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On the Transition Dynamics in Endogenous
Recombinant Growth Models

Fabio Privileggi

Abstract This paper is a first attempt at studying the transition dynamics of the
Tsur and Zemel (2007) continuous time endogenous growth framework in which
knowledge evolves according to the Weitzman (1998) recombinant process. For a
specific choice of the probability function characterizing the recombinant process,
we find a suitable transformation for the state and control variables diverging to
asymptotic constant growth, so that an equivalent ‘detrended’ system converging to
a steady state in the long run can be tackled. Since the dynamical system obtained
so far turns out to be analytically intractable, we rely on numerical simulation in
order to fully describe the transition dynamics for a set of values of the parameters.

Journal of Economic Literature Classification Numbers: C61, O31, O41.
Keywords: Knowledge Production, Recombinant Expansion Process, Endogenous
Balanced Growth, Turnpike, Transition Dynamics.

1.1 Introduction

Tsur and Zemel [8] developed an endogenous growth model in which balanced long-
run growth is obtained by assuming that the stock of knowledge evolves according
to Weitzman’s [9] recombinant expansion process and is used, together with physi-
cal capital, as input factor by competitive firms in order to produce a unique physical
good. At each instant new knowledge is produced by an independent R&D sector di-
rectly controlled by a ‘regulator’ who aims at maximizing the discounted utility of a
representative consumer over an infinite horizon. The optimal resources required for
new knowledge production are obtained by the regulator in the form of a tax levied
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2 F. Privileggi

on the consumers. The economy, thus, envisages two sectors, a competitive one de-
voted to the production of the unique physical good, and a regulated R&D sector in
which the public good ‘knowledge’ is being directly financed by the regulator and
produced according to Weitzman’s production function.

In such framework Tsur and Zemel provide conditions under which the economy
performs sustained constant balanced growth in the long run; moreover, when bal-
anced growth occurs, they also characterize the asymptotic optimal tax rate and the
common growth rate of all variables. Hence, by endogenizing the optimal choice for
investing in knowledge production, their result generalizes Weitzman’s [9] endoge-
nous growth model in which the investment in knowledge production was assumed
to be constant and exogenously determined.

In this paper we further extend the Tsur and Zemel results by studying more
accurately the transition dynamics along a characteristic turnpike curve in the
knowledge-capital state space already discussed in [8]. For a specific parametriza-
tion of the model and when the conditions allowing sustained long-run growth are
met, we are able to (numerically) compute the optimal policy – in terms of optimal
consumption – and thus the optimal time-path trajectories of the stock of knowl-
edge, capital, output and consumption – as well as their transition growth rates –
while the economy is being headed along the turnpike curve toward its long-run
constant balanced growth behavior.

Our method is based on the standard technique of transforming the state and
control variables of the Hamiltonian describing the optimal dynamics of (a slightly
generalized version of) the Tsur and Zemel model – all diverging in the long-run –
into ‘detrended’ state-like and control-like variables, both converging to a saddle-
path stable steady state in the appropriate space as time elapses. To study such de-
trended system we apply the time-elimination method introduced by Mulligan and
Sala-i-Martin [4] (see also [5] and [2], pp. 593-596) so that the optimal detrended
consumption policy can be calculated by means of numerical methods for ODEs;
then, substituting such policy in the ODE of the state-like variable and solving it –
again numerically – with respect to time, the optimal time-path trajectories of both
state-like and control-like variables are obtained. Eventually, these trajectories are
reconverted into time-path trajectories for the original model, thus allowing for a
detailed analysis of the transition dynamics of all relevant variables.

Two technical difficulties had to be overcome: 1) finding a proper probability
function for the Weitzman’s recombinant process suitable for the change of variables
in the construction of the detrended system of ODEs, and 2) the exploitation of a
singular point – other than the saddle-path steady state – which can be used as initial
condition for calculating specific solutions for the ODE describing the policy. Due
to the high instability of the system of ODEs characterizing the detrended variables,
we have been able to fully solve the model only for a set of values of the parameters;
more precisely, our approach works satisfactory only on a manifold of dimension
one in the parameters’ space (see Remark 2 at the end of Section 1.4).

Section 1.2 discusses the original contribution by Weitzman [9] on the produc-
tion of new knowledge by combining existing ideas and its generalization to the
endogenous recombinant growth framework provided by Tsur and Zemel [8]. The



1 On the Transition Dynamics in Endogenous Recombinant Growth Models 3

central contribution of this paper is contained in Section 1.3, where, under a suit-
able choice for the functions of the model – in particular, for the probability of
success in matching pairs of ideas – we are able to transform the original diverg-
ing dynamics into an equivalent system of two ODEs in two ‘detrended’ variables
converging asymptotically to a steady state in the appropriate space. This allows
for numeric computation of the optimal policy of both the detrended system and
the original diverging dynamics, which is implemented in Section 1.4 for a specific
set of parameters’ values. Finally, after using the optimal policy obtained so far to
numerically trace out the optimal time-path trajectories, Section 1.5 is dedicated to
a qualitative discussion of the transition dynamics thus obtained, while Section 1.6
reports some concluding remarks and topics for future research.

1.2 Endogenous recombinant growth

Weitzman’s [9] knowledge production device postulates that originally unprocessed
(seed) ideas are blended with all other ideas available in order to generate newhy-
brid seed ideas; a costly selection process permits in turn to extract from those
a subset offertile seed ideas that are again recombined with all the existent fer-
tile ideas to produce yet new hybrids. This process occurs indefinitely, generating
knowledge growth. The hybridization is based on matchingm ideas together and
then checking whether the resulting new idea is fertile (i.e., successful). IfA(t) is
the stock of knowledge available at timet (measured as the total number of fertile
ideas), letCm[A(t)] denote the number of different combinations ofmelements (hy-
brids) ofA(t); i.e.:Cm[A(t)] = A(t)!/ {m![A(t)−m]!} [e.g.,C2 (A) = A(A−1)/2].
Therefore, at timet the number of hybrid seed ideas is given by

H (t) = Cm[A(t)]−Cm[A(t −1)]. (1.1)

If π is the probability of obtaining a successful idea from each matching, the
number of new successful ideas at timet is given by (eqn. (2) on p. 337 in [9]):

∆A(t) = A(t +1)−A(t) = πH (t) = π {Cm[A(t)]−Cm[A(t −1)]} , (1.2)

which, in a discrete time framework, defines arecombinant expansion processof
second order representing the potential knowledge production path. Therefore, the
stock of knowledgeA has the potential of growing at an increasing rate of growth
(Lemma on p. 338 in [9]). However, potentially explosive growth is actually pre-
cluded by scarcity of resources employed in the matching process; as a matter of
fact, Weitzman [9] reconciles his theory with standard endogenous growth models
(see,e.g., [6], [1], or [2]) by showing that knowledge growth – as well as the growth
rate of GNP in real economies – is actually bounded. Accordingly, the knowledge
generation mechanism envisaged by Weitzman uses two inputs: hybrid seed ideas,
H, and physical resources,J. The latter affects the probabilityπ of producing suc-
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cessful ideas by increasing it with largerJ for each givenH, while J becomes less
productive for largerH. To summarize,π results to be increasing in the ratioJ/H.

Thus, theproduction function for new knowledge∆A is:

∆A = W (J,H) = Hπ (J/H) , (1.3)

corresponding to (28) on p. 346 in [9]. Note thatW in (1.3) is homogeneous of
degree 1. In the sequel we shall assume the following.

A. 1 The functionπ : R+ → [0,1] is independent of time and is such thatπ ′ > 0,
π ′′ < 0, π (0) = 0 andπ (∞) ≤ 1; moreover,1 limx→0+ π ′ (x) < +∞.

Provided thatJ is a constant fraction of the total outputy, J = sy, Weitzman [9]
establishes that in the long run the asymptotic growth rate is a positive constant
depending on the exogenously determined saving rates.

1.2.1 The framework

Tsur and Zemel [8], made an important refinement of Weitzman’s analysis by endo-
genizing the (optimal) resourcesJ employed in the production of new knowledge.2

Their model features a ‘regulator’ who has the task of choosing the optimal amount
J to be employed in production of new knowledge – which, in turn, is being assigned
to all firms producing the amounty of a unique (physical) output – in order to max-
imize the discounted utility of a representative consumer over an infinite horizon.
Output producing firms operate in a competitive environment, while the regulator
has the power to levy the exact amountJ as a tax on the representative consumer,
through which, given all theH hybrid seed ideas freely available, new useful knowl-
edge is being directly generated according to (1.3), and is immediately and freely
passed to the output producing firms.

