy,G1;p,1 —p}. Itis known (from [3]), that there is a unique invariant distition, x, of the
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Markov process described by (4), and the distribution oinogkoutput at date, call it 1, converges
weakly tou. We are principally interested in the geometric propertiefe support of..

It can be checked that the functio6s andG; have positive fixed points, and all the fixed points
are less thart,,. Denote bya the largest fixed point of7,, and byb the smallest fixed point of
(G,. Following [3], one can establish that< b. The intervalla, b] is an invariant stable set of the
stochastic process (4). In particular, the suppoyi &f contained irfa, b]. Consequently, in studying
the support ofs, it is enough to concentrate on the stochastic process i@)initial output,y € [a, b].
Equivalently, one need only study the IE&,, G1; p, 1 — p} on the state spac¥ = [a, b].

3 The No Overlap Property

Let us examine some elementary features of the{lf§ G1;p, 1 — p} on the state spack = [a, b].
First, we look at the functio,. We haveG, (a) = a; and, fory € (a,b], we haveGy (y) < y, SO
the graph of the map lies below tH&° line (except at:). FurtherG, (y) increases withy, reaching
Gy (b) < G1(b) = baty = b. Next, we look at the function?;. Clearly,G; (a) > Go(a) = a; and
for all y € [a,b), we must havér, (y) > y, so the graph of the map lies above #3€ line (except at
b). Further,G¢; (y) increases withy, reaching&, (b) = b aty = b.

We say that the two mags, andG; do not overlagf:

GO (b) < G1 (a) (5)

so that the maximum of thé&', function is less than the minimum of th&, function on the state
spaceX = [a, b)].

We want to find conditions on the primitives of the model, speally, p, 6, ro, 71, which ensure
the no overlap property (5). We shall obtain similar comatis for the two cases — multiplicative
shocks and additive shocks — which are treated separately.

3.1 Multiplicative Shocks

Let the production function have the forfnz,r) = rh (x), with h satisfying (1), and let the set of
values of the random variablebe {ry, 71} = {q¢, 1}, whereg € (0, 1). We interpret the valué of r to
be the “normal” state, witly representing a downward production shock, occurring witdbability
p € (0,1). Therefore, we can re-label the fixed pointo&s the numbek,, = &k such that: (k) = k.
The two maps of the IFS are in this casg(y) = ¢h (v (y)) andGy (y) = h (v (y)).

We start by establishing a lower bound for the fixed peiof the (lower) map~, which depends
on the parameters of the model. Recall tRadenotes the inverse af.

Lemma 1 The following inequalities hold true:

V(@) > F (i) (6)

dpq

a > qh (F (L>) : (7)
opq

The proof is reported in the Appendix.

and

For an alternate and simpler approach to this result, see [2]



Remark 1

() It is immediately seen that Lemma 1 holds under more genesiraptions on the stochastic
shocks. In particular, it holds under the assumptions of ina® 3.1 and 3.2 in [3]; that is,
for any random variable on some intervalry, 1], with o > 0, provided thatPr (r;) > 0.
Moreover it holds for any production functiofi(z, ) with random shocks that not necessarily
enter multiplicatively, but such that(z, ) is non-decreasing and (-, ) satisfies conditions
similar to (1).

(i) If, for example,h (z) has the Cobb-Douglas form, that ig,(z) = z'7*/(1 —«) for z >
0, wherea € (0,1), then conditions (6) and (7) becomga) > [1/(6pq)]*1/0‘ anda >
[ql/"‘ (5p)1/‘”*1] / (1 — ) respectively.

It is convenient to label the lower bound in (7) as follows:

o (r (1)

Note that our proof of Lemma 1 shows thgt constitutes a lower bound for all fixed points Gf;
specifically,a > 6,,.

Lemma 1 is useful in constructing a sufficient condition toe ho overlap property 5 by means
of the parameters of the model.

Proposition 2 Suppose the following condition is satisfied:

0
_m>2 9
k_€17 )

wherek is such thatc = & (k) and#d,, is defined in (8). Then the IFR7,, G1; p, 1 — p} on the state
spaceX = [a,b] has the no overlap property (5).

