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Abstract

We describe almost abelian Lie algebras and solvmanifolds. In particular we state
and use a method to find lattices of almost abelian Lie groups and we find the de
Rham cohomology of solvmanifolds arising from Lie groups of this kind. Then we
use the description of their minimal models to state properties about formality and
symplectic structures.

Regarding Lie algebras, we describe the complex structures in the almost abelian
case and the Dolbeault minimal models for general complex structures on nilpotent

Lie algebras.
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Introduction

The object of this thesis is the study of global features and properties of some par-
ticular classes of solvable Lie algebras and solvmanifolds.

To describe globally a differential manifold is in general quite difficult. Indeed
by definition we can obtain concrete and precise informations only locally, i.e. in the
neighborhood of a chosen point. Fortunately there are particular kind of differential
manifolds, in our case solvmanifolds and nilmanifolds, for which it is possible to find

global properties.

Nilmanifolds are defined as compact homogeneous spaces G/I', where G is a
connected and simply connected nilpotent Lie group and I' is a lattice in G. The
obvious generalizations of nilmanifolds are solvmanifolds that are obtained taking G
solvable.

Nilmanifolds provided in the 1980s the first examples of symplectic manifolds
without a Kéahler structure. A symplectic structure over a differential manifold M is
a closed and not degenerate 2-form, while a Kahler metric is given by a J-hermitian
Riemannian metric on a complex manifold (M, J) whose fundamental form is closed
[14].

Even if a Kahler structure is richer than a symplectic one, for many years no one
was able to find symplectic manifolds with no Kéhler structure. The first example of
a differential manifold with this feature is due to Thurston [46] and it is a nilmanifold.
Indeed in 1988 Benson and Gordon proved that a nilmanifold has a Kéhler structure
if and only if it is a torus [3].

Many important global properties of nilmanifolds can not be generalized for solv-

manifolds, for this reason these manifolds are presently widely studied.




2 Introduction

One of the most important features of nilmanifolds G/T" is that we can always
compute their de Rham cohomology in terms of the Lie algebra g of G. In 1920 de
Rham proved the isomorphism between the de Rham cohomology groups and the
singular cohomology ones, then the de Rham cohomology gives us topological and
homotopical informations about the manifold, but it is in general difficult to compute
because it is a global object.

In 1954 Numizu proved that we can always compute the cohomology of a nilman-
ifold because it is isomorphic to the cohomology of the associated Lie algebra [35].
Unfortunately this is not true in general for solvmanifolds, but only in particular
cases. For example when the Mostow condition holds [34] we are sure that this iso-
morphism holds. For this reason we consider a technique to compute the de Rham
cohomology of solvmanifolds. We will apply it to particular solvmanifolds G/I" called
almost abelian, i.e. G=R x R" and I' = Z x Z".

In order to study nilmanifolds and solvmanifolds, we need previously to construct
them. In particular it is in general not easy to understand when a discrete subgroup
of a Lie group is a lattice. Again for nilmanifolds we have a complete theory, indeed
Malcev Theorem assures us that we can find a lattice in a nilpotent Lie group if and
only if the structure constants of the associated Lie algebra are rational.

As for many other features, also the existence of a lattice is not as much easy to
find for a general solvable Lie group. Fortunately if the solvable Lie group is almost

abelian we have a method to construct lattices (Proposition 1.3).

Nilmanifolds are important also in relation to minimal models.

Minimal models are objects of rational homotopy theory introduced by Sullivan
in the 1960s to describe the rational part of homotopy groups [14], but they provide
also informations on the cohomology of differential manifolds.

By definition the minimal model of a nilmanifold can always be computed, but
again there is not a generalization of this property for solvmanifolds, so the study of

the models of solvmanifolds is quite interesting.

All these helpful properties of nilmanifolds do not hold for the Dolbeault coho-
mology. For instance, we cannot state general theorems like the one of Nomizu for

the Dolbeault cohomology of nilmanifolds, but for nilmanifolds endowed with some



Introduction 3

classes of complex structures the Dolbeault cohomology can be computed in terms
of invariant differential forms [7, 9, 41].
For this reason we are interested in complex structures of solvable Lie algebras

and Dolbeault minimal models of nilpotent ones.

In Chapter 1 we give the basic definitions and properties that we will use in the
following chapters. In the first section we define solvmanifolds and nilmanifolds and
we state properties related to their cohomology, in particular we are interested in
understanding when the cohomology of a solvmanifold is isomorphic to the cohomol-
ogy of the associated Lie algebra, i.e. when the Mostow condition holds (Theorems
1.7, 1.8 and 1.10).

In the second section we describe complex structures of general vector spaces, of
differential manifolds and with more details of Lie algebras (Proposition 1.4) stating
also a general version of the J9-Lemma.

In the third one we define minimal models and we state only the propositions
and theorems that we will use in Chapter 6 [14], in particular we are interested in
models of fibrations and the concept of formality.

The last section is about symplectic structures and the Hard Lefschetz property.
From Chapter 2 we begin with original material.

In Chapter 2 we describe a symplectic version of the Hodge theory developed
by Tseng and Yau [47] related to the Hard Lefschetz property, in particular we are
interested in the other cohomology groups that they define. Indeed we prove that if
the de Rham cohomology of a solvmanifold is isomorphic to the invariant one, then
also these symplectic cohomologies are isomorphic to cohmologies of the Lie algebra
(Theorem 2.2) [25].

In Chapter 3 we find Betti numbers and symplectic structures of six dimensional
unimodular solvable Lie algebras (Appendices B and C).

Then we compute the dimensions of the invariant cohomologies, finding by Theo-
rem 2.2 symplectic solvmanifolds for which the Hard Lefschetz property holds (The-

orem 3.3).

In Chapter 4 we consider solvmanifolds for which the Mostow condition could

not hold. In the first section we describe and use a method to compute lattices of
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many six dimensional almost abelian solvmanifolds (Theorem 4.1).

Unlike nilpotent Lie groups for which Maléev Theorem (Theorem 1.4) gives a simple
criterion for the existence of a lattice, for solvable Lie group it is in general a hard
task to find a lattice. In the case of almost abelian Lie groups there is a method
(Proposition 1.3) which we apply to determine lattices in six dimensional examples

for which the Mostow condition does not hold.

In the second section we describe a technique developed by Kasuya to compute
the de Rham cohomology of some solvmanifolds (Proposition 4.1) and in the third
one we use it to compute the de Rham cohomology groups of some six dimensional

almost abelian solvmanifolds.

In Chapter 5 we describe complex structures of almost abelian Lie algebras.

In the first section we consider the real case g = R x R”. First we study when g
can admit a generic complex structure J and in this case we find a description of J
(Theorem 5.3), then we consider two particular cases of complex structures, namely
bi-invariant and abelian structures. In particular we prove that almost abelian Lie
algebras does not admit bi-invariant complex structures (Theorem 5.4) and that only
one kind of almost abelian Lie algebras admits an abelian one (Theorem 5.5). For

this last structure we are also able to compute the Dolbeault cohomology.

In the second section we generalize the concept of almost abelian Lie algebra and
consider a complex analogue g = C x, 1 C" with dimg Imad = 1. In this case we are
again able to study a particular type of complex structure and find similar results to
the real case (Theorem 5.7). Moreover we prove that for these complex Lie algebras
the d0-Lemma does not hold (Theorem 5.8).

In Chapter 6 we study minimal models. In the first section we consider nilmani-
folds and the work of Hasegawa [20], in the second one we study minimal models of
almost abelian solvmanifolds.

We start from the idea of Oprea and Tralle [36] of using the Mostow fibration and the
model of fibrations (Theorem 6.2) to compute the cohomology of almost abelian solv-
manifolds. We use the method described by Oprea and Tralle and the cohomology
groups found in Chapter 4.3 to compute the minimal models of some six dimensional

almost abelian solvmanifolds. Then we use this same method to find properties about
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formality (Theorem 6.4) and symplectic structures (Proposition 6.7) [26].

In the third section we define Dolbeault minimal models proving that we have not
an existence theorem in this case (Example 6.4). Then we prove that every nilpotent
Lie algebra endowed with a complex structure is Dolbeaul minimal (Theorem 6.9),

generalizing a result of Cordero, Ferndndez and Ugarte [10].






Chapter 1

Preliminaries

1.1 Solvmanifolds

We recall some basic definitions of Lie group and Lie algebras, for a complete de-

scription of this topic see for example [14, 18, 49].

Definition 1.1. A Lie group is a differential manifold G that is endowed with a

group structure such that the map

GxG — G
(a,b) +— ab™!

is C*°.
A Lie algebra is a vector space g together with a bilinear, antisimmetric map

called bracket [,] : g x g — gsuch that VXY, Z € g

[X,Y],Z)+[[Y,Z], X]+ [[Z,X],Y] =0 Jacobi identity

Example 1.1. Examples of Lie groups are
o (R",+), (C",+).
e (R~ {0},-), (C~{0},), St cC~ {0}

e (GL,(R),").
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e The product G x H of two Lie groups G and H.
e The torus T" as product of the unit circle S' n times.
Examples of Lie algebras are
e The set of smooth vector fields y (M) over a differential manifold M.

e Every vector space V' with bracket [, | = 0, in particular this Lie algebra is

called abelian.
e The set of real n x n matrices gl,,(R) with bracket given by

[A,B] .= AB—BA  YA,Begl(R).

In particular this means that for every vector space V of dimension n,
gl(V) := End(V) is a Lie algebra.

If g= (X1, , Xp), with bracket defined by [X;, X;] =3, ., cf’ij Vi, j <n,

we call the scalars cf’ ; Structure constants of g.

Given a Lie group G and g € G, let L, and R4 be respectively the left and right

translations, then

Definition 1.2. A vector field X € x(G) is left invariant if
Va,be G (La)*Xb = Xup-

Similarly we define right invariant vector fields.

The set of left invariant vector fields is a Lie algebra g = Lie(G).

Example 1.2. The Lie algebra of the Lie group GL,(R) is gl,(R).

Remark 1.1. The Lie algebra g associated to the Lie group G can be identified to

tangent space in the identity element eg by the isomorphism of vector spaces

g—>TegG
X = X
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Important tools in the study of Lie groups and Lie algebras are the adjoint rep-

resentations and the exponential map:

Definition 1.3. Given a Lie algebra g its adjoint representation is

ad:g — gl(g)
X = adX

where adx (V) := [V, X].

Given a Lie group G its adjoint representation is

Ad:G — gl(g)
g — Ad,

where Ady(X) := (Iy)«(X) with [ := LyR,1.
Definition 1.4. Let G be a Lie group and g its Lie algebra. The exponential map is

exp:g — G
X = (I’X(l)

where ®x is the integral curve of the vector field X such that ®x(0) = eq.
Proposition 1.1. For the exponential map the following properties hold:
o Ox(t+s)=x(t) Px(s) Vi, seR,
o Ox(ts) =Pyx(s) Vt,s€eR,
o Ad(exp X) = e®x VX e g.

In our work Lie groups and Lie algebras will always be sets of matrices, indeed

we have the following theorem.

Theorem 1.1. (Ado) [4/9] Every finite dimensional Lie algebra is a subalgebra of

gl(V') for some finite dimensional vector space V.

In particular this theorem implies that every real Lie algebra of finite dimension
n is a subalgebra of gl (R). As a consequence for every finite dimensional Lie algebra
g there is a Lie group G < GL,(R) such that g = Lie(G) [49].

Given a Lie group G we can construct another differential manifold by the quo-

tient map:
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Definition 1.5. Let H be a closed subgroup of a Lie group G. The set of left cosets
of H, G/H is called a homogeneous space.

It inherits the structure of differential manifold by G using the projection map
G — G/H.

Solvmanifolds are important types of homogeneous spaces defined as follow.

Definition 1.6. A solvmanifold S is a compact homogeneous space S = G/I', where
G is a connected and simply connected solvable Lie group and I is a lattice in G,
i.e. a discrete subgroup with compact quotient space.

If G is nilpotent, the homogeneous space is called nilmanifold.

We recall that given a Lie algebra g its derived series 0* and descending series

g* are defined inductively by

00 — go =g, Dk _ [Dkil,akil], gk — [gkil,g]

A Lie group G and its Lie algebra g are called solvable or nilpotent if there exist
k such that respectively ok =0or g”_C =0.

In particular every nilpotent Lie algebra is also solvable.

Example 1.3. Abelian Lie algebras are trivial examples of nilpotent Lie algebras,
then the torus T = R"/Z" is a nilmanifold.
The set of real strictly upper triangular matrices is a nilpotent Lie algebra, while

the set of real upper triangular matrices is a solvable Lie algebra.

The last example is very important indeed it describes all solvable Lie algebras:

Theorem 1.2. (Engel) A Lie algebra g is nilpotent if and only if the endomorphism
adx is nilpotent for every X € g.

Theorem 1.3. (Lie) A Lie algebra g is solvable if and only if the endomorphism
adx is solvable for every X € g.

These theorems imply in particular that nilpotent Lie algebras can be represented
by strictly upper triangular matrices, while solvable Lie algebras by upper triangular

ones. For the proofs see for example [18].
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In general it is not very easy to construct a solvmanifold, indeed given a solvable
Lie group we do not have a general method to find its lattices.

For nilmanifolds the problem has a straight solution due to Malcev:

Theorem 1.4. (Malcev) [30] Let G be a nilpotent and simply connected Lie group
and let g be its Lie algebra. G admits a discrete subgroup T such that G /T is compact

if and only if g has rational structure constants.

For solvmanifolds in general we have just a necessary condition [32]:

Proposition 1.2. A solvable, connected and simply connected Lie group G can admit

a lattice only if its Lie algebra g is unimodular, i.e. VX € g Tradx = 0.

For a particular case of solvable Lie groups we have a necessary and sufficient
condition. The solvmanifolds associated to these groups are called almost abelian

and will be studied in details in the following chapters.

Definition 1.7. Given two Lie groups G and H and an action ¢ : G x H — H the
semidirect product G x H is the Lie group G x H with the operation of group given
by

(g1, h1) - (92, h2) :== (g1 - g2, h1 - p(g1)(h2)) V91,92 € G, Vhi, hye H.

Given two Lie algebras g and h and an action v : g x h — b the semidirect product

g X b is the Lie algebra g x § with the bracket given by
(X1, Y1), (X2, Y2)] := ([X1, Xo, [V, Yo + ¢(X1)(Y2) — ¥ (X2) (Y1)
VXl,XQ cg VYl,YQ € f)

In particular the Lie algebra of a semidirect product of Lie groups is the semidirect

product of the associated Lie algebras.

Definition 1.8. A solvmanifold S = G/T" is almost abelian if the solvable Lie group
G and its lattice I' are semidirect products of the kind G = Rx,R", T'=Zx,,Z",

where ¢ is some action on R" depending on the direction R.
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In particular if g is the Lie algebra of GG, then also g is called almost abelian and
g=Rx,q R" whereR=(X,1)and R" = (Xy,-- , X,), and p(t) := e'2D¥ns1

n+1

A nice feature of almost abelian solvable groups is that there is a criterion on the

existence of a lattice [4]:

Proposition 1.3. Let G = Rx,R" be an almost abelian solvable Lie group. Then G
admits a lattice if and only if there exists a to # 0 for which ¢(ty) can be conjugated

to an integer matriz.

In particular the lattice is generated by this value to, 'ty := Zg, X4y 2"

The lattice determine the topology of the solvmanifold because it is its funda-
mental group. Indeed every solvable connected and simply connected Lie group
is diffeomorphic to R”, then solvmanifolds are Eilenberg-MacLane spaces of type
K(m,1), i.e. all their homotopy groups vanish, besides the first. Actually, lattices of

solvmanifolds yield their diffeomorphism class:

Theorem 1.5. [0, Theorem 3.6] Let G;/T"; be solvmanifolds for i € {1,2} and
Y : 'y — Iy an isomorphism. Then there exists a diffeomorphism ¥ : Gy — Go such
that

L \Il‘l—‘l = wv

o U(py) =V(p)(y), for any v € T'1 and any p € G1.

Much of the rich structure of solvmanifolds is encoded by the Mostow fibration
associated to every solvmanifold.

Let S = G/T be a solvmanifold and let N be the nilradical of G, i.e. the largest
nilpotent normal subgroup of G (of course N agrees with G if and only if S is a
nilmanifold). Then I'y := I' N N is a lattice in N, 'N = NT is closed in G and
G/(NT) =: T* is a torus. Thus we have the so-called Mostow fibration [33]:

N/Ty = (NT)/)T < G/T — G/(NT) = T*, (1.1)

In general, the Mostow bundle is not principal.
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A connected and simply-connected solvable Lie group G with nilradical N is called
almost nilpotent if its nilradical has codimension one. The group G is then given by
the semidirect product G = R x, N of its nilradical with R. From a geometrical
point of view, ¢(t) encodes the monodromy of the Mostow bundle.

Obviously an almost abelian solvable group is an almost nilpotent group whose

nilradical is abelian N = R™. In this case the Mostow fibration (1.1) becomes

R"/Z" — S — R/Z.

Homogeneous spaces are very interesting when we want to study the de Rham
cohomology of a differential manifold.

We recall that given a differential manifold M with complex of differential forms
(A*(M),d) we define for every k € N the k-esim group of de Rham cohomology of

M as the set of classes of closed forms over the exat ones:

HHOM) = {a e A*(M) /da = 0}
{ae NF(M) /3B NFTHM) /dB = o}

We can give a definition of cohomology also over a Lie algebra:

Definition 1.9. Let g be a Lie algebra and g* its dual Lie algebra, then we can
define a differential d : /\k gt — /\kJrl g* over the exterior algebra A" g* by

dw(Xl, ---an—l—l) = Z(—l)i+jw([Xi,Xj], Xl, ...,Xi, ....,Xj, ~-~7Xk+1)
i<j
Vw e /\kg*v Vle T 7Xk+1 € g.
(A\" g%, d) is called Chevalley-FEilenberg complex.

