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Planar Hamiltonian systems at resonance:
the Ahmad-Lazer-Paul condition

Alberto Boscaggin and Maurizio Garrione

Abstract. We consider the planar Hamiltonian system

Ju′ = ∇F (u) + ∇uR(t, u), t ∈ [0, T ], u ∈ R2,

with F (u) positive and positively 2-homogeneous and ∇uR(t, u) sublin-
ear in u. By means of an Ahmad-Lazer-Paul type condition, we prove
the existence of a T -periodic solution when the system is at resonance.
The proof exploits a symplectic change of coordinates which transforms
the problem into a perturbation of a linear one. The relationship with
the Landesman-Lazer condition is analyzed, as well.
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37J45.
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1. Introduction and statement of the main result

For the scalar second order differential equation

x′′ + λkx+ w(t, x) = 0, x ∈ R, (1.1)

being w : [0, T ]×R→ R a continuous and bounded function and λk =
(

2kπ
T

)2
(k = 0, 1, . . .), a classical issue is represented by the existence of T -periodic
solutions. Indeed, since λk is an eigenvalue of the linear differential operator
x 7→ −x′′ with T -periodic boundary conditions, equation (1.1) is at resonance,
and no T -periodic solutions in general exist.

In [23, Theorem 4.8 and Exercise 4.9], an existence result was proved -
by variational tools - under the assumption

lim
‖x‖∞→+∞
x′′+λkx=0

∫ T

0

W (t, x(t)) dt = +∞, (1.2)
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being W (t, x) =
∫ x

0
w(t, ξ) dξ. Condition (1.2) is usually referred to as the

Ahmad-Lazer-Paul condition, since it is the version, for the T -periodic prob-
lem, of the assumption introduced in [1], dealing with the Dirichlet problem
for a partial differential equation at resonance. Qualitatively, (1.2) expresses
the anticoercivity of the Lagrange functional associated with (1.1) on the
eigenspace relative to λk, so that a T -periodic solution can be provided as a
critical point of saddle type. We remark that the result in [23] holds as well
for second order systems of gradient type

x′′ + λkx+∇xW (t, x) = 0, x ∈ RN ;

further developments along this direction were obtained, among the others,
in [3, 16, 27].

Later, related results [6, 15, 19, 22, 26] were given for general Hamil-
tonian systems of the type

Ju′ = A(t)u+∇uR(t, u), u ∈ R2N , (1.3)

where J =

(
0 −IN
IN 0

)
is the standard symplectic matrix, A(t) is a con-

tinuous path of 2N × 2N symmetric matrices and R : [0, T ] × R2N → R is
a regular function with bounded gradient. Resonance is here meant in the
sense that the linear problem Ju′ = A(t)u has nontrivial T -periodic solu-
tions. Notice that, in this case, more sophisticated techniques from critical
point theory are needed, since the natural variational formulation of (1.3)
leads to a strongly indefinite functional (i.e., its quadratic part is unbounded
both from below and from above).

On the other hand, starting with the pioneering works [5, 14], a growing
attention has been devoted to the scalar second order equation

x′′ + µx+ − νx− + w(t, x) = 0, x ∈ R, (1.4)

with x+ = max{x, 0}, x− = max{−x, 0}, where w : [0, T ] × R → R is
continuous and bounded and (µ, ν) belongs to the T -periodic Dancer-Fučik
spectrum, i.e., µ, ν > 0 and, for a positive integer N ,

π
√
µ

+
π√
ν

=
T

N
. (1.5)

As well known, such a concept of asymmetric resonance extends the linear one
µ = ν. As for the existence of T -periodic solutions to (1.4) via Ahmad-Lazer-
Paul type conditions, the problem is more subtle, because the asymmetry of
the unperturbed problem avoids the use of the linear tools usually employed
to detect saddle geometry (see [25]). In this connection, some results were
given in [4, 18].

In this paper, we are concerned with Ahmad-Lazer-Paul type conditions
for planar Hamiltonian systems of the type

Ju′ = ∇F (u) +∇uR(t, u), u ∈ R2, (1.6)
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where J =

(
0 −1
1 0

)
, R : [0, T ]× R2 → R and F : R2 → R is positive and

positively 2-homogeneous, i.e.,

0 < F (λu) = λ2F (u), for every u 6= 0 and λ > 0. (1.7)

This setting was introduced in [9] as a natural extension of the asymmetric
equation (1.4): indeed, for u = (x, y), it suffices to set F (u) = 1

2 (µ(x+)2 +

ν(x−)2 + y2) and R(t, u) = (W (t, x), 0). Further developments were given,
for instance, in [8, 12]. Under assumption (1.7), the origin is an isochronous
center for the autonomous Hamiltonian system

Ju′ = ∇F (u), (1.8)

namely all the nontrivial solutions to (1.8) are periodic with the same minimal
period τ , so that resonance appears if and only if

τ =
T

N
, (1.9)

for a positive integer N . As proved in [9], when (1.9) is verified, (1.6) may
not have T -periodic solutions.

Our aim is to provide an Ahmad-Lazer-Paul condition (see (1.11) below)
to ensure existence also in this resonant setting. Actually, on the lines of
[6, 15, 27], ∇uR(t, u) does not need to be bounded (cf. Remark 3.1), but is
allowed to grow at infinity as a sublinear power (in the u-variable). Precisely,
here is the statement of our main result.

