

This is the author's manuscript

AperTO - Archivio Istituzionale Open Access dell'Università di Torino

The neglected navigating web of incomprehensibly emerging and re-emerging Sarcoptes mite

Original Citation:	
Availability:	
This version is available http://hdl.handle.net/2318/142746	since
Published version:	
DOI:10.1016/j.meegid.2013.04.018	
Terms of use:	
Open Access Anyone can freely access the full text of works made available as "Open Access". Works made available under a Creative Commons license can be used according to the terms and conditions of said license. Use of all other works requires consent of the right holder (author or publisher) if not exempted from copyright protection by the applicable law.	

(Article begins on next page)

UNIVERSITÀ DEGLI STUDI DI TORINO

This is an author version of the contribution published on:

Questa è la versione dell'autore dell'opera:

Infection, Genetics and Evolution, 17, 2013, 10.1016/j.meegid.2013.04.018]

The definitive version is available at:

La versione definitiva è disponibile alla URL:

[ISSN: 1567-1348, ESSN: 1567-7257]

Review

The neglected navigating web of the incomprehensibly emerging and re-emerging Sarcoptes mite

Samer Alasaad, Luca Rossid, Jorg Heukelbach, Jesús M. Pérez, Omar Hamarsheh, Moses Otiende, Xing-Quan Zhu

Show more

http://dx.doi.org/10.1016/j.meegid.2013.04.018

Get rights and content

Abstract

Parasite presence in any ecosystem generates complex navigating webs (Parasite-NW) within the system, through which parasites move from one to another host. The appropriate assimilation of parasite navigating web is pivotal for a better understanding of pathogen flow in the ecosystem, with implications for disease control. Sarcoptes mite has been approached from medical, veterinary, entomological, physiological and, recently, molecular sides, to understand its epidemiological navigating web between isolates from different hosts and geographical regions. The obtained conclusions are still a matter of debate. Sarcoptes navigating web (Sarcoptes-NW) is intricate and uncertain, with unexplainable pathogenic flow. In this review we summarize by which routes, under what conditions and at what levels the Sarcoptes mite moves among its hosts.

Keywords

Sarcoptes scabiei; Scabies; Sarcoptes mite; Parasite navigating web (Parasite-NW); Parasite flow; Emerging and re-emerging disease

1. Introduction

The neglected parasite Sarcoptes scabiei affects humans and a wide range of mammalian hosts worldwide (Bornstein et al., 2001, Pence and Ueckermann, 2002, Walton et al., 2004b and Alasaad et al., 2011a), entailing significant mortality in both wild and domestic animals, with considerable economic losses (Bornstein, 1995, Pence and Ueckermann, 2002, Heukelbach and Feldmeier, 2006 and Dagleish et al., 2007), and ravages in human populations (Walton et al., 2004b and Hay et al., 2012).

There are no accurate estimates of the prevalence of Sarcoptes mite in the many animal populations worldwide, particularly in sylvatic animals. In humans, estimations indicate that hundreds of million people are infested with scabies worldwide (WHO, 2009). The prevalence of scabies in African children can be as high as 40–80%, and in remote indigenous communities in northern Australia, up to 50% of children and 25% of adults were found to be infested (Kristensen, 1991, Carapetis et al., 1997 and Terry et al., 2001). Considering increasing resistance of topical chemotherapy, there is an urgent need to develop new control strategies (Currie et al., 2004, Bradberry et al., 2005 and Sanderson et al., 2007), and the increasing need

of sensitive and reliable diagnostic tests for humans and many domestic and wild animals (Haas et al., 2005 and Heukelbach and Feldmeier, 2006).

Sarcoptes mite has been approached from morphological (Fain, 1978), medical (Carapetis et al., 1997 and Feldmeier et al., 2009), veterinary (Bornstein, 1995), entomological (Fain, 1978), physiological (Arlian, 1989, Arlian et al., 1996 and Haas et al., 2005) and, recently, molecular points of view (Zahler et al., 1999, Walton et al., 1997, Walton et al., 2004a, Alasaad et al., 2008b, Alasaad et al., 2009a, Alasaad et al., 2009b, Alasaad et al., 2011b, Alasaad et al., 2012c, Rasero et al., 2010 and Gakuya et al., 2011) aiming to understand its epidemiology between isolates from different hosts and geographical regions, but this issue is still a matter of vivid debate.

The objective of the present review is to summarize available evidence on Sarcoptes movement among hosts, in order to further elucidate transmission dynamics and provide an evidence-based rationale for sustainable control.

2. Emerging and re-emerging Sarcoptes scabiei

Parasite navigating webs (Parasite-NW) are the complex webs through which zoonotic parasites move from one host to another within the ecosystem (Polley, 2005). Pivotal to an appreciation of the function of parasite webs is an understanding of parasite flow: by which routes, under what conditions and at what levels the parasite flows among its various hosts, of the same or different species (including vectors where applicable), and between the hosts and the environment (Daszak et al., 2000).

Based on the definition of emergence and re-emergence of diseases by Lederberg et al. (1992), Sarcoptes mite emergence could be the result of the spread of Sarcoptes mites in one human/animal population from an infectious origin, or simply the realization that an infection has been present in a population but undetected for several reasons. The re-emergence of Sarcoptes is defined as the reappearance of Sarcoptes after a decline in incidence. Accordingly:

(i) A Sarcoptes mite mange outbreak can be 'genuine' emergence of an infestation, which is new to that particular and naive animal/human population. In this case, other infested hosts (humans, domestic and/or wild animals) sharing space with the non-infected population are suspected to be the reservoir and source of the mites through cross-infestation. In ruminants, the possibility that mites, adapted to a "main" reservoir host, may infest other sympatric species has been documented in mange foci in Europe (León-Vizcaíno et al., 1999, Rossi et al., 2007 and Oleaga et al., 2008), and field evidence has been supported by the results of experimental infestations (Meneguz and Rossi, 1995 and Lavín et al., 2000). Migration of human populations may also be a driving force for genuine emergence of scabies.

(ii) A Sarcoptes mite outbreak can be 'apparent' emergence/re-emergence, where Sarcoptes infestation is pre-existing, and the newly recognition is a result of increased detection opportunities (Kutz et al., 2003 and Oleaga et al., 2008) and/or the modification of a pre-existing host-parasite equilibrium (Pence et al., 1983 and Lloyd, 1995). In this second case, destabilizing modifications may have occurred on the host side, e.g. a diminished herd resistance, and/or the parasite side, e.g. the selection or of a more pathogenic strain or drug resistance (Pence and Windberg, 1994 and Leung and Grenfell, 2003).

Further epidemiological studies should consider a third category, which is a mixture of genuine and apparent emergence of Sarcoptes mite outbreaks. Such mixture category can be revealed using both epidemiological and population genetic approaches.

3. Sarcoptes transmissions

It is thought that Sarcoptes mite originated from a human ancestor and then spread to domestic and then free-living animals (Fain, 1968 and Walton et al., 2004b). Sarcoptes mites lack free-living stages, and individual hosts, depending on their susceptibility and behaviour, are essentially ephemeral habitats providing patchy environments that hamper random mating (Price, 1980 and Criscione et al., 2005). All mites on an individual host may in fact form an 'infrapopulation' (Bush et al., 1997 and Alasaad et al., 2008b) that has a number of recurrent generations. The number of generations is influenced by the short generation interval of this parasite (about three weeks), as well as by the infected host's life expectancy and susceptibility (Bornstein et al., 2001).

