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Cantor Type Attractors in Stochastic Growth Models

Tapan Mitra∗ Fabio Privileggi†

Abstract

We study a one-sector stochastic optimal growth model where production is affected by a
shock taking one of two values. Such exogenous shock may enter multiplicatively or additively. A
result is presented which provides sufficient conditions to ensure that the attractor of the iterated
function system (IFS) representing the optimal policy, is a generalized topological Cantor set.
To indicate the role of the strict monotonicity condition on the IFS in this result, examples of
attractors, which are not of the Cantor type, are constructed with iterated function systems, whose
maps are contractions and satisfy a no overlap property.
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1 Introduction

In this paper we provide a further generalization of the framework introduced by Mitra and Privileggi
[11], where a stochastic one-sector discounted optimal growth model with an iso-elastic utility func-
tion, and a Cobb-Douglas production function affected by a multiplicative random exogenous shock
taking one of two values, was investigated. This, in turn, was an expansion of the specific exam-
ple thoroughly studied in Mitra, Montrucchio and Privileggi [10], where utility was assumed to be
logarithmic.

Here, the general setting of Brock and Mirman [3] is considered (see also [9]): both the utility
function and the production function are any increasing concave twice differentiable functions satis-
fying the standard assumptions of neoclassical discountedoptimal growth models. Two specifications
of the model are considered: the case in which the random shocks affect production multiplicatively,
and the case in which random shocks are additive. The assumption of a discrete random variable
taking one of two values to describe the uncertainty of the model is maintained as in [11]. In such
a setting, suitable sufficient conditions on the parametersof the model under which the invariant
distribution is supported on a generalized Cantor set are established.

The paper is organized in two main parts. In the first part, after finding a lower bound for the
largest fixed point of the lower map of the Iterated Function System (IFS) generated by the optimal
policy, we establish a sufficient condition for the crucialno overlap propertyof the IFS, which in turn
is a necessary condition to obtain an attractor of the IFS, that is a stable invariant set of the stochastic
process of optimal output, with the features of a generalized topological Cantor set.

In the second part we study topological properties of the attractor of the IFS describing the optimal
dynamics. We first define thegeneralized topological Cantor set(a set which is totally disconnected
and contains no isolated points) as the attractor of an IFS with nonlinear maps, as opposed to the well
known linear “middle-α” Cantor setobtained as the limit of iterations of linear maps. Then, we use
the general theory of IFS to establish that whenever the no overlap property holds and the maps of the
IFS are strictly monotone and contractive, the attractor ofthe IFS is a generalized topological Cantor
set. This result applies directly to the findings of the first part of the paper, thus yielding ranges
for the values of the parameters of our stochastic one-sector growth model such that its invariant
distribution is supported on a generalized topological Cantor set, provided that the maps of the IFS
are contractions.

A section of the second part is devoted to construct counterexamples that test robustness of the
main result. We focus on the essential role played by strict monotonicity: whenever it is relaxed,
while the no overlap property is kept in place and the maps arecontractions, it becomes straightfor-
ward to construct attractors which contain isolated pointsor non-trivial intervals, and thus cannot be
topological Cantor sets.

The outline of the paper is as follows. Section 2 contains a description and basic properties
of the model with the assumptions that hold throughout all the subsequent sections. Section 3 is
concerned with the no overlap property of the maps constituting the optimal IFS: sufficient conditions
for the no overlap property in terms of the parameters of the model are established, both for the
multiplicative shocks and for the additive shocks cases. InSection 4 the notion of topological Cantor
set is discussed and the main result, establishing conditions under which such a set is the attractor
of the IFS describing the optimal dynamics of our growth model, is presented. Some examples of
attractors which are not of the Cantor type are illustrated inSection 4.3. Finally, Section 5 reports
some concluding remarks. All proofs are gathered in the Appendix.
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2 Preliminaries

We consider the standard model of optimal growth under uncertainty as presented in [3] and [9]: the
production functionf (x, r) depends on the amount of capitalx employed and on some exogenous
shockr which is a random variable taking one of two values,i.e., r ∈ {r0, r1}, r0 < r1, wherer0
occurs with probabilityp ∈ (0, 1) andr1 with probability 1 − p, independently through time. We
shall study two specifications of the production function: one with multiplicative shocks and one with
additive shocks. So, there is a function,h : R+ → R+, such thatf (x, r) = rh (x) in the first case and
f (x, r) = h (x) + r in the second, for(x, r) ∈ R+ × {r0, r1}. Both the production function,h, and
the utility function,u, are continuous onR+, and areC2 functions onR++ satisfying the following
standard assumptions:

h (0) = 0, h′ (·) > 0, h′′ (·) < 0, lim
x→0+

h′ (x) = +∞, lim
x→+∞

h′ (x) = 0, (1)

u′ (·) > 0, u′′ (·) < 0, lim
x→0+

u′ (x) = +∞. (2)

Under (1), there is a unique numberk > 0 such thath (k) = k, h (x) > k for all 0 ≤ x < k and
h (x) < k for all x > k. Thus, a closed interval of the form[0, kr1 ] can be taken as the state space
for our model. Thus, the “primitives” of our model are the functionsh andu, the valuesr0, r1, the
probabilityp and the discount factorδ ∈ (0, 1).