Theorem 1.1. Let F ∈ C1(R2) ∩ C2(R2 \ {0}) satisfy (1.7) and (1.9), and
let R ∈ C1([0, T ] × R2) fulfill, for suitable constants M > 0, α ∈ [0, 1[ , the
growth condition

|∇uR(t, u)| ≤M(1 + |u|α), for every t ∈ [0, T ], u ∈ R2. (1.10)

Moreover, denoting by ϕ(t) the solution to (1.8) such that ϕ(0) = (1, 0),
suppose that

lim
λ→+∞

1

λ2α

∫ T

0

R(t, λϕ(t+ θ)) dt = +∞, uniformly in θ ∈
[
0,
T

N

[
.

(1.11)
Then, system (1.6) has a T -periodic solution.

Recall that, in view of the homogeneity of F (u), the family{
λϕ(·+ θ) | λ > 0, θ ∈

[
0,
T

N

[}
gives exactly the set of the nontrivial solutions to (1.8). The strategy of the
proof of Theorem 1.1 is inspired by the arguments in [13, 18, 19], exploiting
a symplectic change of coordinates which tranforms the original system (1.6)
into a (Hamiltonian) perturbation of a linear one, like (1.3). The conclusion
is then achieved using variational tools, following [15].
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For the asymmetric equation (1.4), we get the following corollary, im-
proving [4] (where w(t, x) is bounded and (µ, ν) is “not too far” from the
diagonal) and [18] (where w(t, x) is bounded; cf. Remark 3.2).

Corollary 1.2. Let µ, ν > 0 satisfy (1.5) and let w ∈ C([0, T ]× R) fulfill, for
suitable constants M > 0, α ∈ [0, 1[ , the growth condition

|w(t, x)| ≤M(1 + |x|α), for every t ∈ [0, T ], x ∈ R. (1.12)

Moreover, setting

φ(t) =


1
√
µ

sin(
√
µt) if t ∈

[
0, π√

µ

]
1√
ν

sin

(√
ν
( π
√
µ
− t
))

if t ∈
[
π√
µ ,

T
N

]
,

and still denoting by φ(t) its T
N -periodic extension, suppose that

lim
λ→+∞

1

λ2α

∫ T

0

W (t, λφ(t+ θ)) dt = +∞, unif. in θ ∈
[
0,
T

N

[
, (1.13)

being W (t, x) =
∫ x

0
w(t, ξ) dξ. Then, equation (1.4) has a T -periodic solution.

The plan of the article is as follows. In Section 2, we describe in de-
tail the symplectic change of variables which will be used in the proof of
Theorem 1.1 and we briefly recall the variational framework to treat the
T -periodic problem associated with (1.3). Section 3 is devoted to the proof
of Theorem 1.1. In Section 4, we compare our Ahmad-Lazer-Paul condition
with another nonresonance assumption, coming from topological degree the-
ory: the Landesman-Lazer one (see [20], for the Dirichlet problem in the PDE
setting). In the framework of system (1.6), such a condition was recently given
in [10], as a generalization of the ones introduced in [21] for (1.1) and in [7]
for (1.4). On the lines of [11], we show that the Ahmad-Lazer-Paul condition
is implied by the Landesman-Lazer one. Lastly, some technical details are
discussed in a brief Appendix.

Notation and terminology. In the following, R2 will denote the plane, with
Euclidean scalar product 〈·|·〉 and Euclidean norm | · |, whereas, by R2

∗, we
will mean the punctured plane R2 \ {0}. Similarly, by R+

∗ we will denote the
set of (strictly) positive real numbers. For a 2 × 2 square matrix A, we will
write At for its transpose and ‖A‖ for its operatorial norm. If Λ : U → R2 is
a C1-map, being U ⊂ R2 an open set, Λ′(u) will be the Jacobian matrix of
Λ, evaluated at the point u ∈ U . Lastly, for a function V depending on time
and space, we will briefly write ∇V to denote the gradient of V with respect
to its space variable.

By a T -periodic solution to (1.6) we will mean, as usual, a solution u(t)
satisfying the boundary condition u(0) = u(T ). Indeed, whenever R(t, u) is
defined for every t ∈ R, with R(·, u) ≡ R(· + T, u) for every u ∈ R2, every
solution to (1.6) defined on [0, T ] and satisfying u(0) = u(T ) can be extended,
by T -periodicity, to a solution on the whole real line.
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2. Preliminaries

In this section, we collect some preliminary tools, which will be employed
throughout Section 3.

2.1. A symplectic transformation

Recall that, for an open set U ⊂ R2, a C1-map Λ : U → R2 is called symplectic
if

Λ′(u)tJΛ′(u) = J, for every u ∈ U . (2.1)

It is well known that, given a C1-function V : [0, T ] × R2 → R and a sym-
plectic C1-diffeomorphism Λ of the plane onto itself, the Hamiltonian system
Ju′ = ∇V (t, u) is changed, via the change of variables v = Λ(u), into the

system Jv′ = ∇Ṽ (t, v), being Ṽ (t, v) = V (t,Λ−1(v)). This means that the
transformed system is still Hamiltonian, and the associated Hamiltonian is
just the “old” one, evaluated on the “new” variable v.
We are going to construct a symplectic C1-diffeomorphism of the plane, in
association with a nonnegative function H : R2 → R satisfying the following
hypotheses:

(H0) H ∈ C1(R2) ∩ C2(R2
∗);

(H1) H(0) = 0 and H(u) > 0 for every u 6= 0;
(H2) ∇H(0) = 0 and 〈∇H(u)|u〉 > 0 for every u 6= 0;
(H3) H(u)→ +∞ for |u| → +∞.