Transmission of S. scabiei may occur by direct or indirect contact. Larvae and nymphs of S. scabiei frequently leave their burrows and wander on the skin (Arlian and Vyszenski-Moher, 1988), which may, in the case of crusted scabies, harbour hundreds to several thousands of mites/cm2 (Zeh, 1974, Arlian et al., 1988 and Pérez et al., 2011). Some may become dislodged from the host and fall off (Arlian and Vyszenski-Moher, 1988). In controlled environments, mites may survive up until a few weeks if conditions (microclimate) are optimal (Arlian, 1989). Cooler temperatures and high humidy prolong off-host survival of S. scabiei, presumably because under these conditions mite metabolism is reduced (Davis and Moon, 1987 and Arlian et al., 1989).

However, Sarcoptes navigating web (Sarcoptes-NW) is intricate and uncertain with fragility of parasite flow, and consequently transmission dynamics are not clear. For example, the mode of scabies transmission in humans is still discussed-whereas some authors define scabies as a sexually-transmitted disease, others suggest close body contact between children and their mothers to be the main route of transmission in endemic communities (Jackson et al., 2007). Clearly, these aspects depend on many interacting factors and differ from setting to setting.

The time needed for S. scabiei var. hominis, immediately transferred from one host to another, to initiate penetration into the stratum corneum was \sim 10 min (Arlian et al., 1984), and it took the mites \sim 35 min to

become completely submerged into the epidermis. The time required for complete penetration into the stratum corneum increased as a function of the time the mites had been off their host. Experiments indicate that mites remain infective at least one-half to two-thirds of their survival time when dislodged from their host (Arlian, 1989). In historical but classical studies, Mellanby (1944) believed that the stage responsible for transmission was the young, newly fertilised adult female, which wandered around on the skin surface before burrowing. His studies on transmission of scabies determined that patients with a high parasite load in excess of 100 adult female mites are more likely to spread the disease than those harbouring a lower number of parasites.

Additional studies on Sarcoptes transmission and off-host survival under different host species, climatic conditions and fomite materials are still needed (Arlian, 1989).

From the other side, the co-infection between Sarcoptes mite and other ecto- and endo-parasites still not well-understood and need further studies (Alasaad et al., 2008a, Alasaad et al., 2008b and Ryser-Degiorgis et al., 2002). The better understanding of mixed infection, involving S. scabiei, is of pivotal interest for the better understanding of Sarcoptes epidemiology, diagnosis and treatment

3.1. Intra-mammalian groups transmission

3.1.1. Intra-humans transmission

Epidemics of human scabies have been hypothesised to occur on a worldwide basis in 15–25 year cycles (Falk, 1982, Arlian, 1989 and Lassa et al., 2011). Nonetheless, this possible "fluctuations" of disease occurrence is not corroborated by appropriate data (Orkin and Maibach, 1978).

Estimations indicate that 300 million people, especially children, are affected (WHO, 2009). Prevalence of scabies in African children can be as high as 40–80% (Kristensen, 1991 and Terry et al., 2001). In low and middle income countries, scabies is a significant public health problem because it is highly prevalent and complications are frequent (Heukelbach et al., 2005, Hay et al., 2012 and Heukelbach et al., 2012). Presence and severity of scabies are associated with young age, presence of many children in the household, illiteracy, low family income, poor housing, sharing clothes and towels, and irregular use of shower (Feldmeier et al., 2009). The high association with sharing clothes and towels points to a substantial contribution of fomites in the transmission of mites between humans, at least in certain settings (Zeh, 1974). However, in practice (and in endemic communities) it is not possible to quantify the importance of each single factor in epidemiological studies. Crusted scabies (also called Norwegian scabies), which is a scabies mite hyper-infection with hundreds of thousands of parasites on a single host, is rarely diagnosed in healthy individuals, but sometimes is seen in elderly, immune-suppressed patients with chronic disease, or patients suffering from malnutrition. These high transmitter individuals, who because of behaviours or mite load or some other factor, may provide a much higher risk of transmitting infestations (de Almeida Barbosa et al., 1996).

In an urban slum in Bangladesh, the incidence of scabies in children younger than 5 years was 952/1000 per year, which means that almost all children experienced at least one infestation per year (Stanton et al., 1987). This is in contrast to the situation in industrialized countries, where the disease occurs sporadically in all age groups, particularly in sexually active adults, or causes epidemics in institutions and nursing homes (Andersen et al., 2000, Heukelbach et al., 2005 and Ariza et al., 2012).

3.1.2. Intra-domestic animals transmission

In Africa, mites from sheep were successfully transferred to goats (Abu-Samra et al., 1984), and transmission of mites from goats to sheep was also achieved (Ibrahim and Abu-Samra, 1987). In both cases, infested goats and sheep developed severe lesions, particularly in moistened areas, and observation of skin scrapings revealed large numbers of mites belonging to all developmental stages, which demonstrated active reproduction of transferred mites in the new host. Similar results were obtained with experimental cross-infection between camels and goats (Nayel and Abu-Samra, 1986). Conversely, other attempts to transfer Sarcoptes mites between domestic species failed, like those involving dogs, sheep, goats, cattle and cats (Arlian et al., 1988) (Table 1).

Table 1.

Experimental cross-transmission of Sarcoptes scabiei, host species and outcomes.

Host of origin Receiver host Outcome Citation

Man Macacus rhesus Not successful Ruch (1959)

Man Domestic sheep Not successful Pirilä et al. (1967)

Man Cattle Not successful Pirilä et al. (1967)

Domestic goat Northern chamois Successful Fiebiger (1917) and Kerschagl (1955)

Domestic goat Camel Successful Nayel and Abu-Samra (1986)

Domestic goat Domestic sheep Successful Ibrahim and Abu-Samra (1987)

Domestic goat Southern chamois Successful Lavín et al. (2000)

Domestic goat Donkey Successful Abu-Samra et al. (1984)

Northern chamois Domestic goat Successful Meneguz and Rossi (1995)

Southern chamois Cattle Not successful Lavín et al. (2000)

Southern chamois Domestic sheep Not successful Lavín et al. (2000)

One humped camel Domestic goat Successful Navel and Abu-Samra (1986)

Dog Domestic sheep Not successful Arlian et al. (1988)

```
Dog
       Domestic goat Not successful Arlian et al. (1988)
Dog
       Cattle Not successful Arlian et al. (1988)
Dog
       Cat
               Not successful Arlian et al. (1988)
Dog
       Rabbit Successful
                              Arlian et al. (1984)
Dog
       Guinea pig
                       Not successful Arlian et al. (1984)
       House mouse Not successful Arlian et al. (1984)
Dog
               Not successful Arlian et al. (1984)
Dog
       Pig
Dog
       Rat
               Not successful Arlian et al. (1984)
               Not successful Kutzer and Grunberg (1970)
Dog
       Man
Coyote Dog
               Not successful Samuel (1981)
Coyote x dog hybrid
                       Red fox Successful
                                              Stone et al. (1972)
               Not successful Samuel (1981)
Wolf
       Dog
Red fox Dog
               Not successful Samuel (1981)
Red fox Dog
               Successful
                              Stone et al. (1972) and Bornstein (1991)
Red fox Coyote x dog hybrid
                              Successful
                                              Stone et al. (1972)
```