One can apply the standard theory of stochastic dynamic programming to obtain an (optimal)
value function,V : R+ → R+ and two (optimal) policy functions,g : R+ → R+ andγ : R+ → R+,
which we will interpret as the consumption and the investment functions respectively. That is, given
any output level,y ≥ 0, the optimal consumption out of this output is given byg (y), while the optimal
input choice (for production in the next period) is thenγ (y) = y − g (y). In both specifications for
the exogenous shocks (multiplicative and additive), we denote f (γ (y) , r0) by G0 (y), which gives
the output obtained in the next period whenr takes the valuer0, andf (γ (y) , r1) by G1 (y), which
gives the output obtained in the next period whenr takes the valuer1. The inverse ofh′ will play an
important role in our analysis, and will be denoted byF .

Following [3] and [9], one can establish several useful properties of the value and policy func-
tions. We summarize these results (without proofs) in the following Proposition, where we denote
(∂f/∂x) (x, r) by fx (x, r).

Proposition 1 The value function,V , and the policy function,g, satisfy the following properties:

(i) V is concave onR+, and continuous onR++;

(ii) g is continuous onR+ and0 < g (y) < y for y > 0;

(iii) g (y) andγ (y) are both strictly increasing iny onR+;

(iv) for y > 0, we have

u′ (g (y)) = δ {pu′ (g (G0 (y))) fx (γ (y) , r0) + (1− p) u′ (g (G1 (y))) fx (γ (y) , r1)} . (3)

The optimal policy function leads to the stochastic process:

yt+1 =

{

G0(yt) with probabilityp
G1(yt) with probability1− p

for t ≥ 0 (4)

Alternately, one might say that the optimal policy functionleads to an iterated function system (IFS)
{G0, G1; p, 1− p}. It is known (from [3]), that there is a unique invariant distribution, µ, of the
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Markov process described by (4), and the distribution of optimal output at datet, call it µt, converges
weakly toµ.1 We are principally interested in the geometric properties of the support ofµ.

It can be checked that the functionsG0 andG1 have positive fixed points, and all the fixed points
are less thankr1 . Denote bya the largest fixed point ofG0, and byb the smallest fixed point of
G1. Following [3], one can establish thata < b. The interval[a, b] is an invariant stable set of the
stochastic process (4). In particular, the support ofµ is contained in[a, b]. Consequently, in studying
the support ofµ, it is enough to concentrate on the stochastic process (4), with initial output,y ∈ [a, b].
Equivalently, one need only study the IFS{G0, G1; p, 1− p} on the state spaceX = [a, b].

3 The No Overlap Property

Let us examine some elementary features of the IFS{G0, G1; p, 1− p} on the state spaceX = [a, b].
First, we look at the functionG0. We haveG0 (a) = a; and, fory ∈ (a, b], we haveG0 (y) < y, so
the graph of the map lies below the450 line (except ata). FurtherG0 (y) increases withy, reaching
G0 (b) < G1 (b) = b at y = b. Next, we look at the functionG1. Clearly,G1 (a) > G0(a) = a; and
for all y ∈ [a, b), we must haveG1 (y) > y, so the graph of the map lies above the450 line (except at
b). Further,G1 (y) increases withy, reachingG1 (b) = b aty = b.

We say that the two mapsG0 andG1 do not overlapif:

G0 (b) < G1 (a) (5)

so that the maximum of theG0 function is less than the minimum of theG1 function on the state
spaceX = [a, b].

We want to find conditions on the primitives of the model, specifically, p, δ, r0, r1, which ensure
the no overlap property (5). We shall obtain similar conditions for the two cases – multiplicative
shocks and additive shocks – which are treated separately.

3.1 Multiplicative Shocks

Let the production function have the formf (x, r) = rh (x), with h satisfying (1), and let the set of
values of the random variabler be{r0, r1} = {q, 1}, whereq ∈ (0, 1). We interpret the value1 of r to
be the “normal” state, withq representing a downward production shock, occurring with probability
p ∈ (0, 1). Therefore, we can re-label the fixed point ofh as the numberkr1 = k such thath (k) = k.
The two maps of the IFS are in this caseG0 (y) = qh (γ (y)) andG1 (y) = h (γ (y)).

We start by establishing a lower bound for the fixed pointa of the (lower) mapG0 which depends
on the parameters of the model. Recall thatF denotes the inverse ofh′.

Lemma 1 The following inequalities hold true:

γ (a) > F

(

1

δpq

)

(6)

and

a > qh

(

F

(

1

δpq

))

. (7)

The proof is reported in the Appendix.

1For an alternate and simpler approach to this result, see [2].
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Remark 1

(i) It is immediately seen that Lemma 1 holds under more general assumptions on the stochastic
shocks. In particular, it holds under the assumptions of Lemmas 3.1 and 3.2 in [3]; that is,
for any random variabler on some interval[r0, r1], with r0 > 0, provided thatPr (r0) > 0.
Moreover it holds for any production functionf (x, r) with random shocks that not necessarily
enter multiplicatively, but such thatf (x, ·) is non-decreasing andf (·, r) satisfies conditions
similar to (1).

(ii) If, for example,h (x) has the Cobb-Douglas form, that is,h (x) = x1−α/ (1− α) for x ≥

0, whereα ∈ (0, 1), then conditions (6) and (7) becomeγ (a) > [1/ (δpq)]−1/α and a >
[

q1/α (δp)1/α−1
]

/ (1− α) respectively.