Notice that, in view of Euler’s formula, the functions of class C1(R2)∩C2(R2
∗)

satisfying (1.7) fulfill (H1)–(H3).
Under the above hypotheses, it is possible to well describe the dynamics of
the planar autonomous Hamiltonian system

Ju′ = ∇H(u), (2.2)

as we are going to show in the following lemma.

Lemma 2.1. Assume (H0)–(H3). Then, there is uniqueness and global con-
tinuability for the solutions to the Cauchy problems associated with (2.2).
Moreover, every nontrivial solution to (2.2) is periodic and its orbit is a
strictly star-shaped Jordan curve around the origin, covered in the clockwise
sense.

Proof. The uniqueness for an initial datum different from zero follows from
the fact that ∇H(u) is locally Lipschitz continuous on R2

∗. On the other hand,
nontrivial solutions never reach the origin, in view of the preservation of H(u)
and (H1). Setting, for c > 0,

Γc = {u ∈ R2 | H(u) = c},

we claim that Γc is a strictly star-shaped Jordan curve around the origin,
i.e., for every ξ ∈ S1, the ray emanating from the origin and passing through
ξ intersects Γc exactly once. This follows from the fact that the map γ : λ ∈
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R+
∗ 7→ H(λu) is strictly increasing (by (H2)), and such that (by (H1) and

(H3))

lim
λ→0+

γ(λ) = 0, lim
λ→+∞

γ(λ) = +∞.

Since, by the preservation of the energy, every solution u(t) to (2.2) lies on
a level curve of H(u), u(t) is globally defined and periodic. Finally, writing
u(t) = ρ(t)(cosω(t), sinω(t)), with ρ(t) > 0, a standard computation gives

−ω′(t) =
〈Ju′(t)|u(t)〉
|u(t)|2

=
〈∇H(u(t))|u(t)〉

|u(t)|2
> 0,

so that u(t) moves clockwise. �

In this setting, it is said that the origin is a global center for system (2.2);
for every u 6= 0, we denote by τ(u) the minimal period of the solution passing
through u. For further convenience, we underline that the map u 7→ τ(u) is
of class C1 (see the Appendix).
After these preliminary considerations, we can state the following proposition,
dealing with the case when the origin is an isochronous center (see (2.3)).

Proposition 2.2. Let H(u) satisfy (H0)–(H3). Assume that there exist τ, r > 0
such that

τ(u) = τ, for every u 6= 0, (2.3)

and

H(u) =
π

τ
|u|2, for every |u| < r. (2.4)

Then, there exists a symplectic C1-diffeomorphism ΛH of R2 onto itself such
that

H(Λ−1
H (v)) =

π

τ
|v|2, for every v ∈ R2. (2.5)

Let us observe that, if (2.4) holds, all the solutions u(t) to (2.2) such
that |u(t)| < r are of the type λ(cos( 2π

τ (t+ θ)),− sin( 2π
τ (t+ θ))), for suitable

constants λ, θ > 0, so that they are periodic with minimal period equal to τ .
Hence, (2.3) and (2.4) are not contradictory.
Geometrically, (2.5) means that the level curves of H(u) are transformed,
through ΛH , into circumferences around the origin, so that the nonlinear
system (2.2) is changed into the linear one

Jv′ =
2π

τ
v.

We now prove the proposition.

Proof. For every u 6= 0, consider the solution ζ(t;u) to (2.2) such that
ζ(0;u) = u and define θ(u) ∈ [0, 2π[ as the minimum time for which

ζ
(
− τ

2π
θ(u);u

)
∈ R+

∗ × {0}.

To justify the forthcoming computations, we observe the following facts con-
cerning the regularity of the map u 7→ θ(u):
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(i) the map θ : R2
∗ \ (R+

∗ × {0})→ R is of class C1 and ∇θ(u) extends to a
continuous function on the whole R2

∗ (which we still denote by ∇θ(u));
moreover, if u(t) is a solution to (2.2), it holds that(

〈∇θ(u(t))|J∇H(u(t))〉 =
) d
dt
θ(u(t)) =

2π

τ
; (2.6)

(ii) the map R2
∗ 3 u 7→ (cos θ(u),− sin θ(u)) is continuous.

All the assertions basically follow from the geometrical interpretation of θ(u)
and the regularity of ζ(t, u), together with the Implicit Function Theorem.
Notice that (i) and (ii) imply that u 7→ (cos θ(u),− sin θ(u)) is of class C1.
For a discussion about these properties, see the Appendix.
We now define the map ΛH : R2

∗ → R2 as

ΛH(u) =

√
τ

π
H(u)(cos θ(u),− sin θ(u)). (2.7)

In view of the previous considerations, ΛH is of class C1; moreover, using
(2.4), it is easy to see that ΛH(u) = u for every |u| < r, so that ΛH extends
(setting ΛH(0) = 0) to a C1 function on the whole R2, still denoted in the
same way. Second, a simple calculation yields, in view of (2.6),

det Λ′H(u) =
τ

2π
〈∇θ(u)|J∇H(u)〉 = 1, (2.8)

which, by a direct computation, implies (2.1). Third, the fact that ΛH is a
C1-diffeomorphism follows from the Hadamard-Caccioppoli global inversion
Theorem. Indeed, (2.8) implies that ΛH is C1-locally invertible; moreover,
ΛH is also a proper map (i.e., the preimage of compact sets is compact),
since |ΛH(u)| → +∞ for |u| → +∞, in view of (H3).
Finally, relation (2.5) follows from (2.7) - just taking the modulus and setting
u = Λ−1