The difficulty in dealing with the second-order dynamic (1.2) is overcome by
switching from the Weitzman’s discrete time formulation into a continuous time
model. This allows the authors to rewrite (1.1) as:

H (t) = C′
m[A(t)] Ȧ(t) , (1.4)

whereȦ(t) is the derivative of the stock of knowledge with respect to time. By
replacing∆A(t) with Ȧ(t) in (1.3) we obtain the analogous of (1.3) in continuous
time:

Ȧ(t) = H (t)π [J(t)/H (t)] , (1.5)

1 For simplicity, in the sequel limx→0+ π ′ (x) will be denoted byπ ′ (0).
2 Our analysis slightly departs from that of Tsur and Zemel by allowingJ to be any amount of
physical capital available in the economy, while the authors constrain such resources to be only a
fraction 0≤ s≤ 1 of the total outputy. In other words, in our economy the regulator has the power
to extract resources also from existing physical capital, in addition to the whole total outputy.
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where the probability of generating a new fertile ideaπ still satisfies A.1.
By combining (1.4) and (1.5) the law of motion for the stock of knowledgeA(t)

is:
Ȧ(t) = J(t)/ϕ [A(t)] , (1.6)

where
ϕ (A) =C′

m(A)π−1[
1/C′

m(A)
]

(1.7)

is theexpected unit cost of knowledge production. Note thatϕ (·) is decreasing and,
as knowledge keeps spreading, it converges to

lim
A→∞

ϕ (A) = 1/π ′ (0)> 0, (1.8)

where 1/π ′ (0) is strictly positive by Assumption A.1.
With no loss of generality, we shall assume that labour is constant and normalized

to one:3 L ≡ 1. The output producing firms use a neoclassical production function,

y(t) = F [k(t) ,A(t)] , (1.9)

depending on aggregate capital and knowledge-augmented labourA(t)L, for L = 1.

A. 2 F : R
2
+ →R+ exhibits constant returns to scale and is such that Fk > 0, FA > 0,

Fkk < 0, FAA < 0, FkA > 0, and satisfieslimk→0+ F (k,A) = +∞ for all A > 0.

Each firmi maximizes instantaneous profit by renting capitalki and hiring labour
Li ≤ 1 from the households, taking as given the capital rental rater, the labour wage
w and the stock of knowledgeA. Since all firms use the same technology and operate
in a competitive market, and all households are the same, the subscripti can be
dropped and (1.9) can be rewritten asy = A f (k/A), where

f (x) = F (x,1). (1.10)

Since firms act competitively, in equilibrium their profit is zero, that is, households
earny = A f (k/A) = rk+w; moreover, the amount of capital demanded,k, satisfies

f ′ (k/A) = r. (1.11)

Given that, at each instantt, a fractionJ(t) of the whole endowment of the economy,
k(t)+ y(t), is being employed to finance R&D firms, and a fractionc(t) is being
consumed, capital evolves through time according to

k̇(t) = y(t)−J(t)−c(t) , (1.12)

3 Tsur and Zemel [8] assume that the amount of labour isL, constant through time even if not
necessarily equals to one. As stationarity with respect to time ofL is the strong assumption here,
normalizing labour toL ≡ 1 has the advantage of simplifying notation at no cost.
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where it is assumed that capital does not depreciate. Since the upper bound4 for J(t)
andc(t) is jointly given byJ(t)+c(t)≤ k(t)+y(t), k̇(t) in (1.12) may be negative.

Assuming that all households enjoy an instantaneous utilityu[c(t)], with u :
R+ → R+ increasing and strictly concave, the ‘regulator’ solves

max
{c(t),J(t)}

∫ ∞

0
u[c(t)]e−ρtdt (1.13)

subject to





Ȧ(t) = J(t)/ϕ [A(t)]
k̇(t) = F [k(t) ,A(t)]−J(t)−c(t)
J(t)+c(t) ≤ k(t)+F [k(t) ,A(t)]
k(t) ≥ 0, J(t) ≥ 0, c(t) ≥ 0
k(0) = k0 > 0, A(0) = A0 > 0,

whereρ > 0 is the (constant) discount rate. (1.13) may be interpreted as a maximum
welfare problem, wherek andA are the state variables andc andJ are the controls.
Suppressing the time argument, the current-value Hamiltonian associated to (1.13)
is

H (A,k,J,c,ϑ1,ϑ2) = u(c)+ϑ1 [F (k,A)−J−c]+ϑ2J/ϕ (A), (1.14)

whereϑ1, ϑ2 are the costates ofk andA respectively. Necessary conditions are:

u′ (c) = ϑ1 (1.15)

J =





0 if ϑ2/ϕ (A)< ϑ1

J̃ if ϑ2/ϕ (A) = ϑ1

k+F (k,A)−c if ϑ2/ϕ (A)> ϑ1

(1.16)

ϑ̇1 = ρϑ1−ϑ1Fk (k,A) (1.17)

ϑ̇2 = ρϑ2−ϑ1FA (k,A)+ϑ2Jϕ ′ (A)/ [ϕ (A)]2 (1.18)

lim
t→∞

H (t)e−ρt = 0, (1.19)

where J̃ in (1.16) will be defined in (1.22). The caseJ = k+ F (k,A)− c when
ϑ2/ϕ (A)> ϑ1 in (1.16) can be ruled out by the Inada condition of Assumption A.2.

Taking time derivative ofϑ1 = ϑ2/ϕ (A) in (1.16) and using (1.17) and (1.18)
gives

Fk (k,A)−FA (k,A)/ϕ (A) = 0, (1.20)

defining the locus on the space(A,k) on which the marginal product of capital equals
that of knowledge per unit cost. (1.20) can be rewritten asz(k/A) = ϕ (A), where
z(x) = f (x)/ f ′ (x)−x, with f defined in (1.10), is increasing inx; thus, (1.20) can
be expressed as a function of the only variableA:

k̃(A) = z−1 [ϕ (A)]A, (1.21)

wherez−1 is the inverse ofz(x).

4 See footnote 2.
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Differentiatingk̃(A) with respect to time and using (1.12) and (1.6) yields

J̃(t) = [ỹ(t)−c(t)]ϕ [A(t)]/
{

k̃′ [A(t)]+ϕ [A(t)]
}

, (1.22)

whereỹ(t) = F
{

k̃[A(t)] ,A(t)
}

, expressing the optimal investment in R&D,J̃(t),
as a function of the optimal consumptionc(t), when the economy grows along the
curvek̃(A) defined in (1.21); that is, whenϑ2 (t)/ϕ [A(t)] = ϑ1 (t) in (1.16).

We consider the limit of (1.21) for largeA, which becomes linear, by defining:

k̃∞ (A) = η̃A+q, (1.23)

where, by (1.8),̃η = z−1 [1/π ′ (0)] andq is a non-negative constant. Note thatk̃(A)
lies abovẽk∞ (A) for all A < ∞, approaching̃k∞ (A) asA increases. The interceptq
depends on the number of ideasm being matched at each instantt in (1.4).

Proposition 1. The intercept q in (1.23) is zero whenever m> 2, while q> 0 for
m= 2.

Proof. Sincek̃∞ (A) = η̃A+q is the asymptote of̃k(A),

q = lim
A→+∞

[
k̃(A)− η̃A

]
= lim

A→+∞

{
z−1 [ϕ (A)]−z−1[

1/π ′ (0)
]}

A. (1.24)

As ϕ (A) is decreasing and, under A.1, bounded away from zero [specifically, 0<
1/π ′ (0)≤ ϕ (A)≤ ϕ (A0)], by A.2 z−1 [ϕ (A)]−z−1 [1/π ′ (0)] in (1.24) iso[ϕ (A)].
Thus, since, by (1.7),O[ϕ (A)] = O[C′

m(A)] = O
(
Am−1

)
[i.e., C′

m(A)∼ Am−1 for
largeA], if m > 2 the limit in (1.24) is zero, while, ifm = 2, such limit must be
nonzero; asz−1 [ϕ (A)]− z−1 [1/π ′ (0)] > 0 for all A < +∞, q > 0 holds whenever
m= 2. ⊓⊔

Another locus will be considered, that on which the marginal product of capital
equals the individual discount rate,f ′ (k/A) = ρ , which, by (1.11), impliesr = ρ .
As f ′ (·) is decreasing, also such curve can be expressed as a function ofA:

k̂(A) = η̂A, (1.25)

with η̂ = ( f ′)−1 (ρ); that is,k̂(A) is the linear function with slopêη > 0.
The curves̃k(A), k̃∞ (A) and k̂(A) defined in (1.21), (1.23) and (1.25) will be

labeledturnpike,asymptotic turnpikeandstagnation linerespectively. The optimal
investment in R&D along the turnpikẽk(A) defined in (1.22),J̃(t), will be referred
as thesingular policy. We shall assume the following.

