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Abstract

It is shown that ab initio simulation can be used as a powerful complementary tool in the

interpretation of the experimental reflectance spectra R(ν) of crystalline compounds. Experimental

frequencies and intensities are obtained from a best fit of R(ν) with a set of damped harmonic

oscillators, whose number and initial position in frequency can dramatically influence the final

results, as the parameters are strongly correlated. Computed ab initio values for frequencies and

intensities are accurate enough to represent an excellent starting point for the best fit process.

Moreover, at variance with respect to experiment, simulation permits to identify all the symmetry

allowed modes, also when characterized by low intensity or when close to a very intense peak.

Overall, simulation-aided analysis of experimental spectra prevents from classifying combination

modes as fundamental modes, and permits to discard artifacts due to superposition of bands,

background and noise. Finally, it allows to (almost) completely characterize the set of fundamental

modes.

Keywords: IR reflectance spectra, experiment, best fit, frequencies, intensities, ab initio simulation, CRYS-

TAL code
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I. INTRODUCTION

A reflectance infrared (IR) experiment provides a spectrum R(ν) that is defined in terms

of the complex dielectric function ϵ(ν) and of the angle θ between the incident beam and

the normal to the surface:1

R(ν) =

∣

∣

∣

∣

∣

√

ϵ(ν)− sin2(θ)− cos(θ)
√

ϵ(ν)− sin2(θ) + cos(θ)

∣

∣

∣

∣

∣

2

(1)

For ease of notation the directional nature of R(ν) and the tensor nature of ϵ(ν) are disre-

garded at this point. They will be taken into account later on.

R(ν) does not directly provide the quantities of interest for each n − th IR active mode,

namely the vibrational frequency νTO,n of the transverse optical (TO) mode and the corre-

sponding intensity, usually expressed in terms of the oscillator strength fn. A model must

be adopted instead, that establishes the link between R(ν) and the set {νTO,n; fn}.

ϵ(ν) is obtained as the sum of the high frequency dielectric contribution ϵ∞ (due to the elec-

trons) and of a ionic contribution. As regards the latter, different models have been proposed.

The most common one is the Drude-Lorentz model1–4, which consists in a superposition of

Lorentzian curves Ln(ν), each one corresponding to a damped harmonic oscillator:

ϵ(ν) = ϵ∞ +
∑

n

Ln(ν)

= ϵ∞ +
∑

n

fnν2
TO,n

ν2
TO,n − ν2 − iνγn

(2)

Each oscillator is then characterized by three parameters, namely the frequency νTO,n of the

TO mode, its oscillator strength fn and the damping factor γn. Note that also the optical

dielectric constant ϵ∞ must be regarded as a parameter.

Once a model for the dielectric function has been chosen, its parameters can be obtained by

best fit, through minimization of the chi square (χ2) between the calculated (reconstructed)

spectrum Rcalc(ν) (Eq. (1)) and the experimental one Rexp(ν), over a set of points on which

the spectrum has been digitalized (σexp is the experimental standard deviation):

χ2 =
M
∑

i=1

(

R(νi)exp −R(νi)calc

σexp
i

)2

(3)

Typically5–11 the spectra cover a range of about 1000-1500 cm−1 in steps of 0.25 to 4 cm−1;

then they are composed of a number of points M in the order of thousands.
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This best fit procedure is not straightforward at all, for various reasons: R(ν) is non-linear

with respect to the parameters; the χ2 function presents a large number of local minima; pa-

rameters are strongly correlated (fn and γn in particular); the number of parameters can be

very high. As regards the latter point, let us consider the case of ortho-enstatite11 (MgSiO3)

as an example. There are three polarization directions (with B1u, B2u and B3u symmetry),

so the above discussion applies to three Ri(ν) functions, one for each polarization direction

i. According to standard group theory analysis, the number of active modes along each

direction is 29. This implies that for each direction the fitting function of Eq. (3) contains

as many as 3·29+1=88 parameters.

One of the crucial points is then a proper definition of the number, position (on the fre-

quency axis) and intensity of the oscillators to be used in the best fit; in other words, a set

of quite reasonable initial parameters is required.

For this purpose, a Kramers-Kronig analysis is often applied to R(ν) (see for example

Hofmeister5–7). This method provides the dielectric function ϵ(ν), which contains estimated

values for the TO frequencies νTO,n (they are the maxima of the imaginary part of ϵ(ν)),

the longitudinal optical (LO) frequencies νLO,n (minima of the imaginary part of 1/ϵ(ν)),

the oscillator strengths fn (integrated areas) and the damping factors γn (full widths at half

height).