H (v). �

Remark 2.3. We stress that assumption (2.4) is needed to guarantee that ΛH
is of class C1 up to the origin; this is not the case for a general function H(u)
satisfying (2.3). To show this, consider for example a positive and positively
2-homogeneous function H(u). In this case, it can be seen - noticing that
θ(u) is positively 0-homogeneous - that ΛH is positively 1-homogeneous, so
that Λ′H is constant on every ray emanating from the origin. Accordingly,
Λ′H is not continuous, except when Λ′H is constant, i.e., ΛH linear. However,
ΛH(u) = Au for a square matrix A implies, using (2.7),

H(u) =
π

τ
|ΛH(u)|2 =

π

τ
〈AtAu|u〉,

namely H(u) is a (positive definite) quadratic form, which is not in general
the case. We finally remark that, when only (2.3) is assumed, ΛH is a sym-
plectic diffeomorphism of R2

∗ onto itself, as it can be seen by slightly different
arguments (see [13, 18] for a guideline).
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2.2. The variational setting

We consider the planar Hamiltonian system

Jv′ = B(t)v +∇Z(t, v), (2.9)

being B(t), t ∈ [0, T ], a continuous path of symmetric 2 × 2 matrices and
Z : [0, T ] × R2 → R a C1-function. The T -periodic problem associated with
(2.9) can be rephrased as a critical point problem, for a functional defined
on a suitable Hilbert space, as follows.
We define

E =
{
v ∈ L2(]0, T [ ;R2) |

∑
k∈Z

(1 + |k|)|vk|2 < +∞
}
,

being
∑
k∈Z e

2kπ
T tJvk, with vk ∈ R2, the Fourier expansion of v(t). The space

E is a fractional Sobolev space (usually denoted also by H
1/2
T ) and has a

structure of Hilbert space, endowed with the scalar product

〈v|w〉E =
∑
k∈Z

(1 + |k|)〈vk|wk〉.

Since, for v, w smooth, the bilinear map

(v, w) 7→
∫ T

0

〈Jv′(t)|w(t)〉 dt

is continuous with respect to the norm of E, by density and the Riesz repre-
sentation theorem there exists a unique linear bounded operator L : E → E
such that, for v, w smooth,

〈Lv|w〉E =

∫ T

0

〈Jv′(t)|w(t)〉 dt.

Define, at this point, the functional

I(v) = 〈Lv|v〉E −
∫ T

0

〈B(t)v(t)|v(t)〉 dt−
∫ T

0

Z(t, v(t)) dt, v ∈ E.

We notice that the first integral is well-defined in view of the embedding
E ↪→ L2(]0, T [ ;R2), whereas the second one is just formal, since v(t) may
not be continuous. However, we have the following proposition (see [2, 24]).

Proposition 2.4. Assume that there exist m > 0, s ∈ ]2,+∞[ such that

|∇Z(t, v)| ≤ m(1 + |v|s−1), for every t ∈ [0, T ], v ∈ R2. (2.10)

Then, I : E → R is of class C1 and its critical points are (classical) T -
periodic solutions to (2.9).

Furthermore, when (2.9) is the perturbation of a linear problem at reso-
nance, we have the following result (see [15, Theorem 1.1]), which was some-
how already announced in [18, Remark, p. 1225].
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Theorem 2.5. Denote by S the set of the T -periodic solutions to Jv′ = B(t)v

and assume S 6= {0}. Moreover, suppose that there exists M̃ > 0 and α ∈
[0, 1[ such that

|∇Z(t, v)| ≤ M̃(1 + |v|α), for every t ∈ [0, T ], v ∈ R2. (2.11)

If

lim
‖v‖E→+∞

v∈S

1

‖v‖2αE

∫ T

0

Z(t, v(t)) dt = +∞, (2.12)

then system (2.9) has a T -periodic solution.

Observe that S is a linear subspace having finite dimension, so that any
other norm on S could be used in (2.12). In the following, for simplicity, we
will use the L∞-norm.
For what concerns the proof of Theorem 2.5, observe first that (2.11) implies
(2.10), so that (2.9) can be studied in the previously introduced variational
setting. The assumptions (2.11) and (2.12) are then used to ensure the validity
of the Palais-Smale condition and a saddle type geometry associated with an
orthogonal decomposition E = E1 ⊕E2. However, since both E1 and E2 are
infinite dimensional, a finer version of Rabinowitz saddle point theorem needs
to be used [24, Theorem 5.29 and Example 5.22].

3. Proof of the main result and further remarks

The main ingredient of the proof of Theorem 1.1 consists in transforming
system (1.6), via the symplectic change of variables described in Section 2,
into a perturbation of a linear one. However, since F (u) does not satisfy (2.4)
- unless F (u) = π

τ |u|
2 for every u ∈ R2 - we need the following preliminary

trick.

