Search for $\boldsymbol{C P}$ Violation in $B^{\mathbf{0}}-\bar{B}^{\mathbf{0}}$ Mixing Using Partial Reconstruction of $B^{0} \rightarrow D^{*-} X \ell^{+} \nu_{\ell}$ and a Kaon Tag

J. P. Lees, ${ }^{1}$ V. Poireau, ${ }^{1}$ V. Tisserand, ${ }^{1}$ E. Grauges, ${ }^{2}$ A. Palano, ${ }^{3 \mathrm{a}, 3 \mathrm{~b}}$ G. Eigen, ${ }^{4}$ B. Stugu, ${ }^{4}$ D. N. Brown, ${ }^{5}$ L. T. Kerth, ${ }^{5}$ Yu. G. Kolomensky, ${ }^{5}$ M. J. Lee, ${ }^{5}$ G. Lynch, ${ }^{5}$ H. Koch, ${ }^{6}$ T. Schroeder, ${ }^{6}$ C. Hearty, ${ }^{7}$ T. S. Mattison, ${ }^{7}$ J. A. McKenna, ${ }^{7}$ R. Y. So, ${ }^{7}$ A. Khan, ${ }^{8}$ V.E. Blinov, ${ }^{9 \mathrm{a}, 9 \mathrm{c}}$ A. R. Buzykaev, ${ }^{9 \mathrm{a}}$ V. P. Druzhinin, ${ }^{9 \mathrm{ab}}{ }^{9 b}$ V. B. Golubev, ${ }^{9 \mathrm{a}, 9 \mathrm{~b}}$ E. A. Kravchenko, ${ }^{9 \mathrm{a}, 9 \mathrm{~b}}$ A. P. Onuchin, ${ }^{9 a, 9 c}$ S. I. Serednyakov, ${ }^{9 a, 9 b}$ Yu. I. Skovpen, ${ }^{9 a, 9 b}$ E. P. Solodov, ${ }^{9 a, 9 b}$ K. Yu. Todyshev, ${ }^{9 a, 9 b}$ A. N. Yushkov, ${ }^{9 a}$ D. Kirkby, ${ }^{10}$ A. J. Lankford, ${ }^{10}$ M. Mandelkern, ${ }^{10}$ B. Dey, ${ }^{11}$ J. W. Gary, ${ }^{11}$ O. Long, ${ }^{11}$ G. M. Vitug, ${ }^{11}$ C. Campagnari, ${ }^{12}$ M. Franco Sevilla, ${ }^{12}$ T. M. Hong, ${ }^{12}$ D. Kovalskyi, ${ }^{12}$ J. D. Richman, ${ }^{12}$ C. A. West, ${ }^{12}$ A. M. Eisner, ${ }^{13}$ W. S. Lockman, ${ }^{13}$ A. J. Martinez, ${ }^{13}$ B. A. Schumm, ${ }^{13}$ A. Seiden, ${ }^{13}$ D. S. Chao, ${ }^{14}$ C. H. Cheng, ${ }^{14}$ B. Echenard, ${ }^{14}$ K. T. Flood, ${ }^{14}$ D. G. Hitlin, ${ }^{14}$ P. Ongmongkolkul, ${ }^{14}$ F. C. Porter, ${ }^{14}$ R. Andreassen, ${ }^{15}$ Z. Huard, ${ }^{15}$ B. T. Meadows, ${ }^{15}$ M. D. Sokoloff, ${ }^{15}$ L. Sun, ${ }^{15}$ P. C. Bloom, ${ }^{16}$ W. T. Ford, ${ }^{16}$ A. Gaz, ${ }^{16}$ U. Nauenberg, ${ }^{16}$ J. G. Smith, ${ }^{16}$ S. R. Wagner, ${ }^{16}$ R. Ayad, ${ }^{17,{ }^{1} \text { W. H. Toki, }{ }^{17}}$ B. Spaan, ${ }^{18}$ K. R. Schubert, ${ }^{19}$ R. Schwierz, ${ }^{19}$ D. Bernard, ${ }^{20}$ M. Verderi, ${ }^{20}$ S. Playfer, ${ }^{21}$ D. Bettoni, ${ }^{22 a}$ C. Bozzi, ${ }^{22 a}$
R. Calabrese, ${ }^{22 \mathrm{a}, 22 \mathrm{~b}}$ G. Cibinetto, ${ }^{22 \mathrm{a}, 22 \mathrm{~b}}$ E. Fioravanti, ${ }^{22 \mathrm{a}, 22 \mathrm{~b}}$ I. Garzia, ${ }^{22 \mathrm{a}, 22 \mathrm{~b}}$ E. Luppi, ${ }^{22 \mathrm{a}, 22 \mathrm{~b}}$ L. Piemontese, ${ }^{22 \mathrm{a}}$ V. Santoro, ${ }^{22 \mathrm{a}}$ R. Baldini-Ferroli, ${ }^{23}$ A. Calcaterra, ${ }^{23}$ R. de Sangro, ${ }^{23}$ G. Finocchiaro, ${ }^{23}$ S. Martellotti, ${ }^{23}$ P. Patteri, ${ }^{23}$ I. M. Peruzzi, ${ }^{23, \ddagger}$ M. Piccolo, ${ }^{23}$ M. Rama, ${ }^{23}$ A. Zallo, ${ }^{23}$ R. Contri, ${ }^{24 \mathrm{a}, 24 \mathrm{~b}}$ E. Guido, ${ }^{24 \mathrm{a}, 24 \mathrm{~b}}$ M. Lo Vetere, ${ }^{24 \mathrm{a}, 24 \mathrm{~b}}$ M. R. Monge, ${ }^{24 \mathrm{a}, 24 \mathrm{~b}}$ S. Passaggio, ${ }^{24 \mathrm{a}}$ C. Patrignani, ${ }^{24 \mathrm{a}, 24 \mathrm{~b}}$ E. Robutti, ${ }^{24 \mathrm{a}}$ B. Bhuyan, ${ }^{25}$ V. Prasad, ${ }^{25}$ M. Morii, ${ }^{26}$ A. Adametz, ${ }^{27}$ U. Uwer, ${ }^{27}$ H. M. Lacker, ${ }^{28}$ P. D. Dauncey, ${ }^{29}$ U. Mallik, ${ }^{30}$ C. Chen, ${ }^{31}$ J. Cochran, ${ }^{31}$ W. T. Meyer, ${ }^{31}$ S. Prell, ${ }^{31}$ A. E. Rubin, ${ }^{31}$ A. V. Gritsan, ${ }^{32}$ N. Arnaud, ${ }^{33}$ M. Davier, ${ }^{33}$ D. Derkach, ${ }^{33}$ G. Grosdidier, ${ }^{33}$ F. Le Diberder, ${ }^{33}$ A. M. Lutz, ${ }^{33}$ B. Malaescu, ${ }^{33}$ P. Roudeau, ${ }^{33}$ A. Stocchi, ${ }^{33}$ G. Wormser, ${ }^{33}$ D. J. Lange, ${ }^{34}$ D. M. Wright, ${ }^{34}$ J. P. Coleman,,${ }^{35}$ J. R. Fry, ${ }^{35}$ E. Gabathuler, ${ }^{35}$ D. E. Hutchcroft, ${ }^{35}$ D. J. Payne, ${ }^{35}$ C. Touramanis, ${ }^{35}$ A. J. Bevan, ${ }^{36}$ F. Di Lodovico, ${ }^{36}$ R. Sacco, ${ }^{36}$ G. Cowan,,${ }^{37}$ J. Bougher, ${ }^{38}$ D. N. Brown, ${ }^{38}$ C. L. Davis, ${ }^{38}$ A. G. Denig, ${ }^{39}$ M. Fritsch, ${ }^{39}$ W. Gradl, ${ }^{39}$ K. Griessinger, ${ }^{39}$ A. Hafner, ${ }^{39}$ E. Prencipe, ${ }^{39}$ R. J. Barlow, ${ }^{40,8}$ G. D. Lafferty, ${ }^{40}$ E. Behn, ${ }^{41}$ R. Cenci, ${ }^{41}$ B. Hamilton, ${ }^{41}$ A. Jawahery, ${ }^{41}$ D. A. Roberts, ${ }^{41}$ R. Cowan, ${ }^{42}$ D. Dujmic, ${ }^{42}$ G. Sciolla, ${ }^{42}$ R. Cheaib, ${ }^{43}$ P. M. Patel, ${ }^{43, *}$ S. H. Robertson, ${ }^{43}$ P. Biassoni, ${ }^{44 a, 44 b}$ N. Neri, ${ }^{44 \mathrm{a}}$ F. Palombo, ${ }^{44 \mathrm{a}, 44 \mathrm{~b}}$ L. Cremaldi, ${ }^{45}$ R. Godang, ${ }^{45, \|}$ P. Sonnek, ${ }^{45}$ D. J. Summers, ${ }^{45}$ X. Nguyen, ${ }^{46}$ M. Simard, ${ }^{46}$ P. Taras, ${ }^{46}$ G. De Nardo, ${ }^{47 \mathrm{a}, 47 \mathrm{~b}}$ D. Monorchio, ${ }^{47 \mathrm{a}, 47 \mathrm{~b}}$ G. Onorato, ${ }^{47 \mathrm{a}, 47 \mathrm{~b}}$ C. Sciacca, ${ }^{47 \mathrm{a}, 47 \mathrm{~b}}$ M. Martinelli, ${ }^{48}$ G. Raven, ${ }^{48}$ C. P. Jessop, ${ }^{49}$ J. M. LoSecco, ${ }^{49}$ K. Honscheid, ${ }^{50}$ R. Kass, ${ }^{50}$ J. Brau, ${ }^{51}$ R. Frey, ${ }^{51}$ N. B. Sinev, ${ }^{51}$ D. Strom, ${ }^{51}$ E. Torrence, ${ }^{51}$ E. Feltresi, ${ }^{52 \mathrm{a}, 52 \mathrm{~b}}$ M. Margoni, ${ }^{52 \mathrm{a}, 52 \mathrm{~b}}$ M. Morandin, ${ }^{52 \mathrm{a}}$ M. Posocco, ${ }^{52 \mathrm{a}}$ M. Rotondo, ${ }^{52 \mathrm{a}}$ G. Simi, ${ }^{52 \mathrm{a}, 52 \mathrm{~b}}$ F. Simonetto, ${ }^{52 \mathrm{a}, 52 \mathrm{~b}}$ R. Stroili, ${ }^{52 \mathrm{a}, 52 \mathrm{~b}}$ S. Akar, ${ }^{53}$ E. Ben-Haim, ${ }^{53}$ M. Bomben, ${ }^{53}$ G. R. Bonneaud, ${ }^{53}$ H. Briand, ${ }^{53}$ G. Calderini, ${ }^{53}$ J. Chauveau, ${ }^{53}$ Ph. Leruste, ${ }^{53}$ G. Marchiori, ${ }^{53}$ J. Ocariz, ${ }^{53}$ S. Sitt, ${ }^{53}$ M. Biasini, ${ }^{54 \mathrm{a}, 54 \mathrm{~b}}$ E. Manoni, ${ }^{54 \mathrm{a}}$ S. Pacetti, ${ }^{54 \mathrm{a}, 54 \mathrm{~b}}$ A. Rossi, ${ }^{54 \mathrm{a}}$ C. Angelini, ${ }^{54 \mathrm{a}, 54 \mathrm{~b}}$ G. Batignani, ${ }^{55 \mathrm{a}, 55 \mathrm{~b}}$ S. Bettarini, ${ }^{55 \mathrm{a}, 55 \mathrm{~b}}$ M. Carpinelli, ${ }^{55 \mathrm{a}, 55 \mathrm{~b},{ }^{4} \mathrm{G}}$ G. Casarosa, ${ }^{55 \mathrm{a}, 55 \mathrm{~b}}$ A. Cervelli, ${ }^{55 \mathrm{a}, 55 \mathrm{~b}}$ F. Forti, ${ }^{55 \mathrm{a}, 55 \mathrm{~b}}$ M. A. Giorgi, ${ }^{55 \mathrm{a}, 55 \mathrm{~b}}$ A. Lusiani, ${ }^{55 \mathrm{a}, 55 \mathrm{c}}$ B. Oberhof, ${ }^{55 \mathrm{a}, 55 \mathrm{~b}}$ E. Paoloni, ${ }^{55 \mathrm{a}, 55 \mathrm{~b}}$ A. Perez, ${ }^{55 \mathrm{a}}$ G. Rizzo, ${ }^{55 \mathrm{a}, 55 \mathrm{~b}}$ J. J. Walsh, ${ }^{55 \mathrm{a}}$ D. Lopes Pegna, ${ }^{56}$ J. Olsen, ${ }^{56}$ A. J. S. Smith, ${ }^{56}$ R. Faccini, ${ }^{57 \mathrm{a}, 57 \mathrm{~b}}$ F. Ferrarotto, ${ }^{57 \mathrm{a}}$ F. Ferroni, ${ }^{57 \mathrm{a}, 57 \mathrm{~b}}$ M. Gaspero, ${ }^{57 \mathrm{a}, 57 \mathrm{~b}} \mathrm{~L}$. Li Gioi, ${ }^{57 \mathrm{a}}$ G. Piredda, ${ }^{57 \mathrm{a} \text { C. Bünger, }}{ }^{58}$ O. Grünberg, ${ }^{58}$ T. Hartmann, ${ }^{58}$ T. Leddig, ${ }^{58}$ C. Voß, ${ }^{58}$ R. Waldi, ${ }^{58}$ T. Adye, ${ }^{59}$ E. O. Olaiya, ${ }^{59}$ F. F. Wilson, ${ }^{59}$ S. Emery, ${ }^{60}$ G. Hamel de Monchenault, ${ }^{60}$ G. Vasseur, ${ }^{60}$ Ch. Yèche, ${ }^{60}$ F. Anulli, ${ }^{61}$ D. Aston, ${ }^{61}$ D. J. Bard, ${ }^{61}$ J. F. Benitez, ${ }^{61}$ C. Cartaro, ${ }^{61}$ M. R. Convery, ${ }^{61}$ J. Dorfan, ${ }^{61}$ G. P. Dubois-Felsmann, ${ }^{61}$ W. Dunwoodie, ${ }^{61}$ M. Ebert, ${ }^{61}$ R. C. Field, ${ }^{61}$ B. G. Fulsom, ${ }^{61}$ A. M. Gabareen, ${ }^{61}$ M. T. Graham, ${ }^{61}$ C. Hast, ${ }^{61}$ W. R. Innes, ${ }^{61}$
P. Kim, ${ }^{61}$ M. L. Kocian, ${ }^{61}$ D. W. G. S. Leith, ${ }^{61}$ P. Lewis, ${ }^{61}$ D. Lindemann, ${ }^{61}$ B. Lindquist, ${ }^{61}$ S. Luitz, ${ }^{61}$ V. Luth, ${ }^{61}$ H. L. Lynch, ${ }^{61}$ D. B. MacFarlane, ${ }^{61}$ D. R. Muller, ${ }^{61}$ H. Neal, ${ }^{61}$ S. Nelson, ${ }^{61}$ M. Perl, ${ }^{61}$ T. Pulliam, ${ }^{61}$ B. N. Ratcliff, ${ }^{61}$ A. Roodman, ${ }^{61}$ A. A. Salnikov, ${ }^{61}$ R. H. Schindler, ${ }^{61}$ A. Snyder, ${ }^{61}$ D. Su, ${ }^{61}$ M. K. Sullivan, ${ }^{61}$ J. Va'vra, ${ }^{61}$ A. P. Wagner, ${ }^{61}$ W. F. Wang, ${ }^{61}$ W. J. Wisniewski, ${ }^{61}$ M. Wittgen, ${ }^{61}$ D. H. Wright, ${ }^{61}$ H. W. Wulsin, ${ }^{61}$ V. Ziegler, ${ }^{61}$ W. Park, ${ }^{62}$ M. V. Purohit, ${ }^{62}$ R. M. White, ${ }^{62, * *}$ J. R. Wilson,,${ }^{62}$ A. Randle-Conde, ${ }^{63}$ S. J. Sekula, ${ }^{63}$ M. Bellis, ${ }^{64}$ P. R. Burchat, ${ }^{64}$ T. S. Miyashita, ${ }^{64}$ E. M. T. Puccio, ${ }^{64}$ M. S. Alam,,${ }^{65}$ J. A. Ernst, ${ }^{65}$ R. Gorodeisky, ${ }^{66}$ N. Guttman, ${ }^{66}$ D. R. Peimer, ${ }^{66}$ A. Soffer, ${ }^{66}$ S. M. Spanier, ${ }^{67}$ J. L. Ritchie, ${ }^{68}$ A. M. Ruland, ${ }^{68}$ R.F. Schwitters, ${ }^{68}$ B. C. Wray, ${ }^{68}$ J. M. Izen, ${ }^{69}$ X. C. Lou, ${ }^{69}$ F. Bianchi, ${ }^{70 a}, 70 \mathrm{~b}$ F. De Mori, ${ }^{70 a}$ A. Filippi, ${ }^{70 \mathrm{a}}$ D. Gamba, ${ }^{70 \mathrm{a}, 70 \mathrm{~b}}$ S. Zambito, ${ }^{70 \mathrm{a}, 70 \mathrm{~b}}$ L. Lanceri, ${ }^{71 \mathrm{a}, 71 \mathrm{~b}}$ L. Vitale, ${ }^{71 \mathrm{a}, 71 \mathrm{~b}}$ F. Martinez-Vidal, ${ }^{72}$ A. Oyanguren, ${ }^{72}$ P. Villanueva-Perez, ${ }^{72}$ H. Ahmed, ${ }^{73}$ J. Albert, ${ }^{73}$ Sw. Banerjee, ${ }^{73}$ F. U. Bernlochner, ${ }^{73}$ H. H. F. Choi, ${ }^{73}$ G. J. King, ${ }^{73}$ R. Kowalewski, ${ }^{73}$ M. J. Lewczuk, ${ }^{73}$ T. Lueck, ${ }^{73}$ I. M. Nugent, ${ }^{73}$ J. M. Roney, ${ }^{73}$ R. J. Sobie, ${ }^{73}$ N. Tasneem, ${ }^{73}$ T. J. Gershon, ${ }^{74}$ P.F. Harrison, ${ }^{74}$ T. E. Latham, ${ }^{74}$ H. R. Band, ${ }^{75}$ S. Dasu, ${ }^{75}$ Y. Pan, ${ }^{75}$ R. Prepost, ${ }^{75}$ and S. L. Wu ${ }^{75}$
(BABAR Collaboration)