It is convenient to label the lower bound in (7) as follows:

θm = qh

(

F

(

1

δpq

))

. (8)

Note that our proof of Lemma 1 shows thatθm constitutes a lower bound for all fixed points ofG0;
specifically,a > θm.

Lemma 1 is useful in constructing a sufficient condition for the no overlap property 5 by means
of the parameters of the model.

Proposition 2 Suppose the following condition is satisfied:

θm
k

≥ q2, (9)

wherek is such thatk = h (k) andθm is defined in (8). Then the IFS{G0, G1; p, 1 − p} on the state
spaceX = [a, b] has the no overlap property (5).

The proof is reported in the Appendix.

Remark 2

(i) Note that the no overlap property as stated in (9) does not depend on the utility functionu.

(ii) If h (x) has the Cobb-Douglas form, that is,h (x) = x1−α/ (1− α) for x ≥ 0, whereα ∈ (0, 1),
then condition (9) becomes

(δpq)1−α > [(1− α) kq]α . (10)

Sinceh (k) = k, we havek1−α/ (1− α) = k, that is,(1− α)−1 = kα. By using this in (10) we
easily obtain condition (5) in [11]:

q2α−1 < [δp (1− α)]1−α .
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3.2 Additive Shocks

We turn our attention now to a production function which has the formf (x, r) = h (x) + r, with h
satisfying (1); moreover, let the set of values of the randomvariabler be {r0, r1} = {0, q}, where
q > 0. We may interpret the value0 of r to be the “normal” state, whileq represents some positive
production shock, occurring with probability1−p. The two maps of the IFS are in this caseG0 (y) =
h (γ (y)) andG1 (y) =G0 (y)+ q. Let k̄ be the unique fixed point of the maps(x) = h(x)+ q, so that
we haveh(k̄) + q = k̄. Then, we can setkr1 = k̄. Note that̄k > k+ q, wherek is the unique positive
fixed point ofh. It is also straightforward to show [e.g., by implicit differentiation using condition
(1)] that k̄ increases asq increases.

A lower bound for the fixed pointa of the (lower) mapG0 in this case is defined by the following
lemma.

Lemma 2 The following inequalities hold true:

γ (a) > F

(

1

δp

)

(11)

and

a > h

(

F

(

1

δp

))

. (12)

The proof is reported in the Appendix.

Remark 3 Unlike the case where shocks enter production multiplicatively, when the exogenous shock
is additive the lower bound for the fixed pointa of the (lower) mapG0 does not depend on the shock
q itself.

Let us label the lower bound in (7) as follows,

θa = h

(

F

(

1

δp

))

, (13)

and state a sufficient condition for the no overlap property (5) to hold for the additive shocks case.

Proposition 3 Suppose the following condition is satisfied:

θa ≥ 2h
(

k̄
)

− k̄, (14)

wherek̄ is such that̄k = h
(

k̄
)

+ q andθa is defined in (13). Then the IFS{G0, G1; p, 1 − p} on the
state spaceX = [a, b] has the no overlap property (5).

The proof is reported in the Appendix.

Remark 4

(i) Again the no overlap property as stated in (14) does not depend on the utility functionu.

(ii) The case where production is affected by an additive shock allows for a more striking interpreta-
tion than the previous case with multiplicative shocks. The left term in (14) does not depend on
q, while the right term does, sincēk is a strictly increasing function ofq; but, under assumption
(1), the right term in (14) diverges to−∞ ask̄ → +∞. Therefore, condition (14), and thus the
no overlap property (5), holds whenever the shockq is large enough. Note that condition (9)
does not allow for a similar interpretation as in that case also the lower boundθm does depend
on q.
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4 Topological Structure of the Attractor of a IFS

In the previous sections we provided enough information on the IFS{G0, G1; p, 1− p} defined on
the spaceX = [a, b] so that the standard theory of IFS can be applied (See,e.g., [8], [1], [4] and [5]).
In view of the examples of Section 4.3, we slightly generalize the setting by considering any pair of
continuous mapsH0 andH1 defined on some compact subsetX of the real line; that is, we shall study
a generic IFS{H0, H1; p, 1− p}, abstracting from the mapsG0 andG1 discussed so far.

4.1 A Well Known Result on IFS

Let X ⊂ R be a compact set. LetB (X) denote the sigma-algebra of Borel measurable subsets ofX
andP (X) the space of probability measures onB (X). Recall that theBarnsley operatorS : X → X
is defined by

S (E) = H0(E) ∪H1(E), for E ⊆ X, (15)

and theMarkov operatorM : P (X) → P (X) is defined by

Mµ (B) = pµ
(

H−1

0 (B)
)

+ (1− p)µ
(

H−1

1 (B)
)

, for µ ∈ P (X) , andB ∈ B (X) ,

whereH−1

0 (B) andH−1

1 (B) denote the counter-image sets of the setB through the mapsH0 andH1

respectively. OperatorM describes the evolution of probabilities under the stochastic process

yt+1 = Hzt(yt), (16)

wherezt are i.i.d. over{0, 1} with distribution{p, 1− p} for all t ≥ 0. We shall denote the iterates of
such operators bySt (E) = S (St−1 (E)) andM t (µ) = M (M t−1 (µ) ()) for all t ≥ 1, with S0 (E) =
E andM0 (µ) = µ.