However, the Kramers-Kronig analysis requires an integration of the reflectance function

extended to the full frequency axis, and this in general requires extrapolations at the two

extremes. Typical sources of noise at low frequencies (i.e. < 100-200 cm−1) include sample

size, beam quality, setup for low temperature measurement. Moreover, the identification of

the modes contributing to the spectrum can be tricky, for many reasons (superposition of

peaks, low intensity, noise, combination modes). As a matter of fact, the number of peaks

to be looked for, their position and intensity are still largely undefined at the beginning of

the best fit process.

As regards the number of IR modes to be included in the model, two extreme strategies can

be found in the literature:

• As the symmetry analysis indicates that N modes must be active, then N harmonic

oscillators are used in the fitting process. This is the attitude usually adopted by

Hofmeister, that in the case of garnets5–7 tries in all cases to identify the N=17 os-

cillators suggested by symmetry. To reach the desired number, minor features of the
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spectrum are also considered, that may correspond or not to fundamental frequencies.

• A harmonic oscillator is assigned only to the spectral features that show a good signal

to noise ratio in R(ν), i.e. one oscillator per one band. This is the attitude usually

adopted by Suto and collaborators (private communication12, and Refs. 8–11). In

this case oscillators that are IR allowed, but whose IR intensity is very low, might be

excluded from the analysis. Oscillators with very close frequencies such that the con-

volution of the two peaks appears as a single peak are attributed to a single oscillator

(i.e. no deconvolution process is applied to the broad features). As a consequence, the

list of observed frequencies and intensities is shorter than that proposed by symmetry

analysis. For example, in the case of ortho-enstatite11 this approach allows Suto and

collaborators to identify only 65 peaks out of 87.

In recent years quantum mechanical computer simulation of the electronic properties of crys-

talline compounds has become a common practice (an incomplete list of software packages

includes CRYSTAL13, Quantum Espresso14, SIESTA15, VASP16). The vibrational frequen-

cies and, in most of the cases, also the intensities are generated in a relatively standard way

with these codes (see, for example, Refs. 17–21). Excellent results have been obtained in

the calculation of the vibrational properties of ionic and semi-ionic compounds22–32. These

codes are publicly available and their price, if any, is a small fraction of the cheapest spec-

trometer; then experimental groups have now the possibility to use ab initio simulation as

a complementary tool in the interpretation of the IR reflectance spectra.

The simulated frequencies and intensities can strongly depend on the level of theory, the

variational basis set and, last but not least, the adopted code. However the features that can

bias the simulated spectrum are different (say “orthogonal”) from the ones that make the

interpretation of the experimental spectrum difficult. Let us mention some of these issues: a)

the simulated spectrum (SS) contains only the fundamental frequencies; in the experimental

spectrum (ES) combination modes, overtones and Fermi resonances can appear; b) in the

SS the composition is defined a priori; in ES purity is a target not always easily reached; c)

in SS the sample is infinite and perfect, in ES the size of the sample may be a problem; d)

the SS refers to 0 K, the experiment can explore a wide range of temperatures; e) isotopic

substitution is easy and cheap in SS, and the regular distribution of the isotopes can be

imposed a priory, whereas this is not the case in ES; f) the SS is affected by model limi-
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tations (harmonic approximation, choice of the hamiltonian and basis set), whereas the ES

can be affected by instrumental limitations (signal-to-noise ratio, frequency ranges difficult

to explore). As a result, the synergic use of the two approaches can play a crucial role in

understanding the vibrational features of the compound under study.

In the present paper we explore the possibilities offered by quantum-mechanical simula-

tion in the interpretation of the experimental reflectance spectra of crystalline compounds,

including symmetry analysis of the modes, prediction of frequencies and intensities, identifi-

cation of fundamental and combination modes. We will use a wide set of R(ν) spectra (3 for

forsterite, 1 for grossular, 3 for enstatite) measured by different research groups (Hofmeister,

Suto), to provide evidence of the usefulness of the synergic approach here presented.

The paper is organized as follows. Section II describes the adopted methods: simulation

(IIA), reflectance experiments (II B), best fit of the spectra (II C). Section III presents some

examples of reflectance spectra, analyzes them and discusses the contribution provided by

simulation. The main conclusions are drawn in Section IV.

II. METHOD

A. Computational Details

Simulations were performed with the CRYSTAL09 periodic ab initio code13,33, by using

all-electron Gaussian-type basis sets and the B3LYP hybrid functional34–36. For a detailed

discussion of the computational details, see the Supplementary Material and Refs. 11,30,31.

We here outline the calculation of the vibrational frequencies, IR intensities and dielectric

tensors, as implemented in the CRYSTAL code33.