[^0]${ }^{52 \mathrm{~b}}$ Dipartimento di Fisica, Università di Padova, I-35131 Padova, Italy
${ }^{53}$ Laboratoire de Physique Nucléaire et de Hautes Energies, IN2P3/CNRS, Université Pierre et Marie Curie-Paris6, Université Denis Diderot-Paris7, F-75252 Paris, France
${ }^{54 a}$ INFN Sezione di Perugia, I-06123 Perugia, Italy
${ }^{54 b}$ Dipartimento di Fisica, Università di Perugia, I-06123 Perugia, Italy
${ }^{55 a}$ INFN Sezione di Pisa, I-56127 Pisa, Italy
${ }^{55 \mathrm{~b}}$ Dipartimento di Fisica, Università di Pisa, I-56127 Pisa, Italy
${ }^{55 \mathrm{c}}$ Scuola Normale Superiore di Pisa, I-56127 Pisa, Italy
${ }^{56}$ Princeton University, Princeton, New Jersey 08544, USA
${ }^{57}$ INFN Sezione di Roma, I-00185 Roma, Italy
${ }^{57 \mathrm{~b}}$ Dipartimento di Fisica, Università di Roma La Sapienza, I-00185 Roma, Italy
${ }^{58}$ Universität Rostock, D-18051 Rostock, Germany
${ }^{59}$ Rutherford Appleton Laboratory, Chilton, Didcot, Oxon OX11 0QX, United Kingdom
${ }^{60}$ CEA, Irfu, SPP, Centre de Saclay, F-91191 Gif-sur-Yvette, France
${ }^{61}$ SLAC National Accelerator Laboratory, Stanford, California 94309, USA
${ }^{62}$ University of South Carolina, Columbia, South Carolina 29208, USA
${ }^{63}$ Southern Methodist University, Dallas, Texas 75275, USA
${ }^{64}$ Stanford University, Stanford, California 94305-4060, USA
${ }^{65}$ State University of New York, Albany, New York 12222, USA
${ }^{66}$ School of Physics and Astronomy, Tel Aviv University, Tel Aviv 69978, Israel
${ }^{67}$ University of Tennessee, Knoxville, Tennessee 37996, USA
${ }^{68}$ University of Texas at Austin, Austin, Texas 78712, USA
${ }^{69}$ University of Texas at Dallas, Richardson, Texas 75083, USA
${ }^{70 \mathrm{a}}$ INFN Sezione di Torino, I-10125 Torino, Italy
${ }^{70 \mathrm{~b}}$ Dipartimento di Fisica Sperimentale, Università di Torino, I-10125 Torino, Italy
${ }^{71}{ }^{71}$ INFN Sezione di Trieste, I-34127 Trieste, Italy
${ }^{71 \mathrm{~b}}$ Dipartimento di Fisica, Università di Trieste, I-34127 Trieste, Italy
${ }^{72}$ IFIC, Universitat de Valencia-CSIC, E-46071 Valencia, Spain
${ }^{73}$ University of Victoria, Victoria, British Columbia, Canada V8W 3P6
${ }^{74}$ Department of Physics, University of Warwick, Coventry CV4 7AL, United Kingdom
${ }^{75}$ University of Wisconsin, Madison, Wisconsin 53706, USA
(Received 10 May 2013; published 3 September 2013; corrected 30 September 2013)

We present results of a search for $C P$ violation in $B^{0}-\bar{B}^{0}$ mixing with the $B A B A R$ detector. We select a sample of $B^{0} \rightarrow D^{*-} X \ell^{+} \nu$ decays with a partial reconstruction method and use kaon tagging to assess the flavor of the other B meson in the event. We determine the $C P$ violating asymmetry $\mathcal{A}_{C P} \equiv\left[N\left(B^{0} B^{0}\right)-\right.$ $\left.N\left(\bar{B}^{0} \bar{B}^{0}\right)\right] /\left[N\left(B^{0} B^{0}\right)+N\left(\bar{B}^{0} \bar{B}^{0}\right)\right]=\left(0.06 \pm 0.17_{-0.32}^{+0.38}\right) \%$, corresponding to $\Delta_{C P}=1-|q / p|=(0.29 \pm$ $\left.0.84_{-1.61}^{+1.88}\right) \times 10^{-3}$.