Recall that theHausdorff distancedH is defined over the class of all non-empty compact sets in
X, K (X), by

dH (A,B) = inf {δ : A ⊂ Bδ andB ⊂ Aδ} , for A,B ∈ K (X) , (17)

whereAδ andBδ denote theδ-neighborhoods(δ-parallel bodies) of the setsA andB respectively,
that is,

Aδ = {x ∈ X : |x− a| < δ for somea ∈ A}

is the set of points within distanceδ of A. See,e.g., [4] and [5] for more details.
In the next proposition are reported (without proof) the main results regarding the attractor and

the unique invariant distribution of the IFS{H0, H1; p, 1− p} on the spaceX ⊂ R induced by the
stochastic process (16) when the mapsH0 andH1 arecontractions.

Proposition 4 If constantsℓi exist such that0 < ℓi < 1 and |Hi (y)−Hi(z)| ≤ ℓi |y − z| for all
y, z ∈ X, i = 0, 1, then the IFS{H0, H1; p, 1− p} satisfies the following properties:

(i) there is a unique (invariant) compact setA∗ ⊆ X such thatS (A∗) = H0(A
∗) ∪H1(A

∗) = A∗;

(ii) for any compact setA0 such thatS (A0) ⊆ A0, denotingAt = St (A0) for t ≥ 1, we haveA0 ⊇
A1 ⊇ A2 ⊇ · · · ⊇ A∗;

(iii) A∗ is the support of the unique (invariant) probability distribution,µ∗ ∈ P (X), satisfying

µ∗ (B) = pµ∗
(

H−1

0 (B)
)

+ (1− p)µ∗
(

H−1

1 (B)
)

, for all B ∈ B (X) ;
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(iv) for µ ∈ P (X), denotingµt = M t(µ) for t ≥ 1, µt converges weakly toµ∗.

Proposition 4 (ii) states that the iterates of the Barnsley operator,St, converge in the Hausdorff
distance to the unique setA∗, and that convergence is monotonically decreasing whenever the start-
ing setA0 is sufficiently large to contain the union of the images of itself through the mapsH0, H1:
H0(A0)∪H1(A0) ⊆ A0. Often, a suitable starting setA0 to construct a decreasing sequence converg-
ing toA∗ is the spaceX itself.

We shall callA∗ theattractorof the IFS{H0, H1; p, 1− p} on the spaceX. For the IFS{G0, G1;
p, 1− p} A∗ is thus the support of the invariant distributionµ∗ to which the one-sector growth model
discussed in the previous sections converges asymptotically.

4.2 Generalized Cantor Type Attractors

It is well known that ifX = [0, 1] and the mapsH0 andH1 of the IFS are linear with slopem,
0 < m < 1/2, the attractorA∗ of the IFS is a “middle-α” Cantor set, whereα = 1− 2m. This set is
obtained by removing the open middle interval of length0 < α < 1 from [0, 1] at the first step, then
removing the open middleα-proportion from the two disjoint closed intervals remaining after the first
step, and continuing the process by removing at each stept the open middleα-proportion from all the
2t disjoint closed intervals remaining after stept− 1, ast → +∞ (see [10] for a thorough discussion
of this example).

The maps of the IFS{G0, G1; p, 1− p} characterizing the model discussed in the previous sec-
tions are clearly nonlinear. The natural question that arises is thus under what conditions such IFS
has an attractor that resembles the typical features of a nonlinear Cantor type set. The answer to this
question is not obvious as long as nonlinear maps are involved, as it will be illustrated by the examples
in Section 4.3.

First we need to make clear what are the main features characterizing a nonlinear Cantor type
set. We shall adopt a sufficiently general definition of Cantorset based on topological properties.
Recall that a setE ⊆ X, where(X, d) is a metric space, is said to betotally disconnectedif its
only connected subsets are one-point sets, that is, for any two distinct pointsx, y in E, there are two
non-empty open disjoint setsU andV such thatx ∈ U , y ∈ V and(U ∩ E) ∪ (V ∩ E) = E; also, a
setE ⊆ X is said to beperfectif it is equal to the set of its accumulation points, that is, it is a closed
set which contains no isolated points.

Definition 1 We shall say that a setC ⊂ R is a generalized (topological) Cantor set on the real line
if it is totally disconnectedandperfect.

This definition is fully justified,e.g., in view of Chapter 2 in [7], where it is established that
any compact metric space that is totally disconnected and perfect is homeomorphic to the classical
“middle-third” Cantor set.

Our objective now is to obtain a set of sufficient conditions on the iterated function system
{H0, H1; p, 1 − p} under which the IFS has a unique attractor which is a generalized (topological)
Cantor set. This result (stated in Theorem 3 below) can be obtained from the mathematical literature
on iterated function systems, and our discussion should be viewed as primarily expository. However,
we should note that Theorem 3 is stated in a particularly convenient form for applications (as is clear
from our application of it to the optimal growth context in Corollary 1), and the self-contained proof
of it (given in the appendix) is both simple and instructive.The literature on IFS is rather large, but
we have not seen a result, exactly in the form of Theorem 3, stated and proved in this literature.

In the economics literature, the attractor of the IFS, generated by the optimal growth model,
represents the support of the outputs in a stochastic steadystate. Thus, it is important to understand
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the nature of this attractor. The study of this topic is relatively new, although the existence, uniqueness
and stability of the stochastic steady state have been discussed extensively in the literature on optimal
growth under uncertainty. A Cantor like attractor is particularly interesting because it suggests that the
invariant distribution may have its support on a rather sparse set, while many ranges of intermediate
output levels would (almost) never be observed.