A. 3 The instantaneous utility is CIES: u(c) =
(
c1−σ −1

)
/(1−σ), with σ ≥ 1.

Proposition 2 (Tsur and Zemel [8]).

i) A necessary condition for the economy to sustain long-run growth is

η̂ > η̃ ; (1.26)
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conversely, ifη̂ ≤ η̃ the economy eventually reaches a steady (stagnation) point
on the linek̂(A) corresponding to zero growth.

ii) Under (1.26), for any given initial knowledge stock A0 there is a corresponding
threshold capital stock ksk(A0) ≥ 0 such that whenever k0 ≥ ksk(A0) the econ-
omy – possibly after an initial transition outside the turnpike – first reaches the
turnpikek̃(A) in a finite time, and then continues to grow along it as time elapses
until the asymptotic turnpikẽk∞ (A) is reached in the long-run. Along̃k∞ (A) the
economy follows a balanced growth path characterized by a common constant
growth rate of output, knowledge, capital and consumption given by:

γ = (r∞ −ρ)/σ > 0, (1.27)

where r∞ = limA→∞ f ′
[
k̃∞ (A)/A

]
= f ′ (η̃) defines the long-run capital rental

rate.5 Moreover,J̃(t) < ỹ(t) for large t, and the income shares devoted to invest-
ments in knowledge and capital are constant and given respectively by

s∞ = γ/
{

r∞
[
1+ η̃π ′ (0)

]}
and sk

∞ = γη̃π ′ (0)/
{

r∞
[
1+ η̃π ′ (0)

]}
. (1.28)

If k0 < ksk(A0) the economy eventually stagnates.

Proposition 2, whose proof can be found in [8], establishes that if (1.26) holds
andk0 is sufficiently high with respect to initial knowledge stockA0, the economy
grows along a turnpike path which, in the long run, converges to a balanced growth
path with knowledge and capital growing at the same constant rate and with constant
saving rate, thus confirming Weitzman’s result in a more general setting.

As the caseϑ2/ϕ (A)> ϑ1 in (1.16) is ruled out, two optimal regimes are possi-
ble:

1. zero R&D, corresponding toJ≡ 0, which, if maintained forever, eventually leads
the economy to some steady state (stagnation point) on the linek̂(A), and

2. a path along the turnpikẽk(A) – maybe started after a finite period of transition
outside the turnpike – corresponding to the singular policyJ̃ in (1.22), which
envisages growth for all variables as time elapses and, if maintained forever,
eventually lead to a balanced growth path along the asymptotic turnpikek̃∞ (A).

Under (1.26) and ifk0 ≥ ksk(A0) it can be shown that the turnpikek̃(A) is ‘trap-
ping’, i.e., the economy keeps growing along it after it is reached. Hence, there are
two types of transitions: one driving the system toward the turnpike starting from
outside it, and another characterizing the optimal path alongk̃(A) after it has been
entered. We shall focus on the latter; specifically, we shall assume that (1.26) holds,
implying that the stagnation linêk(A) lies strictly above6 the turnpikek̃(A) for A
sufficiently large, moreover, we shall restrict our attention to the casek0 = k̃(A0).
In this scenariok0 ≥ ksk(A0) is certainly satisfied, as the turnpikek̃(A) is trapping.

5 Note that, under (1.26),r∞ = f ′ (η̃) > f ′ (η̂) = f ′
[
( f ′)−1 (ρ)

]
= ρ .

6 This holds for allA > 0 whenm> 2, while forA large enough ifm= 2.
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1.2.2 Dynamics along the turnpike

We now adapt the optimal conditions (1.15) - (1.19) to the system’s behavior along
the turnpikek̃(A). All variables on the turnpike will be labeled with a ‘∼’ symbol.

Suppressing the time argument and using (1.22), (1.6) becomes

Ȧ = [ỹ(A)− c̃]/
[
k̃′ (A)+ϕ (A)

]
, (1.29)

where ỹ(A) = F
[
k̃(A),A

]
= A f

[
k̃(A)/A

]
with f (·) defined in (1.10). (1.29) is

the unique dynamic constraint as˙̃k = k̃′ (A)Ȧ = k̃′ (A) [ỹ(A)− c̃]/
[
k̃′ (A)+ϕ (A)

]
;

therefore, now the unique state variable isA, and, by (1.22), the unique control is ˜c.
Thus, the ‘regulator’ solves

max
{c̃(t)}

∫ ∞

0
u[c̃(t)]e−ρtdt (1.30)

subject to





Ȧ(t) = {ỹ[A(t)]− c̃(t)}/
{

k̃′ [A(t)]+ϕ [A(t)]
}

0≤ c̃(t) ≤ k̃[A(t)]+ ỹ[A(t)]
A(0) = A0 > 0.

The current-value Hamiltonian for problem (1.30) is

H̃ (A,c̃,ϑ) = u(c̃)+ϑ [ỹ(A)− c̃]/
[
k̃′ (A)+ϕ (A)

]
, (1.31)

whereϑ is the costate variable associated withA. Necessary conditions are:

ϑ = u′ (c̃)
[
k̃′ (A)+ϕ (A)

]
(1.32)

ϑ̇ =
{

ρ −
[
ỹ′ (A)−

(
k̃′′ (A)+ϕ ′ (A)

)
Ȧ
]
/
[
k̃′ (A)+ϕ (A)

]}
ϑ (1.33)

lim
t→∞

H̃ (t)e−ρt = 0, (1.34)

whereȦ in (1.33) is given by (1.29).
Since, by (1.20),FA

[
k̃(A),A

]
= Fk

[
k̃(A),A

]
ϕ (A) along the turnpike and, by

(1.11), ˜r (A) = Fk
[
k̃(A),A

]
, where ˜r (A) is the capital rental rate on the turnpike,

ỹ′ (A) = r̃ (A)
[
ϕ (A)+ k̃′ (A)

]
. Hence, dividing byϑ , (1.33) can be rewritten as

ϑ̇/ϑ = ρ − r̃ (A)+Ȧ
[
k̃′′ (A)+ϕ ′ (A)

]
/
[
k̃′ (A)+ϕ (A)

]
. (1.35)

Taking time derivative of (1.32), dividing byϑ and coupling with (1.35), under
Assumption A.3 we get

˙̃c/c̃ = [r̃ (A)−ρ]/σ =
{

f ′
[
k̃(A)/A

]
−ρ

}
/σ , (1.36)

where in the second equality (1.11) and (1.10) have been used.
From (1.29) and (1.36) we obtain the following system of ODEs defining the

optimal dynamics forA(t) andc̃(t) along the turnpike under Assumption A.3:
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{
Ȧ =

{
f
[
k̃(A)/A

]
A− c̃

}
/
[
k̃′ (A)+ϕ (A)

]

˙̃c = c̃
{

f ′
[
k̃(A)/A

]
−ρ

}
/σ ,

(1.37)

Proposition 2 (ii) states that in the long run the ratiosȦ/A and ˙̃c/c̃ obtained from
(1.37) converge to the balanced growth rateγ = (r∞ −ρ)/σ .

1.3 Model specif cation and analysis

We now suitably restrict the class of models under investigation.

A. 4 In addition to Assumption A.3 , the followings hold.

(i) Only pairs of ideas will be matched in the recombinant process: m= 2.
(ii) The probability functionπ : R+ → [0,1] of the recombinant process is:

π (x) = βx/(βx+1), β > 0. (1.38)

(iii) The production function has the Cobb-Douglas form: F(k,A) = θkαA1−α =
θA(k/A)α , with θ > 0 and0 < α < 1.

Clearly,π (·) in (1.38) satisfies Assumption A.1; parameterβ measures the de-
gree of efficiency of the Weitzman matching process, the largerβ the higher prob-
ability of obtaining a new successful idea out of each (pairwise) matching of seed
ideas.