DOI: 10.1103/PhysRevLett.111.101802
PACS numbers: $13.20 . \mathrm{He}, 11.30 . \mathrm{Er}, 13.20 . \mathrm{Gd}, 13.25 . \mathrm{Ft}$

Experiments at B factories have observed $C P$ violation in direct B^{0} decays [1] and in the interference between B^{0} mixing and decay [2]. $C P$ violation in mixing has so far eluded observation.

The weak-Hamiltonian eigenstates are related to the flavor eigenstates of the strong interaction Hamiltonian by $\left|B_{L, H}\right\rangle=p\left|B^{0}\right\rangle \pm q\left|\bar{B}^{0}\right\rangle$. The value of the ratio $|q / p|$ can be determined from the asymmetry between the two oscillation probabilities $\mathcal{P}=P\left(B^{0} \rightarrow \bar{B}^{0}\right)$ and $\overline{\mathcal{P}}=$ $P\left(\bar{B}^{0} \rightarrow B^{0}\right)$ through $\mathcal{A}_{C P}=(\overline{\mathcal{P}}-\mathcal{P}) /(\overline{\mathcal{P}}+\mathcal{P})=(1-$ $\left.|q / p|^{4}\right) /\left(1+|q / p|^{4}\right) \approx 2 \Delta_{C P}$, where $\Delta_{C P}=1-|q / p|$ and the Standard Model (SM) prediction is $\mathcal{A}_{C P}=$ $-(4.0 \pm 0.6) \times 10^{-4}$ [3]. Any observation with the present experimental sensitivity $\left[\mathcal{O}\left(10^{-3}\right)\right]$ would therefore reveal physics beyond the SM.

Experiments measure $\mathcal{A}_{C P}$ from the dilepton asymme$\operatorname{try}, \mathcal{A}_{\ell \ell}=\left[N\left(\ell^{+} \ell^{+}\right)-N\left(\ell^{-} \ell^{-}\right)\right] /\left[N\left(\ell^{+} \ell^{+}\right)+N\left(\ell^{-} \ell^{-}\right)\right]$, where an $\ell^{+}\left(\ell^{-}\right)$tags a $B^{0}\left(\bar{B}^{0}\right)$ meson, and ℓ refers to
either an electron or a muon [4]. These measurements benefit from the large number of produced dilepton events. However, they rely on the use of control samples to subtract the charge-asymmetric background originating from hadrons wrongly identified as leptons or leptons from light hadron decays and to compute the charge-dependent lepton identification asymmetry that may produce a false signal. The systematic uncertainties associated with the corrections for these effects constitute a severe limitation to the precision of the measurements.

Using a sample of dimuon events, the $D 0$ Collaboration measured a value of $\mathcal{A}_{C P}$ for a mixture of B_{s} and B^{0} decays that deviates from the SM by 3.9 standard deviations [5]. Measurements of $\mathcal{A}_{C P}$ for $B_{s} \rightarrow D_{s} \mu X$ decays are consistent with the SM [6].

We present a measurement of $\mathcal{A}_{C P}\left(B^{0}\right)$ with a new technique. We reconstruct B^{0} mesons (hereafter called B_{R}; charge conjugation is implied) from semileptonic
$B^{0} \rightarrow D^{*-} X \ell^{+} \nu$ events with a partial reconstruction of the $D^{*-} \rightarrow \pi^{-} \bar{D}^{0}$ decay [7]. The observed asymmetry between the number of events with an ℓ^{+}versus an ℓ^{-}is

$$
\begin{equation*}
A_{\ell} \approx \mathcal{A}_{r \ell}+\mathcal{A}_{C P} \chi_{d} \tag{1}
\end{equation*}
$$

where $\chi_{d}=0.1862 \pm 0.0023$ [8] is the integrated mixing probability for B^{0} mesons and $\mathcal{A}_{r \ell}$ is the detector-induced charge asymmetry in the B_{R} reconstruction.

We identify ("tag") the flavor of the other B^{0} meson (labeled B_{T}) using events with a charged kaon (K_{T}). An event with a $K^{+}\left(K^{-}\right)$usually arises from a state that decays as a $B^{0}\left(\bar{B}^{0}\right)$ meson. When mixing occurs, the ℓ and K_{T} have the same electric charge. The observed asymmetry in the rate of mixed events is

$$
\begin{equation*}
A_{T}=\frac{N\left(\ell^{+} K_{T}^{+}\right)-N\left(\ell^{-} K_{T}^{-}\right)}{N\left(\ell^{+} K_{T}^{+}\right)+N\left(\ell^{-} K_{T}^{-}\right)} \approx \mathcal{A}_{r \ell}+\mathcal{A}_{K}+\mathcal{A}_{C P}, \tag{2}
\end{equation*}
$$

where \mathcal{A}_{K} is the detector charge asymmetry in kaon reconstruction. A kaon with the same charge as the ℓ might also arise from the Cabibbo-favored decays of the D^{0} meson produced with the lepton from the partially reconstructed side $\left(K_{R}\right)$. The asymmetry observed for these events is

$$
\begin{equation*}
A_{R}=\frac{N\left(\ell^{+} K_{R}^{+}\right)-N\left(\ell^{-} K_{R}^{-}\right)}{N\left(\ell^{+} K_{R}^{+}\right)+N\left(\ell^{-} K_{R}^{-}\right)} \approx \mathcal{A}_{r \ell}+\mathcal{A}_{K}+\mathcal{A}_{C P} \chi_{d} . \tag{3}
\end{equation*}
$$

Equations (1)-(3) can be used to extract $\mathcal{A}_{C P}$ and the detector-induced asymmetries ($\mathcal{A}_{r e}$ and \mathcal{A}_{K}).

A detailed description of the BABAR detector is provided elsewhere [9]. We use a sample with an integrated luminosity of $425.7 \mathrm{fb}^{-1}$ [10] collected on the peak of the $\mathrm{Y}(4 S)$ resonance. A $45 \mathrm{fb}^{-1}$ sample collected 40 MeV below the resonance ("off peak") is used for background studies. We also use a simulated sample of $B \bar{B}$ events [11] with an integrated luminosity equivalent to approximately 3 times the data.

We preselect a sample of hadronic events requiring the number of charged particles to be at least four. We reduce non- $B \bar{B}$ (continuum) background by requiring the ratio of the second to the zeroth order Fox-Wolfram moments [12] to be less than 0.6.

We select the B_{R} sample by searching for combinations of a charged lepton (in the momentum range $1.4<p_{\ell}<$ $2.3 \mathrm{GeV} / c)$ and a low momentum pion $\pi_{s}^{-}\left(60<p_{\pi_{s}^{-}}<\right.$ $190 \mathrm{MeV} / c$), which is taken to arise from $D^{*-} \rightarrow \bar{D}^{0} \pi_{s}^{-}$ decay. Here and elsewhere momenta are calculated in the center-of-mass frame. The ℓ^{+}and the π_{s}^{-}must have opposite electric charge. Their tracks must be consistent with originating from a common vertex, which is constrained to the beam collision point in the plane transverse to the beam axis. Finally, we combine $p_{\ell}, p_{\pi_{s}^{-}}$, and the probability of the vertex fit in a likelihood ratio variable (η)
optimized to reject combinatorial $B \bar{B}$ events. If more than one candidate is found in the event, we choose the one with the largest value of η.