Red fox Coyote Successful

Red fox Man Not successful Kutzer and Grunberg (1970)

Samuel (1981)

Tapir Man Not successful Kutzer and Grunberg (1970)

Table options

3.1.3. Intra-wild animals transmission

Mange, caused by S. scabiei, has been reported from many species of wild mammals worldwide. Some of the most remarkable hosts include (1) canids in North America (Pence et al., 1983 and Little et al., 1998); (2) red foxes and other canids in Europe (Mörner, 1992, Ippen et al., 1995 and Gortazar et al., 1998); (3) red foxes and dingoes in Australia (McCarthy, 1960); (4) chamois, ibex and a variety of other ungulates in Europe (Ippen et al., 1995, Fernández Morán et al., 1997 and Rossi et al., 2007); (5) felids in Europe (Mörner, 1992) and Africa (Young, 1975); (6) wild boar in Europe (Ippen et al., 1995); (7) wombats in Australia (Skerratt et al., 1998); and (8) a range of ungulates, primates, and canids in Africa (Young, 1975, Kalema et al., 1998, Munang'andu et al., 2010 and Gakuya et al., 2012b). New outbreaks in wildlife are being continually reported worldwide (Alasaad et al., 2012a).

The molecular analyses of sympatric wild animals in Europe show unambiguously that there has been a lack of gene flow or recent admixture between carnivore-, herbivore-, and omnivore-derived Sarcoptes

populations (Rasero et al., 2010). Host-taxon-derived effect seems stronger driver of intra-specific differentiation than geographical separation, and it seems temporally stable (Alasaad et al., 2011b). The existence of host-taxon-derived Sarcoptes mites could explain why mange-free populations can live in sympatry with mangy animals, as is the case of the mange-free Capra ibex and Rupicapra rupicapra of the western Italian Alps that live in close proximity with the endemically mangy population of red fox Vulpes vulpes, and wild boar Sus scrofa (Rasero et al., 2010). Vice versa, this effect could be the immediate reason why cross-transmission easily occurs, in Europe, between foxes, dogs and other canids, as well as felids including domestic European cats, when these hosts are exposed to the same vulpine-derived strain (Bornstein 1995) (Table 1).

The studied wild animals in Europe (from which the host-taxon was coined) lacked of clear predator—prey interaction and putative inter-specific transmission models. Recent epidemiological and molecular studies revealed potential prey-to-predator gene flow between wild animals from Africa. Cheetahs were infected from both wildebeest and Thomson's gazelle, while lions were only infected from wildebeest. In a predator/prey ecosystem, like Masai Mara in Kenya, it seems that Sarcoptes infestation is from prey-to-predator, in relation to the predator's "favourite prey", which could be attributed to the direct skin-to-skin prolonged contact between the predator and the prey during hunting process (Gakuya et al., 2011 and Gakuya et al., 2012a).

3.2. Inter-mammalian groups transmission

3.2.1. Humans-wild/domestic animals transmission

Humans are occasionally infected with S. scabiei of animal origin (Arlian, 1989). This includes human infection from camel, cat, chamois, coyote, dog, ferret, fox, wombat, gazelle, goat, horse, llama, pig, sheep, water buffalo and cattle (Kutzer, 1970, Fain, 1978, Chakrabarti et al., 1981, Samuel, 1981, Folz, 1984, Chakrabarti, 1990, Mitra et al., 1993, Morsy et al., 1995, Skerratt and Beveridge, 1999, Menzano et al., 2004 and Bazargani et al., 2007). Those infected include farmers, personnel working in slaughterhouses researchers, veterinarians, wildlife biologist, and pet owners.

Most human infections from animal sources involve only topographically circumscribed body regions, are short-lived and self-limiting, lasting from a few days to several weeks (Arlian, 1989). As infestation is less severe and clinical features are different from infestation with Sarcoptes scabiei var. hominis, this condition is usually referred in the medical literature as "pseudoscabies". Lesions are frequently seen on the trunk, arms, and abdomen and rarely on the fingerwebs and genitalia. In addition, the incubation period is markedly shorter, and mite burrows are not regularly seen (Orkin and Maibach, 1991). Pruritus may be as intensive as in classical scabies, but symptoms usually wane within a maximum of 2–4 weeks. The human host is a not a source of infection to other humans. Reportedly, nonhuman mites most frequently originate from dogs infested with S. scabiei var. canis (30–50% of cases) (Thomsett, 1968, Folz, 1984 and Aydıngöz and Mansur, 2011).

The short-life and self-limiting infection of Sarcoptes mites of animal origin when transmitted to humans was confirmed by molecular analysis. Walton et al., 1999 and Walton et al., 2004a used multi-locus genotyping applied to microsatellite markers to substantiate previous findings that gene flow between human- and dog-derived mite populations is extremely rare in scabies-endemic Aboriginal communities in Australia.

3.2.2. Domestic animals-wildlife transmission

Considering the increasing deforestation and changing ecosystems worldwide, there has been more and more contact of domestic animals with sylvatic animals. In fact, the introduction of infected domestic animals and the success of the Sarcoptes mite in adapting to new highly susceptible wild hosts have been proposed as the origin of Sarcoptes mite epizootics in previously mange-free wildlife populations (Arlian, 1989). This scenario was also proposed for a Sarcoptes mite outbreak in Iberian ibex in Sierra Nevada mountain range, Spain in the 1970s, possibly from domestic infected goats (Pérez et al., 1997).

Molecular studies have been carried out to understand Sarcoptes transmission between humans and animals, and between wild host species, but never between domestic and wild animals, and hence effort should be made in this direction. We know very little of interspecific transmission between (putative) domestic reservoirs and wildlife, while we know much more on wildlife to wildlife transmission.

In the Sierras de Cazorla, Segura y Las Villas Natural Park (southern Spain) mange has become an endemic disease. At the end of the 1980s, it firstly affected Iberian ibex (Capra pyrenaica) causing devastating mortality rates with a reduction of the population by 95%. Then, the disease reached other sympatric wild ungulate species: European mouflon (Ovis aries), red deer (Cervus elaphus) and fallow deer (Dama dama). The origin of this epizooty is attributed to infested domestic goat herds (see, for instance, León-Vizcaíno et al., 1999). Regarding this situation, an attempt to experimentally infect chamois (Rupicapra rupicapra) with Sarcoptes mites derived from naturally-infested domestic goats was successful (Lavín et al., 2000). The opposite route of transmission was also previously demonstrated under experimental conditions (Meneguz and Rossi, 1995). A recent outbreak of Sarcoptes mite in domestic goats from northern Italy has been attributed to presumable contact with wild animals under natural conditions (Menzano et al., 2007).

Domestic-wild animals transmission usually produce high mortality and morbidity rates, probably because of insufficient management actions.