The calculation of the transverse optical (TO) vibrational frequencies νTO,n at the Γ point

is performed within the harmonic approximation. The key quantity is the matrix H of the

second derivatives of the total energy V with respect to the atomic cartesian coordinates u,

which is constructed by numerical differentiation of the analytical gradient vector v:

Hαi,βj =
1

2

[

∂2V

∂uαi∂uβj

]

0

=
1

2

[

∂vαi
∂uβj

]

0

≈
1

2

vαi(0, · · · , uβj, 0, · · · )− vαi(0, · · · ,−uβj, 0, · · · )
2uβj

(4)
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where greek and latin indices refer to atoms and atomic cartesian coordinates, respectively.

Note that the calculated (optimized) equilibrium geometry is taken as a reference. The TO

frequencies are then obtained as the eigenvectors of the mass-weighted Hessian matrix W

at the Γ point:

Wαi,βj =
Hαi,βj
√

MαMβ

(5)

where Mα and Mβ are the masses of atoms α and β.

The longitudinal optical (LO) frequencies νLO,n can be calculated by considering that the

dynamical matrix in ionic and semi-ionic compounds is a sum of two terms:

Wαi,βj(k → 0) = Wαi,βj(k = 0) +WNA
αi,βj(k → 0) (6)

The first term is the analytical part and corresponds to the quantity calculated through

Equation (5). The latter term, the non-analytical contribution, depends on the momentum

(k) exchanged with the radiation field (see Ref. 2 sections 5, 10, 34, 35; and Ref. 37):

WNA
αi,βj(k → 0) =

4π

Ω

(
∑

m kmZ∗
α,mi)(

∑

n knZ
∗
β,nj)

√

MαMβ(
∑

m,n kmϵ
∞
mnkn)

(7)

This equation shows that the non-analytic correction to the dynamical matrix originates

from parallel polarization and phonon wave vector. The related modes are LO modes.

Their frequencies are then obtained through diagonalization of the complete (i.e. analytical

plus non-analytical) dynamical matrix.

Once the Hessian matrix H is calculated, frequency shifts due to isotopic substitutions

can be obtained at zero computational cost, by changing the masses in formula (5). This

technique represents a useful tool to evaluate the participation of the various atoms to the

vibrational modes in the different frequency regions of the spectra. Further details on the

calculation of vibrational frequencies can be found in Refs. 17 and 18.

The oscillator strengths fn are computed for each n−thmode by means of the mass-weighted

effective mode Born charges Z⃗n
3,24,38,39:

fn,ij =
1

4πϵ0

4π

Ω

Z⃗n,iZ⃗n,j

ν2
TO,n

(8)

Z⃗n,i =
∑

α,j

tn,αjZ
∗
α,ij

1√
Mα

(9)

where ϵ0 is the vacuum dielectric permittivity (1/4πϵ0 = 1 atomic unit), Ω is the unit cell

volume, i and j refer to the cartesian components, tn,αi is an element of the eigenvectors
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matrix T of the mass-weighted Hessian matrix W , that transforms the cartesian atomic di-

rections into the n−th normal coordinate directions; finally, Z∗
α,ij is the Born effective charge

tensor associated with atom α, which is evaluated through a Berry phase approach19–21.

The ionic components to the static dielectric tensor are evaluated as the sum of the oscillator

strengths: Fij =
∑

n fn,ij. The electronic high frequency components ϵ∞,ij are calculated

through the Coupled-Perturbed KS/HF (Kohn-Sham/Hartree-Fock) scheme40–44. Note that

ϵ∞ is almost independent from frequency in the IR range, as electronic transition energies

are very large compared to vibrational energies.

B. Experimental Setup

Digitalized spectra were provided by Hofmeister5–7 and Suto9–11, that we carefully ac-

knowledge.

Suto and coworkers8–11 collected polarized infrared reflectance spectra Rexp(ν) of single crys-

tals at variable temperatures, namely in the ranges 295-50 K for forsterite and 300-60 K for

enstatite. Spectra were recorded from 80 to 2500 cm−1 with resolution between 0.25 and 1

cm−1. The beam incident angle to the sample was 10◦. KRS-5 and Polyethylene Polarizers

were used in the spectral range 2500-500 and 500-80 cm−1, respectively. The s-polarized

geometry was employed because it has been demonstrated to reduce the contamination from

other crystallographic directions45,46. Reflections with electric field polarization parallel to

the axis a were measured on (100) surface, axis b on both (100) and (001), axis c on both

(100) and (010). Data were reduced to the final spectrum selecting those with the higher

reflectivities among the measurements and eliminating those with anomalous features. The

reflection spectra of several measurements were averaged for each axis.