Since, whenm = 2, C′
2 (A) = (2A−1)/2, and from (1.38) we getπ−1 (y) =

y/[β (1−y)], substituting both in (1.7) yields the following explicit form forϕ (A):

ϕ (A) = (2A−1)/ [β (2A−3)] = (1/β ) [1+2/(2A−3)]. (1.39)

As π ′ (0) = β , Assumption A.4(iii) and (1.39) yields:

k̃(A) = [α/(1−α)]ϕ (A)A = {α/ [β (1−α)]} [1+2/(2A−3)]A (1.40)

k̃∞ (A) = {α/ [β (1−α)]}(A+1) (i.e., η̃ = q = α/ [β (1−α)]) (1.41)

k̂(A) = (θα/ρ)1/(1−α) A
(

i.e., η̂ = (θα/ρ)1/(1−α)
)

, (1.42)

and the growth condition (1.26) becomes

ρ < θα [β (1−α)/α]1−α . (1.43)

It is seen from (1.40) that the initial conditionA0 must be in the open interval
(3/2,+∞), and the graph of̃k(A) is a U-shaped curve on it. Since the stock of
knowledgeA cannot be depleted and the economy is bound to follow the optimal
investment in R&D policyJ̃ > 0 defined in (1.22), along the turnpikeA must grow:
Ȧ(t) > 0 for all t ≥ 0. Therefore, a U-shapedk̃(A) means that capitalk̃(t) decreases

[ ˙̃k(t) < 0] when t is small and increases [˙̃k(t) > 0] for larger t, envisaging that
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in early times it is optimal to take away some physical capital from the output-
producing sector and invest it in R&D, so that the stock of knowledgeA can take-off.
Moreover,Ȧ > 0 in (1.29) – and thus in (1.37) – has important implications.

Proposition 3. Under A.4, theoptimal policyalong the turnpike,̃c(A), satisfies




c̃(A)> ỹ(A) for 3/2< A < As

c̃(As) = ỹ(As)
c̃(A)< ỹ(A) for A > As,

(1.44)

where
As = 1+(1/2)

(
α +

√
1+4α +α2

)
. (1.45)

Moreover,c̃′ (A)≤ 0 in a neighborhood of As.

Proof. By differentiating k̃(A) in (1.40) it is easily seen that the denominator of
(1.29), k̃′ (A) +ϕ (A), vanishes on the unique pointAs defined in (1.45), which
belongs to the domain(3/2,+∞) as As > 3/2 for all 0 < α < 1; moreover,
k̃′ (A)+ϕ (A) < 0 for 3/2< A < As andk̃′ (A)+ϕ (A) > 0 for A > As. Therefore,
Ȧ(t) > 0 for all t ≥ 0 in (1.29) implies (1.44). Since it can be checked thatAs is also
the unique (minimum) stationary point for the optimal output ˜y(A) – i.e., ỹ′ (As) = 0
– and (1.44) states that the graph of the optimal policy ˜c(A) must intersect the graph
of the optimal output ˜y(A) from above onA = As, c̃′ (A)≤ 0 must hold in a neigh-
borhood ofAs. ⊓⊔

Proposition 3 will be useful in handling the point corresponding to(As, c̃(As)) in
the ‘detrended’ system.

1.3.1 State-like and control-like variables

When the economy performs sustained growth in the long run, there are no steady
states toward which the system eventually converges. Thus, we transform the state
variableA and the control ˜c in a state-like variable,µ , and a control-like variable,χ ,
respectively, so thatµ (t) andχ (t) converge to some fixed pointsµ∗ andχ∗ in the
space(µ ,χ) as time elapses. We choose the following transformations:

µ = k̃(A)/A = [α/(1−α)]ϕ (A) = {α/ [β (1−α)]} [1+2/(2A−3)] (1.46)

χ = c̃/A, (1.47)

where in (1.46) we used (1.40) and (1.39). Hence,A is related toµ as follows:

A = α/ [β (1−α)µ −α]+3/2. (1.48)

Given the ‘detrended’ optimal policyχ (µ), the optimal policy of (1.30) is

c̃(A) = χ [(α/(1−α))ϕ (A)]A. (1.49)
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Under Assumption A.4(iii), from (1.37) we obtain the following ratios:

Ȧ/A=
{

θ
[
k̃(A)/A

]α − c̃/A
}

/
[
k̃′ (A)+ϕ (A)

]
(1.50)

˙̃c/c̃ =
{

θα
[
k̃(A)/A

]α−1−ρ
}

/σ . (1.51)

The growth rate ofµ in (1.46) is µ̇/µ = k̃′ (A)Ȧ/k̃(A)− Ȧ/A; therefore,µ̇ =[
k̃′ (A)−µ

]
Ȧ/A, which, coupled with (1.50) and using (1.47), yields

µ̇ =
[
k̃′ (A)−µ

]
(θ µα −χ)/

[
k̃′ (A)+ϕ (A)

]
. (1.52)

As (1.39) equals to 2/(2A−3) = βϕ (A)−1 andϕ ′ (A) =−4/
[
β (2A−3)2

]
, ϕ ′ is

a function ofϕ: ϕ ′ (A) =−(1/β ) [2/(2A−3)]2 =−(1/β ) [βϕ (A)−1]2; moreover,
(1.39) may also be rewritten asA= 1/[βϕ (A)−1]+3/2, while (1.46) is equivalent
to ϕ (A) = [(1−α)/α]µ . Hence, By differentiating (1.40) and substituting these
expressions forϕ ′ (A), A andϕ (A), after a fair amount of algebrãk′ (A) in (1.52)
becomes

k̃′ (A) = {α/ [2β (1−α)]}
{

6β [(1−α)/α]µ −3β 2 [(1−α)/α]2 µ2−1
}

.

(1.53)
We can now rewrite (1.52) only in terms of variablesµ andχ :

µ̇ =

[
1− 2β (1−α)µ

2β (1−α)(1+2α)µ −3β 2 (1−α)2 µ2−α2

]
(θ µα −χ) . (1.54)

By (1.50), (1.51) and (1.46), the growth rate ofχ in (1.47) isχ̇/χ =
(
θαµα−1−ρ

)
/σ −

(θ µα −χ)/
[
k̃′ (A)+ϕ (A)

]
, which, by replacing̃k′ (A) as in (1.53) andϕ (A) =

[(1−α)/α]µ , yields the following ODE for the control-like variableχ :

χ̇ =

[
θαµα−1−ρ

σ
− 2αβ (1−α)(θ µα −χ)

2β (1−α)(1+2α)µ −3β 2 (1−α)2 µ2−α2

]
χ. (1.55)

Hence, we must study the following system of ODEs:
{

µ̇ = [1−2β (1−α)µ/Q(µ)] (θ µα −χ)

χ̇ =
[(

θαµα−1−ρ
)
/σ −2αβ (1−α)(θ µα −χ)/Q(µ)

]
χ,

(1.56)

where
Q(µ) = −3β 2 (1−α)2 µ2 +2β (1−α)(1+2α)µ −α2. (1.57)
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1.3.2 Fixed points and phase diagram

SinceA > 3/2, from (1.46) one immediately obtains the range(µ∗,+∞), with

µ∗ = α/ [β (1−α)] , (1.58)

for the state-like variableµ , with endpoints corresponding toA → +∞ andA →
(3/2)+ respectively. In other words,µ∗ in (1.58) is thesteady valuefor variableµ
corresponding to long-run behavior of the economy along the asymptotic turnpike
k̃∞ (A) [µ∗ is the slope of̃k∞ (A), as seen in (1.41)]. The feasible set for the detrended
variables(µ ,χ) therefore isS= [µ∗,+∞)×R++, where we added the boundaryµ∗

corresponding to the asymptotic dynamics (A= +∞) of the original model.
From the first equation in (1.56), two loci on whicḣµ = 0 are found inS: the

curve
χ = θ µα (1.59)

and the vertical lineµ ≡ µ∗, with µ∗ as in (1.58). Equation (1.59) vanishes the
second factor in the RHS of the first equation in (1.56), whileµ∗ is the largest (and
only feasible) solution ofQ(µ)−2β (1−α)µ = 0, with Q(µ) defined in (1.57),
vanishing the first factor in the RHS of the same equation.