4. Predictions of emergence and re-emergence

Sarcoptes emergence and re-emergence could be predicted by different approaches, such as (i) endemic cycles, (ii) increasing agglomeration of people, wild and domestic animals, and increasing contact between human-wildlife-livestock. Notwithstanding, the prediction of Sarcoptes emergence and re-emergence could be affected by (a) the emerging of resistant against some acaricides (Currie et al., 2004), (b) the lack of

effective diagnosis method for many host species especially the wild ones (Alasaad et al., 2012b), and (c) the totally neglected role of fomites in Sarcoptes transmission.

Better prediction of scabies and mange emergence and re-emergence could be achieved through better understanding of inter-specific transmission patterns, which requires further studies including the effect of (i) travelling, sexual and familiar contact, biomedical manipulation and migration in intra-humans transmission; (ii) agricultural intensification and animal translocation in intra-domestic animals transmission; (iii) translocation and animal stress in intra-wild animals transmission; (iv) technology and industry manipulation in humans-domestic animals transmission; (v) human encroachment, tourism, and ecological manipulation in humans-wild animals transmission; and (vi) animal encroachment and animal introduction in domestic animals-wildlife transmission (Fig. 1).

Full-size image (80 K)

Fig. 1.

The neglected Sarcoptes navigating web (Sarcoptes-NW), including multiple putative routes of parasite flow between mammalian hosts, following authors' criteria. Dotted lines: flow through fomites. Solid lines: flow through direct contact (host-to-host). Circular arrow: flow within animal group. Question mark: questionable parasite flow. Curved lines: flow between groups.

Figure options

5. Public awareness

A better understanding of Sarcoptes navigating web is of pivotal interest for the public health. Unfortunately many facets of Sarcoptes navigating web regarding humans are not yet clear, including human-to-human transmission, especially the sexually transmission and family care, and wild and domestic animals to humans transmission. Integral programs should be carried out including epidemiological and genetic studies of Sarcoptes navigating web between humans and wild/domestic animals, and review of knowledge and practices regarding Sarcoptes infection in humans (Gakuya et al., 2012b). Effective and operator-friendly methods for direct and indirect diagnosis of scabies are still missing and the resistance of Sarcoptes to drugs is now becoming of major concern.

Acknowledgements

Project support was provided by Proyecto de Excelencia RNM 06400 (Junta de Andalucia, Spain) and Juan de la Cierva Grant (Ministerio Innovación y ciencia, Spain). XQZ is supported by the International Science & Technology Cooperation Program of China (Grant No. 2013DFA31840), the Science Fund for Creative Research Groups of Gansu Province (Grant No. 1210RJIA006) and the Special Fund for Agro-scientific Research in the Public Interest (Grant No. 201303037).

References

Abu-Samra et al., 1984

M.T. Abu-Samra, K.E.E. Ibrahim, M. Abdel Aziz

Experimental infection of goats with Sarcoptes scabiei var. ovis

Ann. Trop. Med. Parasitol., 78 (1984), pp. 55–61

View Record in Scopus | Cited By in Scopus (4)

Alasaad et al., 2008a

S. Alasaad, J.E. Granados, F.J. Cano-Manuel, A. Meana, X.Q. Zhu, J.M. Pérez

Epidemiology of fasciolosis affecting Iberian ibex (Capra pyrenaica) in southern Spain

Parasitol. Res., 102 (2008), pp. 751-755

View Record in Scopus | Full Text via CrossRef | Cited By in Scopus (9)

Alasaad et al., 2008b

S. Alasaad, D. Soglia, M. Sarasa, R.C. Soriguer, J.M. Pérez, J.E. Granados, R. Rasero, X.Q. Zhu, L. Rossi

Skin-scale genetic structure of Sarcoptes scabiei populations from individual hosts: empirical evidence from Iberian ibex-derived mites

Parasitol. Res., 104 (2008), pp. 101-105

View Record in Scopus | Cited By in Scopus (18)

Alasaad et al., 2009a

S. Alasaad, L. Rossi, R.C. Soriguer, L. Rambozzi, D. Soglia, J.M. Pérez, X.Q. Zhu

Sarcoptes mite from collection to DNA extraction: the lost realm of the neglected parasite

Parasitol. Res., 104 (2009), pp. 723-732

View Record in Scopus | Full Text via CrossRef | Cited By in Scopus (16)

Alasaad et al., 2009b

S. Alasaad, D. Soglia, V. Spalenza, S. Maione, R.C. Soriguer, J.M. Pérez, R. Rasero, M.P. Ryser Degiorgis, H. Nimmervoll, X.Q. Zhu, L. Rossi

Is ITS-2 rDNA suitable marker for genetic characterization of Sarcoptes mites from different wild animals in different geographic areas?

Vet. Parasitol., 159 (2009), pp. 181-185

Article | PDF (492 K) | View Record in Scopus | Cited By in Scopus (17)

Alasaad et al., 2011a

S. Alasaad, D. Holt, S. Walton, L. Rossi, S. Bornstein, M. Abu-Madi, R.C. Soriguer, S. Fitzgerald, X.Q. Zhu, W. Zimmermann, U.S. Ugbomoiko, J. Heukelbach

Sarcoptes-World Molecular Network (Sarcoptes-WMN): integrating research on scabies

Int. J. Infect. Dis., 15 (2011), pp. 294-297

Alasaad et al., 2011b

S. Alasaad, A. Oleaga, R. Casais, L. Rossi, A. Molinar Min, R. Soriguer, C. Gortazar

Temporal stability in the genetic structure of Sarcoptes scabiei under the host-taxon law: empirical evidences from wildlife-derived Sarcoptes mite in Asturias

Spain. Parasit. Vectors, 4 (2011), p. e151

Alasaad et al., 2012a

S. Alasaad, D. Ndeereh, L. Rossi, S. Bornstein, R. Permunian, R.C. Soriguer, F. Gakuya

The opportunistic Sarcoptes scabiei: a new episode from giraffe in the drought-suffering Kenya

Vet. Parasitol., 185 (2012), pp. 359-363

Article | PDF (818 K) | View Record in Scopus | Cited By in Scopus (6)

Alasaad et al., 2012b

S. Alasaad, R. Permunian, F. Gakuya, M. Mutinda, R.C. Soriguer, L. Rossi

Sarcoptic-mange detector dogs used to identify infected animals during outbreaks in wildlife

BMC Vet. Res., 8 (2012), p. e110

Alasaad et al., 2012c

S. Alasaad, R.K. Schuster, F. Gakuya, M. Theneyan, M.J. Jowers, S. Maione, A. Molinar Min, R.C. Soriguer, L. Rossi

Applicability of molecular markers to determine parasitic infection origins in the animal trade: a case study from Sarcoptes mites in wildebeest

Forensic Sci. Med. Pathol., 8 (2012), pp. 280-284

View Record in Scopus | Full Text via CrossRef | Cited By in Scopus (6)

Andersen et al., 2000

B.M. Andersen, H. Haugen, M. Rasch, A.H. Haugen, A. Tageson

Outbreak of scabies in Norwegian nursing homes and home care patients: control and prevention

J. Hosp. Infect., 45 (2000), pp. 160-164

Article | PDF (79 K) | View Record in Scopus | Cited By in Scopus (51)

Ariza et al., 2012

L. Ariza, B. Walter, C. Worth, S. Brockmann, ML. Weber, H. Feldmeier

Investigation of a scabies outbreak in a kindergarten in Constance, Germany

Eur. J. Clin. Microbiol. Infect. Dis. [Epub ahead of print] (2012)