We determine the square of the unobserved neutrino mass as

$$
\mathcal{M}_{\nu}^{2}=\left(E_{\text {beam }}-E_{D^{*}}-E_{\ell}\right)^{2}-\left(\mathbf{p}_{D^{*}}+\mathbf{p}_{\ell}\right)^{2},
$$

where we neglect the momentum of the $B^{0}\left(p_{B} \approx\right.$ $340 \mathrm{MeV} / c$) and identify the B^{0} energy with the beam energy $E_{\text {beam }}$ in the $e^{+} e^{-}$center-of-mass frame; E_{ℓ} and \mathbf{p}_{ℓ} are the energy and momentum of the lepton and $\mathbf{p}_{D^{*}}$ is the estimated momentum of the D^{*}. As a consequence of limited phase space in the D^{*+} decay, the soft pion is emitted nearly at rest in the D^{*+} rest frame. The D^{*+} four-momentum can therefore be computed by approximating its direction as that of the soft pion, and parametrizing its momentum as a linear function of the soft-pion momentum. All B^{0} semileptonic decays with \mathcal{M}_{ν}^{2} near zero are considered to be signal events, including $B^{0} \rightarrow D^{*-} X^{0} \ell^{+} \nu_{\ell}$ (primary), $D^{*-} X^{0} \tau^{+} \nu_{\tau}, \tau^{+} \rightarrow \ell^{+} \nu_{\ell} \bar{\nu}_{\tau} \quad$ (cascade), and $D^{*-} h^{+}$(misidentified), where $h=\pi, K$ is misidentified as a lepton. B^{0} decays to flavor-insensitive $C P$ eigenstates, $B^{0} \rightarrow D^{* \pm} D X, D \rightarrow \ell^{\mp} X$, and $B^{+} \rightarrow D^{*-} X^{+} \ell^{+} \nu_{\ell}$ accumulate at $\mathcal{M}_{\nu}^{2} \sim 0$ and are called "peaking background." The uncorrelated background consists of continuum and combinatorial $B \bar{B}$ events.

We identify charged kaons in the momentum range $0.2<p_{K}<4 \mathrm{GeV} / c$ with an average efficiency of about 85% and a $\sim 3 \%$ pion misidentification rate. We determine the K production point from the intersection of the K track and the beam spot, and then determine the distance Δz between the $\ell^{+} \pi_{s}^{-}$and K vertex coordinates along the beam axis. Finally, we define the proper time difference Δt between the B_{R} and the B_{T} in the "Lorentz boost approximation" [13], $\Delta t=\Delta z / \beta \gamma$, where $\beta \gamma=0.56$ is the average boost of the $\Upsilon(4 S)$ in the laboratory frame. Since the B mesons are not at rest in the $\Upsilon(4 S)$ rest frame, and in addition the K is usually produced in the cascade process $B_{T} \rightarrow D X, D \rightarrow K Y, \Delta t$ is only an approximation of the actual proper time difference between the B_{R} and the B_{T}. We reject events if the uncertainty $\sigma(\Delta t)$ exceeds 3 ps . This selection reduces to a negligible level the contamination from protons produced in the scattering of primary particles with the beam pipe or the detector material and wrongly identified as kaons, which would otherwise constitute a large charge-asymmetric source of background.

We define an event as "mixed" if the K and the ℓ have the same electric charge and as "unmixed" otherwise. In about 20% of the cases, the K has the wrong charge correlation with respect to the B_{T}, and the event is wrongly defined (mistags).

About 95% of the K_{R} candidates have the same electric charge as the ℓ; they constitute 75% of the mixed event sample. Because of the small lifetime of the D^{0} meson, the separation in space between the K_{R} and the $\ell \pi_{s}$ production
points is much smaller than for K_{T}. Therefore, we use Δt as a first discriminant variable. Kaons in the K_{R} sample are usually emitted in the hemisphere opposite to the ℓ, while genuine K_{T} are produced randomly, so we use in addition the cosine of the angle $\theta_{\ell K}$ between the ℓ and the K.

In about 20% of the cases, the events contain more than one K; most often we find both a K_{T} and a K_{R} candidate. As these two carry different information, we accept multiple-candidate events. Using ensembles of simulated samples of events, we find that this choice does not affect the statistical uncertainty.

The \mathcal{M}_{ν}^{2} distribution of all signal candidates in shown in Fig. 1. We determine the signal fraction by fitting the \mathcal{M}_{ν}^{2} distribution in the interval $[-10,2.5] \mathrm{GeV}^{2} / c^{4}$ with the sum of continuum, $B \bar{B}$ combinatorial, and $B \bar{B}$ peaking events. We split peaking $B \bar{B}$ into direct $\left(B^{0} \rightarrow D^{*-} \ell^{+} \nu\right)$, " $D^{* *}$ " ($B \rightarrow D^{*-} X^{0} \ell^{+} \nu_{\ell}$), cascade, hadrons wrongly identified as leptons, and $C P$ eigenstates. In the fit, we float the fraction of direct, $D^{* *}$, and $B \bar{B}$ combinatorial
background, while we fix the continuum contribution to the expectation from off-peak events, rescaled by the onpeak to off-peak luminosity ratio, and the rest (less than 2\% of the total) to the level predicted by the simulation. Based on the assumption of isospin conservation, we attribute 66% of the $D^{* *}$ events to B^{+}decays and the rest to B^{0} decays. We use the result of the fit to compute the fractions of continuum, combinatorial, and peaking B^{+}background, $C P$ eigenstates, and B^{0} signal in the sample, as a function of \mathcal{M}_{ν}^{2}. We find $(5.945 \pm 0.007) \times 10^{6}$ peaking events (see Fig. 1).

We then repeat the fit after dividing events into the four lepton categories ($e^{ \pm}, \mu^{ \pm}$) and eight tagged samples $\left(e^{ \pm} K^{ \pm}, \mu^{ \pm} K^{ \pm}\right)$.

We measure $\mathcal{A}_{C P}$ with a binned four-dimensional fit to $\Delta t(100 \mathrm{bins}), \sigma(\Delta t)(20), \cos \theta_{\ell k}(4)$, and $p_{K}(5)$. Following Ref. [14] and neglecting resolution effects, the Δt distributions for signal events with a K_{T} are represented by the following expressions:

$$
\begin{aligned}
\mathcal{F}_{\bar{B}^{0} B^{0}}(\Delta t)= & \frac{\Gamma_{0} e^{-\Gamma_{0}|\Delta t|}}{2\left(1+r^{\prime 2}\right)}\left[\left(1+\left|\frac{q}{p}\right|^{2} r^{\prime 2}\right) \cosh (\Delta \Gamma \Delta t / 2)+\left(1-\left|\frac{q}{p}\right|^{2} r^{\prime 2}\right) \cos \left(\Delta m_{d} \Delta t\right)-\left|\frac{q}{p}\right|(b+c) \sin \left(\Delta m_{d} \Delta t\right)\right], \\
\mathcal{F}_{B^{0} \bar{B}^{0}}(\Delta t)= & \frac{\Gamma_{0} e^{-\Gamma_{0}|\Delta t|}}{2\left(1+r^{\prime 2}\right)}\left[\left(1+\left|\frac{p}{q}\right|^{2} r^{\prime 2}\right) \cosh (\Delta \Gamma \Delta t / 2)+\left(1-\left|\frac{p}{q}\right|^{2} r^{\prime 2}\right) \cos \left(\Delta m_{d} \Delta t\right)+\left|\frac{p}{q}\right|(b-c) \sin \left(\Delta m_{d} \Delta t\right)\right], \\
\mathcal{F}_{\bar{B}^{0} \bar{B}^{0}}(\Delta t)= & \frac{\Gamma_{0} e^{-\Gamma_{0}|\Delta t|}}{2\left(1+r^{\prime 2}\right)}\left[\left(1+\left|\frac{p}{q}\right|^{2} r^{\prime 2}\right) \cosh (\Delta \Gamma \Delta t / 2)-\left(1-\left|\frac{p}{q}\right|^{2} r^{\prime 2}\right) \cos \left(\Delta m_{d} \Delta t\right)-\left|\frac{p}{q}\right|(b-c) \sin \left(\Delta m_{d} \Delta t\right)\right] \\
& \times\left|\frac{q}{p}\right|^{2}, \\
\mathcal{F}_{B^{0} B^{0}}(\Delta t)= & \frac{\Gamma_{0} e^{-\Gamma_{0}|\Delta t|}}{2\left(1+r^{\prime 2}\right)}\left[\left(1+\left|\frac{q}{p}\right|^{2} r^{\prime 2}\right) \cosh (\Delta \Gamma \Delta t / 2)-\left(1-\left|\frac{q}{p}\right|^{2} r^{\prime 2}\right) \cos \left(\Delta m_{d} \Delta t\right)+\left|\frac{q}{p}\right|(b+c) \sin \left(\Delta m_{d} \Delta t\right)\right] \\
& \times\left|\frac{p}{q}\right|^{2},
\end{aligned}
$$