The proof is reported in the Appendix.
Remark 2

(i) Note that the no overlap property as stated in (9) does notmi@pe the utility function..

(i) If b (x) has the Cobb-Douglas form, that is(z) = 2!~/ (1 — «) for z > 0, wherea € (0, 1),
then condition (9) becomes
(6pa)" ™" > [(1 — ) kq]*. (10)
Sinceh (k) = k, we havek!~*/ (1 — o) = k, thatiis,(1 — a)~" = k*. By using this in (10) we
easily obtain condition (5) in [11]:

< p (- a))



3.2 Additive Shocks

We turn our attention now to a production function which Hesform f (x,r) = h(z) + r, with h
satisfying (1); moreover, let the set of values of the rand@amabler be {r¢,r1} = {0, ¢}, where
g > 0. We may interpret the valu@of r to be the “normal” state, while represents some positive
production shock, occurring with probability- p. The two maps of the IFS are in this casg(y) =
h (v (y)) andG, (y) = Gy (y) +q. Letk be the unique fixed point of the mafw) = h(x) + ¢, so that
we haveh(k) + ¢ = k. Then, we can sdt., = k. Note thatk > k + ¢, wherek is the unique positive
fixed point of k. It is also straightforward to shove|g, by implicit differentiation using condition
(1)] thatk increases agincreases.

A lower bound for the fixed point of the (lower) mag~, in this case is defined by the following
lemma.

Lemma 2 The following inequalities hold true:

vwf>F(%) (11)

a>h(F<$)). (12)

The proof is reported in the Appendix.

and

Remark 3 Unlike the case where shocks enter production multipliedtiwhen the exogenous shock
Is additive the lower bound for the fixed poinof the (lower) mag+, does not depend on the shock
q itself.

Let us label the lower bound in (7) as follows,

s (e (3)

and state a sufficient condition for the no overlap propesjytd hold for the additive shocks case.
Proposition 3 Suppose the following condition is satisfied:
0. > 2h (k) — k, (14)

wherek is such thatc = (k) + ¢ andé, is defined in (13). Then the IF8%, G1;p,1 — p} on the
state spaceX = [q, b] has the no overlap property (5).

The proof is reported in the Appendix.
Remark 4
(i) Again the no overlap property as stated in (14) does not deép@rthe utility function..

(i) The case where production is affected by an additive shoolvalfor a more striking interpreta-
tion than the previous case with multiplicative shocks. Hftetérm in (14) does not depend on
¢, while the right term does, sindeis a strictly increasing function af; but, under assumption
(1), the right term in (14) diverges tocc ask — +oo. Therefore, condition (14), and thus the
no overlap property (5), holds whenever the shgdk large enough. Note that condition (9)
does not allow for a similar interpretation as in that case@the lower bound,, does depend
Oong.



4 Topological Structure of the Attractor of a IFS

In the previous sections we provided enough informationtenlES{Gy, G1;p,1 — p} defined on
the spaceX = [a, b] so that the standard theory of IFS can be applied (&ge[8], [1], [4] and [5]).

In view of the examples of Section 4.3, we slightly generatize setting by considering any pair of
continuous map#l, and H; defined on some compact subseof the real line; that is, we shall study
a generic IF§ Hy, Hy; p, 1 — p}, abstracting from the mags, andG, discussed so far.

4.1 A Well Known Result on IFS

Let X C R be a compact set. L&t (X)) denote the sigma-algebra of Borel measurable subseéts of
andP (X) the space of probability measures®(.X ). Recall that th&arnsley operatotS : X — X
is defined by

S(E)= Hy(E)U H,(E), forECX, (15)

and theMarkov operatorM : P (X) — P (X) is defined by
My (B) = pp (Hy* (B)) + (1 = p)u (HT (B)),  forpe P(X),andB € B(X),

whereH, ' (B) andH; ' (B) denote the counter-image sets of thelBéhrough the map#l, and H,
respectively. Operatal/ describes the evolution of probabilities under the stoibasocess

Yt+1 = HZt<yt)a (16)

wherez; are i.i.d. over0, 1} with distribution{p, 1 — p} for all ¢ > 0. We shall denote the iterates of
such operators by' (E) = S (S*™! (E)) andM* (u) = M (M*~* (u) ()) forall ¢ > 1, with S° (E) =
EandM° (i) = p.