Arlian et al., 1984

L.G. Arlian, R.A. Runyan, S.A. Estes

Cross infectivity of Sarcoptes scabiei

J. Am Acad. Dermatol., 10 (1984), pp. 979-986

Article | PDF (2869 K) | View Record in Scopus | Cited By in Scopus (33)

Arlian and Vyszenski-Moher, 1988

L.G. Arlian, D.L. Vyszenski-Moher

Life cycle of Sarcoptes scabiei var. canis

J. Parasitol., 74 (1988), pp. 427-430

View Record in Scopus | Full Text via CrossRef | Cited By in Scopus (18)

Arlian et al., 1988

L.G. Arlian, M. Ahmed, D.L. Vyszensky-Moher

Effects of Sarcoptes scabiei var. canis (Acari: Sarcoptidae) in blood indices of parasitized rabbits

J. Med. Entomol., 25 (1988), pp. 360-369

View Record in Scopus | Cited By in Scopus (12)

Arlian, 1989

L.G. Arlian

Biology, host relations, and epidemiology of Sarcoptes scabiei

Ann. Rev. Entomol., 34 (1989), pp. 139-161

View Record in Scopus | Cited By in Scopus (99)

Arlian et al., 1989

L.G. Arlian, D.L. Vyszenski-Moher, M.J. Pole

Survival of adults and developmental stages of Sarcoptes scabiei var. canis when off the host

Exp. Appl. Acarol., 6 (1989), pp. 181-187

View Record in Scopus | Full Text via CrossRef | Cited By in Scopus (31)

Arlian et al., 1996

L.G. Arlian, M.S. Morgan, L.L. Arends

Immunologic cross-reactivity among various strains of Sarcoptes scabiei

J. Parasitol., 82 (1996), pp. 66-72

View Record in Scopus | Full Text via CrossRef | Cited By in Scopus (31)

Aydıngöz and Mansur, 2011

I.E. Aydıngöz, A.T. Mansur

Canine scabies in humans: a case report and review of the literature

Dermatology, 223 (2011), pp. 104-106

View Record in Scopus | Cited By in Scopus (1)

Bazargani et al., 2007

T.T. Bazargani, J.A. Hallan, S. Nabian, S. Rahbari

Sarcoptic mange of gazelle (Gazella subguturosa) and its medical importance in Iran

Parasitol. Res., 101 (2007), pp. 1517-1520

View Record in Scopus | Full Text via CrossRef | Cited By in Scopus (2)

Bradberry et al., 2005

S.M. Bradberry, S.A. Cage, A.T. Proudfoot, J.A. Vale

Poisoning due to pyrethroids

Toxicol. Rev., 24 (2005), pp. 3-106

Bornstein, 1991

S. Bornstein

Experimental infection of dogs with Sarcoptes scabiei derived from naturally in- fected wild red foxes (Vulpes vulpes): clinical observations

Vet. Dermatol., 2 (1991), pp. 151-159

Full Text via CrossRef

Bornstein et al., 2001

S. Bornstein, T. Mörner, W.M. Samuel

Sarcoptes scabiei and sarcoptic mange

W.M. Samuel, M.J. Pybus, A.A. Kocan (Eds.), Parasitic Diseases of Wild Mammals (second ed.), Iowa State University Press, Ames (2001), pp. 107–119

View Record in Scopus | Full Text via CrossRef | Cited By in Scopus (1)

Bornstein, 1995

Bornstein, S., 1995. Sarcoptes scabiei infections of the domestic dog, red fox and pig. PhD thesis. Department of Veterinary Microbiology, Section of Parasitology, Swedish University of Agricultural Sciences and National Veterinary Institute, Uppsala, Sweden.

Bush et al., 1997

A.O. Bush, K.D. Lafferty, J.M. Lotz, A.W. Shostak

Parasitology meets ecology on its own terms: Margolis et al. revisited

J. Parasitol., 83 (1997), pp. 575-583

View Record in Scopus | Full Text via CrossRef | Cited By in Scopus (2373)

Carapetis et al., 1997

J.R. Carapetis, C. Connors, D. Yarmirr, V. Krause, B.J. Currie

Success of a scabies control program in an Australian aboriginal community

Pediatr. Infect. Dis. J., 16 (1997), pp. 494-499

View Record in Scopus | Full Text via CrossRef | Cited By in Scopus (77)

Chakrabarti, 1990

A. Chakrabarti

Pig handler's itch

Int. J. Dermatol., 29 (1990), pp. 205-206

View Record in Scopus | Full Text via CrossRef | Cited By in Scopus (3)

Chakrabarti et al., 1981

A.N. Chakrabarti, A.A. Chatterjee, K. Chakrabarti, D.N. Sengupta

Human scabies from contact with water buffaloes infested with Sarcoptes scabiei var. bubalis

Ann. Trop. Med. Parasitol., 75 (1981), pp. 353-357

View Record in Scopus | Cited By in Scopus (9)

Criscione et al., 2005

C.D. Criscione, R. Poulin, S. Blouin

Molecular ecology of parasites: elucidating ecological and microevolutionary processes

Mol. Ecol., 14 (2005), pp. 2247-2257

View Record in Scopus | Full Text via CrossRef | Cited By in Scopus (167)

Currie et al., 2004

B.J. Currie, P. Harumal, M. McKinnon, S.F. Walton

First documentation of in vivo and in vitro ivermectin resistance in Sarcoptes scabiei

Clin. Infect. Dis., 39 (2004), pp. 8-12

Dagleish et al., 2007

M.P. Dagleish, Q. Ali, R.K. Powell, D. Butz, M.H. Woodford

Fatal Sarcoptes scabiei infection of blue sheep (Pseudois nayaur) in Pakistan

J. Wildl. Dis., 43 (2007), pp. 512-517

View Record in Scopus | Full Text via CrossRef | Cited By in Scopus (10)

Daszak et al., 2000

P. Daszak, A.A. Cunningham, A.D. Hyatt

Emerging infectious dis- eases of wildlife - threats to biodiversity and human health

Sci., 287 (2000), pp. 443-449

View Record in Scopus | Full Text via CrossRef | Cited By in Scopus (1173)

Davis and Moon, 1987

D.P. Davis, R.D. Moon

Survival of Sarcoptes scabiei (De Geer) stored in three media at three temperatures

J. Parasitol., 73 (1987), pp. 661-662

View Record in Scopus | Full Text via CrossRef | Cited By in Scopus (1)

de Almeida Barbosa et al., 1996

A. de Almeida Barbosa, T.M. Correia Silva, M.I. Ribeiro Santos, M.F. Gomez Garrido, B. Niljay Patel, M. Cavalcanti, M.C. Oliveira Riccio

Coexistence of an unusual form of scabies and lepromatous leprosy

A case report. Pathol. Res. Pract., 192 (1996), pp. 88-90

View Record in Scopus | Cited By in Scopus (7)

Fain, 1968

A. Fain

Étude de la variabilité de Sarcoptes scabiei avec une revisiondes Sarcoptidae

Acta Zool. Pathol. Antverp., 47 (1968), pp. 1–196

View Record in Scopus | Cited By in Scopus (47)

Fain, 1978

A. Fain

Epidemiological problems of scabies

Int. J. Dermatol., 17 (1978), pp. 20-30

View Record in Scopus | Full Text via CrossRef | Cited By in Scopus (63)

Falk, 1982

Falk, E.S., 1982. Scabies: some aspects of its relationship to the immune mechanisms. Ph.D. Thesis. Tromso University, Tromso.