Then the cohomology groups of g are the the cohomology groups associated to

this complex:
{we A'g*/dw =0}

T weNg/ane N g/ dn = w)

H"(g)

By definition the algebra of differential forms A*(M) of a homogeneous space
M = G/T is the set of differential forms over the Lie group G that are left



14 Chapter 1. Preliminaries

[-invariant, while if g is the Lie algebra associated to G, A\* g* is the set of differential
forms over the Lie group G that are left G-invariant.
Then we have an inclusion A*g* € A*(M) that for solvmanifolds is preserved

passing to the cohomology [40]:

Theorem 1.6. [/0, Theorem 7.23] For any solvmanifold S = G/T" the inclusion
N g* C AN (M) induces a natural injection H*(g) — H*(S).

For nilmanifolds and some cases of solvmanifolds this inclusion becomes an iso-

morphism.

Theorem 1.7. (Nomizu) [35] Let N = G/T" be a nilmanifold and g the Lie algebra
associated to G, then H*(g) = H*(N).

Unfortunately there is not a similar propriety for solvmanifolds in general, but

only in particular cases.

Definition 1.10. A solvable Lie group G is completely solvable if the adjoint repre-

sentation ad : g — gl(g) of the Lie algebra g associated to G has only real eigenvalues.

Theorem 1.8. (Hattori) [22/ Let S = G/T be a solvmanifold such that the Lie
group G is completely solvable, then H*(g) = H*(S).

Definition 1.11. [8] A subgroup A of GL,(R) is a real algebraic group if it is the
set of zeros {g = (g;,5)} of a family {f} of real valued functions on GL,(R) for which
there is a polynomial p € R[Xy, -+, X2, ] such that f(g) = p(g; ;,det(g71)).

Indeed, GL(n, R) can be viewed as a closed subgroup of SL,;1(R) via the em-
bedding p : GL,(R) = SL,41(R) defined by
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As a subset of R”Q, a real algebraic group has both the Euclidean and Zariski
topology.

In general, given a Lie group G, we recall that Adg(G) is the subgroup of GL(g)
generated by eadx , for all X € g. Since Adexp X = eadx , we have that Adg(G)
has ad(g) as Lie algebra [8].

It turns out that if G is a simply connected solvable Lie group then Adg(G) is a
solvable algebraic group, then it is well defined its Zariski closure A(Adg(G)).

If H is a subgroup of a connected Lie group G, we will denote by A(Adg(H))
the (almost) Zariski closure of Adg(H) in the real algebraic group Aut(g), where g
is the Lie algebra of G.

Theorem 1.9. (Borel Density Theorem) [/0, Theorem 5.5] Let G be a sim-
ply connected, solvable Lie group and I' a lattice of G, then there exists a mazximal
compact torus Tepr C A(Adg(G)) such that

A(Adg(G)) = TeprA(Adg(T).

When this torus T is trivial Mostow proved that we can compute the cohomol-

ogy of the solvmanifold S = G/I" by invariant forms:

Definition 1.12. Given a lattice I' of a simply connected, solvable Lie group G, the
Mostow condition holds for I" and G if A(Adg(G)) = A(Adg(I)).

Theorem 1.10. (Mostow) [3/] Let G be a simply connected, solvable Lie group, T’
a lattice of G, S = G /T a solvmanifold and g the Lie algebra associated to G. If the
Mostow condition holds for I' and G, then H*(g) = H*(S5).

The Nomizu and Hattori theorems are corollary of the Mostow theorem, indeed
if a solvable Lie group is nilpotent or completely solvable, then the Mostow condition

holds for each of its lattices.

Even if Theorem 1.10 is very useful, it is difficult to understand if the Mostow

condition holds.



16 Chapter 1. Preliminaries

1.2 Almost Complex Structures

In this section we give some basic definitions of complex structures on vector spaces
and differential manifolds and after we describe with more details complex structures
on Lie algebras [14], indeed our study about this topic will be focused on complex

structures on almost abelian Lie algebras (Chapter 5).

Definition 1.13. Let V be a real vector space of even dimension, an almost complex

structure on V is an endomorphism J : V — V such that J? = —Id.

An almost complex structure J gives V the structure of complex vector space:

i-v:=Jw) YveV.

If J is an almost complex structure on V, we can define an almost complex

structure on the dual space V* = hom(V,R) by
VeV VveV Jf(v):= f(Jv).

Let J be an almost complex structure on the real vector space V', suppose to
extend it to the complexification J : V€ — VC, then by definition J has only

eigenvalues ¢ with eigenspaces
V0 = e VC iy =iz} ={v—iJv /v eV}

VOl = (e VC Jz =iz} ={v+iJv /veV}

then V1.0 = /0.1 and V€ = 1.0 g 0.1,

Vice versa if V is a real vector space, every decomposition of VC in VC =V, @ V4
such that V5 22 V] endows V with an almost complex structure with V19 2 V; and
Vol >y,

Moreover a complex basis (a; —iby, ..., an—iby), ar, b, € V of V yields a complex basis

(a1, ...,an) of V and the almost complex structure J on V' is defined by J(ay) = by.

Let A VC be the complex exterior algebra of V€, then we define

/\P#I Ve .— /\p 1.0 ® /\q 10,1
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and we have

° /\V(C /\V10®/\V01 Z}Lq/\P,qV(C’
° /\p,q V(C ~ /\(MJ V(C,

o if (€1, ...,en) is a basis of V10, then (&1, ..., &,) is a basis of V%! and
{ejy A+ Nej, Neg A+ Aeg,} is a basis of AP Ve

Definition 1.14. Let M be a smooth differential manifold of dimension 2n, an
almost complex structure on M is a bundle map J : TM — T'M such that every J,
is an almost complex structure on the real vector space T,M. The couple (M, J) is

called almost complex manifold.

Let (M, J) be an almost complex structure of dimension 2n, then the real tangent
space in p € M T RV = R( Ba;” 8‘2 )j=1,.,n has an almost complex structure J,.
Let T(CM C<W7 W> be its complex1ﬁcat10n called complex tangent space, then
T ;CM can be decomposed in the two eigenspaces of J, TI()CM = Tz} 0 EBT;? ! that define
the two sub-bundles 719 and T%! of TCM.

Considering the dual bundles we obtain the decomposition of the cotangent space
QM = 9,° @ ' and of the cotangent bundle QCM.
Then we have the decomposition of the algebra of differential forms with values

in C
AT (M) = N*(M) @& C = @, , A" (M).
If now we consider the differential d : A”(M) — A" (M), we have that
ANPIAD) € AL + APHM) + AP + AP,
Then we can define two components of d
05 \PIOM) = APIIOD) and 0 APIM) = AP0

but obviously in general we do not have the decomposition d = 9+ 9 that occurs

when M is a complex manifold [14].
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Definition 1.15. Given an almost complex manifold (M, J), J is integrable if for

every vector fields X,Y € x(M) the Nijenhuis tensor N is zero:

N(X,Y)=[X,Y] - [JX,JY]+ J[JX, Y]+ J[X,JY] =0 (1.2)

We have the following theorem [14]:
Theorem 1.11. An almost complex manifold (M, J) is a complex manifold if and

only if J is integrable.

As a vector space, we can define an almost complex structure over a real Lie

algebra g and then considering its complexification g€ we have

g(C* _ /\1,0 g(C* ® /\071 g(C* — 9170* ® 90’1*

k * ’
N g™ = @p-&-q:k N gt @ \Tghtr = @p-i-q:k AP g™

NP9 gCr = \TP gC*

We now consider the Chevalley-Eilenberg complex (A* g*, d).
As for manifolds we say that the almost complex structure J on g is integrable if

equation (1.2) holds, in this case we can refer to J simply as a complex structure on
g.

For complex structures on Lie algebras we have the following properties [41]:
Proposition 1.4.

1. The real Lie algebra g has the structure of complex Lie algebra induced by the
almost complex structure J if and only if VX, Y € g J[X,Y] =[JX,Y] and

then J is integrable. These kind of complex structures are called bi-invariant.
2. J is integrable if and only if g0 is a subalgebra of g© with induced bracket.

3. J is integrable if and only if dg'** C gh'* @ g>0*.
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4. If G is a real Lie group with Lie algebra g, then giving a left invariant almost
complex structure on G is equivalent to assign an almost complex structure J on
g and J is integrable if and only if it is integrable as almost complex structure
on G. In this case it induce a complex structure on G and G becomes a complex

Lie group.
Proof.

1. =: as on the vector spaces, the almost complex structure J implies that g is
a complex vector space by i - X := J(X) VX € g, then we have only to prove
the bilinearity over C of the bracket. But this is obvious using the hypothesis.
«<: if g is a complex Lie algebra, then the multiplication by ¢ is an almost
complex structure on g and by bilinearity of the bracket over C we have the

thesis.

2. =: we want to prove that given two elements in g'¥ their bracket is in g,
fe. ifv=[X—iJX,Y —iJY] with X, Y € g, then Jv = iv.
By bilinearity of the bracket we have

Ju = J(X,Y]—i[JX,Y] —i[X,JY] - [JX,JY]) =

J
JIX, Y] —iJ[JX,Y] —iJ[X, Y] — J[JX,JY]

Equation (1.2) implies = J[X, Y| +X,Y] —i[JX,JY]| - J[JX, JY]
and by N(X,JY) =0 we have

= JIX, Y] +i[X, Y] —i[JX,JY] + [X,JY] + [JX,Y] - J[X,Y] =
= i([X,Y] = [JX,JY] —i[X,JY] —i[JX,Y]) = iv.

«: by hypothesis g is a subalgebra of g€, i.e. if v = [X —iJX,Y —iJY],
then Jv = iv:

JIX,Y] —iJ[X,JY] —iJ[JX,Y] - J[JX,JY] =
— (X, Y]+ [X,JY] + [JX, Y] —i[JX, JY]

that implies
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. given w € g'?

JIX,Y] = JJX,JY] = [X,JY] + [JX,Y]
—JIX,JY] = J[JX,Y] = [X,Y] - [JX,JY]

that is equivalent to equation (1.2).

* *

we want to prove that the component in g»?* of dw is zero if

and only if g is integrable, that by point 2 is equivalent to prove that g'° and
g0,1
V X,Y e g€ we consider their components X = X044 X% and Y = Y104y 0.1
then

are subalgebras of g©.

2,0% 1,1%

g 9
dw(X,Y) = ~w([X,Y]) = —w(X", Y] —w(X0, YOI + (X Y HO)) +
—w([X"L Y1),
—_—
90,2*

But g”! is a subalgebra, i.e. [X%! Y1) C g%1 if and only if w([ X%, Y1) =
0, because w € g% and then w(g™!) = 0.

. All the statements are direct consequences of the definition of almost complex

structure on a differential manifold and of Remark 1.1.

Remark 1.2. We observe that the third property is equivalent to 9> = 0, then

when a real Lie algebra g is endowed with a complex structure J, we can define

the Dolbeault complez (\P? g°*, d) associated to (g, J) and the Dolbeault cohomology

groups H g’q(g) associated to this complex.

In general when the differential d can be decomposed in d = 9 + 0 we can study

if the 90-Lemma holds. We enunciate it for a general complex (A**V,d = 9+ 9), if

we refer to a complex manifold we have to add the hypothesis of compactness.

Lemma 1.1. (90-Lemma) Let v € N\**V such that Ov = v = 0, then
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e if v = Ou, then there exists w such that u = dw,
e if v = Ou, then there exists w such that v = Ow.

Remark 1.3. A real case of the previous lemma is the dd*-Lemma, where d* is
defined as d* := i(0 — 0). In particular by definition the 99-Lemma holds if and only
if the dd*-Lemma does.

For a complete study of this subject see [5] and [12].

If the 99-Lemma and the dd*-Lemma hold we have an important property that

we will see in the following section (Theorem 1.13).

1.3 Minimal Models

Minimal models are objects of rational homotopy theory introduced by Quillen and
Sullivan in the late 1960s.
We refer to [14, 45] for a deep study of these topics.

Definition 1.16. Let K ba a field of characteristic 0. A graded K-vector space is a
family of K-vector spaces A = {AP},>p. An element of a € A has degree p, |a| = p,
if it belongs to AP.

Definition 1.17. A commutative differential graded K-algebra, cdga, (A,d) is a

graded K-vector space A together with a multiplication A? ® A9 — APTY that is

associative, with unit 1 € A° and commutative in the graded sense, i.e.
Vae AP be AT a-b=(-1)"b-a, (1.3)

and with a differential d : AP — AP+ such that d? = 0 and

Vae A, be A? d(a-b) =da-b+ (—1)Pa - db. (1.4)

Example 1.4. The complex of differential forms over a differential manifold and the

Chevalley-Eilenberg complex over a Lie algebra are cdgas.
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Given a K-cdga (A, d) its cohomology algebra H* (A, K) is well defined and it is
a K-cdga with d = 0.

The Betti numbers of A are the dimensions of the cohomology groups of A,

bi(A) == dim H(A,K).

Definition 1.18. A cdga homomorphism f: (A,d4) — (B,dp) is a family of homo-
morphisms fP : A? — BP such that fP*9(a-b) = fP(a) - f9(b) and dpf? = fPd 4.

Definition 1.19. A cdga (M, d) is Sullivan if it is free commutative, i.e. M = AV
with V graded vector space, V? = K and there exist a ordered basis {x,} of V such
that dzo € A(28)s<a-

A cdga (M,d) is minimal if it Sullivan and |zg| < |z4| for § < a or equivalently
dV c N=*V, where with A=V we mean \'V with i > 2.

A minimal (Sullivan) model of the cdga (A,d) is a minimal (Sullivan) cdga (M, d)
together with a cdga quasi isomorphism v : M — A, i.e. a morphism that induces

an isomorphism on cohomology.

For every topological space T, Sullivan defined a Q-cdga Apr,(T") called the piece-
wise linear cdga associated to T'. We refer to [14] for its definition, we only need to
know that its cohomology is the cohomology of the space T over the constant sheaf
Q and then we can use all the theory over this cdgas for differential manifolds and
their de Rham cohomology only by replacing Q with R.

In particular from now on, the model of a topological space T is the model of
Apr(T), while the model of a differential manifold M is the model of A\*(M).

To understand what minimal models are, we give a fundamental example of their
computation:

Example 1.5. Let A = A\*(SP) be the algebra of differential forms over the sphere

of dimension p, then
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Where w is the volume form of SP.

We have to consider two cases:

p=2n-—1:

Let « be an element of degree 2n — 1 such that dz = 0, then the minimal model

of Ais M = A(x) the exterior algebra generated by = and

p:M — A

r = w

Indeed M is by definition free commutative and the map induced on cohomo-
logy is
HQTL—I(M) o~ H2n—1(A)
[z] = [w]

The only generator has degree 2n — 1, then we do not have elements of lower
degree and
H*M)=0=H"A) Y0o<k<2n—1.

Besides by equation (1.3) in Definition 1.17, zx = —xx, that implies 22 = 0,

then we do not have either elements of greater degree:

HY(M)=0=H"A) VEk>2n-1.

: By a similar argument to the previous case, we consider an element x of degree

2n such that dx = 0, then

HQH(M) o~ HQH(A)
[z] =[]

s w =

But now z? # 0, then to kill the higher cohomology groups we need another
generator: let y be such that |y| = 4n — 1 and dy = 22, then M = A\(z,y) and

p:M — A
r = w
y — 0

Indeed:
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e we do not have elements of degree lower of 2n then
H¥(M)=0=HFA) Y0<k<2n.

e All the elements of degree greater then 2n that represent cohomology
classes, i.e. that are closed, are also exact, then their class is the zero one:

dy # 0, then we have to check only powers of z.
Vi>0 (27%y)=2a', then [2] = [d(2'"2%y)] = [0] and

H*(M)=0=H"A) Yk>2n.

We have a theorem of existence and uniqueness of minimal models for path con-
nected K-cdga, i.e. A such that H(A) = K:

Theorem 1.12. [1/] A path connected cdga A admits always a minimal model M

that is unique up to isomorphism.

Proof of Ezistence. Let M(n) C M be the subalgebra generated by elements of
degree < n, then M(n) C M(n+1) C --- C M. We compute M by induction on n:
Let M(0) be K and pg : 1+ 1.

Vn we compute M(n) with the map p,, : M(n) — A such that

1. p} : H{(M(n)) — HI(A) is an isomorphism V¢ < n and it is injective for
q=n+1.

2. pn+1|M(n) = Pn-

In this way, M(n) C M Vn implies that p* : HY{(M) = HY(A) is an isomorphism
Vq.
Suppose for simplicity that A is simply connected, i.e. that H'(A) = 0.

By inductive hypothesis, we suppose to have M(n) and p,, and compute M(n+1)

n+1 n+1 n+1 n+1
1 Ce ce ,ﬂl

and pp41: we add to M(n) new generators o}, -+ o, BT, of degree

n + 1 such that:
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o {a/™};—1... x is a basis of the cokernel of
0 — H™ ™ (M(n)) % H™ ' (A) :

Let a?“ € A" be closed elements that are representative of a?“ in coho-
mology, i.e.
P (et = ot and daitt =0

o Let {n]™2,--- 't} € M"*2(n) be a basis of the kernel of
H™ 2(M(n) 2 H™(A),

and let b?“ € A" be such that db;-Z+1 = pn(n;-‘”), then we choose ﬁ?“ such
that
Pn—i—l(/@?—ﬂ) _ b;z—f—l and dﬁ;H_l _ n;l+2 e Mn+2(n).