From the second equation in (1.56), the unique locus on whichχ̇ = 0 is given by

χ = θ µα −Q(µ)
(
θαµα−1−ρ

)
/ [2αβσ (1−α)] . (1.60)

Q(µ) turns out to have a unique (admissible) root, call itµs, satisfying

Q(µ) = −3β 2 (1−α)2 µ2 +2β (1−α)(1+2α)µ −α2 = 0, (1.61)

with Q(µ) > 0 for µ∗ ≤ µ < µs andQ(µ) < 0 for µ > µs. Thus, whether the locus
(1.60) lies above or below the locus (1.59) depends on whetherµ∗ ≤ µ < µs or
µ > µs, and on the sign of

(
θαµα−1−ρ

)
. On µ = µs, however, they intersect,

and this yields ourfirst steady state:(µs,χs), with χs = θ (µs)α , which happens
to correspond to the point(As, c̃(As)) discussed in Proposition 3 for the original
dynamic (1.37). To see this, recall that, from (1.44), ˜c(As) = ỹ(As) must hold on the
critical pointAs defined in (1.45); by replacingAs in (1.46) and (1.47), we get,

µs =
(

1+2α +
√

1+4α +α2
)

/ [3β (1−α)] , χs = θ (µs)α , (1.62)

whereµs coincides with the largest (and only admissible) solution of (1.61).
It is immediately seen thatµ∗ < µs for all feasible values of parametersα and

β , which means thatQ(µ∗) > 0 must hold; moreover, using (1.58), the necessary

condition for growth (1.43) can be rewritten as
[
θα (µ∗)α−1−ρ

]
> 0. Therefore,

we conclude that the locus (1.60) intersects the locusµ ≡ µ∗ strictly below locus
(1.59). Since along such vertical linėµ = 0, we have found thesecond steady state
of system (1.56):(µ∗,χ∗), whereχ∗ is (1.60) evaluated atµ = µ∗, specifically,
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χ∗ = θ {α/ [β (1−α)]}α (1−1/σ)+ρ/ [βσ (1−α)] . (1.63)

Clearly, under Assumption A.4χ∗ > 0. Asθ µα in (1.59) is increasing inµ andχ∗ <
θ (µ∗)α , it follows that (µ∗,χ∗) lies south-west of(µs,χs). We shall see in short
that(µ∗,χ∗) is the saddle-path stable steady state to which system (1.56) converges
in the long-run. Hence,χ∗ is the asymptotic slope of the optimal consumption ˜c(A)
steadily growing at the constant rateγ in the original model.

As condition (1.43) states thatρ < θα (µ∗)α−1 must hold and, as 0< α < 1,
θαµα−1 is a decreasing function ofµ , there must be a unique valueµ̂ > µ∗ such

that
[
θα (µ̂)α−1−ρ

]
= 0. It is clear from the last factor in the second term in the

RHS of (1.60) that the two loci (1.60) and (1.59) must intersect inµ = µ̂; hence
(µ̂, χ̂), with

µ̂ = (θα/ρ)
1

1−α , χ̂ = θ (θα/ρ)
α

1−α , (1.64)

is the third (and last)steady stateassociated to (1.56). From (1.42),µ̂ in (1.64)
corresponds to the valuêA at whichk̃(A) intersectŝk(A) in the original model. By
equating (1.40) and (1.42) [or by substitutingµ̂ as in (1.64) into (1.48)],̂A turns out
to be

Â = α/
[
β (1−α)(θα/ρ)

1
1−α −α

]
+3/2, (1.65)

which in turn, if replaced in (1.49) and usinĝχ as in (1.64), yields the value of the
optimal policy at the intersection pointÂ, c̃

(
Â
)

= χ̂Â, of the original model.
The position of the last steady state,(µ̂, χ̂), depends on how large the dis-

count factorρ is with respect to the parametersα, θ and β . Sinceµ∗ < µs im-
pliesθα (µs)α−1 < θα (µ∗)α−1, three scenarios may occur, all satisfying condition
(1.43).

1. If ρ < θα (µs)α−1, µs < µ̂ and(µ̂, χ̂) lies north-east of(µs,χs).
2. If ρ = θα (µs)α−1, µs = µ̂ and the two steady states collapse:(µ̂ , χ̂) = (µs,χs).
3. If θα (µs)α−1 < ρ < θα (µ∗)α−1, µ∗ < µ̂ < µs and (µ̂, χ̂) lies north-east of

(µ∗,χ∗) and south-west of(µs,χs).

We shall focus on the third case, corresponding to a scenario in whichAs lies on
the left ofÂ, on which the turnpikẽk(A) intersects the stagnation linek̂(A).

Proposition 4. Under A.4 and provided thatθα (µs)α−1 < ρ < θα (µ∗)α−1 holds,
the two fixed points(µ∗,χ∗) and(µ̂, χ̂) can be classified as follows.

1. (µ∗,χ∗), with coordinates defined in (1.58) and (1.63), issaddle-path stable,
with the stable arm converging to it from north-east whenever the initial values
(µ (t0) ,χ (t0)) are suitably chosen.

2. (µ̂, χ̂), with coordinates defined in (1.64), is an unstable clockwise-rotating spi-
ral.

Proof. Above the locus (1.59) the term(θ µα −χ) in the first equation of (1.56)
is negative, while it is positive below.Q(µ) in (1.57) is such thatQ(µ) > 0 for
µ∗ < µ < µs, while Q(µ) < 0 for µ > µs; therefore,[1−2β (1−α)µ/Q(µ)] is
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negative forµ∗ < µ < µs and positive forµ > µs. Hence: ifµ∗ < µ < µs, µ̇ > 0
above locus (1.59) anḋµ < 0 below; while, ifµ > µs, µ̇ < 0 above locus (1.59) and
µ̇ > 0 below. Sinceχ > 0, the sign ofχ̇ in the second equation of (1.56) depends
on the sign of the term in square brackets in the RHS. From the sign ofQ(µ) we
infer that forµ∗ < µ < µs such term is positive above locus (1.60) and it is negative
below, while the converse holds forµ > µs. Thus, whenµ∗ < µ < µs, χ̇ > 0 above
locus (1.60) anḋχ < 0 below; conversely, ifµ > µs, χ̇ < 0 above locus (1.60) and
χ̇ > 0 below. The analysis above is sufficient to trace out the phase diagram for the
caseθα (µs)α−1 < ρ < θα (µ∗)α−1, i.e., whenµ∗ < µ̂ < µs, which is reported
in Fig. 1.1. Clearly,(µ∗,χ∗) is saddle-path stable; it can be guessed that its stable
arm is increasing and lying below locus (1.60) on the interval[µ∗,µs). To check its
saddle-path stability, consider the Jacobian of (1.56) evaluated at(µ∗,χ∗):

J(µ∗,χ∗) =

[ ρ−βθ(1−α)(µ∗)α

σ 0

− (1−α)[c1(µ∗)2α +c2(µ∗)α +ρ2]
ασ2

ρ+βθ(1−α)(σ−1)(µ∗)α

σ

]
, (1.66)

wherec1 = (βθ)2 ασ (1−α)(σ −1), c2 = βθρ (α +σ −1). By (1.43) the terms
on the diagonal have opposite signs; hence, det[J(µ∗,χ∗)] < 0 and(µ∗,χ∗) is a
saddle.

µ

χ

µ∗ µ̂ µs

χ∗

χ̂

χs

µ̇ = 0

χ̇ = 0

Fig. 1.1 phase diagram of system (1.56) whenθα (µs)α−1 < ρ < θα (µ∗)α−1.

As (µ∗,χ∗) lies strictly below locus (1.59) and the unique intersection point be-
tween the loci (1.60) and (1.59) on the interval[µ∗,µs) is the fixed point(µ̂, χ̂), it
must be the case that (1.60) crosses (1.59) from below on(µ̂, χ̂). Therefore,(µ̂, χ̂)
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is a clockwise rotatingspiral and the eigenvalues of the Jacobian of (1.56) evaluated
at (µ̂, χ̂) are complex. To establish instability we need to show that their real part is
positive, or, equivalently, that tr[J(µ̂, χ̂)] > 0. The Jacobian is

J(µ̂, χ̂) =
1

Q(µ̂)

[
[Q(µ̂)−2β (1−α) µ̂]ρ 2β (1−α) µ̂ −Q(µ̂)

− (1−α)[ρQ(µ̂)+2σα2βθ(µ̂)α +ρ2]θ(µ̂)α−1

σ 2αβ (1−α)θ (µ̂)α

]
,

with Q(µ̂) > 0, asµ∗ < µ̂ < µs. Since
[
αθ (µ̂)α−1−ρ

]
= 0 on(µ̂ , χ̂), it is imme-

diately seen that tr[J(µ̂, χ̂)] = ρQ(µ̂) > 0, and the proof is complete.⊓⊔

Remark 1.The critical point(µs,χs), with coordinates defined in (1.62), cannot be
classified analytically, as the Jacobian matrix of (1.56) evaluated at(µs,χs) has
some elements diverging either to−∞ or to +∞ as(µ ,χ) approaches(µs,χs), the
sign of infinity depending on the direction along which(µ ,χ) → (µs,χs).

We have seen in Section 1.2.1 thatk̃(A) > k̃∞ (A) for all A (and thus for allt);
this is consistent withµ (t) > µ∗ for all t. Hence, the stable trajectory must ap-
proach(µ∗,χ∗) from the right. We denote byχ (µ) such trajectory, which is the
optimal policy expressed in terms of state-like and control-like variables. Its slope
on (µ∗,χ∗) is the slope of the eigenvector associated to the negative eigenvalue of
(1.66) (see [2], p. 596), that is,

χ ′ (µ∗) =
βθασ (1−α)(σ −1)(µ∗)2α +ρ (α +σ −1)(µ∗)α +

[
ρ2/(βθ)

]

ασ2 (µ∗)α ,

(1.67)
which is clearly positive. Hence,χ (µ) approaches(µ∗,χ∗) from north-east in a
(right) neighborhood ofµ∗; consequently, along the turnpike both ratiosk̃(A)/A
andc̃/Amust decline in time when they are approaching the asymptotic turnpike.