Feldmeier et al., 2009

H. Feldmeier, A. Jackson, L. Ariza, C.M. Lins-Calheiros, V.L. Soares, F.A. Oliveira

The epidemiology of scabies in an impoverished community in rural Brazil: presence and severity of disease are associated with poor living conditions and illiteracy

J. Am. Acad. Dermatol., 60 (2009), pp. 436-443

Article | PDF (154 K) | View Record in Scopus | Cited By in Scopus (10)

Fernández Morán et al., 1997

J. Fernández Morán, S. Gómez, F. Ballesteros, P. Quirós, J.L. Benito, C. Feliu, J.M. Nieto

Epizootiology of sarcoptic mange in a population of Cantabrian chamois (Rupicapra pyrenaica parva) in northwestern Spain

Vet. Parasitol., 73 (1997), pp. 163-171

Article | PDF (499 K) | View Record in Scopus | Cited By in Scopus (54)

Fiebiger, 1917

J. Fiebiger

Neue Untersuchungen über Gemsenräude. Übertragung der Ziegenräude auf Gemsen

Wien. tierärztl. Mschr., 4 (1917), pp. 433–450

Folz, 1984

S.D. Folz

Canine scabies (Sarcoptes scabiei) infestation

Compend. Contin. Educ. Vet., 6 (1984), pp. 176–180

Gakuya et al., 2011

F. Gakuya, L. Rossi, J. Ombui, N. Maingi, G. Muchemi, W. Ogara, R.C. Soriguer, S. Alasaad

The curse of the prey: Sarcoptes mite molecular analysis reveals potential prey-to-predator parasitic infestation in wild animals from Masai Mara

Kenya. Parasit. Vectors, 4 (2011), p. e193

Gakuya et al., 2012a

F. Gakuya, J. Ombui, N. Maingi, G. Muchemi, W. Ogara, R.C. Soriguer, S. Alasaad

Sarcoptic mange and cheetah conservation in Masai Mara (Kenya): epidemiological study in a wildlife/livestock system

Parasitology, 139 (2012), pp. 1587-1595

View Record in Scopus | Full Text via CrossRef | Cited By in Scopus (7)

Gakuya et al., 2012b

F. Gakuya, J. Ombui, J. Heukelbach, N. Maingi, G. Muchemi, W. Ogara, D. Mijele, S. Alasaad

Knowledge of mange among Masai pastoralists in Kenya

PLoS ONE, 7 (2012), p. e43342

Full Text via CrossRef

Gortazar et al., 1998

C. Gortazar, R. Villafuerte, J.C. Blanco, D. Fernadez-de-Luco

Enzootic sarcoptic mange in red foxes in Spain

Z. Jagdwiss., 44 (1998), pp. 251-256

View Record in Scopus | Full Text via CrossRef | Cited By in Scopus (16)

Haas et al., 2005

N. Haas, B. Wagemann, B. Hermes, B.M. Henz, C. Heile, E. Schein

Crossreacting IgG antibodies against fox mite antigens in human scabies

Arch. Dermatol. Res., 296 (2005), pp. 327-331

View Record in Scopus | Cited By in Scopus (14)

Hay et al., 2012

R.J. Hay, A.C. Steer, D. Engelman, S. Walton

Scabies in the developing world-its prevalence, complications, and management

Clin. Microbiol. Infect., 18 (2012), pp. 313-323

View Record in Scopus | Full Text via CrossRef | Cited By in Scopus (15)

Heukelbach et al., 2005

J. Heukelbach, T. Wilcke, B. Winter, H. Feldmeier

Epidemiology and morbidity of scabies and pediculosis capitis in resource-poor communities in Brazil

Br. J. Dermatol., 153 (2005), pp. 150-156

View Record in Scopus | Full Text via CrossRef | Cited By in Scopus (76)

Heukelbach and Feldmeier, 2006

J. Heukelbach, H. Feldmeier

Scabies

Lancet, 367 (2006), pp. 1767-1774

Article | PDF (106 K) | View Record in Scopus | Cited By in Scopus (101)

Heukelbach et al., 2012

J. Heukelbach, H.D. Mazigo, S. Ugbomoiko

Impact of scabies in resource-poor communities

Clin. Microbiol. Infect., 18 (2012), pp. 313-323

View Record in Scopus | Cited By in Scopus (1)

Ibrahim and Abu-Samra, 1987

K.E.E. Ibrahim, M.T. Abu-Samra

Experimental transmission of a goat strain of Sarcoptes scabiei to desert sheep and its treatment with ivermectin

Vet. Parasitol., 26 (1987), pp. 157-164

Article | PDF (584 K) | View Record in Scopus | Cited By in Scopus (15)

Ippen et al., 1995

R. Ippen, S. Nickel, H.D. Schröder

Krankheiten des Jagdbaren Wildes

Deutscher Land- wirtschaftverlag, Berlin (1995) pp. 189–195

Jackson et al., 2007

A. Jackson, J. Heukelbach, H. Feldmeier

Transmission of scabies in a rural community

Braz. J. Infect. Dis., 11 (2007), pp. 386-387

View Record in Scopus | Full Text via CrossRef | Cited By in Scopus (10)

Kalema et al., 1998

Kalema, G., Koch, R.A., Macfie, E., 1998. An outbreak of sarcoptic mange in free-ranging mountain gorillas (Gorilla gorilla berengei) in Bwindi Impenetrable National Park, South Western Uganda. In: Proceedings AAZV and AAWV Joint Conference, Omaha, Nebraska, USA, p. 438.

Kerschagl, 1955

W. Kerschagl

Übertragbarkeit der Gamsräude auf andere Wildarten

Anblick, 10 (1955), pp. 295-296

View Record in Scopus | Cited By in Scopus (1)

Kristensen, 1991

J.K. Kristensen

Scabies and pyoderma in Lilongwe. Malawi. Prevalence and seasonal fluctuation

Int. J. Dermatol., 30 (1991), pp. 699–702

View Record in Scopus | Full Text via CrossRef | Cited By in Scopus (43)

Kutz et al., 2003

S.J. Kutz, E.P. Hoberg, J. Nagy, L. Polley, B. Elkin

Emerging parasitic infections in arctic ungulates

Integrat. Comp. Biol., 44 (2003), pp. 109-118

Kutzer, 1970

F. Kutzer

Sarcoptes-Milben und Sarcoptes räude der Haustiere. Merkblätter Über angewandte Parasitenkunde und Schädlingsbekämpfung

Angew. Parasitol., 11 (1970), pp. 1–22

Kutzer and Grunberg, 1970

E. Kutzer, W. Grunberg

Transmission of sarcoptic mange from animals to man

Vet. Bull., 40 (1970), p. 4

View Record in Scopus | Cited By in Scopus (1)

Lavín et al., 2000

S. Lavín, M. Ruiz-Bascaran, I. Marco, M.D. Fondevila, A.J. Ramis

Experimental infection of chamois (Rupicapra pyrenaica parva) with Sarcoptes scabiei derived from naturally infected goats