Fix 0 < r1 < r2, and ε > 0 such that

ε|u|2 ≤ F (u), for every r1 ≤ |u| ≤ r2. (3.1)

Moreover, choose a regular nondecreasing function β : [0,+∞[→ R such that

- β(x) = 0 for every x ≤ r2
1 and β(x) = 1 for every x ≥ r2

2;
- 0 < β(x) < 1 for every r2

1 < x < r2
2.

Now, define G : R2 → R as

G(u) = (1− β(|u|2))ε|u|2 + β(|u|2)F (u).

We claim that G(u) satisfies (H0)–(H3). Indeed, (H0), (H1) and (H3) are
straightly proved, while (H2) follows, in view of (3.1), from the fact that

〈∇G(u)|u〉 = 2β′(|u|2)|u|2[F (u)− ε|u|2] + 2ε(1− β(|u|2))|u|2

+ β(|u|2)〈∇F (u)|u〉.

Hence, Lemma 2.1 implies that the origin is a center for Ju′ = ∇G(u), and
we denote by τG(u) the minimal period of the solutions passing through u.
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Since, in general, τG(u) is not constant, in order to apply Proposition 2.2 we
need a further modification.

For c ∈ R+
∗ , let us define ξ(c) as the unique positive number such that

G(ξ(c), 0) = c, i.e. (ξ(c), 0) is the intersection between the level curve {u ∈
R2 | G(u) = c} and the positive x-semiaxis; the map c 7→ ξ(c) is clearly
continuous. We define

H(u) =
1

τ

∫ G(u)

0

τG(ξ(c), 0) dc;

by construction we have

∇H(u) =
τG(ξ(G(u)), 0)

τ
∇G(u) =

τG(u)

τ
∇G(u).

Since, as remarked before Proposition 2.2, u 7→ τG(u) is of class C1 on R2
∗,

we have that H(u) satisfies (H0). On the other hand, (H1)–(H3) are easily
proved and, by construction, all the nontrivial solutions to Ju′ = ∇H(u)
have minimal period τ (cf. (2.3)). Moreover, for |u| < r1, we see that

H(u) =
1

τ

∫ ε|u|2

0

τG

(√
c

ε
, 0

)
dc =

1

τ

∫ ε|u|2

0

π

ε
dc =

π

τ
|u|2,

so that H(u) fulfills (2.4) with r = r1, as well. Accordingly, we can apply
Proposition 2.2 to produce the symplectic diffeomorphism ΛH of the plane
onto itself.

For further convenience, observe that H(u) = F (u) for |u| > r2, so that
there exists r∗ > 0 such that Λ−1

H (v) = Λ−1
F (v) for |v| ≥ r∗. Indeed, it suffices

to take ϕ∗(t) solving Ju′ = ∇H(u), with |ϕ∗(t)| ≥ r2 for every t ∈ [0, τ ]
(thus solving also Ju′ = ∇F (u)) and set r∗ =

√
π
τH(ϕ∗(t)). This fact has

two important consequences:

• it holds

Λ−1
H (λv) = λΛ−1

H (v), for every |v| ≥ r∗, λ > 1; (3.2)

• we have

‖(Λ−1
H )′(v)‖ ≤ L, for every v ∈ R2, (3.3)

for a suitable constant L > 0.

Both claims follow from the fact that ΛF (u) is positively 1-homogeneous,
since θ(u) is 0-homogeneous (cf. Remark 2.3).

For u ∈ R2, we set S(u) = F (u)−H(u); moreover, we define, for v ∈ R2

and t ∈ [0, T ],

H̃(v) = H(Λ−1
H (v)), S̃(v) = S(Λ−1

H (v)), R̃(t, v) = R(t,Λ−1
H (v)).

With these positions, system (1.6) is changed, via ΛH , into

Jv′ = ∇H̃(v) +∇S̃(v) +∇R̃(t, v),
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that is, using (2.5) and (1.9),

Jv′ =
2Nπ

T
v +∇S̃(v) +∇R̃(t, v).

We now claim that we are in the setting of Theorem 2.5; precisely,

• there exists M̃ > 0 such that, for every t ∈ [0, T ] and every v ∈ R2,

|∇R̃(t, v) +∇S̃(v)| ≤ M̃(1 + |v|α); (3.4)

• denoting by S the set of the T -periodic solutions to Jv′ = 2Nπ
T v, it

holds that

lim
‖v‖∞→+∞

v∈S

∫ T
0

[R̃(t, v(t)) + S̃(v(t))] dt

‖v‖2α∞
= +∞.

For the first claim, we observe preliminarily that, applying the Mean Value
Theorem for C1-maps on convex subsets of R2 to Λ−1

H , (3.3) and Λ−1
H (0) = 0

imply
|Λ−1
H (v)| ≤ L|v|, for every v ∈ R2. (3.5)

From (1.10), (3.3) and (3.5), we obtain

|∇R̃(t, v)| = | [(Λ−1
H )′(v)]t∇R(t,Λ−1

H (v))| ≤ L|∇R(t,Λ−1
H (v))|

≤ LM(1 + |Λ−1
H (v)|α) ≤ LM(1 + Lα|v|α),

proving the claim since ∇S̃(v) is bounded (indeed, S(u) = 0 for |u| > r2).