Recall that theHausdorff distancel/,; is defined over the class of all non-empty compact sets in
X, K(X), by

dy (A,B) =inf {0 : AC BsandB C A5}, forA,B e K(X), (17)

where A5 and Bs denote the)-neighborhoodgs-parallel bodie$ of the setsA and B respectively,
that is,
As={z € X :|r —a| <o forsomea € A}

Is the set of points within distanceof A. Seege.qg, [4] and [5] for more details.

In the next proposition are reported (without proof) the masults regarding the attractor and
the unique invariant distribution of the IFS7,, H,;p,1 — p} on the space C R induced by the
stochastic process (16) when the mahsand [, arecontractions

Proposition 4 If constants?; exist such that < ¢; < 1 and |H; (y) — Hi(2)| < ¢; |y — z| for all
y,z € X,i=0,1, then the IF§ Hy, H; p, 1 — p} satisfies the following properties:

(i) there is a unique (invariant) compact sét C X such thatS (A*) = Hy(A*) U H,(A*) = A%,

(i) for any compact setl, such thatS (4y) C Ao, denotingA, = S* (4o) for ¢ > 1, we haved, 2
A1 DA D DAY

(iii) A*is the support of the unique (invariant) probability distition, .* € P (X), satisfying

p(B)=pp (Hy' (B)) + (1 =pyp* (H ' (B)), forall BeB(X);

7



(iv) for u € P(X), denotingu; = M*(u) for ¢t > 1, u, converges weakly to*.

Proposition 4 (ii) states that the iterates of the Barnslegrafor,S*, converge in the Hausdorff
distance to the unique sdt‘, and that convergence is monotonically decreasing wheregestart-
ing setA, is sufficiently large to contain the union of the images oélitthrough the mapé{,, H;:
Hy(Ag)UH{(Ap) C A,p. Often, a suitable starting sdt to construct a decreasing sequence converg-
ing to A* is the spaceX itself.

We shall callA* theattractor of the IFS{ Hy, Hy; p, 1 — p} on the spac& . For the IFS{G,, G1;
p, 1 — p} A*is thus the support of the invariant distributiphto which the one-sector growth model
discussed in the previous sections converges asymptgtical

4.2 Generalized Cantor Type Attractors

It is well known that if X = [0,1] and the mapd{, and H; of the IFS are linear with sloper,

0 < m < 1/2, the attractord* of the IFS is a tniddle«” Cantor sefwherea = 1 — 2m. This setis
obtained by removing the open middle interval of length « < 1 from [0, 1] at the first step, then
removing the open middle-proportion from the two disjoint closed intervals remaupiafter the first
step, and continuing the process by removing at each skepopen middlev-proportion from all the
2t disjoint closed intervals remaining after step 1, ast — +oo (see [10] for a thorough discussion
of this example).

The maps of the IF$G,, G1; p, 1 — p} characterizing the model discussed in the previous sec-
tions are clearly nonlinear. The natural question thataris thus under what conditions such IFS
has an attractor that resembles the typical features of knean Cantor type set. The answer to this
guestion is not obvious as long as nonlinear maps are indpageit will be illustrated by the examples
in Section 4.3.

First we need to make clear what are the main features cleaiacy a nonlinear Cantor type
set. We shall adopt a sufficiently general definition of Casetrbased on topological properties.
Recall that a sefl C X, where(X,d) is a metric space, is said to betally disconnectedf its
only connected subsets are one-point sets, that is, fovemgistinct pointse, y in E, there are two
non-empty open disjoint set§ andV such thatt € U,y € Vand(UN E)U (VN E) = E; also, a
setE C X is said to beperfecitif it is equal to the set of its accumulation points, thatiss ia closed
set which contains no isolated points.