J. Vet. Med., 47 (2000), pp. 693-769

Lassa et al., 2011

S. Lassa, M.J. Campbell, C.E. Bennett

Epidemiology of scabies prevalence in the U.K. from general practice records

Br. J. Dermatol., 164 (2011), pp. 1329-1334

View Record in Scopus | Full Text via CrossRef | Cited By in Scopus (8)

Lederberg et al., 1992

,in: J. Lederberg, R.E. Shope, S.C. Oaks (Eds.), Emerging Infections: Microbial Threats to Health in the United StatesNational Academies Press, Washington, DC (1992)

León-Vizcaíno et al., 1999

L. León-Vizcaíno, M.R. Ruíz de Ybáñez, M.J. Cubero

Sarcoptic mange in Spanish ibex from Spain

J. Wildl. Dis., 35 (1999), pp. 647-659

View Record in Scopus | Full Text via CrossRef | Cited By in Scopus (59)

Leung and Grenfell, 2003

B. Leung, B.T. Grenfell

A spatial stochastic model simulating a scabies epidemic and coyote population dynamics

Ecol. Model., 166 (2003), pp. 41-52

Article | PDF (159 K) | View Record in Scopus | Cited By in Scopus (11)

Little et al., 1998

S.E. Little, W.R. Davidson, E.W. Howerth, P.M. Rakich, V.F. Nettles

Diseases diagnosed in red foxes from Southeastern United States

J. Wildl. Dis., 34 (1998), pp. 620–624

View Record in Scopus | Full Text via CrossRef | Cited By in Scopus (16)

Lloyd, 1995

S. Lloyd

Environmental influences on host immunity

B.T. Grenfell, A.P. Dobson (Eds.), Ecology of Infectious Diseases in Natural Populations, Cambridge University Press, Cambridge, UK (1995), pp. 327–361

Full Text via CrossRef

McCarthy, 1960

P.H. McCarthy

The presence of sarcoptic mange in the wild fox (Vulpes vulpes) in Central Queensland

Aust. Vet. J., 36 (1960), pp. 359-360

Full Text via CrossRef

Mellanby, 1944

K. Mellanby

The development of symptoms, parasitic infection and immunity in human scabies

Parasitology, 35 (1944), pp. 197-206

View Record in Scopus | Full Text via CrossRef | Cited By in Scopus (63)

Meneguz and Rossi, 1995

P.G. Meneguz, L. Rossi

Experimental transmission of Sarcoptes scabiei from chamois to domestic goat

Proc. Soc. It. Sci. Vet., 49 (1995), pp. 755-756

View Record in Scopus | Cited By in Scopus (2)

Menzano et al., 2004

A. Menzano, L. Rambozi, L. Rossi

Outbreak of scabies in human beings, acquired from chamois (Rupicapra rupicapra)

Vet. Rec., 155 (2004), p. 568

View Record in Scopus | Full Text via CrossRef | Cited By in Scopus (10)

Menzano et al., 2007

A. Menzano, L. Rambozzi, L. Rossi

A severe episode of wildlife derived scabies in domestic goats in Italy

Small Rumin. Res., 70 (2007), pp. 154–158

Article | PDF (272 K) | View Record in Scopus | Cited By in Scopus (6)

Mitra et al., 1993

M. Mitra, S.K. Mahanta, S. Sen, C. Ghosh, A.K. Hati

Sarcoptes scabiei in animals spreading to man

Trop. Geogr. Med., 45 (1993), pp. 142-143

View Record in Scopus | Cited By in Scopus (6)

Morsy et al., 1995

T.A. Morsy, M.E. Bakr, M.M. Ahmed, M.M. Kotb

Human scabies acquired from a pet puppy

J. Egypt. Soc. Parasitol., 24 (1995), pp. 305-308

Mörner, 1992

T. Mörner

Sarcoptic mange in Swedish wildlife

Rev. Sci. Tech., 11 (1992), pp. 115-121

Munang'andu et al., 2010

H.M. Munang'andu, V.M. Siamudaala, W. Matandiko, M. Munyeme, M. Chembensofu, E. Mwase

Sarcoptes mite epidemiology and treatment in African buffalo (Syncerus caffer) calves captured for translocation from the Kafue game management area to game ranches

BMC Vet. Res., 6 (2010), p. 29

Full Text via CrossRef

Nayel and Abu-Samra, 1986

N.M. Nayel, M.T. Abu-Samra

Experimental infection of the one-humped camel (Camelus dromedarius) with Sarcoptes scabiei var. cameli and S. scabiei var. ovis

Ann. Trop. Med. Parasitol., 80 (1986), pp. 553-561

View Record in Scopus | Cited By in Scopus (5)

Oleaga et al., 2008

A. Oleaga, R. Casais, P. González-Quirós, M. Prieto, C. Gortazar

Sarcoptic mange in red deer from Spain: improved surveillance or disease emergence?

Vet. Parasitol., 154 (2008), pp. 103-113

Article | PDF (1112 K) | View Record in Scopus | Cited By in Scopus (13)

Orkin and Maibach, 1978

M. Orkin, H.I. Maibach

Scabies in children. Symposiumon Pediatric Dermatology

Pediatr. Clin. North Am., 25 (1978), pp. 371-386

View Record in Scopus | Cited By in Scopus (7)

Orkin and Maibach, 1991

Orkin, M., Maibach, H.I., 1991. Ectoparasitic diseases. In: Orkin, M., Maibach, H., Dahl Norwalk, M.V. (Eds.), Dermatology, vol. 3. Appleton and Lange, VA, pp. 205–214.

Pence et al., 1983

D.B. Pence, L.A. Windberg, B.C. Pence, R. Sprowls

The epizootiology and pathology of sarcoptic mange in coyotes, Canis latrans, from South Texas

J. Parasitol., 69 (1983), pp. 1100-1115

View Record in Scopus | Full Text via CrossRef | Cited By in Scopus (39)

Pence and Windberg, 1994

D.B. Pence, L.A. Windberg

Impact of a sarcoptic mange epizootic on a coyote population

J. Wildl. Mgmt., 58 (1994), pp. 624–633

Full Text via CrossRef

Pence and Ueckermann, 2002

D.B. Pence, E. Ueckermann

Sarcoptic mange in wildlife

Rev. Sci. Tech., 21 (2002), pp. 385–398

View Record in Scopus | Cited By in Scopus (85)

Pérez et al., 1997

J.M. Pérez, I. Ruiz-Martínez, J.E. Granados, R.C. Soriguer, P. Fandos

The dynamics of sarcoptic mange in the ibex population of Sierra Nevada in Spain – influence of climatic factors

J. Wildl. Res., 2 (1997), pp. 86-89

View Record in Scopus | Cited By in Scopus (32)

Pérez et al., 2011

J.M. Pérez, J.E. Granados, M. Sarasa, E. Serrano

Usefulness of estimated surface area of damaged skin as a proxy of mite load in the monitoring of sarcoptic mange in free-ranging populations of Iberian wild goat, Capra pyrenaica

Vet. Parasitol., 176 (2011), pp. 258-264

Article | PDF (525 K) | View Record in Scopus | Cited By in Scopus (9)