If we define M(n + 1) = M(n){a?", ﬂ?“}, then we have:
e M(n + 1) is obviously free commutative,

e da! =0 and dﬁ?“ € M"2(n) C [M(n)]? C [M(n + 1)]?> where we have
the first inclusion because every element of degree n + 2 generated by elements

of degree less or equal to n, must be given by products.

Then M(n + 1) is a minimal cdga.

Moreover:
e ppt1: M(n+1) — Ais a cdga homomorphism and obviously Py = Pr>

o py i HI(M(n+1)) — HI(A) by inductive hypothesis is injective for ¢ < n+1
and it is surjective for ¢ < n.
We added to M(n) the cokernel of H™(M(n)) 23 H" 1 (A), then phoq is

surjective also for ¢ = n + 1.

Moreover, what was sent by p;, in the kernel for ¢ = n + 2, i.e. 77;.’+2, with
P41 are differentials of B}LH, then are 0 in cohomology, and then the kernel is

trivial and p;, ,; is injective also for ¢ = n + 2.
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We observe that we do not have to check anything else in the kernel of pj
because A is simply connected, then M!(n) = 0 and so elements of degree
n+ 2 can not be generated by those we add of degree n + 1 multiplied by those
of degree 1.

A fundamental notion related to minimal models is formality. We have two

equivalent definitions of formal cdga [14]:

Definition 1.20. A cdga (A, d) is formal if there exists a cgda homomorphism
¥ : A— H*(A) that induces the identity in cohomology.

Definition 1.21. A minimal cdga (M = A V,d) is formal if V = C @& N such that
e d(C)=0
e d is injective on N
e Vnel:=AV-N such that dn = 0, then n is exact in A V.

We say that a differential manifold is formal if its algebra of differential forms is

formal. In particular we have the following fundamental property:

Theorem 1.13. [5, 12, 1/] A compact complex manifold satisfying equivalently the

dd*-Lemma or the 00-Lemma is formal.

Proof. Let Z5?(M) and H;?(M) be respectively the spaces of cocycles and the

cohomology groups for the differential 9, we consider the cdga diagram:

(Hp"(M),0) <" (25 (M), 8) = (A"*(M), d)
where j is the inclusion and p(«) := [a].

1. j* is surjective:
let [a] € HPTI(M), then da = 0, 9(0a) =
0(0a) = 0.

Qi

(da — da) = —0%a = 0 and
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By the lemma there exists 3 such that da = 99, then considering v := a —dp,
we have 9y = da — ddB = da — (0 + 0)B = da — OB = 0, ie. ~ is
a O-cocycle and 0y = Ja — 9dfi = —0a — 903 = —(da — 09B) = 0, then

7= ['V]HPH(M) = [Ol]Hp+q(M).

2. §* is injective:
let a € ZJY(M), such that j*[a] = [a] grre(ar) = 0, ie. = df. d(9F) =0 and
9(0p) = —0(9B) = —0(dB — 9B) = —90(dp) = —0a = 0, then by the lemma
there exists v such that 98 = 00y = —00~.
Then a = dB = 9B + 0B = —00v + 9B = 9(B — dv) is a O-coboundary and
[Oé]Hg*‘I(M) = 0.

3. p* is surjective:
let a be such that da = 0. 9(da) = 0 and d(da) = —I(da) = 0 imply by
the lemma that there exists # such that da = 093. Let consider v := o — 98,
then 0y = da — 9?8 =0—-0 =0 and 0y = o — 098 = da — O = 0 and so

P[] = ['V]Hg’q(M) = [O‘]HS’Q(M)'

4. p* is injective:

let @ be such that p*[a] = [oz]Hg,q(M) =01ie Jda=0a=0and a =0F. Then
by the lemma there exists v such that o = 99y = —0397, then [oz]Hg,q(M) = 0.

5. The differential induced by 9 in HY(M) is zero:
let o be such that da = 0, then 9(da) = 0, d(da) = —F(da) = 0 and by the
lemma there exists v such that da = 99y = —997. But then [0a] mrar) = 0.

Then there exists a homomorphism between (A”4(M),d) and (H5?(M),0) that in-
duces the identity on cohomology. O

We can generalize the concept of formality. There are two equivalent definitions
of s-formality [14-16]:

Definition 1.22. A cdga (A V,d) is s-formal if there is a cdga homomorphism
Y : ANVSS — H*(A\V), such that the map * : H*(A V=) — H*(/\ V) induced on
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cohomology is equal to the map i* : H*(A\ V<) — H*(/\ V) induced by the inclusion
it NVSS = AV,

Definition 1.23. A minimal cdga (A V,d) is s-formal if for every i < s
Vi=C"® N’ such that

e d(C") =0
e d is injective on N’
e Vn € I, ;= A\V=%. N=% such that dn = 0, then n is exact in A\ V.

In particular a (A V,d) is formal if it is s-formal Vs > 0.

We can generalize a little the idea of minimal models applying it to homomor-
phisms and then to fibrations [14].

Definition 1.24. A relative minimal cdga is a homomorphism of cdgas of kind
it (Ada) = (Ao \V,d)
where
e i(a)=a VacA,
o dla=dy,

e dV) Cc (AT @ AV) & A=?V, where with AT we mean all the elements in A
with degree greater than 0,

e there exist a ordered basis {z,} of V such that dz, € A® A(23)s<a-

Remark 1.4. By definition if A is Sullivan, then also the relative minimal cdga
A® AV is Sullivan, but if A is also minimal A ® A V is just Sullivan.
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Definition 1.25. (Homotopy lifting property) Given two topological spaces FE
and B, a fibration is a map p : E — B such that for every topological space X and

for every commutative diagram
g
X x{0}——F
(I dﬂ')l P

xx[0,1]~B

there is a continuous map h : X x [0,1] — E such that poh = f and ho (Id,i) = g.
In particular if B is path connected all the fibres p~1(x), with z € B, have the
same homotopy type and then we write the fibration F' — F % B with F the fibre.

For a fibration we can define a concept similar to minimal models [14, 36]:

Definition 1.26. Let F — E % B be a fibration of path connected spaces and let
Apr(B) = Apr(E) — Apr(F) be the map induced on the piecewise linear cdgas.

The Sullivan model of the fibration is the commutative diagram

Apr(B) Apr(E) Apr(F)

1 |

(AX,dx) —>(ANX @Y),D) *— (\Y,dy)

where
e (A X,0) is the minimal model of B,
e 7T is a quasi isomorphism,
e ¢ is a relative minimal cdga,
e (A\Y,dy) is the quotient cdga (A(X @ Y),D)/(ANTX ® AY) and q is the
quotient map.
Remark 1.5. We observe that the last point in the definition means that

Dy=dyy+cx Ay, VyeyY
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with ¢ € Q,x € AXT and ¢y € AY<Y, where A\ Y <Y is the subalgebra of AY
generated by all the generators prior to y with respect to an order among the basis
of Y.

Definition 1.26 does not describe the map p : (AY,dy) — Apr(F), indeed in

general we are not able to feature it. Only in particular cases p can be described:

Definition 1.27. A fibration F — E & B is quasi nilpotent if B and F are path

connected and the natural action of 71 (B) on the homology groups of F' is nilpotent.

In particular if B is simply connected every fibration F — FE 5 Bis quasi

nilpotent.

We state now a theorem that will be generalized and used in Chapter 6.2.

Theorem 1.14. [1)] Let F — E 2 B be a quasi nilpotent fibration, if B and F
have finite Betti numbers and the map induced on the first cohmology group H*(p)
is injective, then the map p is a quasi isomorphism and the cdga (\Y,dy) is the
minimal model of the fibre F'.

1.4 Symplectic geometry and Hard Lefschetz property

In this section we give some basic definition and properties of symplectic geometry.
In particular we are interested in the Hard Lefschetz property and its relation to
the symplectic version of the Hodge theory and the dd*-Lemma [29]. For a complete
study of this subject see [14].

Definition 1.28. Let M be a differential manifold of dimension 2n. A symplectic
structure on M is a closed 2-form w in A\"(M) such that w™ # 0, ie. w is not

degenerate.

Brylinski developed a symplectic analogue of the Hodge theory for complex mani-
folds:
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Definition 1.29. Let (M,w) be a symplectic manifold of dimension 2n, the sym-
plectic star operator x5 : N*(M) — A*"*(M) is defined by the following properties:

o x;1 = “:TT,L
® x, is linear.
o x(fa) = f(xsa), for every function f and for every form a.

o xoxg = 1.

e aAxgar =0 if and only if a = 0.

a A xgfB =0 N *a.

Note that the first condition implies that the star operator depends on the sym-

plectic structure of the manifold.

In particular using coordinates (x1, .., x2,) on M it is given by V~, € /\k(M)7

_ 1 quii, —1viod s wh
YA s = (W) (s B)dvol = (W™ W) (0T iy i B

Definition 1.30. Let (M,w) be a symplectic manifold of dimension 2n, the Lefschetz
operator is
L: (M) - NP2 (M)
n—nAw
The dual Lefschetz operator A : N¥(M) — A" 72(M) is its dual operator with

respect to the scalar product (, ) defined using the symplectic form w.

Remark 1.6. (see [47])
1. A = x,Lx,.

2. Using coordinates (z1,..,72,) on M the above operators are defined in the

following way: .
A(n) = (™) i, ia,,

where ¢ is the interior product.
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Using A we can construct another differential d* : A*(M) — A\* ' (M):
d" = (—1)* 5, dxy = dA — Ad.

Remark 1.7. For the differential d" equation (1.4) does not hold.

We observe that the classical Hodge theory is given in a similar way: if (M, g) is

a Riemannian manifold we define the Hodge operator  as in Definition 1.29 just by

considering the volume form defined by the metric g instead of the volume form %,1

defined by the symplectic structure. In particular with this notation the operator d*
that we introduced in Section 1.2 can be defined as d* := — * d* and then it is the
analogue of d” in the symplectic case.

On a symplectic manifold (M,w) we can always find a compatible almost com-
plex structure J [14, Proposition 4.86], i.e. w(X,JX) > 0 and w(JX,JY) =
w(X,Y) VX,Y € x(M). Inparticular this means that it is well defined the Rieman-
nian metric g(X,Y) := w(X, JY). If now we define the Hodge operator * associated

to this metric, we have a relation between the two star operators:
* = Gk

where § =37 PTI[[PY,

The differential d* can be used to state a symplectic analogue of the dd*-Lemma:

Definition 1.31. A symplectic manifold satisfies the dd”-Lemma if

Imd N ker d" = Imd”" N ker d = Imdd"

Definition 1.32. A form a € A" (M) is symplectically harmonic if da = d"a = 0.
The Lefschetz operator allows us to define the following fundamental property:

Definition 1.33. The Hard Lefschetz Property holds if the map induced in coho-
mology by the Lefschetz operator
HK(M) — H?™*M)
[a] — [w"*Aq]

is an isomorphism Vk < n.
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Theorem 1.15. [1/, 29] Let (M,w) be a symplectic manifold of dimension 2n, then

the following statements are equivalent:
1. Any cohomology class contains at least one symplectically harmonic form.
2. (M,w) satisfies the Hard Lefschetz Property.
Using Theorem 1.15 Markulov proved the following theorem:

Theorem 1.16. [1/, 31] A compact symplectic manifold satisfies the Hard Lefschetz
property if and only if it satisfy the dd”-Lemma.

We observe that Remark 1.7 implies that we do not have an analogue of Theorem
1.13 in the symplectic case, indeed Zyn is not a cdga [5, Remarks pagg. 14 and 83|,
[14].

Remark 1.8. Complex and symplectic geometries intersect in K&hler manifolds.
Indeed Kiahler manifolds satisfy both the dd*-Lemma and the dd”-Lemma and then
are formal and for them the Hard Lefschetz property holds.

Formality of symplectic and Kéhler manifolds is deeply studied in [11].






Chapter 2
Tesng-Yau Cohomology

L.S. Tseng and S.T. Yau introduced some classes of finite dimensional cohomologies
for symplectic manifolds [47]. These cohomology classes depend on the symplectic
form and are in general distinct from the de Rham cohomology, so that they provide
new symplectic invariants. As shown in [47] (cf. also Proposition 2.3 below), these
new invariants actually agree with the de Rham cohomology if and only if the Hard
Lefschetz property holds.

Below we discuss these cohomological invariants, proving that they can be com-
puted using invariant forms, provided this is the case for the Rham cohomology (see
Theorem 2.2). This result will allow us to go through the list of symplectic structures
on solvable Lie algebras (Appendix C), to see which solvmanifolds, supposing that
for them the Mostow condition holds, satisfy the Hard Lefschetz property (Theorem
3.3).

We will give all the definition and properties referring to a differential manifold,
but they can similarly be given for a Lie algebra with a symplectic structure.

Let (M, w) be a symplectic manifold of dimension 2n, L be the Lefschetz operator,
A be the dual Lefschetz operator and *; be the symplectic star operators.

We consider another operator H := ), (n — k) Hk called degree count operator,
where [T¥ : A*(M) — AF(M) projects onto forms of degree k.

L, A and H give a representation of the sly(R) algebra acting on A\*(M) by

AL =H, [HA =2\, [HL]=-2L

35
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Using the differentials d and d” we can obtain another differential
dd" : \*(M) — \*(M)
and for these operator the following lemma holds.

Lemma 2.1. The differential operators (d,d",dd") satisfy the following commuta-
tion relations with respect to the sla(R) representation (L, A, H):

[d’ L] =0, [d7 A] = d/\v [dv H] =d,
" L] =d, [d"A]=0, [d" H]=-d"
[dd/\’ L] =0, [dd/\’ A] =0, [dd/\a H] =0.

Using these 3 operators we can define, besides the de Rham cohomology ones

H}(M), the following cohomology groups

_ kerd"n NF (M)

Han M) = e AF(M)
A k
B 00) = S
A k
HE (M) = kerdd" N A" (M)

imd N A"(M) + imd* 0 \¥(M)

ker(d + d™) N \F(M)
imd N AE(M) 4 imd" 0 AE(M)

Hijgn (M) == Hg 0 Hgjp = Hj, g0 0 Hign =
where AF(M) is ker dd" N A"(M).

We now analyse these cohmologies separately. Using the Hodge operator * we
can define the Hodge adjoint operators d"* := xd"x and (dd")* := (=1)F*1 x dd"x.

Proposition 2.1. (Brylinski) The operator x4 gives an isomorphism between HC’;(M)
and H;}l_k(M).
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This proposition implies in particular that the Hgx cohomology does not lead to

new invariants.

We can define the Laplacian associated to d: Agn := d™*d" + d"d™*. A diffe-
rential form o €* (M) is d"-harmonic if Agra = 0 or equivalently d"a = d™*a = 0.

We denote the space of d"-harmonic k-forms by HE, (M).

Agn is an elliptic differential operator, then we have the Hodge decomposition
AF = @ dh NV @ars AR
that implies the isomorphism H%, (M) = HE, (M).

Now we consider the Laplacian operators associate to the other differential that

define these particular cohomologies [47]:
o Agign = dd"(dd")* + N(d*d + d™d"),
o Aggn = (ddM)*dd" + \(dd* + d d™),
o Ayngr :=dd* + d*d + dNd™ + d™dM.

We define the harmonic spaces H%, o (M), HE (M) and HE 5 (M) as the spaces
of k-forms on which respectively these Laplacians are zero, then we have the following

decompositions

Theorem 2.1. [;7] (Tseng-Yau) Let M be a compact symplectic manifold. For

any compatible triple (w, J, g) there are the orthogonal decompositions
° /\k — ng-i-dA @dd/\ /\k @(d* /\k-‘rl —i—d/\* /\k—l),
o N =Hig @ @A+ AT @ (dd") A
o N = Moy @ AAST ) AT © (@ A e AR,
These decompositions imply respectively the isomorphisms

Hiran (M) = Hif 0 (M), Higgn (M) = Hign (M), Hijngn (M) 2= Hijpgn (M).

Since *Agygr = Aggnx there is the following corollary.
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Corollary 2.1. The operator x5 gives an isomorphism between H§+dA (M) and Hﬁg;k(M).

We consider the analogue Lefschetz property related to these cohomology groups.

Lemma 2.2. [}7] The Laplacians Agign, Dgar and Agngr commute with the sla(R)
triple (L, A, H).

Using this lemma we can prove directly the following proposition

Proposition 2.2. [}7] (Tseng-Yau) On a symplectic manifold of dimension 2n

and a compatible triple (w, J, g), the Lefschetz operator defines the isomorphisms

L"F Hy g0 (M) = HVF(M) VE<n,

L gE (M) = HITRM) VEk<n

L qE (M) = B3 F (M) YE<n.

This proposition implies that the Lefschetz operator does not give invariants or
other informations if we relate it to these cohomologies. Fortunately we have the

following property.

Proposition 2.3. [}7] (Tseng-Yau) On a compact symplectic manifold (M,w) the

following properties are equivalent:
o the Hard Lefschetz property holds.

e the canonical homomorphism HCIZ‘“'JFM (M) — HX(M) is an isomorphism for all
k.

e the canonical homomorphism H% (M) — H§+dA(M) is an isomorphism for
all k.

Remark 2.1. These particular cohomologies are studied in details also in [1].
There are also a complex analogue of these cohomologies, namely the Bott-Chern
and the Aeppli cohomolgy. They are very interesting in relation to the 90-Lemma

because they give a necessary ans sufficient condition to it [2, 12].
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We are interested in the Lie groups associated to the six dimensional unimodular
solvable non-nilpotent Lie algebras which admit a lattice and for which the de Rham
cohomology of the associated solvmanifold can be computed by invariant forms.