Let diam (E) = sup {|y − z| : y, z ∈ E} denote thediameterof a setE ⊆ X. Recall that the
closureof a setE ⊆ X, denoted byE, is the set containing all accumulation points ofE, that is,
points that are the limit of some sequence of points inE. We shall denote the composition of maps
f0 : X → Y andf1 : Y → Z by a functionf0◦f1 : X → Z defined as(f0 ◦ f1) (x) = f0 (f1 (x)); this
notation extends to the composition of any finite number of maps in the obvious way. For anyt ≥ 0
let us denote at-sequence of zeros and ones byit = (i0, i1, . . . , it), whereik ∈ {0, 1} for k = 0, . . . , t,
and byΣt the set of all such sequences:Σt = {(i0, i1, . . . , it) : ik ∈ {0, 1} , k = 0, . . . , t}. Similarly,
let i∞ = (i0, i1, . . .) denote an infinite sequence of zeros and ones, andΣ = {(i0, i1, . . .) : it ∈ {0, 1} ,
t ≥ 0} denote the set of all such sequences. With this notation at hand, we can use the shorthand

Hit = Hi0 ◦Hi1 ◦ · · · ◦Hit

to denote the composition of thet + 1 mapsHi0 , Hi1 , . . . , Hit for a specific sequence of zeros and
onesit = (i0, i1, . . . , it) ∈ Σt.

We shall now see that the setΣ constitutes the natural environment for codifying each element
in the attractorA∗ (see Chapter IV in [1] for a more exhaustive treatment). Take any compact set
K ⊆ X such thatS (K) ⊆ K; then, by Proposition 4 (ii),A∗ = ∩∞

t=0S
t (K). On the other hand, by

definition of operatorS, St (K) = ∪it∈Σt
Hit (K), and thus

A∗ =
∞
⋂

t=0

⋃

it∈Σt

Hit (K) . (18)

Note that, sinceA∗ is unique, the right hand side in (18) must be independent ofK. By definition
of operatorS and by Proposition 4 (ii),Hit (K) ⊇ Hit+1

(K) for all it ∈ Σt andit+1 ∈ Σt+1, hence
Hit (K) is a decreasing sequence and has a limit ast → ∞. Let ℓ = max {ℓ0, ℓ1}, then for allt ≥ 0
and for allit ∈ Σt, it+1 ∈ Σt+1, diam

(

Hit+1
(K)

)

≤ ℓ diam (Hit (K)) < diam (Hit (K)), and thus
the diameter of all setsHit (K) vanishes ast → ∞; since the setsHit (K) are compact for allt ≥ 0,
the limit of the sequenceHit (K) must consist of a single point:

y =
∞
⋂

t=0

Hit (K) ∈ A∗,

which again must be independent ofK. Through this construction we can define a map

Π : Σ → A∗ (19)

associating with each element of the setΣ [that is, each sequence of zeros and onesi∞ = (i0, i1, . . .)],
some point of the attractorA∗.

Theorem 1 reports some useful properties of the map (19). Forthis purpose, we need to introduce
a distanceρ for the setΣ so that we can work on a metric space. For any pair of sequencesi∞, j∞ ∈ Σ,
let

ρ (i∞, j∞) = ℓi0ℓi1 · · · ℓiϕ , (20)

whereik ∈ {0, 1} for k = 0, . . . , ϕ, andϕ = max {t : it = jt} is the largestt such that the firstt
elements in the sequencesi∞ andj∞ coincide. If we agree to setρ (i∞, j∞) = 1 wheni0 6= j0 and
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ρ (i∞, j∞) = 0 if i∞ = j∞, then it can be easily shown thatρ satisfies the properties of a distance.
The metric space(Σ, ρ) is often calledcoding space.

Finally, we generalize property (5) discussed in Section 3 by saying that the mapsHi : X → X,
i = 0, 1, have the no overlap property2 if

max
x∈X

H0 (x) < min
x∈X

H1 (x) . (21)

Theorem 1 The mapΠ : Σ → A∗ defined by

y = Π(i∞) =
∞
⋂

t=0

Hit (K)

for some compact setK ⊆ X such thatS (K) ⊆ K, satisfies the following properties:

(i) it is independent of the setK and is onto;

(ii) it is Lipschitz with respect to the distance defined in (20), with Lipschitz constant given by
diam (A∗), that is,

|Π(i∞)− Π(j∞)| ≤ diam (A∗) ρ (i∞, j∞) , for all i∞, j∞ ∈ Σ,

and henceΠ is continuous;

(iii) if the mapsHi, i = 0, 1, are injections and the no overlap property (21) holds, thenΠ is bijective.

Theorem 1 is well known in the literature on fractals; for a full treatment, a good reference is
Chapter IV in [1].

Note that, sinceHik are contractions for allik ∈ {0, 1} andk = 0, . . . , t, Hit is also a contraction,
and therefore it has a unique fixed point, which will be denoted byfix (Hit). The following theorem
is due to Williams [13].

Theorem 2 The unique attractorA∗ of the IFS{H0, H1; p, 1− p} is the closure of the set of fixed
points of arbitrary finite compositionsHit , for all t ≥ 0, namely,

A∗ =
∞
⋃

t=0

⋃

it∈Σt

fix (Hit).

See [13] or [8] for general proofs.