As regards Hofmeister and coworkers5–7, they collected infrared reflectance spectra Rexp(ν)

for grossular mineral using a FTIR microscope equipped with a reflectance accessory. Far-

IR (70÷500 cm−1) and mid-IR (400÷1100 cm−1) spectra were measured with a resolution

of 4 and 1 cm−1, respectively, at normal incidence and ambient temperature on polished

randomly oriented crystals around 500 µm size. Far-IR files were scaled to match mid-IR

files throughout the region of overlap (400÷500 cm−1), and then the files were merged.
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C. Best fit of the reflectance spectra

We focus here on the case of orthorhombic or higher symmetry, which includes the com-

pounds to be discussed in the following. In this case, the complex dielectric tensor ϵ turns

out to be diagonal. If we adopt the three-parameter Drude-Lorentz model1, which describes

each vibrational mode as a damped harmonic oscillator, then the tensor components are

defined as follows (compare Eq. (2) in Section I for the scalar case):

ϵii(ν) = ϵ∞,ii +
∑

n

Ln,ii(ν)

= ϵ∞,ii +
∑

n

fn,iiν2
TO,n

ν2
TO,n − ν2 − iνγn

(10)

where the ii subscript indicates the crystallographic direction of the normal to the analyzed

surface. Note that the modes contributing to a given direction ii are the ones whose oscillator

strengths fn have a non-zero ii− th component.

Equation (1) for the reflectance curve takes the vector form1:

Ri(ν) =

∣

∣

∣

∣

∣

√

ϵii(ν)− sin2(θ)− cos(θ)
√

ϵii(ν)− sin2(θ) + cos(θ)

∣

∣

∣

∣

∣

2

(11)

An alternative Four-Parameter Semi-Quantum model to describe the dielectric function is

due to Berreman and Unterwald47; it was applied for the first time by Gervais and Piriou48,49.

This model is able to take into account the asymmetry of the reflectance peaks, by attributing

distinct values to the damping factors of the TO and LO modes. As a result, an expression

containing four parameters for each oscillator is obtained:

ϵii(ν) = ϵ∞,ii

∏

n

ν2
LO,n − ν2 − iνγLO,n

ν2
TO,n − ν2 − iνγTO,n

(12)

where νTO,n and νLO,n are the TO and LO frequencies, and γTO,n and γLO,n are their cor-

responding damping factors. Note that, in this formula, the fact that modes contributing

to a given direction ii must have a non-zero component of fn is not explicit. The oscillator

strengths can be calculated by comparison of Equations (10) and (12) in which the damping

is neglected48:

fn,ii = ϵ∞,ii

(

ν2
LO,n

ν2
TO,n

− 1

)

∏

k ̸=n

ν2
LO,k − ν2

TO,n

ν2
TO,k − ν2

TO,n

(13)

where the k product extends to all the modes corresponding to the ii direction.

In the present study, best fit procedures against the Drude-Lorentz and Four-Parameter
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Semi-Quantum models were performed with the RefFIT interactive program written by

Alexey Kuzmenko50. The simulated frequencies, intensities and high frequency dielectric

tensors were used as an initial guess for the fits. First, damping factors were determined;

then, individual mode parameters were optimized iteratively within a finite window around

the simulated data (30 cm−1 for frequencies, 30 % for intensities). In the case of modes

with very low intensities, this window was reduced by a factor 3 to 4. Finally, a constrained

global minimization on all the parameters was performed.

III. RESULTS

In the following we will examine a set of 7 IR reflectance spectra R(ν) (3 for forsterite, 1

for grossular, 3 for enstatite) taken from the literature. We will focus on the analysis of the

experimental reflectance curves, by systematically employing simulation as a complementary

tool able to provide the full set of mode frequencies and intensities, distinguish between

fundamental and combination modes, analyze minor features. All spectra are fitted by

using both the three-parameter Drude-Lorentz (DL) and the Four-Parameter Semi-Quantum

(FPSQ) models.

The full sets of computed and fitted quantities (frequencies, oscillator strengths, damping

factors, dielectric tensors) are available as Supplementary Material.

A. Forsterite

Olivine forsterite, an orthosilicate with chemical formula Mg2SiO4, is the first example

here considered. Its crystal structure is orthorhombic, which implies that three distinct

reflectance spectra can be collected, along the a, b and c directions, with 13, 13 and 9 IR

active modes, respectively (the total number of modes is 78, as the number of atoms is

27). Suto et al.10 have identified 11, 12 and 8 modes along the three axes, respectively. The

availability of three independent spectra for a single compound permits a quite rich analysis.

On the other hand the limited number of modes per direction (13 or 9) simplifies the fitting

process and the interpretation of the spectral features.