Indeed the following theorem holds:

Theorem 2.2. Let G be a Lie group admitting a left invariant symplectic structure
and a lattice T' such that the quotient Q = G/T" is compact. Let g be the Lie algebra
of G.
If the inclusion \* g* R N (Q) is a quasi-isomorphism, i.e. H}(Q) = Hj(g),
then
Han(Q) = Hyn(g),  Hgygn(Q) = Hyy g0 (),

Hjn(Q) = Hign(9), Hgngr(Q) = Hyrngn(9)-

Proof. We divide the proof into four steps:

1. We prove that the invariant cohomologies are well defined, i.e. the algebra of

invariant forms \* g* is closed for the operator d.

To this aim it suffices to prove that the operator *, sends invariant forms to
invariant forms. If L : G — G denotes the left translation, then o and § are
invariant if L*a = o and L*8 = . Then

1 o . o w™
L (@ nf) = L (Yo Yo R B o
1 o . . L (W™
= E(L*(W)_l)ml (L*(w)~tynd. .. (L*(w)_l)lkjkL*(ail’iz---ik)L*(/Bj1j2"‘jk)7(1')
= g(w_l)“h (w™h)sz ... (w_l)Zk]kailiQ'“ikﬁjlj?“jkF =aNxsf3.

Therefore, a A 58 = L*(a A #53) = L*(a) A L*(xs8) = oo A L*(x5f3) and so
kg0 = L (xsf3) .

2. We show that Hjx(Q) = Hj\(9), Hjyn (Q) = Hjgn(9) and that Hj, ;0 (Q) =
Hj gn (9) if and only if H;,0(Q) = H}n(g).
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We observe that point 1 and Proposition 2.1 imply the commutativity of the
diagram

Hj(g) —== H;' " (g)

-

H(Q) —+ Hy' Q)

so that, since by assumption the isomorphism holds for Hj, it holds for H},, i.e.
A (Q) = Hjn(g). Moreover, since HsmdA Q) = Hg N HC’?A, the isomorphism

holds also for the d N d"-cohomology.
Hence Corollary 2.1 implies that if the isomorphism between cohomology and

invariant cohomology holds for Hgig4n, then it is also true for Hysn and vice

versa.

T Hy g (0%) = Hi g (Q) s ingective (see also [40, page 123]).

Since @ is compact, there exists an invariant metric (, ) on ). One can use
this metric to define the adjoint operators of d, d", d+d” and dd”. Let /\Lk g
be the orthogonal complement of A g* in A¥(Q).

Then AF(Q) = AFg* @ AT g* and A\* g* and A" g* are closed under d + d”
and dd".

If i*[a] := [i(a)] = 0, then there exists a form n € A(Q) such that
i(a) = dd"n = dd"(7 4+ 7F) = dd 7 + dd" 7+,

with 7 € A" g* and 7+ € A*¥ g*.
Moreover dd*ij € \* g*, so i(a — dd"ij) = dd i+ and [a] = [« — dd"7).
So we can choose & := a — dd\7}) as a representative of the cohomology class
o] in Hj, gr(g")-
Observe that @ € A" g* so (dd")*a € \* g* and

i(dd") @) = (dd")*i(a) = (dd")*dd"ij" € /k\g*,
but then 7+ € A g* is orthogonal to (dd")*dd" 7+ € \* g*. This implies

0 = (i, (dd")*dd ") = (dd" i, dd" i)
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so ddij+ = 0. But then (o) = dd"7j, with 7 in A" g*, so a = dd"7j in A\ g*,
that is [a] = 0 belongs to H}, ;»(g").

Remark 2.2. We can similarly prove that also i* : H A (g") — Hj;n(Q) is
injective.

In particular point 3 is always true, independent on the fact that the map 1 is

a quasi-isomorphism.

A Hy g (0%) = H g (Q) ds surjective.

Let n € /\k(Q) be such that dn = d*n = 0. Then the cohomology class [n]’§+dA
is well defined. But also [5]% and [n]%, exist and by hypothesis they have an
invariant representative: n = 71 + duy and n = 72 + d uy with 91,72 € A" g*
and di; = d"ijs = 0.

Since dd”"n = 0, the cohomology class [7] sz exists and

L H1o | A H2
== d=t 4 g2
7 2(m+nz)+ 5 T4

then $(7j; + 7j2) is an invariant representative for [n]% ..

Now we apply the isomorphism of Corollary 2.1:

D R N b ~ TR N
[esnliran = Mldan = B) *s( 5 ) .
dd" d+-dN

Let xsn = N, 401 = N1, *472 = No. Then w is an invariant representa-
tive in [N]?[fr;lf

To complete the proof we have to show that every N € /\Qn_k(Q) such that
dN = d"N =0 is of the form N = .y with n € A*(Q) and dn = d"n = 0.

To this aim, it is sufficient to impose n := *;N, then *;n = %5 %3 N = N.
Moreover d" := (—1)F*1x dx,, so *,d" = (—1)"1dx, and d"x = (—1)" 1%, d.
Then for every 8 € A*(Q) if "8 =0, also *,d"3 = 0 and then d *, 3 = 0 and
similarly if d8 = 0, then d" x, 3 = 0.

Hence dn = d"n = 0.
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Remark 2.3. We recall that in particular Theorem 2.2 applies in the following cases:
e If GG is nilpotent, using Nomizu theorem [35].
e If G is completely solvable, using Hattori theorem [22].

o If Adg(G) and Adg(I") have the same algebraic closure, using Mostow theorem
[34].
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Low dimensional unimodular

solvable Lie algebras

We have seen in Chapter 1.1 that if the Mostow condition holds, we can compute
the de Rham cohomology of a solvmanifold using only its associated Lie algebra
(Theorem 1.10).

The study of solvable Lie algebras have been developed up to dimension 5, (see
for instance [4]), for this reason we want to improve this classification by studying
six dimensional solvable Lie algebras. Six dimensional nilpotent Lie algebras were
classified in [43] then by Proposition 1.2 we will consider six dimensional unimodular
solvable Lie algebras [25].

The complete list of these Lie algebras is given in Appendix A.

3.1 Cohomology of six dimensional unimodular solvable

Lie algebras

In this Section we compute the second and third Betti number of six dimensional
solvable Lie algebras. Solvable Lie algebras g with the property that ba(g) = b3(g)
are interesting because of a class of manifolds endowed with a closed 3 form, called
Strong geometry, considered in [28]. Strong geometry is an important example of

connection between mathematics and physics, in particular multi-moment maps are

43
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used in string theory and one-dimensional quantum mechanics [28].

Let M be a manifold, then (M,~) is a Strong geometry if 7 is a closed 3-form on
M. Suppose there is a Lie group G that acts on M preserving -, then we denote by
Py the kernel of the map /\2 g — g induced by the Lie bracket of g.

A Multi-moment map is an equivariant map v : M — Py such that d(v,p) = iy, for
any p € Py, (where i), denotes the interior product) [27].
We refer to [27] and [28] for details on strong geometry. In particular Madsen and

Swann [28] proved the following proposition.

Proposition 3.1. Let (M,~) be a Strong geometry and suppose there is a Lie group
G that acts on M preserving v with Lie algebra g. If ba(g) = bs(g) = 0, then there

exists a multi-moment map for the action of G on the manifold M .

Because of this result they listed the Lie algebras with trivial second and third
Betti numbers, up to dimension five. We add to their classification the Betti numbers

of 6-dimensional solvable, non-nilpotent unimodular Lie algebras.
Remark 3.1. Every Lie algebra g whose Lie group is solvable has by (g) > 0 [4].

In Appendix B we list 6-dimensional unimodular, solvable, non-nilpotent Lie
algebras g together with their first, second and third Betti numbers. The Betti
numbers of the 6-dimensional Lie algebras with 5-dimensional nilradical were also
computed by M. Freibert and F. F. Schulte-Hengesbach [17].

Comparing the Betti numbers in Appendix B and the structure constants in

Appendix A we obtain the following theorem

Theorem 3.1. Let g be a sixz dimensional unimodular, solvable, non-nilpotent Lie

algebra

e ifbi(g) =1, then its nilradical has codimension 1 and ba(g) = 0 if and only if
bg(g) = 0.

e if its nilradical has codimension greater then 1, then bi(g) > 2 and ba(g) =1 if
and only if bs(g) = 0.
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Guan studied properties about the steps of nilmanifolds, showing that if a nil-
manifold G/I" admits a symplectic structure then G has to be at most two step as
a solvable Lie group [19]. He also conjectured that the Lie group of a solvmanifold
admitting a symplectic structure is at most 3-step solvable.

Again looking directly at Appendix A we can prove that this is true for all
six dimensional unimodular solvable Lie algebra, regardless of existence or not of a

symplectic structure.

Proposition 3.2. FEvery siz dimensional unimodular, solvable, non-nilpotent Lie

algebra g is 2 or 3-step solvable, in particular

o if its milradical has codimension 1, it is 3-step solvable unless it is almost
abelian, or g is isomorphic to one of the following Lie algebras:
a,0 0,0 0 0,0, -1,0 0,0, 0,0 0,1
96140 086.17, 8618 96.20, 86210 96230 Y6250 Y6290 Y6360 Y654

0,0 0,0 0,0,0
96.63, 9665 96700 96.88 -

o if its nilradical has codimension greater then 1, it is 2-step solvable unless g is
isomorphic to one of the following Lie algebras:
96129, 96135, 0519 DR, 0520 PR, g523OR, 525 BR, @526 DR,
0528 DR, 0530 DR, gas®2R, g9 D 2R.

3.2 Symplectic structure and Hard Lefschetz property

for six dimensional unimodular solvable Lie algebras

Solvmanifolds up to dimension six admitting an invariant symplectic structure were
studied by Bock [4]. In particular, he considered the conditions of being cohomolog-
ically symplectic, formality and the Hard Lefschetz property.

Now we consider all the Lie algebras listed in Appendix A and study the existence
of a symplectic structure over them.

Similarly to the case of differential manifolds we define a symplectic structure on

a real Lie algebra of dimension 2n as a closed and not degenerate 2-form w in A* g*.
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If g = Lie(G) for a Lie group G, then w is an left invariant symplectic structure

on G.

Let g be a six dimensional real solvable unimodular Lie algebra and let { X7, --- , Xg}
be an ordered basis of g, then a 2-form w is associated in a natural way to a matrix
M = (wij) € Mg(R), where w;; = w(X;, X;), and w" # 0 < det M # 0.

We use this notation in Appendix C.

Theorem 3.2. The six dimensional real solvable, non-nilpotent unimodular Lie al-

gebms admitting a symplectic structure are the following:

1 1
-1 0,0 -1,0 -1,5,0 -1 —1,—1 0 0,0, .
96 35 86100 9613 96 157 5 9615 618 o 9621, D23, withe ?é 0
0,0, 0,0 -1 0,0 0,41,~1 +1 1o R
96295 9636 96 383 96 510 0700 9678, 0118 o Mosa 057 ‘e )

0,0, —ptl 0,0,41
058 DR, 9514EBR o517 OR, gb 7" ®R, g5y OR, gl 13OR,

9;?:92 D R, 95,19 @ R, 93}1 @ 3R, 93,5 ®3R, g31® 9:;117 g3.1 D 93,5,

-1 -1 —1
9510310 030D 035 035035
Their symplectic forms are listed in Appendiz C.

Proof. To construct the symplectic form we take the generic element w € kerd C
/\2 g* and we impose it to be not degenerate, that is w?® # 0.
With this direct computation we can see that the six dimensional solvable unimodular
Lie algebras not listed above have always w3 = 0 for every w € kerd C /\2 g

We give the computation of the first Lie algebra gq ;%1 ’a, for the other cases the

idea is similar.

_atl
By Appendix A for (g4 3° ’a)* we have da! = aTHaw —a?0, do? = aTHa% — a0,
da?® = @ 36 da* = —a%, da® = —aa®®, da® = 0 with 0 < |a| < 1. Then
da12 — 7%( + 1) 126 + a136
dald — %( 4 1)als6 4 o236

da14 _ a146 + 04246
- 3

da15 _ 2a—1 156 +a256
3

da'® =0

da?3 = —%(a +1)a36
dot = 2—Taa246 4 346
do2 — 2(1:;1 256 4 356
da?0 =0



3.2. Symplectic structure and Hard Lefschetz property 47

Sta
da3® = 2a§1a356
da?® =0
da®® = (a + 1)at™
do*6 =0
da®® = 0.
Let w be a generic 2-form on g(;;%’a. Ifa+# -1, %, then dw = 0 if and only if

w = wl,ﬁalﬁ + W2’60426 + CU3760436 + W4,60646 + w576a56,
but in this case det(w; ;) = 0 and w is degenerate.

Ifa= %, then dw = 0 if and only if

W = w1,6a16 + WQ’GOdQG + w375a35 + W3,60436 + W4’60446 + CU5760456,
but again in this case det(w; ;) = 0 and w is degenerate.
If a = —1, then dw = 0 if and only if

1 2 2 4 4
W = w160 6 + w2 3¢ 3 + w2 6C¢ 6 + W3760636 + Wy 500 5 + W4 6C¢ 6 + W5760¢56
and in this case det(w; ;) # 0 if and only if w; gwa 3wss # 0. Then for this value of

the parameter we have a symplectic form. O

Remark 3.2. Symplectic structures of four dimensional Lie algebras are studied in
[39].

Using Theorem 2.2 and Proposition 2.3 we can examine which symplectic solv-
manifold G/T" whose Lie algebra is in Appendix A with G completely solvable, is
Hard Lefschetz.

Let {a!,---,a%} be the dual basis of {X7,..., X¢}. Then a generic element in
Ng*is 8 = dic bi jo'l | where we use the notation o/ := it A - A i,

For any such solvmanifold we perform the computation only for a particular

choice of the symplectic form. Namely we consider the form composed by the fewest
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possible generators o/ of /\2 g%, and we check if the Hard Lefschetz property holds
only for this particular choice. This is because computations are very involved for a

generic symplectic form.

Proposition 3.3. [/] The symplectic and completely solvable Lie algebras in Ap-

pendiz C whose Lie group admits a lattice are the following:

—p—1

931 ®3R, g31D 034, 034D P34, 0077 BR, g58BR, g5 DR, ges,
0 0,0,41 0,0,41 0,0,0 0,-1

96.15, 96215 Y623 > Y629 5 Y6295 Y6545 96.78-

By computing the cohomologies Hj, ;x(g) and Hj- . (g) we obtain that the Hard
Lefschetz property holds only for the solvmanifolds associated to the following sym-

plectic Lie algebras.

. @ 3R - w= wl,gam + w376a36 + u)4,5a45, w= szam + w374a34 + w5,6a56
93.4 oA 12 35 46
W =w1200" + w3 50°° + Wy 40
1_ gl _ 11 _
by = bgyarn = bgngn =4
2 _ 12 _ 12 _
by = bcl+alA = byngn =7
3__ 13 _ 13 _
by = bd—&-dA = bgrgn =8
® 934 Dgsa: w=wipa?+wgea® + w4,50445
1 _ gl _ 11 _
by = bgyar = bgngn =2
2 _ 12 _ 72 _
by = bd+dA = bgrar =3
3 _p3 _ 13 _
by = bgyan = bgngn =4
p,—p,—1 R:
® g5 OR:
p=1 w = w174a14 + w273a23 + w5,60456, w = W1’30613 + w2,40z24 + w5,6a56

1 _pl _pl —
bd_bd+d/\ _bdﬂd/\ =2
2 __ 12 — 32 —_
b *bd-‘rd/\ *bdﬂdA =5

3 _ 13 — 13 —
bd - bd—‘rd/\ - bdﬁd/\ =38
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pF#l w= w1740z14 + w2,3a23 + OJ5760456
bé = b}lﬂ% = bﬁlimdA =2
b?l = birdA = medA =3
bg = bg-‘rd/\ - bgmdA =4

We have then proved:

Theorem 3.3. There exists a symplectic structure for which the following solvman-
ifolds are Hard Lefschetz:

(GE7" ™' < R)/T, (G x BR)/T, (G x Ga)/T,
where ' are lattices listed in []].

Remark 3.3. The case of (G2277! x R)/T" was already considered in [4].






Chapter 4

Lattices and de Rham

cohomology of solvmanifolds

In this chapter we consider solvmanifolds for which we are not sure that the Mostow
condition holds.

In this case the invariant cohomology can be strictly included in the cohomology of
the solvmanifold (Theorem 1.6), but sometimes even if the Mostow condition does
not hold, the de Rham cohomolgy is isomorphic to the invariant one (Proposition
4.1).

We will consider a technique due to Kasuya to understand if this isomorphism
holds and in particular we will use it to compute the de Rham cohomology of some
almost abelian six dimensional solvmanifolds.

Of course we can apply a method to compute the cohomology only when we have
a lattice. For this reason we will first prove, for every case considered, the existence
or not of the lattice, also for some value of the parameters for which we can not apply

the method, giving examples of many almost abelian solvmanifolds.

4.1 Lattices

In this section we study the existence of lattices for six dimensional, unimodular al-

most abelian Lie groups which are not completely solvable, since we want to compute

51
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the de Rham cohomology of the corresponding solvmanifolds and study the prop-
erty of formality (see Chapter 6). Our aim is to have situations when the Mostow
condition could not hold, in particular we consider cases in which we can apply a
proposition that we will state in the following section (Proposition 4.1).

We can show the following

Theorem 4.1. The simply-connected Lie groups whose Lie algebra is one of the
following

goy 0 [X1, Xg] = aXy, [Xo, Xo] = bXa, [X3, Xe] = X3, (X4, Xe] = X5, [Xs5, Xe6] = Xu,
a+b+c=0, 0<|c[<|b] < |al.