where the first index of \mathcal{F} refers to the flavor of the B_{R} and the second to the $B_{T}, \Gamma_{0}=\tau_{B^{0}}^{-1}$ is the average width of the two B^{0} mass eigenstates, Δm_{d} and $\Delta \Gamma$ are, respectively, their mass and width differences, the parameter r^{\prime} results from the interference of Cabibbo-favored and doubly Cabibbo suppressed decays on the B_{T} side [14] and has a very small value $[\mathcal{O}(1 \%)]$, and b and c are two parameters expressing the $C P$ violation arising from that interference. In the $\mathrm{SM}, \quad b=2 r^{\prime} \sin (2 \beta+\gamma) \cos \delta^{\prime} \quad$ and $c=$ $-2 r^{\prime} \cos (2 \beta+\gamma) \sin \delta^{\prime}$, where β and γ are angles of the unitary triangle and δ^{\prime} is a strong phase. The quantities $\Delta m_{d}, \tau_{B^{0}}, b, c$, and $\sin (2 \beta+\gamma)$ are left free in the fit. The value of $\Delta \Gamma$ is fixed to zero. Neglecting the tiny contribution from doubly Cabibbo suppressed decays, the main contribution to the asymmetry is time independent and due to the normalization factors of the two mixed terms.

The Δt distribution for the decays of the B^{+}mesons is parametrized by an exponential function, $\mathcal{F}_{B^{+}}=$ $\Gamma_{+} e^{-\left|\Gamma_{+} \Delta t\right|}$, where the B^{+}decay width is computed as the inverse of the lifetime $\Gamma_{+}^{-1}=\tau_{B^{+}}=(1.641 \pm 0.008) \mathrm{ps}$.

When the K_{T} comes from the decay of the B^{0} meson to a $C P$ eigenstate (as, for example, $B^{0} \rightarrow D^{(*)} \bar{D}^{(*)}$ [8]), a different expression applies:

$$
\begin{aligned}
\mathcal{F}_{C P e}(\Delta t)= & \frac{\Gamma_{0}}{4} e^{-\Gamma_{0}|\Delta t|}\left[1 \pm S \sin \left(\Delta m_{d} \Delta t\right)\right. \\
& \left. \pm C \cos \left(\Delta m_{d} \Delta t\right)\right]
\end{aligned}
$$

where the plus (minus) sign applies if the B_{R} decays as a B^{0} $\left(\bar{B}^{0}\right)$. The fraction of these events (about 1%) and the parameters S and C are fixed in the fits and are taken from simulation.

We obtain the Δt distributions for K_{T} in $B \bar{B}$ events, $\mathcal{G}_{i}(\Delta t)$, by convolving the theoretical ones with a resolution function, which consists of the superposition of several Gaussian functions, convolved with exponentials to account for the finite lifetime of charmed mesons in the cascade decay $b \rightarrow c \rightarrow K$. Different sets of parameters are used for peaking and for combinatorial background events.

FIG. 1 (color online). \mathcal{M}_{ν}^{2} distribution for selected events. The data are represented by the points with error bars. The fitted contributions from $\bar{B}^{0} \rightarrow D^{*+} \ell^{-} \bar{\nu}_{\ell}$, other peaking background, $D^{* *}$ events, $B \bar{B}$ combinatorial background, and rescaled off-peak events are overlaid.

To describe the Δt distributions for K_{R} events, $\mathcal{G}_{K_{R}}(\Delta t)$, we select a subsample of data containing fewer than $5 \% K_{T}$ decays and use background-subtracted histograms in our likelihood functions. As an alternative, we apply the same selection to the simulation and correct the simulated Δt distribution by the ratio of histograms from data and simulation. The $\cos \theta_{\ell K}$ shapes are obtained from the histograms of the simulated distributions for $B \bar{B}$ events. The Δt distribution of continuum events is represented by a decaying exponential convolved with Gaussians parametrized by fitting simultaneously the off-peak data.

The rate of events in each bin (j) and for each tagged sample is then expressed as the sum of the predicted contributions from peaking events, $B \bar{B}$ combinatorial, and continuum background. Accounting for mistags and K_{R} events, the peaking B^{0} contributions to the same-sign samples are

$$
\begin{aligned}
\mathcal{G}_{\ell^{+} K^{+}}(j)= & \left(1+\mathcal{A}_{r \ell}\right)\left(1+\mathcal{A}_{K}\right)\left\{\left(1-f_{K_{R}}^{++}\right)\right. \\
& \times\left[\left(1-\omega^{+}\right) \mathcal{G}_{B^{0} B^{0}}(j)+\omega^{-} \mathcal{G}_{B^{0} \bar{B}^{0}}(j)\right] \\
& \left.+f_{K_{R}}^{++}\left(1-\omega^{++}\right) \mathcal{G}_{K_{R}}(j)\left(1+\chi_{d} \mathcal{A}_{\ell \ell}\right)\right\}, \\
\mathcal{G}_{\ell^{-} K^{-}}(j)= & \left(1-\mathcal{A}_{r \ell}\right)\left(1-\mathcal{A}_{K}\right)\left\{\left(1-f_{K_{R}}^{--}\right)\right. \\
& \times\left[\left(1-\omega^{-}\right) \mathcal{G}_{\bar{B}^{0} 0^{0}}(j)+\omega^{+} \mathcal{G}_{\bar{B}^{0} B^{0}}(j)\right] \\
& \left.+f_{K_{R}}^{--}\left(1-\omega^{--}\right) \mathcal{G}_{K_{R}}(j)\left(1-\chi_{d} \mathcal{A}_{\ell \ell}\right)\right\},
\end{aligned}
$$

where the reconstruction asymmetries have separate values for the e and μ samples. We allow for different mistag probabilities for $K_{T}\left(\omega^{ \pm}\right)$and $K_{R}\left(\omega^{\prime \pm}\right)$. The parameters $f_{\bar{K}_{R}}^{ \pm}\left(p_{k}\right)$ describe the fractions of K_{R} tags in each sample as a function of the kaon momentum.