Under the assumption thatθα (µs)α−1 < ρ < θα (µ∗)α−1, µ∗ < µ̂ < µs; by
translatingµ̂ into Â through (1.65), it follows that the intersection point between
k̃(A) andk̂(A) lies on the right of the singular pointAs defined in (1.45). Therefore,
by condition (1.44) of Proposition 3, ˜c

(
Â
)

< ỹ
(
Â
)
, which is equivalent toχ (µ̂) <

θ (µ̂)α = χ̂. Hence, the optimal trajectoryχ (µ) keeps well below the (unstable)
steady state(µ̂, χ̂), which thus happens to be harmless for our analysis, at least for
the case7 θα (µs)α−1 < ρ < θα (µ∗)α−1.

Conversely, the steady state(µs,χs) is the most problematic as on one hand
its stability cannot be checked analytically, while on the other hand the optimal
policy χ (µ) must actually cross it.8 However, since in our scenario

(
As, k̃(As)

)
6=

7 A similar situation occurs whenρ < θα (µs)α−1, in which case ˜c
(
Â
)

> ỹ
(
Â
)
, and thus

χ (µ̂) > θ (µ̂)α = χ̂. Only whenρ = θα (µs)α−1, and the two pointŝA andAs collapse, the opti-
mal trajectory necessarily must cross the (unstable) steady state(µ̂, χ̂); in this case, however, the
point (µ̂, χ̂) = (µs,χs) inherits the peculiar singularity properties of(µs,χs), thus becoming a
“supersingular” point to be handled with circumspection.
8 Condition (1.44) of Proposition 3 states that ˜c(As) = ỹ(As), which impliesχ (µs) = θ (µs)α =
χs.
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(
Â,k̃

(
Â
))

, the system in the original model is not on the stagnation line when it hits(
As, k̃(As)

)
and thus cannot stop over it; accordingly, the detrended system cannot

stop over(µs,χs). All these ‘singularities’ attached to(µs,χs) led us to opt for a
qualitative approach based on information gathered on a neighborhood of(µs,χs).
Condition (1.44) of Proposition 3 forA 6= As translates into

{
χ (µ) < θ (µ)α for µ∗ < µ < µs

χ (µ) > θ (µ)α for µ > µs,
(1.68)

which, in turn, means that the optimal policy must lie below the locus (1.59) when
µ∗ < µ < µs and above it whenµ > µs. A closer inspection of a neighborhood
of (µs,χs) in Fig. 1.1 shows that it is attractive on the area above the locus (1.59)
(aboveχ = θ µα ) and on the right of the vertical lineµ ≡ µs, while it is repulsive
below χ = θ µα and on the left ofµ ≡ µs. As θ µα is increasing inµ , this sug-
gests that the optimal policyχ (µ) must be increasing on(µs,χs) and the optimal
trajectory(µ (t) ,χ (t)) must cross(µs,χs) from north-east to south-west as time
elapses.

1.3.3 Time elimination, policy function and initial conditions

In order to study the policy functionχ (µ) – which is the conjugate of ˜c(A) in the
original model – we apply the technique developed by Mulligan and Sala-i-Martin
[4] and tackle the unique ODE given by the ratio between the equations in (1.56):

χ ′ (µ) =

[(
αθ µα−1−ρ

)
/σ

]
Q(µ)−2αβ (1−α) [θ µα −χ (µ)]

[Q(µ)−2β (1−α)µ ] [θ µα −χ (µ)]
χ (µ) , (1.69)

whereQ(µ) is defined in (1.57).
The natural choice for the initial condition of (1.69) is the saddle-path stable

steady state(µ∗,χ∗), while the value ofχ ′ (µ∗) in (1.67) will be used to select
the stable arm outside(µ∗,χ∗). The previous analysis, however, has endowed us
with another reference point, the singular point(µs,χs), which may be exploited
as initial condition as well. Although the Jacobian of (1.56) evaluated on(µs,χs)
is intractable, we are able to compute the slope of the policy atµ = µs by apply-
ing l’Hôpital rule to the RHS of (1.69) evaluated atµ = µs. SinceQ(µs) = 0 and[
θ (µs)α −χ (µs)

]
= 0, we obtain the following quadratic equation inχ ′ (µs):

2βσ (1−α)µs[χ ′ (µs)]2−4αβσ (1−α)χsχ ′ (µs)

−
{[

αθ (µs)α−1−ρ
]

Q′ (µs)−2α2βσθ (1−α)(µs)α−1
}

χs = 0.
(1.70)

Substitutingµs andχs as in (1.62) andQ′ (µs) = −2β (1−α)
√

1+4α +α2 into
(1.70) two positive real solutions appear, the largest being larger than the slope of
the locus (1.59) atµ = µs. However, this happens only whenθα (µs)α−1 < ρ <
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θα (µ∗)α−1; this is why we chose to confine our numerical approach to such sce-
nario.

1.4 Numeric simulation of the optimal policy

By applying theFehlberg fourth-fifth order Runge-Kutta method with degree four
interpolantmethod (see,e.g., [7]) implemented through Maple 12.02 to ODE (1.69),
we were able to find satisfactory result only for single sets of parameters values.
We chose values for parametersα, ρ , σ and θ which are often assumed in the
macroeconomic literature (see,e.g., [5]):α = 0.5, ρ = 0.04 andθ = σ = 1. Note
that σ = 1 implies logarithmic instantaneous utility. For such parameters’ values,
β must satisfy the necessary growth condition (1.43), which turns out to beβ >
0.0064.

We plan to exploit the steady state(µ∗,χ∗) and the singular point(µs,χs) [see
(1.58), (1.63) and (1.62)] as initial conditions in order to trace out two different
curves as numeric solutions of (1.69) through Maple 12.02. Both curves provide
an approximation for the same (unique) trajectory representing the optimal policy9

χ (µ) for µ ≥ µ∗. For the chosen parameters’ values, such two curves happen to
be sufficiently close to each other for a reasonably large range ofµ values only
for a unique admissible value of the technological parameter:β = 0.0124. Since,
for α = 0.5, ρ = 0.04, θ = σ = 1 andβ = 0.0124, each curve provides a reliable
approximation ofχ (µ) around its own initial condition and both match on most of
the open interval(µ∗,µs), our idea is to approximate the wholeχ (µ) by using the
first curve forµ close toµ∗ and the second one forµ close to (and larger than)µs,
while “joining”them together on some ‘intermediate’ value on which they almost
match.

For our parameters’ values, (1.62) yieldsµs = 204.4503, which impliesρ =
0.04> 0.035= θα (µs)α−1, corresponding to the third scenario of Section 1.3.2,
in whichAs < Â. Fig. 1.2 portraits the turnpikẽk(A), the asymptotic turnpikẽk∞ (A)
and the stagnation linêk(A) as in (1.40), (1.41) and (1.42); as expected,As =
2.1514< 2.567= Â.

In view of Proposition 2, the long-run capital rental rate isr∞ = f ′ (η̃) = 0.0557,
the long-run common constant growth rate isγ = 0.0157, while the long-run income
shares invested in knowledge and capital are the same:s∞ = sk

∞ = 0.1408.
The steady states are(µ∗,χ∗) = (80.6452,6.4516), (µ̂, χ̂) = (156.25,12.5) and

(µs,χs) = (204.4503,14.2986). Fig. 1.3 shows the loci̇µ = 0 andχ̇ = 0 in slim
black, while the thick curves are the result of the numeric solution of (1.69) repre-
senting the policyχ (µ): the black one uses(µ∗,χ∗) as initial condition and (1.67),

9 Such trajectory is the unique true solution of (1.69) corresponding to the stable arm of the saddle
point (µ∗,χ∗) and, at the same time, crossing the singular point(µs,χs). Other solutions of (1.69)
may cross at most one of the two points, like, for example, the trajectory corresponding to the un-
stable arm of(µ∗,χ∗), or other unknown trajectories possibly crossing the singular point(µs,χs).
We owe such clarification to an anonymous referee.
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Fig. 1.2 the turnpikẽk(A), the asymptotic turnpikek∞ (A)and the stagnation linêk(A) for α = 0.5,
ρ = 0.04,θ = σ = 1 andβ = 0.0124.
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Fig. 1.3 loci µ̇ = 0 andχ̇ = 0 (slim black curves) and approximate trajectoriesχ∗ (µ) andχs(µ)
(black and grey thick curves respectively) forα = 0.5, ρ = 0.04,θ = σ = 1 andβ = 0.0124.