0000 [Xa, X6] = X1, [X3, X6] = Xa, [X4, X¢] = — X5, [X5, X6] = X4

g(ﬁlj(l),lqu: [Xl?XG} = aXla [XQ,XG} = —I3, [XSaXG] = X2) [X47X6] = qX4 - 5X57
[X5,X6} :SX4+qX5, a+2q:0, (LS#O

051y ©R: (X1, X5] = X1, [Xo, X5] = —Xo, [X3, X5] = —r Xy, [X4, X5] =1rX3, 7 #0.
0214 BR: [ Xy, X5] = Xy, (X3, X5] = — Xy, [X4, X5) = Xs.

b 7 @R (X, X5) = pXy — Xy, [Xo, X5] = X1 4 pXo, [X3, X5] = —pXs —rXy,
(X4, X5] =7rX5 —pXy, 7 #0.

0215 BR: [ X1, X5]) = —Xo, [Xo, X5] = X1, [X3, X5] = X1 — Xy, [X4, X5] = Xo + X5.
895 ®R: [X1, X3] = —X;, [Xo, X5] = X;.

admit a lattice.

Proof. In the indecomposable case the solvable Lie algebras are of the form
R ady, R, where R = span(Xg) and we will give for any Lie algebra the matrix
expression of ad x, with respect to the basis { X1, ..., X5} of R?. By using Proposition
1.3 if there exists a real number ¢y such that exp(tpadx,) is conjugate to an integer
matrix, then tg determines a lattice I'y, of the corresponding simply connected almost
abelian solvable Lie group.

In particular if the characteristic polynomial and the minimal polynomial of
exp(toady, ) do not have integer coefficients, then I'y, is not a lattice. Otherwise a

possible choice for the conjugate integer matrix is [4]
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0 0 —a

0 —aq

A= 0 —a9
0 - 0 1 —ap

where a; are the coefficients of the characteristic polynomial.

We consider all the six dimensional, unimodular almost abelian Lie groups which
are not completely solvable. There are eleven such Lie groups that can admit a
lattice and their Lie a%gebras are the following [4] (see Appendix A):

g 069" Goao o G0 Gots’s Gsas T OR, g8, ®R,
&7 OR, 6§ OR, g OR? gl; o RS

This idea is in general not very simple to use, for this reason we start by con-
sidering a value of tg such that at least a complex block of the semisimple part of
ePtgcos(2nm)  ePtgsin(2nm ePt 0
0 ) (2n) o sin(2n) withn € Z, i.e. 0 .
—ePtysin(2nm)  ePty cos(2nm) 0 ePty
With this choice, the analysis of the characteristic and minimal polynomials becomes

exp(tpady,) is of kind (

operable.

If this is a lattice for some value of the parameters, we continue by studying for
the same parameters if also for ¢ = %0 with k € Z we have a lattice. In this way we

can usually use the ideas and construction of the previous case.

We performed some of the computation with the help of the Maple software.

e 5 is a lattice in Ggfg’c’p only for p = 0:
—b—c—2p 0 0 0 O
0 b 0 0 O
adx, = 0 0O ¢ 0 O
0 00 p 1
0 0 -1 p
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So
6277(—b—c—2p) 0 0 0 0
0 e™ 0 0 0
exp(2radx,) = 0 e2me 0
0 0 0 €™ o0
0 0 0 0 e
We put €2™ = w, €27 = v, e 2™ =k, so the matrix becomes

E o900 0
0 w0 0 0
0 0 v 00
0 00 7 0
0 000 %

Its minimal polynomial is

k3w + wk? + k%o + v?w? vk3 + wk? + w?0%k + k% + wo? + v,
- z + 7+
wvk wuk

_kj3 + kwv? —i—k‘w%—i—wxg e

m(z) = k

wuk

So the minimal polynomial can have integer coefficients only if k € Z.

We put w+ v =r, wv = s and the coeflicients become:

kE3s + k21 + 52 5  K*r+4s?
pp= "0 g TS
ks ks
Er 4+ kr2 + k2 +rs k3 4+ krs+ s
P2 = p3=————"
ks ks

So p1 € Z if and only if ¢ = ¥ T+5 €Z and Py — kg = &2 s,

If p1,po € Z then h :=py — kq1 € Z s = hk —, then p3 = hk2+1 = hk+ 1 T
Sops €Z 1fandonly1f%€Z, but k € Z, sokzlandp:O.

We found out that for p £ 0 'y, is not a lattice.

Now we check for p = 0: the characteristic polynomial has coefficients
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2 2 2
2 2 1 1
ap = —1 a1:2+7“+s 4y = —1— §°+2r +rs+ :_1_25 +r  rs+
s s s S
2 2+ 52 1 52 1
a5 = 1+ rs+2+s +T:1+2rs+ Jrs +7r a4:_2_rs+
s s s s

So a1, ao, ag, ag € Z if and only if 52%, % € 7Z and we must check that the

solutions are such that w and v are positive:

we solve the system

2
s;—r:hl
rs+1 __
o=
r>0

2

r
O<S§Z

and find that it admits solutions for some values of the integers hy and hy (for
example for hy = 5, ho = 6). In particular we can not accept the solutions {s = r—1},
because they correspond to b = 0 or ¢ = 0 and {s = 1}, because it corresponds to
a=0.

Thus, for p = 0, we can find values of b and ¢ (and a = —b — ¢) such that the

characteristic polynomial of exp(2madx,) has integer coefficients and we can check

00 1 00
10 —hy 0 0
by direct computation that exp(2mwadx,) is conjugateto | 0 1 hy 0 0
00 0 10
00 0 01
Therefore, for some choice of the parameters b and ¢, I'y;; is a lattice. We denote

the group Ggfg’c’o for the above choices of the parameters a, b, ¢ by G’G)EO for short.
oI5,/ with k € N is a lattice in Gg_’g’c’o only if £ =2,3,4,6:
Let consider lattices I'y; 5, with k € N, then the conditions for the parameters

a,b, c that are imposed for I'a; to be a lattice must be satisfied also for I'yy /.
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e2r(=b=a)/k 0 0 0

0 e2mb/k 0 0

eXp(%Tad Xe) = 0 0  e2re/k 0 0
0 0 0 cos2m/k  sin2rn/k
0 0 0 —sin2n/k  cos2m/k

We put e2™/k =, e27¢/k =y, cos2r/k = u/2, and w+v = r, wv = s, then the

coefficients of the characteristic polynomial become:

us 4+ 1+ 52 r+ 52 ur4+us®>+14+rs
ag=——="u-+ as = —1—
s s s
uturs+s>+r 1+rs+us 147rs
a3 =1+ a4 = — = — —u
s s S
Then ay = —ua;+as+u+u?—1 and a3 = —uas+a; —u—u?+1, soif a1, as, as,as € Z,

then a; 4+ a4 and ag + a3 are integer and so u € Q.
We have found out that if cos27/k is not rational, then Iy, /4, is not a lattice.
If u € Q, then the characteristic polynomial has integer coefficients if and only if

u € Z and the same system as t = 2w admits a solution, with hy, ho € Z:

s24r _
=
rs+1 __
S = he
r>0

2

T
0<S§Z

We know that the solution exists for some conditions on h; and hy so we can

: T w27
have a lattice for t =7, 5, 5,5

With direct computation we check that the matrix exp(tpadx,) is similar to A

T 27

for to = g,g,?

—hy

and it is similar to for tg = .

o o O = O
o O = O O
>
)

o = O O O
_ o O O O
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. . b
e I’y is never a lattice in Ggfg’p for every n € Z:

—-2b—-2p 0 0 0 O
0 b1 0 0
adx, = 0 0b 0 O
0 00 p 1
0 0 0 -1 p
SO
e~dnmbtr) 0 0 0
0 e2nmb  opmenmh 0 0
exp(2nradx,) = 0 0 e2nmb 0 0
0 0 0 e ()
0 0 0 0 e2nTp
We put e2"™ = w, e=2"™P =k, so the matrix becomes
E 0 0 00
0 w 27w 0 O
0 0 w 0 0
00 0 1 0
00 0 0

Its minimal polynomial is

w? + 2k? + k3w 2w + kw* + k2 + 23w,
- + x= +

m(x) = k e x oy
_k3—|—2kw3+w2 !
w2k
So the m(zx) can have integer coefficients only if k € Z.
. w3 + 2k? L . .
The first coefficient is p; = S k2, so it is integer if and only if
w
3 2
2k
hy = w2k is integer. Then w3 = hikw — 2k? and replacing in the other
w
coefficients we have
2hikw — 3k?
pr= Tk
kw
N————

X
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—w? — 2h1 k*w + 3k3 1
= =———kX
bs fw? k
So po € Z if and only if X € Z, then p3 € Z if and only if £ =1 and so p = 0.
We found out that for p # 0 I's, is not a lattice.

Now we check for p = 0: the characteristic polynomial has coeflicients

2 4+ w?
w

apg = —1 a1 =2+

2w + 2wt +dw+1 ) 2w + 1 22+w3
w? o w? w
2 2 + 4w? 4 w3 +1 2 3 w3 + 1
as = 1+ w+2+4dw’ +w :1+2w+ " +w a4:_2_w+
w2 w? w w?

as = —1

2w? +1 2 3
w+’+w€Z

So ay,as,as,aq € Z if and only if

3w2 w
The solutions of the equation =h € Z are
1: h
w:fi/—27+3 —3h% + 81 + —
3 V=27 + 3v/=3h% + 81
1 i/ 1 h
w=——\/—27+3V-3h3+81 — - +
6 2/ —27 + 3V—3h3 + 81
1 1s h
+-V3 f\/—27+ 3v/—3h3 + 81 —
2i (3 V/—27 + 3vV/=3h3 + 81
2wt 41 : 3
If we replace these values in ——— € Z we obtain that —3h° + 81 must be a

w
perfect square. Suppose —3h3 + 81 = +n?, in this way we consider all possible real

w, then

n? — (=3h3) = (n — v/=3h3)(n + V—3h3)
3h3 —n? = (V3h3 — n)(V3h3 +n)

If we decompose 81 = af3, with a > 3, then +3h3 = O‘Tiﬁ

81 =81-1, 27-3, 9-9, so V3h3 =41, 15, 9, then h® = 1L 75 27 but the
only cube is 27, so h = 3.

81:3h3in2:{
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V=3h3 =40, 12, 0, then h3 = —@, —48, 0, but the only cube is 0, so h = 0.
For h =3 we have w =1, -2 and k = 3, —%, so we can accept only w = 1, that
is b = 0, but we already have p = 0, so also a = 0 that is not allowed.

For h = 0 we have w = —\3@, %\3@ + %Z\/gw, we are interested only in the real
value and for this w, k = —% /2, not integer, so we have no lattice for Gg9 and

t = 2nm.

o 'y is a lattice in G, if and only if a = 0:

a1 0 0 0
0 a1l O 0
adx =1 0 0 a O 0
000 —3a 1
000 -1 —3a
SO
gam  opelam  9p2e2am 0 0
0 e2em  2re?am 0 0
exp(2radx,) = 0 2 0 0
0 0 0 e~3em
0 0 0 0 e3o7
We put €™ = w, so the matrix becomes
w? 2mw? 2r%w? 0 0
0 w? 2rw? 0 0
0 w? 0 0
0 0 5 0
0 0 0 5

Its minimal polynomial is

14w 1+ 3w®
tw xzf +3w x3+x4
w

m(x) = w® — (w® + 3w)z + 3
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So m(x) can have integer coefficients only if w?® € Z, but then also w® € Z and
so p1 € Z if and only if 3w € Z, then 3w? = 3w - w? € Z and so py = %+3w4€Zif
and only if % €.

Now put w = £ with k € Z, then 2 = 2 € Z if and only if k = &1, +3, £9, but
w must be positive by definition, so £k =1,3,9 and w = %, 1,3.

,%,thenwzl and a = 0.

We found out that for a # 0 I'y, is not a lattice.

We want w3 € Z, so w = 1,3 and p3 = 4

For a = 0 the characteristic polynomial is
2° — 5% + 102 — 1022 + 5z — 1

and we can check with direct computation that in this case exp(27adx,) is conjugate

to the matrix

10 0 00
0 1 0 00
0 -2 1 00
0 0 10
0 -2 0 1

and then I'y; is a lattice.

oI5,/ with k € N is a lattice in GY o only if k = 2,3,4,6:
Let consider lattices I'y, 3, with k € Z:

o
3
V]

1 2 2o 0 0
0 1 2 0 0
2T
exp(?adxﬁ) =0 0 1 0 0
0 O 0 cos (27) sin (%’r)
0 O 0 —sin (2%) cos (2%)

Its characteristic polynomial is

x5+<73 — 2cos (%)) :c4+(4+ 6 cos (2%)) m3+(74 — 6 cos (2%)) 12+<3 + 2cos (%)) z—1
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then it has integer coefficients if and only if 2 cos (2%) € Z, so we consider
to =, g, %:

for to =7 exp(tadx,) is conjugate to the matrix

-1 0 0 0 O
0 0 0 O
o -1 1 0 O
0 0 0 -1 0
0 -2 0 1

and then I'; is a lattice.

For tg = § exp(tadx,) is conjugate to the matrix

o = O O O
|
—
o O o O
= o o o O

and then F% is a lattice.

For tg = §  exp(tadx,) is conjugate to the matrix A, then Iz isa lattice.

Remark 4.1. The lattice I'; was found in [4, Proposition 6.18]. In part (ii) it is
stated that if there is a lattice in G, such that the corresponding solvmanifold
satisfies by = 2 and by = 3, then it is symplectic and not formal. Here we show
that, for example, I';, is such a lattice. We will deal about symplectic structures and

formality later (Chapter 6.2).
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o ['y; is a lattice in Gg'7}"* only if p = 0:

—2(p+¢q) 0 0 0 0
0 p 1 0 O
adx, = 0 -1 p 0 O
0 0 q s
0 0 —s g¢q
then
e~detam o0 0 0
0 et 0 0 0
exp(2radx,) = 0 e2Pm 0 0
0 0 0 €21 cos 2sm €247 sin 2s7
0 0 0 —e*™sin2sm 29" cos 25T

We put €29 = w, e 2P" =k, cos2sm = u, so the matrix becomes

0
0 0 wu w1 — u?
0 0 —wv1—u? wu

Its minimal polynomial is

o o o o§®
o
il
L

(2 E2u 4+ w3 + k3w) T (2 Erwu + 2wdu + k2 + kw4) x?

m(z) = k- + +
kw kw?

(2 wiuk + k3 + w2) 3 4

B kw? o

So m(x) can have integer coefficients only if k € Z.

92 ]{32 3 92 k‘2 3
p1 = _sukmw k2, so it is integer if and only if hy := ukﬂ € Z, then
w

w
w? = khqjw — 2uk?.
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Replacing in the other coefficients we have

2hikuw — 4k*u? + k2
pp = 5 . +hik
kw

X

1
= - —kX
b3 2

S0 pg € 7Z if and only if X € Z and then p3 € Z if and only if% €Z,thatisk =1
and p = 0.
We found out that for p # 0 I'a; is not a lattice.

Now we check for p = 0: the characteristic polynomial has coeflicients

3 3 3
2 2 2 1
g =—1, aj= T2 g gy o oWt FwuEL
w w w?
3 3 3
2 2 1 2 1
a3:w—|—u+2wu2—l— 41, a4:_%_2
w w w

then it has integer coefficients if and only if the following system admits solutions

M — hl cZ

Zw% +1
w2

w >0

—-1<u<1

=hy €7Z

wh—w3
2

From the first equation we get u = , so the system becomes

wih — wb + 1
w2
w >0
h73
_1§%§1

=hy€Z

that admits solution for particular values of the integer hi and ho.
So for p = 0, we can find values of ¢ and s such that the characteristic polynomial

has integer coefficients and we can check with direct computation that in this case
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00 1 00
1 0 —hy 0 O
exp(2mady,) is conjugate to the matrix | 0 1 hy 0 0
00 0 10
00 0 01

and then I'y, is a lattice.

o'y, with k € N is a lattice in ng(l),lq,s only if k = 2,3, 4,6:
Let consider lattices I'y; 3, with k& € N:

e % 0 0 0 0
o 0 cos (2? sin (2?”) 0 0
exp(?adxfj) = 0 —sin (2%) cos (2%) 0 0
0 0 eI% cos (%s 1% sin (%”s)
0 0 0 —e9% sin (Qfs) 1% cos (2%5)

If we put e = w, cos 2% =, cos %’rs = u its characteristic polynomial is

(2wv+2u+w3)x (4uwv+2w4v+2w3u+w2+1)x2
w w2 +
+(4vw3u+2v+2wu+w4+w2)x3 (2vw2+2w3u+1)x4

5
- +x
w2 w?

Its coefficients can be decomposed in a similar way to the Gg.g case, so we obtain
that they can be integer only if v € Z and under this hypothesis this is equivalent to

the following system admitting a solution

1+ 2w3u

w2
2u + w?

w
w >0

—1<u<l1

=h1 €Z

=ho €7

Again a solution can be found under particular conditions on the integer hy; and

ho and for all the admitted values of ty the lattice exists.
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S1
. . . a,p,q, -~
o 'y, is never a lattice in Gy, ™ for every value of the parameters:

Lets:%e(@andt:%rs?:

e~trtams: 0 0 0
0 ez ) 0 0
exp(2rssadx,) = 0 0 ez 0
0 0 0 eXm2
0 0 0 0  e%ams2

We put e 2(P+a)7s2 — ¢y and e29752 4 ¢~ 2752 = 3, 50 its minimal polynomial is

m(r) = —a+ (a26+1)x_ (a3+5)x2 + 3
« «

so it can have integer coefficients only if a € Z. Then % =p[+ é € Z implies
peQ.

Butthen@zoﬂ—kgEZimpliengZandsoﬂGZ.

Therefore if o and 3 are not both integer we have no lattice I'yrs,.