A total of 168 parameters are determined in the fit. By analyzing simulated events as data, we observe that the fit reproduces the generated values of $1-|q / p|$ (zero) and of the other most significant parameters $\left(\mathcal{A}_{r \ell}, \mathcal{A}_{K}, \Delta m_{d}\right.$, and $\tau_{B^{0}}$). We then produce samples of simulated events with $\Delta_{C P}= \pm 0.005, \pm 0.010, \pm 0.025$ and $\mathcal{A}_{r \ell}$ or \mathcal{A}_{K} in the range of $\pm 10 \%$, by removing events. A total of 67 different simulated event samples are used to check for biases. In each case, the input values are correctly determined, and an unbiased value of $|q / p|$ is always obtained. The fit to the data yields $\Delta_{C P}=\left(0.29 \pm 0.84_{-1.61}^{+1.88}\right) \times$ 10^{-3}, where the first uncertainty is statistical and the second systematic. The values of the detector charge asymmetries are $\mathcal{A}_{r, e}=(3.0 \pm 0.4) \times 10^{-3}, \quad \mathcal{A}_{r, \mu}=$ $(3.1 \pm 0.5) \times 10^{-3}$, and $\mathcal{A}_{K}=(13.7 \pm 0.3) \times 10^{-3}$. The frequency of the oscillation $\Delta m_{d}=508.5 \pm 0.9 \mathrm{~ns}^{-1}$ is consistent with the world average, while $\tau_{B^{0}}=1.553 \pm$ 0.002 ps is somewhat larger than the world average, which we account for in the systematic uncertainties. Figure 2 shows the fit projection for Δt.

The systematic uncertainty is computed as the sum in quadrature of several contributions, described below and summarized in Table I.
Peaking sample composition.-We vary the sample composition by the statistical uncertainty of the \mathcal{M}_{ν}^{2} fit, the fraction of B^{0} to B^{+}in the $D^{* *}$ peaking sample in the range $50 \pm 25 \%$ to account for possible violation of isospin symmetry, the fraction of the peaking contributions

FIG. 2 (color online). Distribution of Δt for the continuumsubtracted data (points with error bars) and fitted contributions from K_{R} (dark) and K_{T} (light), for (a) $\ell^{+} K^{+}$events, (b) $\ell^{-} K^{-}$ events, (c) $\ell^{-} K^{+}$events, (d) $\ell^{+} K^{-}$events, (e) raw asymmetry between $\ell^{+} K^{+}$and $\ell^{-} K^{-}$events.

TABLE I. Principal sources of systematic uncertainties.

Source	$\sigma\left(\Delta_{C P}\right)$
Peaking sample composition	${ }_{-1.50}^{+1.17} \times 10^{-3}$
Combinatorial sample composition	$\pm 0.39 \times 10^{-3}$
Δt resolution model	$\pm 0.60 \times 10^{-3}$
K_{R} fraction	$\pm 0.11 \times 10^{-3}$
$K_{R} \Delta t$ distribution	$\pm 0.65 \times 10^{-3}$
Fit bias	${ }^{+0.58} \times 10^{-3}$
$C P$ eigenstate description	± 0
Physical parameters	${ }_{-0.28}^{+0} \times 10^{-3}$
Total	${ }_{-1.61}^{+1.88} \times 10^{-3}$

(taken from the simulation) by $\pm 20 \%$, and the fraction of $C P$ eigenstates by $\pm 50 \%$.
$B \bar{B}$ combinatorial sample composition.-We vary the fraction of B^{+}events in the $B \bar{B}$ combinatorial sample by $\pm 4.5 \%$, which corresponds to the uncertainty in the inclusive branching fraction for $B^{0} \rightarrow D^{*-} X$.
Δt resolution model.-We quote the difference between the result when all resolution parameters are determined in the fit and those obtained when those that exhibit a weak correlation with $|q / p|$ are fixed.
K_{R} fraction.-We vary the ratio of $B^{+} \rightarrow K_{R} X$ to $B^{0} \rightarrow$ $K_{R} X$ by $\pm 6.8 \%$, which corresponds to the uncertainty of the fraction $B R\left(D^{* 0} \rightarrow K^{-} X\right) / B R\left(D^{*+} \rightarrow K^{-} X\right)$.
$K_{R} \Delta t$ distribution.-We use half the difference between the results obtained using the two different strategies to describe the $K_{R} \Delta t$ distribution.

Fit bias.-Parametrized simulations are used to check the estimate of the result and its statistical uncertainty. We add the statistical uncertainty on the validation test using the detailed simulation and the difference between the nominal result and the central result determined from the ensemble of parametrized simulations.
$C P$ eigenstates description.-We vary the S and C parameters describing the $C P$ eigenstates by their statistical uncertainties as obtained from simulation.

Physical parameters.-We repeat the fit setting the value of $\Delta \Gamma$ to $0.02 \mathrm{ps}^{-1}$. The lifetimes of the B^{0} and B^{+}mesons and Δm_{d} are floated in the fit. Alternatively, we check the effect of fixing each parameter in turn to the world average.

In summary, we present a new measurement of the parameter governing $C P$ violation in $B^{0}-\bar{B}^{0}$ oscillations. With a partial $B^{0} \rightarrow D^{*-} X \ell^{+} \nu$ reconstruction and kaon tagging, we find $\Delta_{C P}=\left(0.29 \pm 0.84_{-1.61}^{+1.88}\right) \times 10^{-3}$ and $\mathcal{A}_{C P}=\left(0.06 \pm 0.17_{-0.32}^{+0.38}\right) \%$. These results are consistent with, and more precise than, dilepton-based results from B factories [4]. No deviation is observed from the SM expectation [3].

We are grateful for the excellent luminosity and machine conditions provided by our PEP-II colleagues, and for the substantial dedicated effort from the computing
organizations that support $B A B A R$. The collaborating institutions wish to thank SLAC for its support and kind hospitality. This work is supported by DOE and NSF (U.S.), NSERC (Canada), IHEP (China), CEA and CNRS-IN2P3 (France), BMBF and DFG (Germany), INFN (Italy), FOM (Netherlands), NFR (Norway), MIST (Russia), MEC (Spain), and PPARC (United Kingdom). Individuals have received support from the Marie Curie EIF (European Union) and the A. P. Sloan Foundation.
*Deceased.
${ }^{\dagger}$ Present address: University of Tabuk, Tabuk 71491, Saudi Arabia.
${ }^{\ddagger}$ Also at: Università di Perugia, Dipartimento di Fisica, Perugia, Italy.
${ }^{\text {§ }}$ Present address: University of Huddersfield, Huddersfield HD1 3DH, United Kingdom.
"Present address: University of South Alabama, Mobile, Alabama 36688, USA.
${ }^{\text {II }}$ Also at: Università di Sassari, Sassari, Italy.
**Present address: Universidad Técnica Federico Santa Maria, Valparaiso, Chile 2390123.
[1] B. Aubert et al. (BABAR Collaboration), Phys. Rev. Lett. 93, 131801 (2004).
[2] B. Aubert et al. (BABAR Collaboration), Phys. Rev. D 79, 072009 (2009); I. Adachi et al. (Belle Collaboration), Phys. Rev. Lett. 108, 171802 (2012).
[3] A. Lenz, U. Nierste, J. Charles, S. Descotes-Genon, H. Lacker, S. Monteil, V. Niess, and S. T'Jampens, Phys. Rev. D 86, 033008 (2012); J. Charles et al., Phys. Rev. D 84, 033005 (2011); A. Lenz and U. Nierste, J. High Energy Phys. 06 (2007) 072.
[4] B. Aubert et al. (BABAR Collaboration), Phys. Rev. Lett. 96, 251802 (2006); E. Nakano et al. (Belle Collaboration), Phys. Rev. D 73, 112002 (2006).
[5] V. M. Abazov et al. (D0 Collaboration), Phys. Rev. D 84, 052007 (2011).
[6] V.M. Abazov et al. (D0 Collaboration), Phys. Rev. Lett. 110, 011801 (2013).
[7] B. Aubert et al. (BABAR Collaboration), Phys. Rev. Lett. 100, 051802 (2008).
[8] J. Beringer et al. (Particle Data Group), Phys. Rev. D 86, 010001 (2012).
[9] B. Aubert et al. (BABAR Collaboration), Nucl. Instrum. Methods Phys. Res., Sect. A 479, 1 (2002).
[10] J. P. Lees et al. (BABAR Collaboration), Nucl. Instrum. Methods Phys. Res., Sect. A 726, 203 (2013).
[11] D. Lange, Nucl. Instrum. Methods Phys. Res., Sect. A 462, 152 (2001).
[12] G.C. Fox and S. Wolfram, Phys. Rev. Lett. 41, 1581 (1978).
[13] D. Boutigny et al., SLAC Report No. SLAC-R-504, 1998.
[14] O. Long, M. Baak, R. N. Cahn, and D. Kirkby, Phys. Rev. D 68, 034010 (2003).