Pirilä et al., 1967

V.V. Pirilä, O.P. Salo, R. Kiistala

Scabies Norvegica

Acta Derm. Venereol., 47 (1967), pp. 267-268

View Record in Scopus | Cited By in Scopus (1)

Polley, 2005

L. Polley

Navigating parasite webs and parasite flow: emerging and re-emerging parasitic zoonoses of wildlife origin

Int. J. Parasitol., 35 (2005), pp. 1279-1294

Article | PDF (280 K) | View Record in Scopus | Cited By in Scopus (37)

Price, 1980

P.W. Price

Evolutionary Biology of Parasites

Princeton University Press, Princeton, NJ (1980)

Rasero et al., 2010

R. Rasero, L. Rossi, D. Soglia, S. Maione, P. Sacchi, L. Rambozzi, S. Sartore, R.C. Soriguer, V. Spalenza, S. Alasaad

Host taxon-derived Sarcoptes mite in European wild animals revealed by microsatellite markers

Biol. Conserv., 143 (2010), pp. 1269–1277

Article | PDF (784 K) | View Record in Scopus | Cited By in Scopus (14)

Rossi et al., 2007

L. Rossi, C. Fraquelli, U. Vesco, R. Permunian, G.M. Sommavilla, G. Carmignola, M. Da Pozzo, P.G. Meneguz

Descriptive epidemiology of a scabies epidemic in chamois in the Dolomite Alps

Italy. Eur. J. Wildl. Res., 53 (2007), pp. 131-141

View Record in Scopus | Full Text via CrossRef | Cited By in Scopus (28)

Ruch, 1959

T.C. Ruch

Diseases of laboratory primates

W.B. Saunders Company, Philadelphia (1959)

Ryser-Degiorgis et al., 2002

M.P. Ryser-Degiorgis, A. Ryser, L.N. Bacciarini, C. Angst, B. Gottstein, M. Janovsky, U. Breitenmoser

Notoedric and sarcoptic mange in free-ranging lynx from Switzerland

J. Wildl. Dis., 2002 (38) (2002), pp. 228-232

View Record in Scopus | Full Text via CrossRef | Cited By in Scopus (21)

Samuel, 1981

W.M. Samuel

Attempted experimental transfer of sarcoptic mange (Sarcoptes scabiei, Acarina: Sarcoptidae) among red fox, coyote, wolf and dog

J. Wildl. Dis., 17 (1981), pp. 343-347

View Record in Scopus | Full Text via CrossRef | Cited By in Scopus (17)

Sanderson et al., 2007

H. Sanderson, B. Laird, L. Pope, R. Brain, C. Wilson, D. Johnson

Assessment of the environmental fate and effects of ivermectin in aquatic mesocosms

Aquat. Toxicol., 85 (2007), pp. 229-240

Article | PDF (1186 K) | View Record in Scopus | Cited By in Scopus (38)

Skerratt et al., 1998

L.F. Skerratt, R.W. Martin, K.A. Handasyde

Sarcoptic mange in wombats

Aust. Vet. J., 76 (1998), pp. 408-410

View Record in Scopus | Full Text via CrossRef | Cited By in Scopus (21)

Skerratt and Beveridge, 1999

L.F. Skerratt, I. Beveridge

Human scabies of wombat origin

Aust. Vet. J., 9 (1999), p. 607

View Record in Scopus | Full Text via CrossRef | Cited By in Scopus (10)

Stanton et al., 1987

B. Stanton, S. Khanam, H. Nazrul, S. Nurani, T. Khair

Scabies in urban Bangladesh

J. Trop. Med. Hyg., 90 (1987), pp. 219-226

View Record in Scopus | Cited By in Scopus (19)

Stone et al., 1972

W.B. Stone, E. Parks, B.L. Weber, F.J. Parks

Experimental transfer of sarcoptic mange from red foxes and wild canids to captive wildlife and domestic animals. N.Y

Fish Game J., 19 (1972), pp. 1–11

Terry et al., 2001

B.C. Terry, F. Kanjah, F. Sahr, S. Kortequee, I. Dukulay, A.A. Gbakima

Sarcoptes scabiei infestation among children in a displacement camp in Sierra Leone

Public Health, 115 (2001), pp. 208-211

Article | PDF (60 K) | View Record in Scopus | Full Text via CrossRef | Cited By in Scopus (23)

Thomsett, 1968

L.R. Thomsett

Mite infestation of man contracted from dogs and cats

Br. Med. J., 3 (1968), pp. 93-95

View Record in Scopus | Full Text via CrossRef | Cited By in Scopus (16)

Walton et al., 1997

S.F. Walton, B.J. Currie, D.J. Kemp

A DNA fingerprinting system for the ectoparasite Sarcoptes scabiei

Mol. Biochem. Parasitol., 85 (1997), pp. 187–196

Article | PDF (561 K) | View Record in Scopus | Cited By in Scopus (40)

Walton et al., 1999

S.F. Walton, J.L. Choy, A. Bonson, A. Valle, J. McBroom, D. Taplin, L. Arlian, J.D. Mathews, B. Currie, D.J. Kemp

Genetically distinct dog-derived and human-derived Sarcoptes scabiei in scabies-endemic communities in northern Australia

Am. J. Trop. Med. Hyg., 61 (1999), pp. 542-547

View Record in Scopus | Cited By in Scopus (54)

Walton et al., 2004a

S.F. Walton, A. Dougall, S. Pizzutto, D. Holt, D. Taplin, L.G. Arlian, M. Morgan, B.J. Currie, D.J. Kemp

Genetic epidemiology of Sarcoptes scabiei (Acari: Sarcoptidae) in northern Australia

Int. J. Parasitol., 34 (2004), pp. 839-849

Article | PDF (214 K) | View Record in Scopus | Cited By in Scopus (47)

Walton et al., 2004b

S.F. Walton, D.C. Holt, B.J. Currie, D.J. Kemp

Scabies: new future for a neglected disease

Adv. Parasitol., 57 (2004), pp. 309-376

Article | PDF (706 K) | View Record in Scopus | Cited By in Scopus (66)

WHO, 2009

WHO (World Health Organisation), 2009. Available from: http://www.who.int/en/.

Young, 1975

E. Young

Some important parasitic and other diseases of lion, Panthera leo, in the Kruger National Park

J. S. Afr. Vet. Assoc., 46 (1975), pp. 181–183

View Record in Scopus | Cited By in Scopus (10)

Zahler et al., 1999

M. Zahler, A. Essig, R. Gothe, H. Rinder

Molecular analyses suggest monospecificity of the genus Sarcoptes (Acari: Sarcoptidae)

Int. J. Parasitol., 29 (1999), pp. 759-766

Article | PDF (143 K) | View Record in Scopus | Cited By in Scopus (49)

Zeh, 1974

J.B. Zeh

Infestation of sarcoptic mange on red fox in New York

New York Fish Game J., 21 (1974), pp. 182–183

View Record in Scopus | Cited By in Scopus (1)

Corresponding author contact information

Corresponding authors. Address: Estación Biológica de Doñana, Consejo Superior de Investigaciones Científicas (CSIC), Avda. Américo Vespucio s/n 41092 Sevilla, Spain. Tel.: +41 44 6354914; fax: +41 44 6355711 (S. Alasaad), tel./fax: +86 931 8342837 (X.-Q. Zhu).