Suppose «, 8 € Z, then ﬁ—ké € Z only if a = 1 that is a = p+ ¢ = 0, but this

value is not acceptable, so I'erg, is not a lattice.

. . —4
e ', is never a lattice in G6‘1§’p for every m € Z:

—4p 0 0 0 O
0 p 1 1 0
adx, = 0 -1 p 0 1
0 0 p 1
0 0 -1 p

SO
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e~8pmm () 0 0 0
0 ermT () 2mme?PmT 0
exp(2mmady,) = 0 0  e?mm 0 2mme?PmT
0 0 0 e2pmm 0
0 0 0 0 e2pmm

We put e 2P = w), so the matrix becomes

w' 00 0 0
0 + 0 2mmi 0
1 1
1
o o o0 < 0
0 0 0 O L

Its minimal polynomial is

So the m(x) can have integer coefficients only if w? € Z, that is w = /n with
n € N.

The coefficients become

1 2
pL=—F2/n, o p2 it
then pz € Z if and only if = =k € Z, that is n = 5 € N.

so we have only 2 cases:

k = 42 then n =1 that is w = 1 and p = 0 that is not acceptable.

k=+1 thenn:4thatisw:2,butthenp1:i+8-2¢Z
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. FQTW is a lattice in G;}ng’q’T x R only if ¢ = 0:

1 0 0 0

0 —1—2¢ 0 O

adX5 =

0 0 q r

0 0 —r q
then

2m
er 0 0 0
—2(142¢)m
2w 0 e - 0 0
exp(—adx,) = 2nq
r 0 0 er 0
2mq
0 0 0 er
then the minimal polynomial is
3 27mq —2(142¢)7 2m, o —27m(1+4q) 27 (14q) —4mq 27q
m(x)=z"+(—er —e + —er)z"+(e r +e v +er J)x—er.
If we put e =w # 0 its coefficients become:
1 1
- q+1 N _
ao—wq, ai qu—Fw + 5 as = —w T2 w
ao € Z implies that also ﬁ € Z, then if a1 € Z we get waﬂ +witt € Z, or
equivalently that there exists k € Z such that 1 + w201 = gyt

Then as = —w?— % = —wi— ]Z}*{% = —w! —k% € Z implies also w? € Z

and so w? =1 and ¢ = 0.
Then for ¢ #0 T2z is not a lattice.

For¢=0

exp(tadx,) =

®

3
o = O O
— o o O
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and its characteristic and minimal polynomials have integer coefficients if and

only if

—27

e te €. (4.1)
Moreover this matrix is conjugate to the matrix

2m —2m

er +er 1 0 0
—1 0 00
0 010
0 0 01

then for values of r € R\ Q for which equation (4.1) is satisfied, I" 2r IS A lattice.

oI‘sz with k£ € N is a lattice in G;ﬁo’r X R for k = 2,4,6:

Now we consider tg = 1272 with k£ € N:

27w

erk 0 0 0
—27
0 ek 0 0
exp(toadx;) =
plfoadyxs) 0 0 cos(2E)  sin(2F)
0 0 —sin(%) cos(3)

and its characteristic polynomial has coefficients
ag =2+ 2cos(2kfr)erk +2cos(2E)e” & a1 = ag = —2cos(¥) —e T — ek
—2m
Suppose that equation (4.1) is satisfied, i.e. eF ter =he Z, then for k € N
such that both 2 (:05(2,3r ) and e~k +erk  are integer, we have integer coefficients.
This means that we have to consider k = 2,4, 6 and prove that for these values also

27

27
e vk +erk € 7.

k=2 (e7 +e%)2—er +e 7 +2, then we have to consider r such that h + 2 = n?

for some n € N.

k=4: (e72r +e2r)t= eF fe +6—|—4(e ¥ 4 e7), then we want to find an integer
n such that n* = h + 6 + 4n?, that is possible for  such that h = n* +4n? — 6
for n > 2.
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/h2_
w and we want

to find n € Z such that Jw + %\/E = n or equivalently Hw = nEvni—4 V2"274,
then we want (”i”2”2_4)6 = hi”2112_4 that is possible for r such that h =

nd —6n* +9n? — 2 for n > 2.

k = 6: if we put e = w, equation (4.1) is equivalent to w =

In particular the matrix exp(%ad X5) is similar to A for tg = - and g = 5

and it is similar to

er+er 1 0 0
-1 0 00
0 010
0 0 01
for to = T.
o ['y7y, is never a lattice in G;; 2q7q’% x R for every value of the parameters:
if?“:% and t = 27y
e2rre 0 0 0
0 e—2(1+2q)mry 0 0
exp(tadx,) = 0 0 J2mar 0
0 0 0  e*mam
then the minimal polynomial has coefficients:
4y = —e2m2 _ g 2m(14+20)r2 _ o2mar

a; = e—4mars + 6727r(1+q)r2 + e2ﬂ(1+q)r2

ag = _6—27rq7“2
1+g _1+g
If we impose ag = hg € Z we get a; = h% +hy? +hy ¢ and
143¢  —l4g
1+hy & +hy ¢
ay = — 0 - 0
Now from a1 = hy € Z we get ¢ = In ho and then

—Inho+1n (7h1i\{@)
ag = _h% — hoh1, so it can be integer only if hy = 1, that is ¢ = 0, so for ¢ # 0 I'arp,
can not be a lattice.
If ¢ = 0 the minimal polynomial has integer coefficients if and only if e*™"2 +

e~2™2 = b € Z, but this is not possible for ro integer, so sy, can never be a lattice.
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e 'y, is a lattice in G2, x R:

adX5 =

so for tg = 2w we have

exp(2radyx,) =

o O o O

1 0
0 0
0 1
0 -1 0
1 20 0 O
0 00
0 10
0 0 1

then the characteristic polynomial 2% — 423 4 622 — 42 + 1 has integer coefficients.

In particular exp(2madx,) is conjugate to

1

o O O

1

1
0
0

0

0
1
0

_ o O O

by the matrix

1

o o O

1 0 0

2r 0 0 . .
and so I'y; is a lattice.

0 1 0

0 01

.1“2% with k € N is a lattice in G2, x R only if k = 2,3, 4, 6:

Let consider I'yy

21

exp(—adx,) =

k

o O O =

21
- 0 0
1 0 0
21 s 27
0 cos o+ sino-
2T 21
0 —sin G cosr

has characteristic polynomial 2% — 23 (cos 2% 41)+2x%(2 cos 2% +1) — 2z (cos 2T +1)+1

so we can have lattices for values of k € Z such that cos %’T = =+1, i%, 0.

In particular if sin 2% # 0 exp(27/k adx,) is conjugate to A, otherwise we can use

the analogous matrix of the case k = 1 to get the same integer matrix.
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e ['5; is never a lattice in ngl}p’r x R with r € R\ Q:

p 1 0 0
-1 0 O
adX5 = b
0 —p r
0 0 —r —p
Ift=2m
er™ 0 0 0
0 e 0 0
exp(tady,) =
pliady,) 0 0 e 2™cos(2mr) e *™Psin (277)
0 0 —e ?™sin(27r) e 2™ cos (277)

then the minimal polynomial has coefficients:

as = —2e72™ cos (27r) — €2™,  a; = e 4P 4 2cos (277), ag = —e 2™,

ap € Z if and only if e=2™ € Z, then a; € Z if and only if 2cos (277) € Z and
then ap € Z if and only if €>™ € Z, but this means p = 0, so for p # 0 we have no
lattice in this case.

For p = 0 the minimal polynomial is 23 + (=2 cos(27r) — 1)2? + (2 cos(27r) + 1)z — 1,
so we want 2cos (27r) € Z, but it is not possible for r € R \ Q and I'y, is never a
lattice.

o ['y:y, is a lattice in Ggi;p " x R for some values of the parameters:

ifr= % € Q and tg = 27ry we have

ez () 0 0

0 e 0 0

exp(2mroady,) = 0 R 0
0 0 0 e

has both minimal and characteristic polynomials with integer coefficients if and

only if

22 4 eI — € 7, (4.2)
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Unfortunately in this case the matrix is not conjugate to the matrix A, so we

must find another integer matrix:

from (4.2) we have pro = % In (hii V2h2_4) for every 2 < h € Z, then exp(27readx,)
becomes
hivhi—d 0 0 0
h+vh2—4
0 apvar—2 0 0
0 0 h=vhi-4 0
2
h—vh2—14
0 0 0 3
Using the matrix
1 1
i 0 =
h®—4—h 0 Vh2—4+h
2Vh2—4 2vVh2—4
0 —l— 0 -
Vh2—4 Vh2—1
0 VhZ=d—h 0 VhZI—d+h
2vVhZ—1 2Vh2—1
we obtain the conjugate integer matrix
h 1 0
-1 0 0
0 0 1
0 0 -1 0

so for these values of p and ry I'any, is a lattice.

o I'2x is a lattice in GEP" x R for some values of k,r € Z:
to study other lattices we consider for the sake of simplicity the case r € Z and
to = 27 with k € N.

The characteristic polynomial of exp(tpadx,) is

—2n 2 iy 2 —an 2 2 ~
xt + (—26 T COS% — 2% cos%)xg—i- (e# +4COS%COS% +e4Tp>x2+

27p 2rr —27p

— 2e k& — =2 3
—l—( e CcOS A e

%) 1
COSs — |
2
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The coefficients of this polynomial depend strongly on the relation between k and
r, so it is difficult to determine in general for which values of k they are integer.

For this reason we consider only particular cases:

ok =2:

If r is even the coefficients become:

alz_a3:21/fﬁ7\/2h2*4_21/h*7v2h2*4:2,/h_2

h h2—4 h—Vh%2—4
hiviZd g\ fhV2Ad 4 e,

ag =
So we consider only h € Z such that h — 2 = n? for some n € Z and the matrix

becomes

ntvn?2—4 VQTLZ’*4 0 0 0
+vn?—4
0 e 0 0
—v/n2—-4
0 0 g 0
—/nZ2—4
0 0 0 g
that is conjugate to an integer matrix (see k = 1), then in these cases we have a

lattice.

If r is odd the coefficients become a1 = a3 = 2vh+2 a3y = h+4 € Z and

similarly we have a lattice if there exists an integer n such that h + 2 = n?.

ok =4:
If r =0 mod 4 then a; = —2eP2, ag = eP™ + e PT, a3 = —2¢ P2 that are
integer if and only if p = 0 and for this value our matrix is integer, so there is the

lattice.

Ifr=1 mod 4 then a; =a3 =0 ao =eP" +eP" =+/h+2 so again we have

a lattice only if h 4 2 = n? for some n € Z:

0 \/n+2+\/n—2 O 0
2
_ Vnd24vn—2 0 0 0
exp(tpadx,) = 2 —5_ >
p 0 X5 0 0 O n+2— n—2
2
O 0 _\/TL+2— n—2 O

is conjugate to
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o O = O

-n—2
so we have a lattice.
If r =2 mod 4 then a1 = Zep%, ap = ePT e P a3 = 2¢P3 50 again there
is a lattice only if p = 0.

If r =3 mod 4 we get same coefficients as if r =1 mod 4 and then we have a

lattice only if h 4 2 = n? for some n € Z.

ok =6:
Ifr=0 mod 6 then a3 =—e P53 —2eP3, a9 =2 —|—e_1”%7r + ep%ﬁ,
as = —eP3 — 2e7P3,
a1 =n € Z if and only if eP3 = %‘/"27_8, then a3 = %‘/m can be integer

only if n? — 8 = 22 for some integer z, that is { = £1,n = +3}. Then €3 =1, %,

but only for p=0 a3 € Z.

In this case exp(tadx,) is conjugate to the matrix A, then there is a lattice.

Ifr=1 mod 6 then a1 =a3= —e Py — epg, ar =1 —i-e_]"%r +ep2?ﬂ.
a1 = a3 = n € Z if and only if eP5 = nEvni=d V;L‘l, but from (4.2) we know that

2mp _ htVh2—4 (ni\/n2—4)6 _ hxtVvh2—4
= 2 2 = 2

e , this means that

integer h of kind h = n® — 6n* 4+ 9n? — 2 for every 2 < n € Z.

, that is possible only for

Also in this case exp(tadx,) is conjugate to the matrix A, then there is a lattice.

If r =2 mod 6 then a; = —ag = —e P35 +¢eP3, ay = —1+ e P+ ep%ﬁ,
then with the same computation of the last case we get a lattice if h is of kind
h = nb 4+ 6n* 4+ 9n? + 2 for every n € Z.

Ifr=3 mod 6 then a3 =—e P35 +2eP3, ay=—2+ e PE + ep%ﬂ,
as = —eP3 + 2¢ P35, then in a similar manner to the first case we have a lattice if
and only if p = 0.

If r =4 mod 6 the coefficients of the characteristic polynomial are just opposite

to those in the case r = 2 mod 6, while if r =5 mod 6 the coefficients are equal to
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those in the case r =1 mod 6, then there is a lattice under the same conditions.

o Now we consider separately the particular case p = 0 and we try to find in

general for which values of k € N 'y, is a lattice:

cos & sin &¢
o i 0 0
s 2T 27
—sin 2&  cos 2& 0 0
_ k k
exp(toadx5) - 27r i 27mr
0 0 cos - sin ¢
s 2nr 2rr
0 0 —sin 5~ cos =~

has characteristic polynomial

2 2 2 2 2 2
2+ (72COS%72COS%)IL’3+ (2+4cos%cos%)x2+ (72COS%*2COS%)I’+1

If we now impose

ay = as 1 (4.3)
a9 —2=hy €Z
we get
2 —hl + h% — 4h2 2mr —hl F \/ h% — 4h2
COS? = 4 COST = 4 .

The limitations —4 < ay, ag —2 < 4 imply hi, he € [—4,4]NZ, but these integers

. —h1—+/h?—4h —h14++/h?—4h
must also satisfy —1 < — yan 2 < Lt T 2 <.

hi,hy € [—4,4] NZ
—h1— h%—4h2

So we get the system > —1 that admits solutions

7!
,h1+\/4h§74h2 <1
{h1 =0, hg = —4,-3,-2,-1,0}, {h1 ==£1, hg =—-2,—1,0},

{hy =42, hy = 0,1}, {hy =43, ho =2}, {hy = 4, hy = 4}
We now use these values in (4.3) to get r € Z, k € Z ~ {2,4,6} and find
{r =0, k =3} (not acceptable), {r =1, k =3},{r =3, k =8}, {r =5, k= 12}.

For all these values the matrix exp(tpady,) is conjugate to the matrix A, so we

have lattices.
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e 'y, is a lattice in G914 x R:

0 1 1 0
-1 0 0 1
adX =
’ 0 0 1
0 -1 0
so for tg = 27 we have:
1 0 20 O
01 0 27
exp(2mwad =
pmade) =1 0 1 o
00 O
then the characteristic polynomial 24 — 423 4+ 622 — 42 + 1 has integer coefficients.
1020 100
In particul (2mady, ) is conjugate t L0z t'%lg
n particular exp(2madyx, ) is conjugate to e matrix
’ e oo010]|” 00 1
00 01 0 01

so we have a lattice 'y

ol'2: with k € N is a lattice in Gg 18 X Ronly if £ =2,3,4,6:
4 .
let consider the other lattices Iy, ), with k € N,

cos%7r sin%7r %cos%r 2%sin%7r

2 —sin2E cos2E 2T 2T 2T g 27
exp(—ady,) = k k k ) BOER ; k
k 0 0 cos T¢ sin ¢

0 0 —sin%7r cos%7r

has characteristic polynomial z* — 4 cos 2Xa® + (4 cos 2L + 2)z* — 4 cos 2z + 1

so we can have lattices for k = 2, 3,4, 6.

For £ = 2 we get the conjugate matrix 0 0 by the same

3 o o o
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matrix as k = 1, while for the other values of k our matrix is conjugate to A.

. L2
e 'y, is never a lattice in G ¢"? x R?:

—2p 0 O
ady, = 0 p 1
0 -1 p
e ™ 0 0
exp(2rady,) = 0 € 0
0 0 e

has minimal polynomial 22 — x(e?™ + e=4™P) + ¢=2™P 50 ag € Z if and only if
e~ ¢ 7, then e~*™ € 7 and a; € Z if and only if > € Z. But this means p = 0

that is not admitted, so we have no lattice in this case.

e 'y, is a lattice in GY 5 x R3:

0 1
adX3 =
-1 0

exp(2radyx,) = ( Lo )

so for tg = 2w we have

01
has integer coefficients, so we have a lattice ['a;.

ol'2: with k € N is a lattice in Gg 5 X R3 only if k = 2, 3,4, 6:
4 .

o

Let consider now t = A with k£ € N:

cost sint
exp(tpady,) = —sint cost

has characteristic polynomial 22 — 2z cost 4+ 1 so we must consider k = 6,4, 3,2:
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for k=2,4 exp(%’rad)g) has integer coefficients, while for k = 6, 3 it is conjugate

2

0 -1
to so we have a lattice for all these values of k.
1 2cos T

4.2 Kasuya’s techniques

We will state a proposition that allows us to understand when the invariant coho-
mology is isomorphic to the non-invariant one, also when the Mostow condition does
not hold.

Let g be a solvable Lie algebra and n its nilradical, then there exists a vector
space V = RF such that g = V @ n as vector spaces and ads(A)(B) =0 VA BeV
where adg(A) is the semisimple part of ad(A) [13].

We can define the map ads : g — Der(g) by ads(4A + X)(Y) = (ada)s(Y), for
AeV, X enandY € g [23].

Therefore ad is linear and [ads, ads] = 0. Since g! C n, ad; is a representation

of g and its image ads(g) is abelian and consists of semisimple elements.

We will denote by Ads : G — Aut(g) the extension of ads to G, then Ad(G) is
diagonalizable.