Definition 1 We shall say that a sét C R is ageneralized (topological) Cantor set on the real line
if it is totally disconnectednd perfect

This definition is fully justified,e.g, in view of Chapter 2 in [7], where it is established that
any compact metric space that is totally disconnected arféqies homeomorphic to the classical
“middle-third” Cantor set.

Our objective now is to obtain a set of sufficient conditions the iterated function system
{Hy, H1;p,1 — p} under which the IFS has a unique attractor which is a gerzealftopological)
Cantor set. This result (stated in Theorem 3 below) can berautdrom the mathematical literature
on iterated function systems, and our discussion shoulddveed as primarily expository. However,
we should note that Theorem 3 is stated in a particularly eom@nt form for applications (as is clear
from our application of it to the optimal growth context in @bary 1), and the self-contained proof
of it (given in the appendix) is both simple and instructivVéne literature on IFS is rather large, but
we have not seen a result, exactly in the form of Theorem 8&dtnd proved in this literature.

In the economics literature, the attractor of the IFS, gateer by the optimal growth model,
represents the support of the outputs in a stochastic sttatyy Thus, it is important to understand
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the nature of this attractor. The study of this topic is e&y new, although the existence, uniqgueness
and stability of the stochastic steady state have beenstisdiextensively in the literature on optimal

growth under uncertainty. A Cantor like attractor is parcly interesting because it suggests that the
invariant distribution may have its support on a rather spaet, while many ranges of intermediate
output levels would (almost) never be observed.

Let diam (E) = sup{|y — 2| : y,z € E} denote thediameterof a setF C X. Recall that the
closureof a setE C X, denoted byF, is the set containing all accumulation pointsfof that is,
points that are the limit of some sequence of point&'inWe shall denote the composition of maps
fo: X = Yandf, : Y — Zbyafunctionfyo f; : X — Z definedasfy o f1) (z) = fo (f1 (x)); this
notation extends to the composition of any finite number gbgna the obvious way. For arty> 0
let us denote &sequence of zeros and onesipy- (i, i1, . . ., %), Wwherei, € {0,1} fork =0, ...,
and by, the set of all such sequences; = {(ig, i1,...,%) : ix € {0,1}, k= 0,...,t}. Similarly,
leti,, = (4o, %1, . ..) denote an infinite sequence of zeros and onesyaad (i, i1,...) : i; € {0,1},

t > 0} denote the set of all such sequences. With this notationrat, lvée can use the shorthand

Hit:Hioloo'”oHit

to denote the composition of thtet- 1 mapsH;
onesi; = (ig, i1, - - . ,i;) € X

We shall now see that the sEtconstitutes the natural environment for codifying eacimelet
in the attractord* (see Chapter IV in [1] for a more exhaustive treatment). Takea@mpact set
K C X such thatS (K) C K; then, by Proposition 4 (ii)A* = N,S* (K). On the other hand, by
definition of operatorS, S* (K') = Ui,ex, H;, (K), and thus

., Hi,, ..., H;, for a specific sequence of zeros and

A= Hi (K). (18)

t=0i €3y

Note that, sinced* is unique, the right hand side in (18) must be independerit .oBy definition
of operatorS and by Proposition 4 (ii)/;, (K) 2 H;,,, (K) for all i, € ¥, andi,; € X441, hence
H;, (K) is a decreasing sequence and has a limit-asco. Let ¢ = max {{y, ¢, }, then for allt > 0

and for alli; € %, i1 € X441, diam (H;,,, (K)) < ¢diam (H;, (K)) < diam (H;, (K)), and thus
the diameter of all set#;, (K) vanishes as — oo; since the setél;, (K) are compact for alt > 0,

the limit of the sequenc#;, (K') must consist of a single point:

y =t (K) € A",
t=0

which again must be independent/éf Through this construction we can define a map
Im:x— A" (29)

associating with each element of the Bdthat is, each sequence of zeros and dges- (i, i1, - - -)],
some point of the attractot*.
Theorem 1 reports some useful properties of the map (19)thiopurpose, we need to introduce
a distance for the sef: so that we can work on a metric space. For any pair of sequécgs € X,
let
1% (ioou]oo) = éiogil e giwa (20)

wherei;, € {0,1} for k = 0,...,p, andey = max{t: i, = j;} is the largest such that the first
elements in the sequencis andj., coincide. If we agree to set(i.,j.) = 1 wheniy # j, and
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p (i, joo) = 0if iy = joo, then it can be easily shown thatsatisfies the properties of a distance.
The metric spacé>, p) is often calleccoding space