Figures 1(a), 2(a) and 3(a) show the three spectra in the range 100-1200 cm−1. They are

characterized by broad intense bands (for example the one centered at about 600 cm−1 for
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the a axis), narrow intense peaks (e.g. the one at 200 cm−1 for the a axis), low-intensity

peaks and side-peaks, the latter two not easy to identify at this spectral scale. Experimental

spectra along the b and c axes are quite noisy up to 250 cm−1; this does not permit to

identify any peak in this range, except for the intense one at about 150 cm−1 for the b

axis. Obviously intense peaks are easily localized in the fitting process. Thus, the following

discussion will mainly focus on the low intensity peaks.

Selected zooms are proposed in Figures 1(b), 2(b) and 3(b). Let us start from the a axis,

for which the 350-600 cm−1 range is shown (Figure 1(b) ). Compared to the previous

investigation by Suto et al.10, our B3LYP simulation indicates additional modes at 475.9

and 540.0 cm−1. As regards the first mode, a small peak appears in fact in the experimental

spectrum at about the simulated frequency. Using the simulated data as an initial guess,

both DL and FPSQ fitting models localize an oscillator in that frequency range, at 476.1

(DL) and 476.6 (FPSQ) cm−1. Let us consider now the wide band between 500 and 550

cm−1: it has a fine structure, and the peak splits on the top. When an oscillator is added

at 540.0 cm−1 (the value from simulation), it remains almost unchanged (542.7 cm−1) if

the DL model is used. The small shoulder around 550 cm−1 is properly described, but the

double peak structure does not appear. When the FPSQ model is used, on the contrary, the

added oscillator moves to 532.3 cm−1. The damping factors of the TO and LO modes differ

significantly (5.7 and 9.4 cm−1, whereas the DL model provides a unique TO value of 10.0

cm−1). These adjustments permit to describe the double feature, still properly depicting the

shoulder, thus improving the overall structure of the band. On the whole, the combined use

of simulation and of two fitting models of increasing complexity does permit to recover all

the fundamental peaks in the spectrum along the a axis, and to describe its minor features.

The full spectrum along the b axis is shown in Figure 2(a). There is one missing mode,

which the B3LYP simulation locates at 637.6 cm−1, with an almost null oscillator strength

of only 1.5·10−4. Due to this very low intensity, even a rescaling of the reflectance axis

(not shown) does not permit to identify any peak from the background noise. Figure 2(b)

gives a zoom of the spectrum along the b axis in the 350-600 cm−1 window. It is interesting

to compare the behavior of the two fitting models. For example, the leftmost band in the

Figure (between 350 and 380 cm−1) is composed by only one oscillator. The two models

locate the TO and LO frequencies nearly at the same values: 352.2 and 376.9 cm−1 (DL)

and 351.7 and 376.7 cm−1 (FPSQ). The same behavior holds for the oscillator strengths,
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that are 1.243 and 1.246, respectively. Nonetheless the Figure shows that the latter model

achieves a significantly better agreement with the experiment. The reason is the availability

of two distinct values for the TO and LO damping factors, that permit to take into account

the peak asymmetry: the unique DL value is 1.2 cm−1, whereas the FPSQ model yields 2.8

(TO) and 1.0 (LO) cm−1; as a result, the fitting is much better. A similar behavior is clearly

visible also in the case of the band at 530-580 cm−1 (see Figure), which is again correlated

to one oscillator. Both the TO and LO frequencies differ by less than 2 cm−1 between the

two fitting models, and the oscillator strength by only 0.006. Also in this case then the

large difference is due to the damping factors: 7.7 cm−1 when DL is used, while the FPSQ

model gives 4.6 and 8.3 cm−1. The band at 450-500 cm−1 would be an additional example

of the fact that the FPSQ model on the one hand permits to achieve an impressive fit to the

experimental spectrum, and on the other hand that this model, due to the higher number

of fitting parameters, could not be applied without the availability of an accurate guess as

provided by ab initio simulation.

As anticipated above, the large experimental noise in the 100-270 cm−1 spectral range of

the c axis spectrum (Figure 3(a) ) hinders the identification of the computed peak at 206.5

cm−1 (indeed of quite low intensity, f being only 2.0·10−3). Let us concentrate again in the

spectral range 350-600 cm−1, shown in Figure 3(b). The single-oscillator band at 500-600

cm−1 shows an asymmetry similar to the one just discussed in the case of the b axis. The

most interesting feature of this spectrum is related to the broad band at 420-460 cm−1.

The B3LYP simulation indicates one fundamental oscillator at 427.9 cm−1 (with f = 0.30).