Let T = A(Ady(G)) be the Zariski closure of Ady(G) in Aut(g®), then T is
diagonalizable and it is a torus in A(Adg(G)).

Lemma 4.1. The Zariski closure T = A(Ads(G)) of Ads(G) is a maximal torus of
the Zariski closure A(Adg(G)) of Adg(G).

Proposition 4.1. [23, Corrolary 10.1] Let G be a simply connected solvable Lie
group with a lattice I' and g be the Lie algebra of G. Suppose that the semisimple part
of Adq(G) is represented by diagonal matrices as (Ady)s = diag(ai(g),- -, an(g))
and that the following condition is satisfied:
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o for any {i1,--- ,ip} C{1,---,n} if the character a,..;, is non-trivial then its
restriction on I’ ail...ip\p is also non-trivial, with oy, ..;, the product of charac-

ters oy, -+, Q.

Then an isomorphism H*(G/T,C) = H* (g%, C) holds.
In particular this implies also H*(G/I') = H*(g).

We observe that in this proposition the Mostow condition does not appear, then
we can consider it also when we do not have this information, that usually is quite
difficult to obtain.

4.3 Six dimensional almost abelian solvmanifolds

We want to apply this method to almost abelian solvmanifolds R x, R"/Z /A

Remark 4.2. We observe that in the almost abelian case g = R Xady R"™, the
n+1
vector space V such that g =V & n is isomorphic to R, then in this case ads is the

semisimple part of adx,, , .

If for ¢ = tyg we have a lattice, we usually have by similar arguments a lattice
also for t = %0 with k£ € N, as we have seen in the previous section. Moreover to use
Proposition 4.1 it seems a good choice ty such that the complex eigenvalues of ¢|z
are of kind p(cos(2hm) + isin(2hn)) with A € N. In this way also the other lattices
with ¢ = %0 can be easily studied and we can give a good description of these kind

of solvmanifolds.

We consider the almost abelian Lie groups of Theorem 4.1.
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a,b,c
Ggs™”
—b—c—2p 0 0 0 O
0 b 0 0 O
adx, = 0 0O ¢ 0 O
0 00 p 1
0 00 -1 p

If we consider tg = 27, by Theorem 1.3, for p # 0 we do not have a lattice, then

we consider p = 0.

el=t=09) ¢ 0 0 0
0 ett 0 0 0

exp(tadx,) = 0 0 e 0 0
0 0 0 cost sint
0 0 0 —sint cost
and
e2r(=b=c) 90 0 0 0
0 e 0 00
exp(2radx,) = 0 0 €™ 0 0
0 0 0O 10
0 0 0 01

Obviously the character cost 4+ isint # 1 on the group, but it is the identity on

the lattice I'o;, then in this case we can not apply the method.

Let consider lattices I'y; 5, with k € N: by Theorem 4.1 we can have a lattice for

_ T w27
t—TF, 25 353 -

We can easily verify that for all these values of ¢ the condition of Proposition 4.1

is satisfied, then
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a
6.10

—_

adX6 =

o O O O 2

o O O Q2

o O 2 = O
piw © O O

a

1 —t 2 0 0
0o 1 -t 0 0
exp(tadx,) =1 0 0 1 0 0
0 0 0 cost —sint
0 0 0 sint cost
and
1 2r 272 0 0
0 1 27 0 O
exp(2radxs) = 0 0 00
0 0 10
0 0 0 1

Again in this case the complex block does not allow us to apply the method.

Let consider lattices I'y with ¢t = 7, 5, %: using Proposition 4.1 we obtain for all
these ¢
H'Y(GY19/T) = H' (g3,
H?(GR 19/Tt) = H?(83.10) = (@'%, @, o)
H3(G8'10/Ft) — Hg(gg. <O[1237 a126, 345’ a456>.

a
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a’p’Q’S
G6.11

—2(p+q) 0O 0 0 O

0 p 1 0 O

ady, = 0 -1 p 0 0
0 0 qg s

0 0 —s gq

If tg = 27 by Theorem 4.1 we take again p = 0 and

e a0 0 0 0
0 cost sint 0 0
exp(tadx,) = 0 —sint cost 0 0
0 0 0 e? cos(ts) e sin(ts)
0 0 0 —esin(ts) e? cos(ts)
and
e 1m0 0 0 0
0 10 0 0
exp(2radx,) = 0 01 0 0
0 0 0 e*"cos(2ms) €297 sin(27s)
0 0 0 —eXsin(27ms) €29 cos(27s)

then also in this case we can not apply the method.

If we consider the other lattices 'y, with k& = 2,4, 6, thanks to Proposition 4.1

we have

HY(GEL)/Tr) = (af)
H2(GEL)/Ty) = (o)
HY(GET1/T) = (@, o).

If s = Z—; € Q another good choice is ty = 2msy, but by Theorem 4.1 I'yzs, is

never a lattice.
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_1_2q7Q7T
5.13 x R

1 0 0 O

0 —-1-2 0 O
adX5 = q

0 0 q

0 0 —r q

As in the previous case we would consider two different cases:
again by Theorem 4.1 we have ¢ = 0, otherwise I'2x is not a lattice and if r = % €Q,

T

to = 27ro is never a lattice.

If to = 2® we can not apply the method.

T

Now we consider ¢t = 3—7,; with k& = 2,4,6: for all these values we can apply

Proposition 4.1 and the cohomology groups are:

HY(G513" x R/T2) = H'(g513" ©@R) = (o, af),
H(G513" x R/T2) = H (9513 O R) = (a'2, o™, a™),

H3(G;g0,r « R/FZ%) — H3(95:i’30’r EB]R) — <a125, a1267 O[3457 a346> .

Gg.m X R

adX5 =

o o o O
o o o =
S = O O

-1

so for t = 27 again we can not apply the method.

Let consider the cases I'y;/, with k = 2,4,6: we can use Proposition 4.1 and the

cohomology groups are:
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HY (G314 x R/T2:) = H'(g5 14 ®R) = (0?, a®, o),
HQ(Gg.IZL X R/F%) = H2(gg.14 @R) = <a12? Ol15, 05267 Oé34, a56>7

H3(Gg'14 X R/F%r) — H3(gg‘14 @R) — <a125’ a126’ a156’ a234’ a345? a346> )

P,—Dp,r
Gsh7 xR
p 1 0 0
-1 p O 0
adyx. =
xe 0O 0 —p r
0 0 —r —p

Ifr = % € Q and ty = 279 we know by the prove of Theorem 4.1 that we have

a lattice for e?™"2 4 =272 c 7,

e’ cost  ePsint 0 0
—ePsint  e'P cost 0 0
exp(tadyx,) =
0 0 e P cos(tr) e P sin(tr)
0 0 —e Psin(tr) e cos(tr)
and
e2mpre 0 0 0
0 e 0 0
exp(2mroady,) = . P 0
0 0 0 e 2

For p = 0, again cost + ¢sint # 1, but on the lattice oz, it is trivial.

For p # 0 the character e’’(cost + isint) - e~?(cos(rt) + isin(rt)) can not be
trivial for every ¢, but for ¢y = 27ry it becomes e2™P2 . ¢ 727Pr2 — 1,

Then Proposition 4.1 does not allow us to compute the cohomology of the solv-

manifold.

Now we consider all the other lattices considered in Theorem 4.1.
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p = 0: the only characters a,...;, that are trivial for every t are

p#0:

(cost +isint) - (cost —isint) and (cosrt + isinrt) - (cosrt — isinrt).

But for 7 = 22 for some m € Z we have that (cosrt + isinrt) and

(cosrt —isinrt) are trivial, for r = 22 — 1 for some m € Z we have that

(cost+isint)- (cosrt+isinrt) and (cost —isint) - (cosrt —isinrt) are trivial

and for r = 2””‘

+1 for some m € Z we have that (cost+isint)-(cosrt—isinrt)
and (cost —isint) - (cosrt + isinrt) are trivial.

Since in our computation t = 27“ we have that

—ifr=0 modk or r =1 modk or r = —1 mod k, then we can not

apply Proposition 4.1,

— if r =5 mod k with j # 0,41, then by Proposition 4.1 we have
HY (G317 x R/ ) = H'(g517 ®R) = (a”,af),
H?(G5h7 x R/T2x) = H(g5h7 ©R) = (' + o, ol —a®, o™),
H3(G(5)f(1)’7r « R/F%) _ H3(ggj(1)’7r ®R) = <a135 + 245 o145 _ 235 o146 _
Q36 | 246)

any character «,...;, is not trivial.

But for r = 22 —1 for some m € Z we have that (cost+isint)-(cos rt+isinrt)

and (cost—isint)-(cosrt—isinrt) are trivial and for r = 27””

+1 for somem € Z
we have that (cost+isint)-(cosrt—isinrt) and (cost—isint)-(cosrt+isinrt)

are trivial.

Then we have that

—if =1 mod k or r = —1 mod k, then we can not apply Proposition
4.1,

— if r =5 mod k with j # 41, then by Proposition 4.1 we have
G XR/F%T):Hl(Gsn O R) = (a°,af),
H*(GE " XR/FQ%):HQ(%N ®R) = (a”9),
(G XR/F%):H%%N ®R) = {0}.
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Gg.18 X R

0

-1
adX5 =

o O =
_ = O

0
-1 0

)

so for t = 27 as usual we can not apply the method.

Let consider the other lattices I'p /), with k = 2,4,6: we can apply Proposition
4.1 only for k # 2.

Indeed we have characters cost £ ¢sint, cost + isint, then the product
(cost isint) - (cost +isint), that for ¢ generic is not trivial, for ¢ = mn for some

m € 7 is trivial, then we can not compute the cohomology for I'.
For k = 3,4,6, by Proposition 4.1 we have
HY (G 45 % R/F%) = H' (9313 ®R) = (a”, o)
HQ(GgJS X R/F%’r) = H2(gg.18 D R) = <0413 + a247 @34, a56>
H3(GY 1 % R/sz) = H3(g0 ;s BR) = (a1, 135 4 o245 o136 4 o246 346)

GY. x R?

0 1
adX3 =
-1 0

so for t = 2w we can not apply the method.

For t = 2% with & = 2,4,6 by Proposition 4.1 we have that the cohomology

groups are
H'(gh; ®R) = (0,0, 0”, a),
H2(gg.5 BR) = (012,034, 035, 036, 45 16 056),

3(~+0 _ 123 124 125 126 345 346 ,356 456
H(93.5@R)_<a y Q¥ , y & , (X , (X , (& e >

HY(GS 5 x R?’/Fg%)
H2(GY5 % B T'22)
H3(GY 5 % RS/F%)



Chapter 5

Complex structures on almost

abelian Lie algebras

We have seen in Chapter 1.2 that the existence of a complex structure on a differential
manifold or a Lie algebra allows to define the Dolbeault cohomology groups (Theorem
1.11 and Remark 1.2).

A complex structure on an homogeneous space M = G/T" is invariant if it comes
from a complex structure on the associated Lie algebra g or equivalently from a left
invariant complex structure on G ( Proposition 1.4).

Like for the de Rham cohomology, the inclusion A™* g* C A"*(9) of the exterior
algebras induces for solvmanifolds S only an inclusion in the Dolbeault cohmology
up to isomorphism Hg’* (g) Hg’*(S) [7].

Unfortunately all the theorems that (in the real case) assure us that this inclusion
is an isomorphism ( Theorems 1.7, 1.8 and 1.10 ) do not hold in general for the
Dolbeault cohmology.

We have an analogue of the Nomizu theorem in a large group of nilmanifolds (see
Theorem 6.7) and it is an open problem to prove that it is always true [41]. We will

discuss this subject in Chapter 6.3.1.

87
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There is not a similar result for solvmanifolds, but for dimension 4 we have a

result due to Hasegawa:

Theorem 5.1. [21] Every complex structure on a four dimensional solvmanifold is

nvariant.

In view of these results and with the hope that more can be developed, we are
interested in describing complex structures on almost abelian solvable Lie algebras.
In particular we find a description for a general complex structure on g = R x R”
and for the complex analogue g = C x,4 C" with dimg Imad = 1. In this case we

also find a property related to the 90-Lemma.

5.1 g=RxR»!

5.1.1 General case

Let g = R x R?"~! be an almost abelian Lie algebra, we want to study the complex

structures J on g.

The main result of this section is the following theorem:

Theorem 5.2. An almost abelian Lie algebra g = R X ody R?"=1 can admit a
2n

complez structure J, only if adx,, has at least a real eigenvalue and its complex part

is C-diagonalizable.

Proof. This theorem is direct consequence of the following lemmas and propositions

and then a corollary of Theorem 5.3. 0

Suppose that ady,, can be written in Jordan form, i.e. there exists a basis of g
such that

g=(X{,--, X} _..’X{’,...7X7I7)1P’Y11’_..7Y21m’.,,’qu7.”,yq

my? 2ng?

X2n>
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89
with
[XfaXQn] :at)(? vt:L , D
[XltyXZn] ZXf_leatXf Vi=2,---,my
D/lsaXQn] :bs}/lS—CSYQS Vs=1,---,q
D/QSa XZn] = CsYIS + bSY2s
Y2§_1,X2n] — Yajs+bsYs_, — Y5, Vi=2,--,n,
Yy, in] = Yaj-2 + s Y5y + bsYs;.
Consider J on R?"~! given by a general almost complex structure
JX} = P Xy Y Y 4l Xan
u:]-v“’vp uzl,“',q
vzl)"'ymu ’U=1,---,nu
JYp= D aiXie Yo BV X
:19 P :1,"-7q
V=1, ; My, V=1, Ny
such that J? = —Id.
Lemma 5.1. Ifnl # 0 then, by the integrability of J, i = m; and a; = ay.
Proof. 1f we consider the coefficient of X, in N (X}, X $) Vs,t we obtain
mni(ar—as) =0 i=j=1 (5.1)
mng(ae —as) —mimi =0 i#1,j=1 5.2)
i (ar —as) +minf_y —nimi =0 i#1,j#1 (5.3)

Vt such that m; > 1 we have that for s = ¢ and ¢ = 2, equation (5.2) becomes
nt = 0, then in (5.3) we have for j = 2,4 = 3 754 = 0, then by induction for

i=j+1 n5=0 Vj<m and equations (5.1) and (5.3) are satisfied.

Equation (5.3) becomes nf, 5, (a: — as) = 0, then if as # a; it implies nf,, =0

or n,,. = 0. So we can suppose to fix s = 1 and then for a; # a; we have also

nfnt =0.

O]
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Lemma 5.2. For every t,i such that n! = 0 we have

t wu,t u
IXt= ) Prli o1 %o (5.4)
Qq =0t
v<1
Moy —V>Mt—1

Proof. Let s < p be such that 75, # 0, then N(X3 , X!) =0 is equivalent Vu to

ouilar —ay) — oyl + Lf—l =0 Vov<my (5.5)

P (@t = aw) + o 1 =0 (5.6)

wg;ffl,i(at —by) — ﬂ’;éficu - ¢72J1;€rl,i + wg{;tfl,ifl =0 Vov<ng (5.7)
w%z’@t —bu) + wg{;tfl,icu - w;{)tJrZ,i + % =0 Vo<ny (5.8)
¢12L¥fu—1,i(at —by) — w;‘;fu,icu + w;‘;fu_lﬂ-_l =0 (5.9)
qzz)Qu;ztu,i(at —by) + 7/’;?;—1,1‘% + ngu,iq =0 (5.10)

where the underlined parts are those we do not have when i = 1.

Starting by equations (5.9) and (5.10) and applying then induction on v in equa-
tions (5.7) and (5.8) we obtain w;‘ffl’l = w%l =0 Vo and by induction on 7 in all
these 4 equations we have w;’ffl,i = w;ﬁi =0 Vo,i.

By a similar argument on equations (5.5) and (5.6) we have apgf =0 Vu,v such
that a, # a;.

If a,, = a4, then equations (5.5) and (5.6) become

Pyi1g =0 Vo < my (5.11)
Putr=Pui_y Vv <my, Vi>1 (5.12)
ot =0 Vi>1 (5.13)

Using equations (5.11) and (5.12) we obtain that <pi =0 Vv > i, while using
(5.13) and (5.12) we have @Zf =0 Vo such that my —i > m, —v.
In particular (5.12) implies that <p:f:f = gaqf”f_yﬂ. O
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In a similar way to the previous proof we obtain the following lemma:
Lemma 5.3. Vi, s such that nfnt # 0, ny,. # 0 we have
Pomam, ~ PomIm, =0 Vau # a1, Yo (5.14)
P, — PoimlIm, =0 Vay=ay, Vo> 1 (5.15)
vmﬂmt _7/)vmt77mé =0 YVu,v. (5.16)

Proposition 5.1. Let g = R x R?"~! be an almost abelian Lie algebra,

1. if adx,, has 2 real eigenvalues ay, and ay, of multiplicity greater then 1 such

that for every real eigenvalue a, of multiplicity greater then 1, at, # a, and

at, # ay, then g does not admit a complex structure,

2. if adx,, has two different real eigenvalues ay, and a, such that for every real

eigenvalue a, with a, = a;, we have my, > my for ¢ = 1,2, then g does not

7

admit a complex structure,

3. if adx,, has 2 different real eigenvalues with odd algebraic multiplicity, then g

does not admit a complex structure.

Proof.

1. If at, # ay and ag, # ay, then at least one of a;, and a4, is different from a;.

Suppose that a;;, # a1, then by equation (5.4) the coefficient of Xfl in J?
is (4,0?’“) that can not be —1.

2. At least one of a;, and a, is different from a;. Suppose that a; # a;.

every real eigenvalue a, such that a, = a; consider ¢ such that m, =

(X7")

For
7 — 1.