We now prove the second claim. Again in view of the boundedness of S̃(v),
it is equivalent to show that

lim
‖v‖∞→+∞

v∈S

∫ T
0
R̃(t, v(t)) dt

‖v‖2α∞
= +∞. (3.6)

To this aim, notice that

v(t) ∈ S ⇐⇒ v(t) = λ̃ψ(t+ θ̃),

for suitable positive constants λ̃ > 0, θ̃ ∈ [0, τ [ , where

ψ(t) =

(
cos
(2Nπ

T
t
)
,− sin

(2Nπ

T
t
))

.

In particular, it turns out that ‖v‖∞ = λ̃, so that (3.6) is equivalent to

lim
λ̃→+∞

1

λ̃2α

∫ T

0

R̃(t, λ̃ψ(t+ θ̃)) dt = +∞, uniformly in θ̃ ∈ [0, τ [.

We now observe that, in view of (3.2) and the position of r∗, for λ̃ ≥ r∗ we
have

Λ−1
H (λ̃ψ(t+ θ̃)) = Λ−1

H

(
λ̃

r∗
r∗ψ(t+ θ̃)

)

=
λ̃

r∗
Λ−1
H (r∗ψ(t+ θ̃)) =

λ̃

r∗
ϕ∗(t+ θ∗(θ̃)).
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Since, as remarked before, ϕ∗(t) satisfies (1.8), there exist ρ > 0 and θ ∈ [0, τ [

(depending on ϕ∗(t) and θ∗(θ̃)) such that

ϕ∗(t+ θ∗(θ̃)) = ρϕ(t+ θ).

Summing up, we have

1

λ̃2α

∫ T

0

R̃(t, λ̃ψ(t+ θ̃)) dt =
1

λ̃2α

∫ T

0

R(t,Λ−1
H (λ̃ψ(t+ θ̃))) dt

=
1

λ̃2α

∫ T

0

R
(
t, λ̃

ρ

r∗
ϕ(t+ θ)

)
dt,

so that we conclude in view of (1.11). �

A couple of remarks about Theorem 1.1 are now in order.

Remark 3.1. When α = 0 in (1.10), i.e., when ∇R(t, u) is bounded, (1.11)
reads as

lim
λ→+∞

∫ T

0

R(t, λϕ(t+ θ)) dt = +∞, uniformly in θ ∈
[
0,
T

N

[
. (3.7)

Bounded perturbations of resonant problems represent the setting where the
Ahmad-Lazer-Paul condition was originally introduced [1, 23].
We also point out that, according to [15, Theorem 1.1], the conclusion of
Theorem 1.1 still holds true if (1.11) is replaced by

lim
λ→+∞

1

λ2α

∫ T

0

R(t, λϕ(t+ θ)) dt = −∞, uniformly in θ ∈
[
0,
T

N

[
.

Remark 3.2. Our choice to study perturbations of positively 2-homogeneous
Hamiltonians in Theorem 1.1 is mainly motivated by the fact that, in this
setting, (3.3) holds true. As a consequence, one easily gets relation (3.4),
assuming the corresponding bound (1.10) for the growth of ∇R(t, u).
However, some generalizations to perturbations of other isochronous centers
are possible. For instance, as in [18], one can consider the scalar p-Laplacian
equation (p > 1)

(|x′|p−2x′)′ + µ|x|p−2x+ − ν|x|p−2x− + w(t, x) = 0,

whose associated Hamiltonian F (x, y) = 1
p (µ(x+)p + ν(x−)p) + 1

q |y|
q (with q

given by 1
p + 1

q = 1) is not positively homogeneous for p 6= 2, but gives birth

to an isochronous center. In this case, even if (3.3) is not fulfilled, a suitable
growth assumption on w(t, x), depending on p, ensures the validity of (3.4),
with α = 0.

We conclude the section focusing on some consequences of Theorem 1.1
for the scalar equation (1.4) and for related problems.

Proof of Corollary 1.2. Set u = (x, y), F (u) = 1
2 (µ(x+)2 + ν(x−)2 + y2),

R(t, u) = (W (t, x), 0), and ϕ(t) =
√
µ(φ(t + π

2
√
µ ), φ′(t + π

2
√
µ )). The thesis

follows plainly from Theorem 1.1, observing that (1.5) implies (1.9), (1.12)
implies (1.10) and (1.13) implies (1.11). �
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This situation can be extended to the perturbed “bi-asymmetric oscil-
lator” {

x′ = µ1y
+ − ν1y

− + w1(t, y)
y′ = −µ2x

+ + ν2x
− − w2(t, x),

(3.8)

being

• µ1, µ2, ν1, ν2 > 0 such that, for a positive integer N ,

π

2

(
1

√
µ1µ2

+
1

√
µ1ν2

+
1

√
µ2ν2

+
1

√
µ2ν1

)
=
T

N
; (3.9)

• w1, w2 : [0, T ] × R → R continuous functions satisfying, for suitable
constants M > 0, α ∈ [0, 1[ ,

|wi(t, z)| ≤M(1 + |z|α), for every t ∈ [0, T ], z ∈ R, i = 1, 2.