χ ′ (µ∗) = 0.0687, for the selection of the stable arm; the grey one has(µs,χs) as ini-
tial condition and slope given by the largest solution of (1.70) onµ = µs, χ ′ (µs) =
0.0602. The two approximate trajectories will be labeledχ∗ (µ) andχs(µ) respec-
tively.

Even for our choice of parameters’ values the Maple 12.02 algorithm is capable
of computing the trajectoryχ∗ (µ) only up to a point: it actually stops at̄µ ≃ 197<
204.4503= µs, falling short of the singular point,(µs,χs). On the other hand, as it
is clear from Fig. 1.3, trajectoryχs(µ) heavily underestimates the policy for values
of µ approachingµ∗ (i.e., far away fromµs). The two curves, however, seem suffi-
ciently close to each other on most of the interval(µ∗,µs), thus suggesting that the
numeric approach actually works satisfactorily for these values of parameters.
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In order to estimate the whole policyχ (µ), for all µ ≥ µ∗, we shall useχ∗ (µ)
for µ values close toµ∗, andχs(µ) for µ values closer toµs. Since from Fig. 1.3 it
is clear thatχ∗ (µ̂)≈ χs(µ̂), we shall define the approximated policy as a piecewise
function by joining the two trajectories at the pointµ̂ = 156.25∈ (µ∗,µs):

χ (µ) =

{
χ∗ (µ) for µ∗ ≤ µ ≤ µ̂
χs(µ) for µ ≥ µ̂.

(1.71)

Surprisingly, already forβ = 0.0123, orβ = 0.0125, while keeping fixed all other
parameters, the curvesχ∗ (µ) andχs(µ) in Fig. 1.3 split apart, while the range of
µ for which the numeric algorithm is able to perform starts to shrink dramatically;
this is why we take as reliable only the solution obtained forβ = 0.0124.

Remark 2.We tried different values for the parametersα, ρ , σ andθ ; for all feasi-
ble set of values for such parameters we found a scenario similar to that described
above, at least under conditionθα (µs)α−1 < ρ < θα (µ∗)α−1: only for one spe-
cific value of parameterβ , related to the choice ofα, ρ , σ andθ , the two numerical
solutions –χ∗ (µ) with initial condition (µ∗,χ∗) andχs(µ) with initial condition
(µs,χs) – turned out to be sufficiently close to each other on a large part of the
interval (µ∗,µs). We conclude, thus, that the numeric approach works satisfactory
only on a manifold of dimension one in the parameters’ space.

1.5 Discussion

To get the approximated time-path trajectory ofµ we substitute the optimal policy
χ (µ) as in (1.71) into the first equation of (1.56), yielding the following ODE int,

µ̇ (t) = {1−2β (1−α)µ (t)/Q[µ (t)]}
{

θ [µ (t)]α −χ [µ (t)]
}

, (1.72)

with Q(·) defined in (1.57), which can be numerically solved. Sinceχ (µ) in (1.71)
is defined piecewise, we need to choose an instantt̂ > 0 on which the trajectory has
the (common) valuêµ = 156.25; then, the initial valueµ0 = µ (0) will be given by
evaluating int = 0 the solution of (1.72) withχ (·) = χs(·) andµ (t̂) = µ̂ as initial
condition. For different̂t we can consider any initial valueµ0 = µ (0)> µ̂.

In our example we assumet̂ = 36, corresponding toµ0 = 251.977 int = 0. Ac-
cording to (1.71), we defineµ (t) as the solution of (1.72) withχ (·) = χs(·) for
0 ≤ t ≤ t̂ [corresponding toµ̂ ≤ µ (t) ≤ µ0], and as the solution of (1.72) with
χ (·) = χ∗ (·) for t ≥ t̂ [corresponding toµ∗ ≤ µ (t) ≤ µ̂]. Fig. 4(a) plotsµ (t) for
0≤ t ≤ 400 by distinguishing the part (in grey) obtained throughχs(·) for 0≤ t ≤
t̂ = 36 from the part eventually converging toµ∗ (in black) obtained by means of
χ∗ (·) for t ≥ 36.

The time-path trajectoryχ (t) is then computed by lettingχ (t) = χ [µ (t)] in
(1.71), with µ (t) just obtained, for all 0≤ t ≤ 400. Fig. 4(b) reports the result,
again by emphasizing in grey the part for 0≤ t ≤ t̂ = 36. In t = 0, χ (0) = χ0 =
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Fig. 1.4 (a) µ (t) and (b)χ (t) for α = 0.5, ρ = 0.04,θ = σ = 1 andβ = 0.0124.
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ỹ(A)

c̃(A)

(a)
A
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Fig. 1.5 (a) c̃, ỹ andk̃ as functions ofA along the turnpike; (b) ˜c andỹ close toA0 = 1.9707.

17.1194, corresponding toµ0 = 251.977, while int = t̂ = 36, χ (36) = 11.3688;
clearly,χ (t̂) = 11.3688< 12.5 = χ̂, as expected.

With µ (t) andχ (t) at hand, we can compute the optimal consumption ˜c(A) and
output ỹ(A) along the turnpikẽk(A) in the original model as functions ofA. By
(1.48) we find the initial stock of knowledgeA0 = 1.9707 int = 0, corresponding
to µ0. To A0 corresponds an initial capitalk0 = k̃(A0) = 496.57 in t = 0. c̃(A)
is then obtained through (1.49), withχ (·) defined in (1.71):χs(·) for A0 ≤ A≤ Â
(corresponding tôµ ≤ µ ≤ µ0), andχ∗ (·) for A≥ Â (corresponding toµ∗ ≤ µ ≤ µ̂).
Fig. 5(a) reports̃k(A), ỹ(A) and c̃(A) just evaluated on a scale larger than in Fig.
1.2. Fig. 5(b) magnifies the intersection point between ˜y(A) and the ˜c(A) occurring
on As, close toA0 and to the left ofÂ. Since on

[
A0, Â

]
c̃(A) is being built through

χs(·) in (1.72), this portion of its graph is emphasized in grey, as we did in previous
figures.

The time-path trajectory of the stock of knowledgeA(t) is obtained by evaluating
(1.48) atµ (t) for all t, while time-path trajectories̃k(t) andỹ(t) follow by construc-
tion. The consumption time-path trajectory ˜c(t) is computed by evaluating (1.49) at
A(t) for all t. These trajectories are drawn in Fig. 6(a), while Fig. 6(b) reports the
time path-trajectory of the capital rental rater; once again, their dependence on the
χs(·) arm of the policy in (1.71) for 0≤ t ≤ t̂ = 36 is emphasized in grey.
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Fig. 1.6 (a) time-path trajectories ofA, k̃, ỹ andc̃; (b) time-path trajectory for ˜r.

From Figures 1.2, 5(a) and 6(a), emerges that the dynamics along the turnpike are
characterized by a much larger amount of physical capital than any other variable. A
large initial capital,k0 = 496.57, compared to very few initial ideas,A0 = 1.9707,
is required to let the recombinant process to take-off. Such amount, even if for a
short time, is partially being ‘eaten up’ by both consumption [ ˜c(A)> ỹ(A) for A0 ≤
A ≤ As] and investment in R&D, thus envisaging an initial period of decline for
capitalk̃. Fig. 5(b) shows that output and consumption decrease for a short time as
well; specifically, output declines until ˜c(A) hits ỹ(A) at A = As, and consumption
decreases until the turnpike crosses the stagnation line onA= Â (see Fig. 1.2) at̂t =
36. For largert all variables start to increase, with a much higherk̃ with respect to
all others, especially toA. For example, whenA≃ 73, k̃≃ 6000 in Fig. 5(a).

In our example, thus, sustained growth requires a large exploitation of physical
resources, at least relatively to knowledge, even under a ‘balanced’ (α = 0.5) Cobb-
Douglas technology. Such ‘asymmetry’ is explained by the ratio between the (low)
price of capital – nuḿeraire – and the relatively high unit cost of knowledge pro-
duction: forβ = 0.0124ϕ (A) turns out to be significantly larger than 1, asϕ (A)>
limA→∞ ϕ (A) = 1/π ′ (0) = 1/β = 80.6452 [see also next Figures 8(a) and 8(b)].