Finally, we generalize property (5) discussed in Sectioy 3dying that the mapH,; : X — X,
i = 0, 1, have the no overlap propeftif

max Hy(z) < min H (z). (21)

Theorem 1 The mapl : ¥ — A* defined by
y=1I (100) = ﬂHit (K>
t=0

for some compact sét C X such thatS (K) C K, satisfies the following properties:

(i) itis independent of the sé&f and is onto;

(i) it is Lipschitz with respect to the distance defined in (20)hvitpschitz constant given by
diam (A*), that is,

T (i) — I (joo )| < diam (A™) p (i, joo) forall i, je € 2,
and hencdl is continuous;
(i) ifthe mapsH;, i = 0, 1, are injections and the no overlap property (21) holds, thidr bijective.

Theorem 1 is well known in the literature on fractals; for # freatment, a good reference is
Chapter IV in [1].

Note that, sinced;, are contractions for all, € {0,1} andk =0, ...,t, H;, is also a contraction,
and therefore it has a unique fixed point, which will be deddigfix (#;,). The following theorem
is due to Williams [13].

Theorem 2 The unique attractord* of the IFS{H,, Hy;p,1 — p} is the closure of the set of fixed
points of arbitrary finite compositiond;,, for all ¢ > 0, namely,

o0

A= fix(H,).

t=0i,e€X;

See [13] or [8] for general proofs.

Theorem 3 Suppose that the mag$;, : X — X, ¢ = 0, 1, are strictly monotone on some closed
interval X = [a, b] and constantg; exist such thab < ¢; < 1 and|H; (y) — H;(z)| < ¢; |y — z| for

all y, z € X andi = 0, 1, moreover assume that the no overlap property (21) holdenThe unique
attractor A* of the IFS{H,, Hy;p,1 — p} is totally disconnected and perfect, and therefore it is a
generalized (topological) Cantor set.

°Note that the no overlap condition (21) in this context isieajent to thestrong separation conditiodefined on p.
35in [4].
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A self-contained proof is reported in the Appendix. For agyathization of Theorem 3 see Theo-
rem 3.4 in [6].

The following section contains examples illustrating tb&erof the assumptions in Theorem 3.
All three main assumptions, no overlap, contractivity atmgtismonotonicity of the mapé/;s, seem
to be essential. Clearly, the role of no overlap is needede feoles” spreading during iterations
of operatorS?, a necessary requirement for the attractor to be a Cantoisgtpd he role of the other
two assumptions appears more subtle. Contractivity, besiseuring existence and uniqueness of the
attractorA* as stated in Proposition 4, causes the diameter of the cangoof each pre-fractal to
shrink fast enough so that enough space for the new appdaoiag to survive is left after iterates of
operatorS*. Strict monotonicity prevents such components to shriokfast so that the attractor can
have neither isolated points nor components which can recminected.

We conclude this section by applying Theorem 3 to the onesgrowth model discussed in
Sections 2 and 3. Note that strict monotonicity of the optipmdicy postulated by Proposition 1 (iii)
implies that the map&, andG, of the IFS describing the evolution of optimal output levdiough
time must be always strictly increasing; thus the only cbods required for the attractor of the model
to be a Cantor set are the no overlap property, discussed tlo&&; and contractivity of the maps
Gy and(G;.

Corollary 1 Assume that the mags, and G, satisfy the no overlap property (5) —i.e., either con-
dition (9) for the multiplicative shocks case, or conditid4) for the additive shocks case — and that
constanty; exist such thad < ¢; < 1 and|G; (y) — Gi(2)| < {l;ly —z| forall y,z € X andi =

0, 1. Then the attractord* of the IFS{G,, G1; p, 1 — p} associated to the stochastic process (4) is a
generalized (topological) Cantor set.