However, the inspection of the band in the experimental spectrum clearly shows a double

feature on the band top. We performed a fit including one more oscillator, to account for one

additional mode; the DL model yields frequencies at 418.7 and 425.6 cm−1, with intensities

f of 0.73 (fundamental) and 7.0·10−2 (additional), respectively; the FPSQ model gives very

similar values. As simulation provides the complete list of fundamental IR modes, all those

experimental features that do not have a corresponding simulated mode, as in this case,

must be attributed to combination modes, overtones, or Fermi resonances.
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B. Grossular

Grossular garnet (Ca3Al2Si3O12) is an orthosilicate with cubic structure, providing a

single reflectance spectrum with 17 IR active modes. Hofmeister et al.5 have identified 14

out of 17 modes in the reflectance spectrum; two additional modes (at 356 and 430 cm−1)

could be identified in the same study by performing additional absorption measurements on

thin films.

Figure 4 shows the full reflectance spectrum in the range 100-1500 cm−1 (a), as well as a

zoom in the restricted range 325-650 cm−1 (b). Let us start our analysis from the small

peak at about 350 cm−1. Our simulation locates a mode at 355.5 cm−1; with this guess,

the two fitting models identify a peak at 355.0 (DL) and at 355.1 (FPSQ) cm−1. A second

computed mode at 404.1 cm−1 cannot be identified in the experimental spectrum (see Figure

4(b) ). Indeed, this mode has an almost null intensity (the computed oscillator strength is

1.8·10−3 only). The third extra-simulated mode is at 421.7 cm−1 (f=1.2·10−2). A shoulder

is visible in this spectral range; however the almost null experimental (fitted) intensity does

not permit to locate the corresponding mode frequency (the χ2 of the fit is independent

from its value).

It is worth discussing other two features in the zoomed range 325-650 cm−1 (Figure 4(b)

). Remarkably, the use of the FPSQ model permits to significantly improve the fitting of

the peak at 617.8 cm−1 with respect to the DL model. This is due to a modification of

almost all the parameters of the oscillator: νLO (from 627.3 to 623.2 cm−1), f (from 0.048

to 0.025), and γ, from 28.4 cm−1 (TO only) to 10.9 (TO) and 11.8 (LO) cm−1. On the

other hand, both fitting models fail in properly fitting the band at 470 cm−1 with a single

oscillator. This suggests the possible presence of additional modes; however, the large noise

in the experimental data hinders in this case the addition of more oscillators to the fitting

model. A new registration of the spectrum after more than 20 years from the pioneering

paper of Hofmeister et al.5 would certainly help in clarifying the residual doubts about this

spectrum (as well as the related ones of the other members of the garnet family).
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C. Enstatite

Ortho-enstatite (MgSiO3) is a pyroxene inosilicate with orthorhombic crystal structure.

There are 80 atoms in the unit cell, and then 237 vibrational modes. Among them, 87 are IR

active. Three distinct IR reflectance spectra can be collected along the three crystallographic

directions a, b and c; each spectrum contains 29 fundamental IR modes. The resulting high

number of peaks is evident when looking at Figures 5(a), 6(a) and 7(a). The large number

of modes increases the complexity of the analysis, and makes particularly challenging the

combined approach here presented.

Some of the present authors have already performed a joint investigation of the IR spectra

of ortho-enstatite, which is published in Demichelis et al.11. In that study, simulations and

experiments have been carried out separately by Demichelis and Suto, respectively, the two

sets of results being compared “a posteriori”. As regards the experimental outcome, Suto

has identified 22, 22 and 21 modes (out of 29) in the spectra along the a, b and c axes,

respectively.

Let us now proceed with our combined analysis. Small differences between the data obtained

with the two fitting models are found only in a limited set of cases; they are related to either

asymmetric peaks (already discussed for forsterite) or fitting correlation effects between f

parameters of superposed peaks (that however are small and do not affect the shape of the

reconstructed spectra). In the following, we will discuss the results obtained with the FPSQ

model only.

Let us consider the a axis first. The full scale spectrum (150-1200 cm−1) is shown in Figure

5(a), while two zooms in the ranges 150-400 and 600-1000 cm−1 are reported in Figures 5(b)

and 5(c). In the 150-400 cm−1 range there are three peaks that have not been identified

by Suto11, and that on the contrary we were able to identify through fitting, thanks to the

guess provided by the B3LYP simulation. The three small peaks are at 236.9, 264.3 and