Fig. 6(a) exhibits a system which actually takes some time to take-off. Provided
that our economy starts with very few ideas (A0 = 1.9707) and sufficiently large
capital (k0 = 496.57), the initial transient dynamics happen to last quite long; es-
peciallyA(t) takes no less than 200 periods before becoming significant [note that
in the meantimẽk(t) already started to “blow up”]. For example, it takes around
282 periods to reach the stockA ≃ 73, corresponding tõk ≃ 6000. Similarly, the
constant ratio ˜c(A)/ỹ(A) visible in Fig. 5(a) – due to almost linearity of ˜c(A) and
ỹ(A) and which can be checked to be close to the asymptotic ratio 0.07184, corre-
sponding to the saving rates∞+ sk

∞ = 0.2816 – is actually not reached before at least
300 periods. To conclude, Figures 1.2 and 5(a) should be read carefully when one
introduces time: of course the economy grows along the turnpikek̃(A), but at a very
slow pace in early times, while keeps accelerating until it “explodes” alongk̃∞ (A).

Fig. 6(b) adds more information to the analysis: even ifk̃ is always (much) larger
thanA, its productivity keeps rising in time, as confirmed by its increasing rental
rate, ˜r, until it reaches its asymptotic value,r∞ = 0.0557.
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Fig. 1.8 (a) unit cost of knowledge production,ϕ, as a function ofA; (b) its time-path trajectory.

Fig. 1.7 confirms everything in terms of rates of growth. By construction,A(t) is
the only variable with rate of growthγA = Ȧ/Aalways positive, whilẽk(t), ỹ(t) and

c̃(t), all experience negative growth at early times, whereγk̃ = ˙̃k/k̃, γỹ = ˙̃y/ỹ and
γc̃ = ˙̃c/c̃ are negative. Interestingly, it can be observed that ˜c(t) reaches its absolute
minimum in t̂ = 36 [corresponding to ˜c

(
Â
)
, as confirmed by Fig. 5(b)].

The striking feature of recombinant growth is evident in Fig. 1.7: all growth
rates are increasing in time while approaching their asymptotic common valueγ =
0.0157. This reflects the original Weitzman’s [9] hypothesis: in early times ideas
are scarce and thus have the potential of growing at increasing rates, in the long-run
limited physical resources to be invested in R&D – with respect to the exploding
number of ideas – cools down growth to the more realistic case of constant rates.

Fig. 8(a) shows the graph of the unit cost of knowledge productionϕ (A) as in
(1.39), which is sharply decreasing inA for A close toA0. Such jump, however, is
to be diluted when time is considered, as shown in Fig. 8(b) whereϕ is plotted as
a function oft, sinceA starts to grow significantly only after some time [see Fig.
6(a)].

Investment in R&DJ̃ and investment in capital˙̃k as functions ofA are plotted in
Fig. 1.9;J̃ is computed by using ˜c(A)andỹ(A), ϕ (A)andk̃′ (A)– obtained by diffe-
rentiating (1.40) with respect toA – in (1.22). From Figures 9(a) and 9(c), where a
large range ofA values is considered, we learn that both look linear inA and have
the same magnitude, implying that they become the same well before reaching their
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Fig. 1.9 (a) J̃(A), (b) its detail forA close toA0; (c) ˙̃k(A), (d) its detail forA close toA0.
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Fig. 1.10 (a) s̃= J̃/ỹ as a function ofA; (b) s̃k = ˙̃k/ỹ as a function ofA.

asymptotic (common) constant shares∞ = J∞/y∞ = sk
∞ = k̇∞/y∞ = 0.1408. Only for

A close toA0 their behavior differ, as magnified by Figures 9(b) and 9(d).
It is interesting to compare the magnitude ofJ̃(A) and ˙̃k(A) in Figures 9(a) and

9(c) with that ofc̃(A) and ỹ(A) in Figures 5(a) and 5(b): for allA – also close to
A0 – the optimal dynamics postulate relatively small investment in both factors with
respect to consumption and output. Figures 10(a) and 10(b) confirm this in terms of
investment shares, ˜s= J̃/ỹ and s̃k = ˙̃k/ỹ. Both are increasing inA and reach their
asymptotic values∞ = sk

∞ = 0.1408 quite rapidly, although ˜sk < 0 for smallA. Such
quick jumps to their asymptotic value is consistent with the linearity exhibited by
J̃(A) and˙̃k(A) in Figures 9(a) and 9(c).
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Also the dynamics ofJ̃ (or s̃) confirm Weitzman’s [9] evolution of knowledge:
whenA – and thus seed ideasH – is scarce function (1.5) exhibits low productivity;
accordingly, only few resources are employed in R&D, while they increase asA
– andH – become more abundant. In the long-run are the physical resources that
become scarce with respect to knowledge – they grow slower than what (potentially)
could do knowledge – and bound the rate of investment ˜s to its asymptotic values∞.

The graphs of new (successful) knowledge production,Ȧ, and seed ideas,̃H, as
functions ofA are reported in Fig. 1.11; the former is given by (1.29), while the
latter is computed from (1.4) usinġA andC

′
2 (A) = A− 1/2. Strict convexity of

H̃ in Figures 11(c) and 11(d), associated to linearity ofȦ (also forA close toA0)
in Figures 11(a) and 11(b), is consistent to formula (1.4), which implies quadratic
growth forH̃ whenȦ grows linearly. It is worth noting the difference in magnitudes
between seed ideas̃H and the actual successful ideasȦ produced out of̃H: such low
returns are justified by the choice of a very small value for the efficiency parameter,
β = 0.0124, in (1.38), requiring abundant seed ideas to guarantee sustained growth
of knowledge.

To conclude, Fig. 1.12 shows time-path trajectories ofJ̃, ˙̃k, s̃, s̃k, Ȧ andH̃. Due
to slow growth ofA(t) in early times, linearity of investments̃J and ˙̃k, and of new
knowledgeȦ, evident in Figures 9(a), 9(c) and 11(a), correspond to convex time-
path trajectories, as shown in Figures 12(a), 12(b) and 12(e). For the same reason,
convexity of H̃ in Fig. 11(c) becomes more accentuated in Fig. 12(f); similarly,
the sudden jumps to their asymptotic value of ˜s and s̃k in Figures 10(a) and 10(b)
is being smoothed in Figures 12(c) and 12(d). Specifically, both need at least 200
periods before approaching their long-run (common) constant values∞.

1.6 Conclusions

The exercise performed in this paper is a very preliminary attempt to tackle the tran-
sition dynamics in the recombinant growth model introduced by Tsur and Zemel
[8]. For CIES instantaneous utility and Cobb-Douglas production in the output sec-
tor, we chose a suitable function for the Weitzman’s [9] probability of obtaining a
successful idea from pairwise matchings of seed ideas, so that the original optimal
dynamics along the turnpike, which is diverging in the long-run, can be ‘detrended’
to an equivalent system converging to a steady state. In the space of the detrended
variables we exploit the asymptotic steady state plus a singular point, across which
the optimal policy must get through at some early instant, in order to numerically
compute two trajectories which, for a specific choice for the parameters’ values,
happen to be sufficiently close to each other on a large range between such two
points. By joining together these trajectories at an intermediate point, we build an
approximation of the optimal policy which must be reasonably close to the true pol-
icy on all variables’ domain. By converting such trajectory into the original state
variable (stock of knowledge) and control variable (consumption) trajectories, we
obtain a good approximation of the optimal consumption, which in turn, again by
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Fig. 1.11 (a) and (b)Ȧ as a function ofA; (c) and (d)H̃ as a function ofA.

solving numerically an ODE, yields the transition optimal time-path trajectories of
the stock of knowledge, physical capital, output and consumption – as well as their
transition growth rates – along the turnpike.

We believe that our main technical contribution is the appropriate form chosen
for the Weitzman’s probability function defined in Assumption A.4(ii), which allows
for ‘detrending’ the original system (1.37) into the equivalent system (1.56).

If, on one hand the optimal policy obtained in section 1.4, and used to build
time-path trajectories in Section 1.5, may clearly be of interest per se, on the other
hand it is insufficient for studying how the system’s transitional behavior is being
affected by changes in the technological parameterβ of the probability functionπ
of Assumption A.4(ii), while keeping fixed all other parameters’ values. In order to
further investigate this topic one needs either to improve the numerical computation
of system (1.56) so that the matching of the two aforementioned trajectories in the
detrended space is maintained at least on a nontrivial interval of values for param-
eterβ , or trying a completely different approach on either system (1.37) or system
(1.56) by means of analytical tools in order to explicitly find the true form of the
optimal trajectories. One may tackle the latter by looking for some special function
that may prove useful in solving one of (1.37) or (1.56); see,e.g., [3] for a recent
application of the Gaussian hypergeometric functions to the Lucas-Uzawa model.
Both approaches will be investigated in future research projects.
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