The goal of establishing sufficient conditions (on the ptives of the one-sector optimal growth
model) for the maps-, and G, to be contractions directly in terms of the parameter of ttwevth
model is the topic of a companion paper under preparation.

4.3 Examples

The aim of this section is to stress the role of strict monigionin Theorem 3. The following
examples show that when strict monotonicity is relaxed, dbeclusion of Theorem 3 no longer
holds. Indeed, under such relaxation, we are able to cariskamples of attractors which are either
purely isolated points or the union of non-trivial intersakven while the other assumptions, no
overlap and contractivity, are kept in place. Note that Ireahmples we assume that the mdps
are non-decreasing, that is, only strict monotonicity (oore generally, injectiveness), as required
by Theorem 3, is dropped. We shall us& maps in order to dispel any doubt that we might be
looking for pathological cases. Moreover, if the mags areC?, it is well known that the IFS
{Hy, Hy1;p,1 — p} can be obtained as the solution of some concave stochas@éerdy programming
problem (see [12]).

We shall assume thdf, and H, are contractions on some intervél= [a, b], that is, constant§
existsuch thab < ¢; < 1 and|H; (y) — H;(2)| < ¢; |y — z|forall y, z € X andi = 0, 1, and thatH,
and H, are only non-decreasing, that &; (v1) < H; (y2) whenevery; < y, fori = 0,1. The last
assumption allows us to restate the no overlap propertgiton (21), as follows:

H() (b) < H1 ((l) s

which will be assumed in all examples.
We start with an extreme example producing a trivial atoaof purely isolated points, followed
by a non trivial example again exhibiting an attractor ofglyisolated points.
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Example 1 Consider the following maps defined on some intejwal]:
Hy (y) = a, H, (y) =b.

These maps are clearty? and non-decreasing oX = [a,b]. Hy(b) = a < b = H, (a) and thus
there is no overlap and also contractivity is trivially ssfted. As it can be seen in figure 1(a), the
attractor of the IFS{Hy, Hy;p,1 — p} on X = [a,b] is A* = {a,b}, which is a set of two isolated
points and, clearly, it is not of the Cantor type, as is totaligconnected but not perfect. The gt

is invariant for the IFS and is produced after the first itecat of the stochastic process (16).

Example 2 Consider the following maps:

(0 for0 <y <1/4
(72/5) v — (54/5) y* + (27/10) y — 9/40 for1/4<y<1/3
Ho(y) =< —(36/5)y® + (54/5) y2 — (9/2) y + 23/40 for1/3 <y <2/3
(72/5) y® — (162/5) y2 + (243/10) y — 233/40  for2/3 < y < 3/4

| 1/4 for3/4 <y <1,

( 3/4 for0 <y <1/4
(72/5) 4 — (54/5) y* + (27/10) y + 21/40 for1/4 <y<1/3
Hy(y) =< —(36/5)y*+ (54/5)y* — (9/2) y + 53/40 for1/3<y<2/3
(72/5) y® — (162/5) y2 + (243/10) y — 203/40  for2/3 < y < 3/4

L1 for3/4 <y <1.

It can be shown that these piecewise maps@@teand non-decreasing oX’ = [0,1]. Hy (1) =
1/4 < 3/4 = H, (0) and thus there is no overlap. Contractivity can be easily kbddy computing
derivatives orny = 1/2, which is the point where both maps are steepest:

! (1/2) = H. (1/2) = 9/10 < 1

and thus they are both contractions. As it can be seen in fi{nk the attractor of the IF$Hy, Hy;
p,1—plonX =10,1]is A* = {0,1/4,3/4, 1}, which is a set of four isolated points and, clearly, it
is not of the Cantor type, as is totally disconnected but ndgge The setd* is invariant for the IFS
and is produced just after two iterations of the stochastarpss (16).

The next example shows how it is possible to construct an IR an attractor which is the
union of two non-trivial intervals. Such an attractor is déély a perfect set, but it is not totally
disconnected.