Theorem 3 Suppose that the mapsHi : X → X, i = 0, 1, are strictly monotone on some closed
intervalX = [a, b] and constantsℓi exist such that0 < ℓi < 1 and |Hi (y)−Hi(z)| ≤ ℓi |y − z| for
all y, z ∈ X andi = 0, 1, moreover assume that the no overlap property (21) holds. Then the unique
attractor A∗ of the IFS{H0, H1; p, 1− p} is totally disconnected and perfect, and therefore it is a
generalized (topological) Cantor set.

2Note that the no overlap condition (21) in this context is equivalent to thestrong separation conditiondefined on p.
35 in [4].
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A self-contained proof is reported in the Appendix. For a generalization of Theorem 3 see Theo-
rem 3.4 in [6].

The following section contains examples illustrating the role of the assumptions in Theorem 3.
All three main assumptions, no overlap, contractivity and strict monotonicity of the mapsHis, seem
to be essential. Clearly, the role of no overlap is needed to have “holes” spreading during iterations
of operatorSt, a necessary requirement for the attractor to be a Cantor typeset. The role of the other
two assumptions appears more subtle. Contractivity, besides assuring existence and uniqueness of the
attractorA∗ as stated in Proposition 4, causes the diameter of the components of each pre-fractal to
shrink fast enough so that enough space for the new appearingholes to survive is left after iterates of
operatorSt. Strict monotonicity prevents such components to shrink too fast so that the attractor can
have neither isolated points nor components which can remain connected.

We conclude this section by applying Theorem 3 to the one-sector growth model discussed in
Sections 2 and 3. Note that strict monotonicity of the optimal policy postulated by Proposition 1 (iii)
implies that the mapsG0 andG1 of the IFS describing the evolution of optimal output levelsthrough
time must be always strictly increasing; thus the only conditions required for the attractor of the model
to be a Cantor set are the no overlap property, discussed in Section 3, and contractivity of the maps
G0 andG1.

Corollary 1 Assume that the mapsG0 andG1 satisfy the no overlap property (5) – i.e., either con-
dition (9) for the multiplicative shocks case, or condition(14) for the additive shocks case – and that
constantsℓi exist such that0 < ℓi < 1 and |Gi (y)−Gi(z)| ≤ ℓi |y − z| for all y, z ∈ X and i =
0, 1. Then the attractorA∗ of the IFS{G0, G1; p, 1− p} associated to the stochastic process (4) is a
generalized (topological) Cantor set.

The goal of establishing sufficient conditions (on the primitives of the one-sector optimal growth
model) for the mapsG0 andG1 to be contractions directly in terms of the parameter of the growth
model is the topic of a companion paper under preparation.

4.3 Examples

The aim of this section is to stress the role of strict monotonicity in Theorem 3. The following
examples show that when strict monotonicity is relaxed, theconclusion of Theorem 3 no longer
holds. Indeed, under such relaxation, we are able to construct examples of attractors which are either
purely isolated points or the union of non-trivial intervals, even while the other assumptions, no
overlap and contractivity, are kept in place. Note that in all examples we assume that the mapsHis
are non-decreasing, that is, only strict monotonicity (or,more generally, injectiveness), as required
by Theorem 3, is dropped. We shall useC2 maps in order to dispel any doubt that we might be
looking for pathological cases. Moreover, if the mapsHis areC2, it is well known that the IFS
{H0, H1; p, 1− p} can be obtained as the solution of some concave stochastic dynamic programming
problem (see [12]).

We shall assume thatH0 andH1 are contractions on some intervalX = [a, b], that is, constantsℓi
exist such that0 < ℓi < 1 and|Hi (y)−Hi(z)| ≤ ℓi |y − z| for all y, z ∈ X andi = 0, 1, and thatH0

andH1 are only non-decreasing, that is,Hi (y1) ≤ Hi (y2) whenevery1 ≤ y2 for i = 0, 1. The last
assumption allows us to restate the no overlap property, condition (21), as follows:

H0 (b) < H1 (a) ,

which will be assumed in all examples.
We start with an extreme example producing a trivial attractor of purely isolated points, followed

by a non trivial example again exhibiting an attractor of purely isolated points.
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Example 1 Consider the following maps defined on some interval[a, b]:

H0 (y) ≡ a, H1 (y) ≡ b.

These maps are clearlyC2 and non-decreasing onX = [a, b]. H0 (b) = a < b = H1 (a) and thus
there is no overlap and also contractivity is trivially satisfied. As it can be seen in figure 1(a), the
attractor of the IFS{H0, H1; p, 1− p} on X = [a, b] is A∗ = {a, b}, which is a set of two isolated
points and, clearly, it is not of the Cantor type, as is totallydisconnected but not perfect. The setA∗

is invariant for the IFS and is produced after the first iteration of the stochastic process (16).

Example 2 Consider the following maps:

H0 (y) =























0 for 0 ≤ y ≤ 1/4
(72/5) y3 − (54/5) y2 + (27/10) y − 9/40 for 1/4 ≤ y ≤ 1/3
− (36/5) y3 + (54/5) y2 − (9/2) y + 23/40 for 1/3 ≤ y ≤ 2/3
(72/5) y3 − (162/5) y2 + (243/10) y − 233/40 for 2/3 ≤ y ≤ 3/4
1/4 for 3/4 ≤ y ≤ 1,

H1 (y) =























3/4 for 0 ≤ y ≤ 1/4
(72/5) y3 − (54/5) y2 + (27/10) y + 21/40 for 1/4 ≤ y ≤ 1/3
− (36/5) y3 + (54/5) y2 − (9/2) y + 53/40 for 1/3 ≤ y ≤ 2/3
(72/5) y3 − (162/5) y2 + (243/10) y − 203/40 for 2/3 ≤ y ≤ 3/4
1 for 3/4 ≤ y ≤ 1.