283.2 cm−1. There are probably two reasons why they have been missed by Suto: a) the low

signal-to-noise ratio characterizing the spectrum (see Figure); b) the many contributions to

the best fit process (22 oscillators and 67 parameters); in this case also a peak with non-

negligible intensity has little influence on the χ2 index of the best fit, and is easily lost, if it is

not looked for explicitly. Along this axis there are four more simulated modes that could not

be identified neither by Suto nor by us through the best fit process. Two of them are at 86.1
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cm−1 and 145.8 cm−1, and have very low computed intensities (f are 0·10−5 and 1.0·10−3,

respectively). As the three spectra are remarkably noisy below 150 cm−1, only very intense

features can be identified in this zone of the spectrum. The other two missing modes are at

870.8 and 928.6 cm−1. The former has f as small as 5.5·10−4, and cannot be distinguished

from the (slightly noisy) background (see Figure 5(c) ). The latter is very close to another

intense mode (the computed distance being as small as 0.9 cm−1), while the f ratio is about

1/17; this makes impossible to resolve the two peaks through best fit. A look at Figure 5(c)

confirms that only one large band is visible, and the two modes cannot be distinguished.

The spectrum along the b axis is represented in Figures 6(a) (spectral range 150-1200 cm−1)

and 6(b) (300-550 cm−1). As in the case of a axis, two low frequency modes at 109.9 and

190.5 cm−1 could not be identified due to noise. As shown in the zoomed view, our best fit

identifies four peaks that could not be identified by Suto. The first one is at 354.8 cm−1,

and is a shoulder of the intense peak at 350.3 cm−1. Let us consider now the large band

at 475-550 cm−1, that is rich in spectral features. Suto has inserted only one oscillator in

this zone. Thanks to the guess of the B3LYP simulation, we were able to identify three

additional fundamental modes in a relatively narrow interval: 488.2, 499.4 and 514.8 cm−1.

In spite of the addition of these three peaks, there are features of this band that persistently

are not described by the fitted curve; this suggests the possible presence of combination

modes. An excellent agreement was in fact obtained by adding three extra modes in the

best fit process at 507.1, 508.1 and 524.0 cm−1. As they are not fundamental modes,

they might be an artefact of the fitting process due to background noise, or correspond

to combinations/overtones. We are not in a position to discriminate among these two

hypotheses. Also the 850-950 cm−1 interval deserves some attention (Figure 6(a), zoom

not shown). Two bands can be clearly identified (they have been listed also by Suto) with

frequencies of 889.8 and 919.1 cm−1. However, the B3LYP simulation permits to identify

through fitting also a shoulder mode at 905.6 cm−1, its f value being 1/26 of the major

mode at 889.8 cm−1.

Finally we consider the c axis: Figures 7(a) and 7(b) show the ranges 125-1200 and 250-500

cm−1, respectively. Remarkably, in the region below 200 cm−1 there are three modes that

are intense enough to be distinguished from the large noise: 139.4 cm−1 (the fitted oscillator

strength f is 8.9·10−2), 147.1 cm−1 (f=5.5·10−2) and 196.4 cm−1 (f=8.3·10−2). Now, if

we look at the zoom in Figure 7(b) our best fit identifies as many as six peaks that Suto
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has not characterized; they are at 297.3, 349.1, 391.0, 429.6, 458.1 and 475.0 cm−1. The

first four are indeed not easy to distinguish in the spectrum, as the corresponding spectral

range (see Figure) is rich in small features that could be interpreted as background noise or

combination modes. The calculated mode at 458.1 cm−1 is quite intense (fitted f of 0.15).

As for the mode at 283.2 cm−1 along the a axis, this mode is not easily identified due to

the difficulties of the fitting process when a large number of parameters is present. The

peak at 475.0 cm−1 has a moderate intensity (fitted f of 1.4·10−2), and is clearly visible

in the spectrum between the two large bands at 460 and 500 cm−1. In this case it is then

more difficult to understand why it has been lost by Suto. Finally, two modes could not

be identified through fitting, in spite of the initial B3LYP guess, due to low signal-to-noise

ratio; they are at 170.3 cm−1 (computed f of 5.7·10−3) and 224.6 cm−1 (1.7·10−2).

Overall, the enstatite case brings two additional comments to our analysis: i) spectra with a

high number of modes (29 in this case) are rich in minor features, among which it becomes

extremely hard to distinguish from fundamentals, combinations and noise; ii) simulation

in this respect has a major role in enriching the description of the spectrum; for enstatite,

14 more fundamental modes, out of 87, were identified, as well as 3 possible combination

modes.

IV. DISCUSSION AND CONCLUSIONS

A) When approaching the analysis of the IR spectrum from the experimental side, a

first issue to tackle is the identification of the set of peaks to be considered as fundamental

modes. Intense features are easy to label as IR modes; however, when the signal-to-noise

ratio is not that high, or in the case of superposing peaks, the analysis is ambiguous.