Example 3 Consider the following maps:

[ (225/8) 1° for0 <y <1/9
—(75/4) y® + (75/8) y* — (5/8) y + 1/72 for1/15 <y < 4/15
(225/8) v — (225/8) y? + (75/8) y — 7/8 for4/15 <y <1/3
Ho(y) =4 1/6 for1/3 <y <2/3
(225/8) v — (225/8) y? + (75/2) y — 49/6 for2/3 <y < 11/15
—(75/4) y> + (375/8) y* — (305/8) y + 743/72  for 11/15 <y < 14/15
[ (225/8) y® — (675/8) y*> + (675/8)y — 667/24  for 14/15 <y < 1,
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[ (225/8) y> +2/3 for0 <y<1/9

—(75/4)y® + (75/8) y* — (5/8) y + 49/72 for1/15 <y <4/15

(225/8) y — (225/8) 32 + (75/8) y — 5/24 ford4/15 <y <1/3
Hy(y)=<} 1/6 for1/3 <y <2/3

(225/8) y® — (225/8) y* + (75/2) y — 15/2 for2/3 <y <11/15

—(75/4) y* + (375/8) y* — (305/8) y + 791/72  for 11/15 <y < 14/15
| (225/8) y® — (675/8) y* + (675/8)y — 217/8 for14/15 <y < 1.

It can be checked that these piecewise mapsC&r@nd non-decreasing oX = [0,1]. Hy (1) =
1/3 < 2/3 = H, (0) and thus there is no overlap. They are contractions, as thefivatives are
bounded by their values an=1/6:

H}(1/6) = H. (1/6) = 15/16 < 1.

Figure 2 shows that the attractor of the IS4y, Hy;p,1 —p} on X = [0,1] is A* = [0,1/3]U
[2/3, 1], that is, the disjoint union of two closed non-empty intesvdlhis is not a Cantor type set, as
it is perfect but not totally disconnected. The détis invariant for the IFS and is produced just after
the first iteration of the stochastic process (16).

These examples show how attractors which are not of the Céypercan be constructed by
relaxing strict monotonicity of the mapg;s: the trick to obtain an attractor of purely isolated points
versus an attractor which is the union of closed non-empgnals is to choose maps which are flat
in some appropriate subset of the interXak [a, b].

Remark 5 It is important to stress that attractors of the kind desedhbn the previous examples,
which are not of the Cantor type, are ruled out in the one-secfiimal growth model of Section 2
by Corollary 1. In other words, the main finding of the presentknisrthat whenever the no overlap
property holds and the maps representing the optimal paieycontractions the attractor of the
stochastic one-sector growth model is necessarily a geizedCantor set (since the optimal policy
generates an IFS with strictly increasing maps).

5 Concluding Remarks

The main results of this work, Theorem 3 and Corollary 1, mevsufficient conditions on the
stochastic one-sector growth model described in Sectiorti2ad the invariant probability distribution
to which the model converges in the long run is supported apaldgical Cantor set. Proposition 1
(iif) and Propositions 2 and 3, provide conditions on theapaeters of the model for two of the three
sufficient conditions of Theorem 3 to hold: monotonicity amw overlap property. If, in addition,
the maps of the iterated function system (4) are contrastithen Corollary 1 holds. The problem of
finding conditions in terms of the parameters of the modealhgbat the maps describing the optimal
policy turn out to be contractions (thus filling the gap lefit by the last condition needed to apply
Theorem 3), is addressed in ongoing research by the autbdrs,reported at a future date.

Appendix

Proof of Lemma 1. Clearly, (7) follows immediately from (6) by strict monotaeity of ~» and since
a is a fixed point forGy, that is,a = G (a) = gh (v (a)).
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To prove (6), take any fixed point for the mapG,, ¥ = G, (y). We calculate the stochastic
Ramsey-Euler equation (3) [Proposition 1, (iv)at ¥:

u' (g () = 6 {pu' (9 (Go (1)) ¢b" (v (1)) + (1 = p) u’ (g (G2 (1) 1" (v (1))}
> opu’ (g (Go (9))) ¢l (7 (1))
= opu’ (9 (9)) ¢h' (v (1)),

where the last equality holds singe= G, (7). Thus, we have

1

%>h/( v (Y)) -

By applying the decreasing functioR), to both sides we get

F@%)<ww,

and sincej is an arbitrary fixed point for the mag,, inequality (6) is establishes.