[^0]: ${ }^{1}$ Laboratoire d'Annecy-le-Vieux de Physique des Particules (LAPP), Université de Savoie, CNRS/IN2P3, F-74941 Annecy-Le-Vieux, France
 ${ }^{2}$ Universitat de Barcelona, Facultat de Fisica, Departament ECM, E-08028 Barcelona, Spain
 ${ }^{3 \mathrm{a}}$ INFN Sezione di Bari, I-70126 Bari, Italy
 ${ }^{3 b}$ Dipartimento di Fisica, Università di Bari, I-70126 Bari, Italy
 ${ }^{4}$ University of Bergen, Institute of Physics, N-5007 Bergen, Norway
 ${ }^{5}$ Lawrence Berkeley National Laboratory and University of California, Berkeley, California 94720, USA
 ${ }^{6}$ Institut für Experimentalphysik 1, Ruhr Universität Bochum, D-44780 Bochum, Germany
 ${ }^{7}$ University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z1
 ${ }^{8}$ Brunel University, Uxbridge, Middlesex UB8 3PH, United Kingdom
 ${ }^{9 \mathrm{a}}$ Budker Institute of Nuclear Physics SB RAS, Novosibirsk 630090, Russia
 ${ }^{9 b}$ Novosibirsk State University, Novosibirsk 630090, Russia
 ${ }^{9 \mathrm{c}}$ Novosibirsk State Technical University, Novosibirsk 630092, Russia
 ${ }^{10}$ University of California at Irvine, Irvine, California 92697, USA
 ${ }^{11}$ University of California at Riverside, Riverside, California 92521, USA
 ${ }^{12}$ University of California at Santa Barbara, Santa Barbara, California 93106, USA
 ${ }^{13}$ Institute for Particle Physics, Santa Cruz, University of California at Santa Cruz, California 95064, USA
 ${ }^{14}$ California Institute of Technology, Pasadena, California 91125, USA
 ${ }^{15}$ University of Cincinnati, Cincinnati, Ohio 45221, USA
 ${ }^{16}$ University of Colorado, Boulder, Colorado 80309, USA
 ${ }^{17}$ Colorado State University, Fort Collins, Colorado 80523, USA
 ${ }^{18}$ Technische Universität Dortmund, Fakultät Physik, D-44221 Dortmund, Germany
 ${ }^{19}$ Technische Universität Dresden, Institut für Kern- und Teilchenphysik, D-01062 Dresden, Germany
 ${ }^{20}$ Laboratoire Leprince-Ringuet, Ecole Polytechnique, CNRS/IN2P3, F-91128 Palaiseau, France
 ${ }^{21}$ University of Edinburgh, Edinburgh EH9 3JZ, United Kingdom
 ${ }^{22 \mathrm{a}}$ INFN Sezione di Ferrara, I-44122 Ferrara, Italy
 ${ }^{22 \mathrm{~b}}$ Dipartimento di Fisica e Scienze della Terra, Università di Ferrara, I-44122 Ferrara, Italy
 ${ }^{23}$ INFN Laboratori Nazionali di Frascati, I-00044 Frascati, Italy
 ${ }^{24 a}$ INFN Sezione di Genova, I-16146 Genova, Italy
 ${ }^{24 \mathrm{~b}}$ Dipartimento di Fisica, Università di Genova, I-16146 Genova, Italy
 ${ }^{25}$ Indian Institute of Technology Guwahati, Guwahati, Assam 781 039, India
 ${ }^{26}$ Harvard University, Cambridge, Massachusetts 02138, USA
 ${ }^{27}$ Physikalisches Institut, Universität Heidelberg, D-69120 Heidelberg, Germany
 ${ }^{28}$ Institut für Physik, Humboldt-Universität zu Berlin, D- 12489 Berlin, Germany
 ${ }^{29}$ Imperial College London, London SW7 2AZ, United Kingdom
 ${ }^{30}$ University of Iowa, Iowa City, Iowa 52242, USA
 ${ }^{31}$ Iowa State University, Ames, Iowa 50011-3160, USA
 ${ }^{32}$ Johns Hopkins University, Baltimore, Maryland 21218, USA
 ${ }^{33}$ Laboratoire de l'Accélérateur Linéaire, IN2P3/CNRS et Université Paris-Sud 11, Centre Scientifique d'Orsay, F-91898 Orsay Cedex, France
 ${ }^{34}$ Lawrence Livermore National Laboratory, Livermore, California 94550, USA
 ${ }^{35}$ University of Liverpool, Liverpool L69 7ZE, United Kingdom
 ${ }^{36}$ Queen Mary, University of London, London, E1 4NS, United Kingdom
 ${ }^{37}$ University of London, Royal Holloway and Bedford New College, Egham, Surrey TW20 0EX, United Kingdom
 ${ }^{38}$ University of Louisville, Louisville, Kentucky 40292, USA
 ${ }^{39}$ Johannes Gutenberg-Universität Mainz, Institut für Kernphysik, D-55099 Mainz, Germany
 ${ }^{40}$ University of Manchester, Manchester M13 9PL, United Kingdom
 ${ }^{41}$ University of Maryland, College Park, Maryland 20742, USA
 ${ }^{42}$ Massachusetts Institute of Technology, Laboratory for Nuclear Science, Cambridge, Massachusetts 02139, USA
 ${ }^{43}$ McGill University, Montréal, Québec, Canada H3A $2 T 8$
 ${ }^{44 \mathrm{a}}$ INFN Sezione di Milano, I-20133 Milano, Italy
 ${ }^{44 \mathrm{~b}}$ Dipartimento di Fisica, Università di Milano, I-20133 Milano, Italy
 ${ }^{45}$ University of Mississippi, University, Mississippi 38677, USA
 ${ }^{46}$ Université de Montréal, Physique des Particules, Montréal, Québec, Canada H3C 3J7
 ${ }^{47 \mathrm{a}}$ INFN Sezione di Napoli, I-80126 Napoli, Italy
 ${ }^{47 \mathrm{~b}}$ Dipartimento di Scienze Fisiche, Università di Napoli Federico II, I-80126 Napoli, Italy
 ${ }^{48}$ NIKHEF, National Institute for Nuclear Physics and High Energy Physics, NL-1009 DB Amsterdam, The Netherlands
 ${ }^{49}$ University of Notre Dame, Notre Dame, Indiana 46556, USA
 ${ }^{50}$ Ohio State University, Columbus, Ohio 43210, USA
 ${ }^{51}$ University of Oregon, Eugene, Oregon 97403, USA
 ${ }^{52 \mathrm{a}}$ INFN Sezione di Padova, I-35131 Padova, Italy