It can be shown that these piecewise maps areC2 and non-decreasing onX = [0, 1]. H0 (1) =
1/4 < 3/4 = H1 (0) and thus there is no overlap. Contractivity can be easily checked by computing
derivatives ony = 1/2, which is the point where both maps are steepest:

H ′

0 (1/2) = H ′

1 (1/2) = 9/10 < 1

and thus they are both contractions. As it can be seen in figure1(b), the attractor of the IFS{H0, H1;
p, 1− p} onX = [0, 1] is A∗ = {0, 1/4, 3/4, 1}, which is a set of four isolated points and, clearly, it
is not of the Cantor type, as is totally disconnected but not perfect. The setA∗ is invariant for the IFS
and is produced just after two iterations of the stochastic process (16).

The next example shows how it is possible to construct an IFS with an attractor which is the
union of two non-trivial intervals. Such an attractor is definitely a perfect set, but it is not totally
disconnected.

Example 3 Consider the following maps:

H0 (y) =







































(225/8) y3 for 0 ≤ y ≤ 1/9
− (75/4) y3 + (75/8) y2 − (5/8) y + 1/72 for 1/15 ≤ y ≤ 4/15
(225/8) y3 − (225/8) y2 + (75/8) y − 7/8 for 4/15 ≤ y ≤ 1/3
1/6 for 1/3 ≤ y ≤ 2/3
(225/8) y3 − (225/8) y2 + (75/2) y − 49/6 for 2/3 ≤ y ≤ 11/15
− (75/4) y3 + (375/8) y2 − (305/8) y + 743/72 for 11/15 ≤ y ≤ 14/15
(225/8) y3 − (675/8) y2 + (675/8) y − 667/24 for 14/15 ≤ y ≤ 1,
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H1 (y) =







































(225/8) y3 + 2/3 for 0 ≤ y ≤ 1/9
− (75/4) y3 + (75/8) y2 − (5/8) y + 49/72 for 1/15 ≤ y ≤ 4/15
(225/8) y3 − (225/8) y2 + (75/8) y − 5/24 for 4/15 ≤ y ≤ 1/3
1/6 for 1/3 ≤ y ≤ 2/3
(225/8) y3 − (225/8) y2 + (75/2) y − 15/2 for 2/3 ≤ y ≤ 11/15
− (75/4) y3 + (375/8) y2 − (305/8) y + 791/72 for 11/15 ≤ y ≤ 14/15
(225/8) y3 − (675/8) y2 + (675/8) y − 217/8 for 14/15 ≤ y ≤ 1.

It can be checked that these piecewise maps areC2 and non-decreasing onX = [0, 1]. H0 (1) =
1/3 < 2/3 = H1 (0) and thus there is no overlap. They are contractions, as theirderivatives are
bounded by their values ony = 1/6:

H ′

0 (1/6) = H ′

1 (1/6) = 15/16 < 1.

Figure 2 shows that the attractor of the IFS{H0, H1; p, 1− p} on X = [0, 1] is A∗ = [0, 1/3]∪
[2/3, 1], that is, the disjoint union of two closed non-empty intervals. This is not a Cantor type set, as
it is perfect but not totally disconnected. The setA∗ is invariant for the IFS and is produced just after
the first iteration of the stochastic process (16).

These examples show how attractors which are not of the Cantortype can be constructed by
relaxing strict monotonicity of the mapsHis: the trick to obtain an attractor of purely isolated points
versus an attractor which is the union of closed non-empty intervals is to choose maps which are flat
in some appropriate subset of the intervalX = [a, b].

Remark 5 It is important to stress that attractors of the kind described in the previous examples,
which are not of the Cantor type, are ruled out in the one-sectoroptimal growth model of Section 2
by Corollary 1. In other words, the main finding of the present work is that whenever the no overlap
property holds and the maps representing the optimal policyare contractions the attractor of the
stochastic one-sector growth model is necessarily a generalized Cantor set (since the optimal policy
generates an IFS with strictly increasing maps).

5 Concluding Remarks

The main results of this work, Theorem 3 and Corollary 1, provide sufficient conditions on the
stochastic one-sector growth model described in Section 2 so that the invariant probability distribution
to which the model converges in the long run is supported on a topological Cantor set. Proposition 1
(iii) and Propositions 2 and 3, provide conditions on the parameters of the model for two of the three
sufficient conditions of Theorem 3 to hold: monotonicity andno overlap property. If, in addition,
the maps of the iterated function system (4) are contractions, then Corollary 1 holds. The problem of
finding conditions in terms of the parameters of the model, such that the maps describing the optimal
policy turn out to be contractions (thus filling the gap left out by the last condition needed to apply
Theorem 3), is addressed in ongoing research by the authors,to be reported at a future date.

Appendix

Proof of Lemma 1. Clearly, (7) follows immediately from (6) by strict monotonicity of h and since
a is a fixed point forG0, that is,a = G0 (a) = qh (γ (a)).