Proof of Proposition 2. SinceG; (a) = (a/q) and G, (b)) = ¢G1 (b) = ¢b, the no overlap
condition (5) is equivalent to

@<g. (22)

As b < k, a sufficient condition for (22) to hold igt < a/q, which, sincex > 6,,, leads immediately
to condition (9)m

Proof of Lemma 2. As in the proof of Lemma 1, (12) follows immediately from (1dy strict
monotonicity ofh and sincex is a fixed point forG,, that is,a = Gy (a) = h (v (a)). For any fixed
pointy of the mapGy, y = G, (), through a similar use of the stochastic Ramsey-Euler enué3)
as in the proof of Lemma 1, we easily obtain

Lo weam).

op
By applying the decreasing functioRf, to both sides we get

F($><7w%

and sincey is an arbitrary fixed point for the mag,, inequality (11) is establishesl.

Proof of Proposition 3. SinceGy (b) = G (b) — ¢ = b — g andG, (a) = a + ¢, the no overlap
condition (5) is equivalent to
b—a<2q. (23)

Asb < k anda > 6,, a sufficient condition for (23) i — 0, < 2¢, which, by substituting; =
k—h(k),yields (14)m

Proof of Theorem 3. SinceS (X) C X, we can use Proposition 4 (ii) to construct a mono-
tonically decreasing sequence of sets converging‘to the Hausdorff distance starting from =
[a,b]: denotingA4; = S*(X) fort > 0, we haveX = Ay 2 A; D A, D --- D A*. The setsd, are
calledpre-fractals as they provide increasingly better estimations of theaetibr A* ast becomes
larger. Note that, if the starting set i, = X = [a,b], all pre-fractalsA, are the union of closed
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intervals, which are calledomponentsf the pre-fractald;. Clearly each component is a set of the
type H;, (X) for some sequence € ;. Since the mapé/; are strictly monotone — and thus they
are injections — and the no overlap property (21) holds, for & 0 the pre-fractald, is the union of
2! non-empty closed disjoint intervalst, = U;,cx, H;, (X) with H;, (X) N H;, (X) = @ for i; # ji.
Moreover Theorem 1 (iii) applies and, for any two poigts € A* such thaty # z, we can write
y =1I(io) = N2 H;, (X) andz =11 (joo) = N2y H;j, (X) With i, joo € ¥ andis # jo. But this
implies that there i® < t < oo such thafi, # j, with y € H;, (X) andz € Hj, (X). SinceH;, (X)
and H;, (X) are closed and disjointd* C A,, andy, z are arbitrary, this is enough to establish that
A* is totally disconnected.

To show thatd* is also perfect we shall use Theorem 2. We must show that @eenyy € A* is
the limit of some sequence of (distinct) pointsdn. Lety € A*; then, by Theorem 2, either g)=
fix (H;,) for somei, € 3, ¢t > 0, or b) itis the limit of some sequence of such points; limy_, . Yk
where, for allk, v, = fix (H;,) for somei, € %4, t > 0. Let us consider case (a) and assume ghat
fix (H;,) for somei; € ¥, t > 0; thatis,y = H;, (y). Now choose € {0, 1} so that: = fix (H;) and
z # y; since there are two distinct maps andH; in the IFS, such choice is always possible. Clearly,
by Theorem 2; € A*. Define the sequenag = (H;,)" (z), where(H;,)* = H;,o0 --- o H;, denotes
the k-fold composition of the map/;,. As H;, mapsA* into itself andz € A*, y, € A* for all k.
SinceH;, is a contraction and is strictly monotone, s, )", and thus the sequengg constructed
so far converges tg and contains distinct elements At for all k&; hencey is an accumulation point
of A*. As far as case (b) is considered, note that in this gase A* for all £; thusy turns out to be
an accumulation point oft* by definition, and the proof is completa
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FIGURE 1: (a) Hyp andH; as in Example 1; (bJ{, andH; as in Example 2.
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FIGURE 2: Hy andH; as in Example 3.
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