System (3.8) was already considered, for instance, in [10, 28], including the
asymmetric equation (1.4) (for µ1 = ν1 = 1, w1(t, y) ≡ 0). When (3.9) is
fulfilled, every nontrivial solution to the autonomous system{

x′ = µ1y
+ − ν1y

−

y′ = −µ2x
+ + ν2x

−,

is T -periodic; fixed the solution ϕ(t) = (ϕ1(t), ϕ2(t)) such that ϕ(0) = (1, 0),
every other (nontrivial) one has the form λϕ(t + θ) for suitable constants
λ > 0, θ ∈ [0, TN [ . According to Theorem 1.1, the planar system (3.8) has a
T -periodic solution if the following condition is fulfilled:

uniformly in θ ∈ [0, TN [ , it holds

lim
λ→+∞

1

λ2α

∫ T

0

[
W1(t, λϕ1(t+ θ)) +W2(t, λϕ2(t+ θ))

]
dt = +∞,

being Wi(t, z) =
∫ z

0
wi(t, ξ) dξ, i = 1, 2.

4. Comparing Landesman-Lazer and Ahmad-Lazer-Paul
conditions

In this section, we compare the Ahmad-Lazer-Paul condition (1.11) with the
planar version of the Landesman-Lazer one, given in [10].
For simplicity, we will limit ourselves to the equation

Ju′ = ∇F (u) +∇R(t, u),

with ∇R(t, u) a bounded function. Accordingly, we are interested in condition
(3.7), written in the equivalent way

lim
λ→+∞

∫ T

0

R(t, λϕ(t+ θ)) dt = +∞, uniformly in θ ∈ [0, T ], (4.1)

being ϕ(t) fixed as in Section 3. We recall that, in this setting, the planar
Landesman-Lazer condition [10] reads as follows:
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for every θ ∈ [0, T ], it holds∫ T

0

lim inf
λ→+∞
ω→θ

〈∇R(t, λϕ(t+ ω))|ϕ(t+ ω)〉 dt > 0. (4.2)

Our result is the following, in connection with [11, Theorem 2.1] (dealing
with second order equations and some abstract variants).

Theorem 4.1. Condition (4.2) implies (4.1).

To prove the theorem, we state a preliminary lemma.

Lemma 4.2. Assume (4.2). Then, there exist λ0 > 0, θ1, . . . , θj ∈ [0, T ],

δ1, . . . , δj > 0 and h1, . . . , hj ∈ L1(0, T ), with
∫ T

0
hi(t) dt > 0 for every i =

1, . . . , j (j being a suitable integer), such that

j⋃
i=1

[θi − δi, θi + δi] ⊃ [0, T ], (4.3)

and, for every i = 1, . . . , j and every t ∈ [0, T ],

〈∇R(t, λϕ(t+ ω))|ϕ(t+ ω)〉 ≥ hi(t), if |ω − θi| ≤ δi, λ ≥ λ0. (4.4)

Proof. For simplicity, we set lκ(t, ω) = 〈∇R(t, κϕ(t+ ω))|ϕ(t+ ω)〉.
Fix θ̂ ∈ [0, T ]. In view of the definition of inferior limit and Fatou’s lemma,
we have

lim inf
λ→+∞
δ→0

∫ T

0

inf
κ≥λ, |ω−θ̂|≤δ

lκ(t, ω) dt > 0.

Therefore, there exist λ0 = λ0(θ̂) ≥ 1, δ0 = δ0(θ̂) > 0 such that∫ T

0

inf
κ≥λ0, |ω−θ̂|≤δ0

lκ(t, ω) dt > 0.

We set

h(t, θ̂) = inf
κ≥λ0, |ω−θ̂|≤δ0

lκ(t, ω);

of course,
∫ T

0
h(t, θ̂) dt > 0 and, by the definition, lκ(t, ω) ≥ h(t, θ̂) for every

t ∈ [0, T ], κ ≥ λ0(θ̂) and |ω − θ̂| ≤ δ0(θ̂). Repeating the argument for every

θ̂ ∈ [0, T ] and using the compactness of [0, T ], there exist θ1, . . . , θj ∈ [0, T ],
δ1(θ1), . . . , δj(θj) > 0 such that (4.3) holds true. Setting

λ0 = max
i=1,...,j

{λ0(θi)}, hi(t) = h(t, θi), i = 1, . . . , j,

we finally get (4.4). �

Since the converse statement is easily seen to hold true, Lemma 4.2 can
be viewed as a characterization of condition (4.2) (cf., as a comparison term,
[11, Proposition 3.1]).
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Proof of Theorem 4.1. Without loss of generality, we can assume R(t, 0) ≡ 0;
moreover, as in the proof of Lemma 4.2, we set

lκ(t, θ) = 〈∇R(t, κϕ(t+ θ))|ϕ(t+ θ)〉.

For every t ∈ [0, T ], λ ≥ λ0 and θ ∈ [0, T ], we have

R(t, λϕ(t+ θ)) =

∫ 1

0

d

dκ
R(t, κλϕ(t+ θ)) dκ

= λ

∫ 1

0

〈∇R(t, κλϕ(t+ θ))|ϕ(t+ θ)〉 dκ =

∫ λ

0

lκ(t, θ) dκ

=

∫ λ0

0

lκ(t, θ) dκ+

∫ λ

λ0

lκ(t, θ) dκ

≥ −λ0 max
t,θ∈[0,T ],κ∈[0,λ0]

|lκ(t, θ)|+
∫ λ

λ0

hi(t) dκ,

being the index i such that θ ∈ [θi − δi, θi + δi] (keeping the notation of
Lemma 4.2). Integrating on [0, T ] we obtain∫ T

0

R(t, λϕ(t+ θ)) dt ≥ −C1 + (λ− λ0)

∫ T

0

hi(t) dt

≥ −C1 + (λ− λ0) min
i=1,...,j

∫ T

0

hi(t) dt, (4.5)

being C1 = Tλ0 maxt,θ∈[0,T ],κ∈[0,λ0] |lκ(t, θ)|. The conclusion follows, since,

for i = 1, . . . , j,
∫ T

0
hi(t) dt > 0 in view of Lemma 4.2. �

Remark 4.3. In view of (4.5), the same arguments show that, when (1.10) is
satisfied for α ∈ [0, 1/2[ , condition (4.2) still implies (1.11). In such a case,
however, in order for the integral in (4.2) to make sense, one has to assume
that, for a suitable η ∈ L1(0, T ), it holds

〈∇R(t, λu)|u〉 ≥ η(t), for every t ∈ [0, T ], |u| ≤ 1, λ ≥ 1.