A computational approach turns out to be decisive in this respect. Beside providing the

symmetry analysis of the modes at zero cost, it produces the full set of frequencies for all

the fundamental modes of the system, including the IR active ones. The frequencies have

usually an accuracy of a few cm−1, so that they can be effectively used to locate IR funda-

mental modes in the experimental spectrum.

B) Once a set of modes is identified, a second task is to perform a best fit against the exper-

imental curve. In this way, the frequency values are refined. Additional information is then

obtained as a by-product: either oscillator strengths and damping factors (Drude-Lorentz
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model) or LO frequencies and TO/LO damping factors (Four-Parameter Semi-Quantum

model). Also this step presents many difficulties: the number of parameters to be optimized

is high (for a system with N IR active modes, 3N+1 or 4N+1 parameters, depending on

the adopted model), and correlation among them is large. As a consequence, the fitting

procedure is cumbersome, and the obtained numbers can be affected by large error bars.

In this respect, the advantage brought by the simulation is that it provides not only the

IR active frequencies, but also the oscillator strengths and the LO frequencies. This set of

quantities can be used as a starting point for the parameters of the fit, reducing the number

of unknowns and providing a guess for the final values. Moreover, the values provided by

simulation are quite accurate, which implies a well defined direction in the minimization

process, as the sets of initial and final values are quite close to each other.

C) As a result of the fitting process, a calculated spectrum is obtained, that can be su-

perposed and compared to the experimental one. What information is possible to extract,

concerning the nature of the spectral features? A first point concerns the model adopted for

the best fit. Drude-Lorentz describes properly narrow peaks or symmetric bands. On the

other hand, the Four-Parameter Semi-Quantum model permits to improve the description

of asymmetric spectral features, thanks to the use of distinct values for TO and LO damping

factors (we must underline that the Four-Parameter Semi-Quantum fit, due to the larger

number of parameters, can present higher difficulty when used without an appropriate initial

guess).

By using simulation, an improved classification of spectral features can be performed. First,

the quantum mechanical approach ensures that all the IR fundamental modes are iden-

tified. Then, by using the computed values as a starting point, both Drude-Lorentz and

Four-Parameter Semi-Quantum fits can be performed, so that features of the fundamental

peaks are properly described. Finally, all the additional spectral features, identified through

best fit, can be labeled, by exclusion, as combination modes, overtones, or Fermi resonance

modes. Therefore, a robust interpretation scheme is provided by simulation, able to unveil

the nature of almost all the spectral features.

16



V. ACKNOWLEDGEMENTS

The authors acknowledge Compagnia di San Paolo for financial support (Progetti di

Ricerca di Ateneo-Compagnia di San Paolo-2011-Linea 1A, progetto ORTO11RRT5) and

the CINECA supercomputing centre for computer support. A. M. Hofmeister and H. Suto

are carefully acknowledged for providing us with the experimental spectra. F. Pascale is

acknowledged for its support. CC would like to thank F. Brehat and B. Wyncke for fruitful

discussions and continuous support.

17



Figures

18



FIG. 1: Reflectance spectra along the a axis of forsterite, in the ranges (a) 100-1200 cm−1 and

(b) 350-600 cm−1: experimental (circles), fitted with the DL model (dashed line, Eq. (10) in

Section IIA), fitted with the FPSQ model (solid line, Eq. (12) in Section IIA). Additional peaks

(compared to previous experimental investigations) identified through simulation are indicated by

arrows, together with the corresponding frequencies as obtained with the FPSQ model.
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FIG. 2: Reflectance spectra along the b axis of forsterite, in the ranges (a) 100-1200 cm−1 and (b)

350-600 cm−1. See caption to Figure 1 for more details.
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FIG. 3: Reflectance spectra along the c axis of forsterite, in the ranges (a) 100-1200 cm−1 and (b)

350-600 cm−1. See caption to Figure 1 for more details.
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FIG. 4: Reflectance spectra of grossular, in the ranges (a) 100-1500 cm−1 and (b) 325-650 cm−1.

See caption to Figure 1 for more details.
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FIG. 5: Reflectance spectra along the a axis of ortho-enstatite, in the ranges (a) 150-1200 cm−1,

(b) 150-400 cm−1 and (c) 600-1000 cm−1. See caption to Figure 1 for more details.
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FIG. 6: Reflectance spectra along the b axis of ortho-enstatite, in the ranges (a) 150-1200 cm−1

and (b) 300-550 cm−1. See caption to Figure 1 for more details.
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FIG. 7: Reflectance spectra along the c axis of ortho-enstatite, in the ranges (a) 125-1200 cm−1

and (b) 250-500 cm−1. See caption to Figure 1 for more details.
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