13



To prove (6), take any fixed point̄y for the mapG0, ȳ = G0 (ȳ). We calculate the stochastic
Ramsey-Euler equation (3) [Proposition 1, (iv)] aty = ȳ:

u′ (g (ȳ)) = δ {pu′ (g (G0 (ȳ))) qh
′ (γ (ȳ)) + (1− p) u′ (g (G1 (ȳ)))h

′ (γ (ȳ))}

> δpu′ (g (G0 (ȳ))) qh
′ (γ (ȳ))

= δpu′ (g (ȳ)) qh′ (γ (ȳ)) ,

where the last equality holds sinceȳ = G0 (ȳ). Thus, we have

1

δpq
> h′ (γ (ȳ)) .

By applying the decreasing function,F , to both sides we get

F

(

1

δpq

)

< γ (ȳ) ,

and sincēy is an arbitrary fixed point for the mapG0, inequality (6) is established.

Proof of Proposition 2. SinceG1 (a) = (a/q) andG0 (b) = qG1 (b) = qb, the no overlap
condition (5) is equivalent to

qb <
a

q
. (22)

As b ≤ k, a sufficient condition for (22) to hold isqk < a/q, which, sincea > θm, leads immediately
to condition (9).

Proof of Lemma 2. As in the proof of Lemma 1, (12) follows immediately from (11)by strict
monotonicity ofh and sincea is a fixed point forG0, that is,a = G0 (a) = h (γ (a)). For any fixed
point ȳ of the mapG0, ȳ = G0 (ȳ), through a similar use of the stochastic Ramsey-Euler equation (3)
as in the proof of Lemma 1, we easily obtain

1

δp
> h′ (γ (ȳ)) .

By applying the decreasing function,F , to both sides we get

F

(

1

δp

)

< γ (ȳ) ,

and sincēy is an arbitrary fixed point for the mapG0, inequality (11) is established.

Proof of Proposition 3. SinceG0 (b) = G1 (b) − q = b − q andG1 (a) = a + q, the no overlap
condition (5) is equivalent to

b− a < 2q. (23)

As b ≤ k̄ anda > θa, a sufficient condition for (23) is̄k − θa ≤ 2q, which, by substitutingq =
k̄ − h

(

k̄
)

, yields (14).

Proof of Theorem 3. SinceS (X) ⊆ X, we can use Proposition 4 (ii) to construct a mono-
tonically decreasing sequence of sets converging toA∗ in the Hausdorff distance starting fromX =
[a, b]: denotingAt = St (X) for t ≥ 0, we haveX = A0 ⊇ A1 ⊇ A2 ⊇ · · · ⊇ A∗. The setsAt are
calledpre-fractals, as they provide increasingly better estimations of the attractorA∗ ast becomes
larger. Note that, if the starting set isA0 = X = [a, b], all pre-fractalsAt are the union of closed
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intervals, which are calledcomponentsof the pre-fractalAt. Clearly each component is a set of the
typeHit (X) for some sequenceit ∈ Σt. Since the mapsHi are strictly monotone – and thus they
are injections – and the no overlap property (21) holds, for all t ≥ 0 the pre-fractalAt is the union of
2t non-empty closed disjoint intervals:At = ∪it∈Σt

Hit (X) with Hit (X)∩ Hjt (X) = ∅ for it 6= jt.
Moreover Theorem 1 (iii) applies and, for any two pointsy, z ∈ A∗ such thaty 6= z, we can write
y = Π(i∞) = ∩∞

t=0Hit (X) andz = Π(j∞) = ∩∞

t=0Hjt (X) with i∞, j∞ ∈ Σ andi∞ 6= j∞. But this
implies that there is0 ≤ t < ∞ such thatit 6= jt with y ∈ Hit (X) andz ∈ Hjt (X). SinceHit (X)
andHjt (X) are closed and disjoint,A∗ ⊆ At, andy, z are arbitrary, this is enough to establish that
A∗ is totally disconnected.

To show thatA∗ is also perfect we shall use Theorem 2. We must show that everypointy ∈ A∗ is
the limit of some sequence of (distinct) points inA∗. Let y ∈ A∗; then, by Theorem 2, either a)y =
fix (Hit) for someit ∈ Σt, t ≥ 0, or b) it is the limit of some sequence of such points,y = limk→∞ yk
where, for allk, yk = fix (Hit) for someit ∈ Σt, t ≥ 0. Let us consider case (a) and assume thaty =
fix (Hit) for someit ∈ Σt, t ≥ 0; that is,y = Hit (y). Now choosei ∈ {0, 1} so thatz = fix (Hi) and
z 6= y; since there are two distinct mapsH0 andH1 in the IFS, such choice is always possible. Clearly,
by Theorem 2,z ∈ A∗. Define the sequenceyk = (Hit)

k (z), where(Hit)
k = Hit◦ · · · ◦ Hit denotes

thek-fold composition of the mapHit . As Hit mapsA∗ into itself andz ∈ A∗, yk ∈ A∗ for all k.
SinceHit is a contraction and is strictly monotone, so is(Hit)

k, and thus the sequenceyk constructed
so far converges toy and contains distinct elements inA∗ for all k; hencey is an accumulation point
of A∗. As far as case (b) is considered, note that in this caseyk ∈ A∗ for all k; thusy turns out to be
an accumulation point ofA∗ by definition, and the proof is complete.
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FIGURE 1: (a)H0 andH1 as in Example 1; (b)H0 andH1 as in Example 2.
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FIGURE 2: H0 andH1 as in Example 3.
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