Appendix

We now discuss some regularity issues about the functions used in Section
2, keeping the notation used therein. For functions depending on u ∈ R2, we
will write ∂i, i = 1, 2, to denote the partial derivative with respect to the i-th
component of u. Preliminarily, we observe that the map

R× R2
∗ 3 (t, u) 7→ ζ(t, u) = (ζ1(t, u), ζ2(t, u)) ∈ R2

∗

is of class C1.

Regularity of u 7→ τ(u).
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As in Section 3, for c ∈ R+
∗ we define ξ(c) as the unique positive number

such that H(ξ(c), 0) = c. The map c 7→ ξ(c) is continuous and the Implicit
Function Theorem ensures that it is of class C1. Indeed,

∂

∂d

(
H(d, 0)− c

)∣∣∣
d=ξ(c)

= ∂1H(ξ(c), 0) =
1

ξ(c)
〈∇H(ξ(c), 0)|(ξ(c), 0)〉 6= 0.

Next, for x ∈ R+
∗ , we define Π(x) as the second strictly positive real number

such that ζ2(Π(x), (x, 0)) = 0. Since all the nontrivial solutions to Ju′ =
∇H(u) are periodic and describe, in the clockwise sense, a strictly star-shaped
Jordan curve, Π(x) is the period of the orbit passing through (x, 0). Since
∇H(u) 6= 0 for every u 6= 0, [17, (v), p. 83] ensures that Π(x) is continuous.
We claim that it is actually of class C1. Indeed, using again the Implicit
Function Theorem,

∂

∂t
ζ2(t, (x, 0))

∣∣∣
t=Π(x)

= −∂1H(ζ(Π(x), (x, 0)))

= −〈∇H(ζ(Π(x), (x, 0)))|ζ(Π(x), (x, 0))〉
ζ1(Π(x), (x, 0))

6= 0.

Since τ(u) = Π(ξ(H(u))), for u ∈ R2
∗ , we conclude.

Regularity of u 7→ θ(u).

Let us fix u∗ ∈ R2
∗ \ (R+

∗ ×{0}). The continuity of θ(u) in u∗ follows from the
continuity of ζ(t, u).
We now prove that θ(u) is of class C1 in a neighborhood of u∗. By the Implicit
Function Theorem, repeating a similar argument as before, we deduce that
there exist:

- a neighborhood U of u∗ and a neighborhood T of τ
2π θ(u

∗);

- a C1-map t : U → T ,

such that

ζ2(−t, u) = 0, (t, u) ∈ T × U ⇐⇒ t = t(u). (A.1)

Since θ(u) is continuous at u∗, we get t(u) = τ
2π θ(u) for u in a neighborhood

of u∗, getting the desired conclusion.

We now examine the regularity in a point u0 ∈ R+
∗ × {0}. As before, one

can construct locally the function t(u) satisfying (A.1). By the definition of
θ(u) ∈ [0, 2π[ , we can infer that, for u = (u1, u2) in a neighborhood of u0,

θ(u) =


2π

τ
t(u) for u2 < 0

2π

τ
(t(u) + τ) for u2 ≥ 0.

(A.2)

From (A.2), we deduce both the fact that∇θ(u) extends to a continuous func-
tion on the whole R2

∗ and the fact that the map R2
∗ 3 u 7→ (cos θ(u),− sin θ(u))

is continuous.
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We lastly discuss the differentiability of u 7→ (cos θ(u),− sin θ(u)). Of course,
we only need to focus on u0 ∈ R+

∗ × {0}; for simplicity, moreover, we just
consider the map u 7→ cos θ(u).
The existence in u0 and the continuity in a neighborhood of u0 are ensured
for ∂2 cos(θ(u)), since ∇θ(u) exists out of R+

∗ × {0} and can be extended
to the whole R2

∗. For what concerns ∂1 cos θ(u), we have, since θ(u) ≡ 0 on
R+
∗ × {0},

∂1 cos θ(u)
∣∣
u=u0

= lim
δ→0

cos θ(u0 + (δ, 0))− cos θ(u0)

δ
= 0,

so that the existence in u0 is guaranteed. As for the continuity in a neigh-
borhood of u0, observe that, for u /∈ R+

∗ × {0}, one has

lim
u→u0

∂1 cos θ(u) = − lim
u→u0

sin θ(u)∂1θ(u)

= −2π

τ
lim
u→u0

sin θ(u)∂1t(u) = −2π

τ
sin θ(u0)∂1t(u0).

The conclusion follows from the fact that, since t(u) ≡ 0 on R+
∗ × {0}, it

holds 〈∇t(u0)|u0〉 = 0.
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