Then equation (5.13) becomes w?’tlll , = 0 and then (5.12) implies gp“tl =
0Vi < my. In particular we have go“tl =0, then JX' = ifithfl and then

J? = —Id is impossible.
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3. At least one of the two eigenvalues is different from a;, then equation (5.4)
implies that its algebraic multiplicity must be even, because it is equivalent to

J 1V — V almost complex structure with V' = (X{").

Lemma 5.4. p? =0 for any s =1,--- ,q, for any j=1,--- ,2n,.

Proof. We use induction on j:

If we consider the coefficient of Xa, in N(Y*,Y5’) Vs we obtain

—es[(p)? + (p3)%]

that can be 0 only if pf = p5 = 0.

If we now generalize to N (Y3;_,,Y5;) Vj=1,---,ns we have
2 2
P5i—1P5j—2 — P3;P3j—3 — Cs[(P3j-1)" + (p3;)7]

but by induction hypothesis it becomes —cs[(p5; 1)* + (p5;)?] that is zero only if
paj—1 = pa; = 0. m

Proposition 5.2. Let g be an almost abelian Lie algebra. If adx,, has only complex

etgenvalues, then g does not admit a complex structure.

Proof. By Lemma 5.4 we have that if adx,, has not real eigenvalues, then J? Xy, =
— X, implies that the square of the coefficient of Xy, in J X, is equal to —1 that

is impossible in R. O
Now we consider the complex blocks:

Lemma 5.5. Vs=1,---,q Vj=1,---,2n,

IV = S B ).
bu=bs

Cy—=Cs
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Proof. Let X}, such that n;, # 0, then N(X},,,Ys; ;) =0 imply YVu,v

me)

u,s u,S u,s u,s o
(ay, — bs)amj_1 + Csy, 5 — 2j_3 + 1051 =0 (5.17)

(ay — bs)a%S 2j—1 1T G 23 O‘mu,2g 3 =0 (5.18)
(bu = bs) By 4 2j-1 T Culay. 2i-1t CsBay 1 2] — Bay1 P2v-1,2j-3 3t (5.19)
52v+1 2j—1 — 0
(bu — 58)53{523'—1 - cuﬂgf—lﬂj—l + Csﬁgjzg Baw, Pav2j—3+ (5.20)
52v+2 2j—1 — 0
(bu )52711 —12j—1 T Cuﬁghi,zj—l + Csﬁgﬁi—l,m Bam—1, 9j—3 =0 (5.21)
(bu = bs) By, 2j—1 = CuBay,—1,2j-1 + CsBap, 2j — ﬁQnu,2j 3 =0 (5.22)
and N(Xj,,,Ys;) = 0 imply Vu,v
(au — bs)a;f,’;j Cst,) 23 1 % + O‘Zfl,Qj =0 (5.23)
(@ — bs)ay” 25— s, 2jo1— O‘%igj—s =0 (5.24)
(bu = bs)Bay 1,25 + CuBayaj — CsBay1.2j-1 — Bay1 Pav—1,2j—27F (5.25)
52u+1 2] — 0
(bu = bs)Baya; — cubBay 195 — CsBayaj1 — Bay. Pav2j—2F (5.26)
52v+2 2j — 0
(bu )52%—1 2j T Cubap, 2j = €sBop—19j-1 — Bapn,—12j—2 =0 (5:27)
(bu = bs)Boyy, 0 — CuBos, —19j = CsBay, 21 52%,2] =0 (5.28)

where the underlined parts are those we do not have when j = 1.

Using induction both on j and v we obtain by equations (5.17), (5.18), (5.23) and
(5.24) aZ]S =0 Vu,v, while by the other 8 equations that B:)LJS %0 only forv=1,2
and by + icy, = bs + ics. ]

This Lemma implies the following proposition
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Proposition 5.3. Let g be an almost abelian Lie algebra, if adx,, has complex

Jordan blocks of dimension greater then 1, then g does not admit a complex structure.

Proof. For j > 2 we have that Y does not appear in JQ(Yjs), then it can not be
equal to —Yjs. ]

‘We now consider also JXo,:

Proposition 5.4. Let g =R X gy R?"=1! be an almost abelian Lie algebra endowed
2n

with an almost complex structure J : g — g.

If N|g2n-14g2n-1 = 0, then J is integrable.

Proof. We consider g = h' @ b2 @ (X»,), where h? is the bigger J-invariant subspace
of g, i.e. J(h?) C b2. In particular by the previous notation in h* we have only all
the X7, such that nf, #0.

By hypothesis J?2 = —Idand VX,Y € h'@h? N(X,Y) = 0. In particular if X € h?
and Y € h! we have JX € h2 and JY = Y! +Y? 4+ yX,, where Y € b, i = 1,2,
then N(X,Y) = —y[JX, Xop] + yJ[X, X2,] that is zero only if

[JX, Xo,] — J[X, X2,] = 0. (5.29)
Using J? = —Id this is equivalent to
J[JX, Xo,] + [X, Xon] = 0. (5.30)

Suppose that J X2, = X' + X2 4+ 2X5, where X? € b, i =1,2.

‘We consider 2 cases:
Z € b2

N(Z,Xop) = [Z, Xoy] — 2[JZ, Xop) + [T Z, Xop] + 2T [Z, Xon] =
= [Z, Xon] + J[J Z, Xop] + x(J[Z, Xon] — [J Z, Xon)])

that by equations (5.29) and (5.30) is zero.
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Zehl:let JZ =2+ Z2 + 22X, where Z' € h*, i = 1,2, then
JZV =Y' 4+ Y2+ yX,, where Yie by, i =1,2 and JZ2 = Z% € 2.
We now consider the 2 hypothesis: J?Z = —Z is equivalent to
Yi42X =27
Y24 2242X2=0 (5.31)

y+z2x=0

and N(Z,Z') = 0 is equivalent to

—ylJZ, Xop] + 2[JZ1, Xop] — 2J[ 21, Xon] + yJ[Z, Xon] = 0.

By (5.31) y = —xz, then this equation becomes

z[JZ, Xop] + [JZY, Xon] — J[ZY, Xop) — 2J[Z, X2n] = 0. (5.32)

N(Z,Xa,) = [Z, Xop] — 2[JZ, Xon] + 2| X1, Xon] + 2[ X2, Xo,] +

+J[ZY, Xop] + J[Z2, Xon] + 2J[Z, Xay]

but by equation (5.29) J[Z2, Xa,] = [JZ2, Xan] = [Z2, X2,], then

= [Z, Xon|—2[J Z, Xop]+2[ XY, Xon| +J[ZY, Xop]4+2T[Z, Xop)+[2X 24+ 22, Xoy).

= _[JZ17X2n] + [Y17X2n] =

By (5.31) [2X2% 4+ Z2, Xo,] =

[_Y2; XQn} = [_le + Yl + yX2n7 XQn] =
—[JZY, Xop] — [Z, Xop]) — 2[X 1, X2,], then

= —x[JZ, Xop| + J[ZY, Xon] + 2J[Z, Xop] — [JZ, Xoy]
that by (5.32) is zero.

We summarize all the results in the following theorem.
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Theorem 5.3. Let g = R X ady, R2"=1 be an almost abelian Lie algebra endowed
with an almost complex structure J.

J is integrable if and only if the hypothesis of Propositions 5.1, 5.2 and 5.3 do not
hold and g has a basis

<X117 X’f:”lrL17.'.7Xf7...7X7€Lp7}/17'..7y2q7X2n>
[Xf,Xgn] =a X! Vit <p with not necessarily a; # as fort#s<p
[Xf,Xgn] = X! |+ a X} Vt such that my > 1, V1 <i<my

[Y2j-1, Xon] = bjY25-1 — ¢;Y2; Vj<gq
[Yaj, Xon] = ¢jY2j-1 + bjYa;.
In particular we have

Ifa=a1 JX, = Z Yy Xy + Z PrtYe + i Xon Vi<,

usp k<2q
<My

Ifa#ar JXh, =Y @i, o Xe VE<p

Ay =at
v<my

Vi<mg JX{= ) P X¢ Vt<p

Ay =0at
v<1i
My —V>Mt—1

JYzj1 = Z (Br,jYok—1 +,jYor) Vi<yq

br=b;
CKL=Cj

Yz = Z (=VkjYor—1 + BrjYor) Vji<gq
b=b;
Cr=Cj

with J? = —Id and the equations of Lemma 5.3 satisfied.

Remark 5.1. We observe that in [38, Prop. 3] this result was found for dimension
4.
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5.1.2 Bi-invariant and abelian cases
Next we consider two particular cases of complex structures.

Let g=R KadX% R?"~! be an almost abelian Lie algebra, with

g = (X1, -+, Xon) and [X;, Xon| = D ) o Cik Xk
Suppose that g admits a bi-invariant complex structure J (see Proposition 1.4).
This is a much stronger condition than integrability requested by equation (1.2),

indeed we have the following theorem:

Theorem 5.4. An almost abelian Lie algebra can not be endowed with a bi-invariant

complex structure.

Proof. ¥V i,j < 2n we have J[X;, X;] = J(0) = 0.
Suppose Vi < 2n JX; =} oo, PkiXk, then

0=[JX5, X;] = Y ol Xn, Xj] = —poni[ X, Xon) = = D wonicin Xy
k<2n k<2n
then V k < 2n o, icjp = 0, this means that V i,j,k < 2n (alsoi = j =k ori = j
ori =k or j = k) we have @a,;cj, = 0, but if g is not abelian, then there exist
J, k < 2n such that c;, # 0.
If we fix these j and k than @9, ;cji = 0 implies @2, ; = 0 Vi < 2n, then Vi < 2n
JX; = Zk<2n ¢k, X} that, as in Proposition 5.2, implies J?*Xon # —Xop. ]

Now suppose that g is endowed with an abelian complex structure J, i.e. J is an

almost complex structure on g and [JX,JY]|=[X,Y] VX,Y € g or equivalently
[JX,Y] = —[X,JY]. (5.33)

Again this is a stronger condition than integrability, then if we want to study
when g admits an abelian complex structure, we can suppose that we have the same

setting as in the statements of Proposition 5.4 and Theorem 5.3.

Theorem 5.5. An almost abelian Lie algebra g = R X ady R2"~1 can be endowed
2n

with an abelian complex structure J only if adx,, has a unique non zero eigenvalue
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a, that is real and has geometric muliplicity equal to 1.

In particular if [ X1, Xon] = aX; is the only not zero bracket, we have for i = 1,2n
JXi =) pcon PriXk with pon1 # 0 and for 1 <i <2n JX; =3 _; o, ki Xk such
that J? = —Id.

Proof. We use the notation of Proposition 5.4: if both X and Y are in h2, then also
JX,JY €h?and [JX,Y] =[X,JY] =0.

Suppose now that X € h! and Y € h?, then [X,JY] =0 and if JX = X'+ X2+
Xo, we have [JX,Y] = —z[Y, Xo,,] and then [V, X3,] = 0, i.e. [h%, Xo,] = 0. In
particular because of Lemmas 5.1, 5.2 and 5.4 this implies that we do not have real
eigenvalues a; with m; > 1 and we do not have complex eigenvalues at all.

In ! we have ant such that a; = a1 and n; # 0, then this implies that VYa; #
ai a;=0andVa;, =a; m; =1.

Now consider Z;, Z; € hl: (JZ;i, Z;] = —manZ; and [Z;, JZ;] = nja1Z;, then
equation (5.33) becomes n'Z; —n’ Z; = 0 that implies n; = n; = 0, but then J%Xy, #
— X2, 50 we have just one generator in hl, i.e. ady,, has a unique eigenvalue a not
zero, that is real and has geometric multiplicity equal to 1.

Suppose then h' = (X) with [X, Xs,] = aX, JX = X' + X? + 2X3, and
JXon = ZV + 722 + 2Xy, with X*, Z% € h?, in particular X' = uX and Z' = vX with
u,v € R.

[JX, Xop] = uaX [X,JX2,] = zaX, then equation (5.33) is satisfied for u = —z.
O

In the general case we were not able to describe the Dolbeault complex (A** g®*, 9)
associated to g without knowing specifically J, but when J is an abelian complex
structure we can.

Suppose that g'¥ is generated by {71 := X1 — iJ X1, -, Zop := Xop — iJ X0, }
and g%! by their complex conjugate elements.

The complex structure J is abelian, then we have V1 < r,s < 2n
(Zy, Zs| = [ Xy, Xs] — [T Xy, JXG] +i([ X, JX] + [T X, X]) = 0.

Similarly we get [Z,, Zs] = 0 and [Z,, Z,] = 2[ X, Xs] — 2i[X,, JXs], then
Vi<r,s<2n [Z,, Zs] = 0,
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V1i<s<2n (Z1,Z) = [Zs, Z1] = [Zan, Zs| = [Zs, Zon] = 0,
(21, Zan) = A1 +ip11)(Z1 + Z1),

(Zon, Z1) = M=1 +ip11)(Z1 + Z1),

(21, Z1) = —idpan1(Z1 + Z1),

[Zon, Zan] = iXp1,20(Z1 + Z1).

To can define the differential on g*C we need to extract a basis B from the set of
generators {21, -+ , Zon } of g+¥: we impose Z; € B, if forevery A € C  Zy, # A-Z1,
we can impose also Zs, € B, otherwise Zs, ¢ B.

Let 0 # A= Ay +iAs € C such that Z5, # A - Z;. Then

Xon — iJXop = A(X1 —iJX1) & Xop—i > ronXp=AX1—1 Y or1Xp)
k<2n k<2n

& —ip12n X1 — Z 10k om X + (1 — ipan 2n) Xop =
1<k<2n

= A((1 —ip11) X1 — Z 10k 1 Xk — ipan,1Xon)
1<k<2n
—ip1,2n = A(l —i11)
< § V1Ii<k<2n —ipgon = —iApr (5.34)

1+ip1,1 = —iApan1
By the second equation we have that if there exists 1 < k < 2n such that ¢y, 2, # 0,
then also ¢ 1 # 0 and then A € R and the first equation implies A = 0, then
V1<k<2n ¢po, = ¢r1 =0 and the sistem (5.34) becomes

—ip1,9n = (A1 +iA2)(1 —ip11) N A= wzﬁi
14+ip11 = —ipan1(A1 + iA2) Ay =

<P2n 1

Remark 5.2. @10, =0 V1<k<2n & ¢1=0 V1I<k<2n

Indeed if 0, =0 V1<k<2n, J?Xo, =—Xo, implies ¢12,0p1 =0
V1<p<2n and then p,1 =0 V1<p<2n.
Similarly if o1 =0 V1<k<2n, J>X;=—X; implies pp2, =0 V1<p<
2n.
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‘We have then two cases:

1.if V1 <k<2n ppo, =0, then Zy,, = <M> Z1, Zop, ¢ B and we can

¥2n,1
choose B ={Z1,Zy,,- -+, Zy, } with ko, -+ ,kn € {2,--+,2n — 1}.
If {w!, - ,w"} is its dual basis in g*%* then

dwl = i)\g02n71w1 At
dw* =0 Vk>1

Now we compute the Dolbeault cohomology groups H**(g):
gF=(w, -, w"w, 0" with

Ow! = cwt Nw!, withe= 1AP2n1
oWk =0 Vk>1

ok =0 Vk>1

Let o be a generator of A\P? g%, then o = w™ A--- Aw? A@IT A -+ A @,

Ifvi1<r<p i,#1, da=0 (5.35)

If 31 <r < psuch that ¢, = 1, let say ¢; = 1, then

O(W2 A Awie A@ILA - Awle) =0 and then

O =cw NA\@"ANW2 A AWP ANTE A -+ A
If31<s<gqgsuchthatjs=1, da=0 (5.36)
fV1<s<q jo#1, Oa==+cahd!#0 (5.37)

Then the space of closed (p, q)-forms is generated by elements of kind (5.35)
and (5.36).
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Now let 3 be a generator of AP?~! g*, then

0B = « implies 9B # 0, then S is of kind (5.37) and then a = 98 = cw! A@! A

WA AWP AGILA - AT,

In particular « is of kind (5.36) and then the space of exact (p,q)-forms is
generated by elements of kind (5.36).

This means that HP4(g) = (Wt A--- Aw? AWt A--- Awde) withi, #1 V1<

r < p.

2. if 31 < k < 2n such that g9, # 0, then Z5, # AZ; VA € C and we can
choose B ={Z1, Zyy, - , Zk, , Zon} with ks, -+ ,k, € {2,--+,2n — 1}.

If {w!, - ,w"} is its dual basis in g"%* then

dwl = =X(1 +ip11)w A@™ + iApon 1wt A @+
—i-)\(l — igol’l)w” Aot — i)\chznw” A @™
do* = 0 Vk>1

Again we compute the Dolbeault cohomology:

g =(w', -, w"w, -, 0" with
Ow' = iAw' A& +iBw™ A@" + Cw! A" — Cw™ A !
0wk =0 Vk>1
ok =0 VE>1

where A = Apa,1, B=—-Ap12n, C=—-X1+1ip1,).

A generator of A\P? g% is of kind o = W’ A--- Aw A@I A - A@Je, then we

have to consider 9 different cases:

o ifV1<r<p i #1,then da; = 0.
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.lfllzlabutVQSTSPa1§avb§q ir#naja#lvjb?énathen
ay = w Aw2 A AW AT A - A@de and
Oag = TAW AGY AW A AW A@IVA - ATt
+HiBWw" AGTAWR A AW ADIUA - A @t
FCW A@T AW A AW AGTLA - A @da
—CW AP AW A AW AGTE A NG A0
eifiy =1, 4 =n, bt V1<ab<gqg jo#1, jp #n, then az =
W AWZ A AW AW AU A - AT and
Jas = AW A@PAW2 A AWt AW AGITA - A @da4
FOW AD AW A AwP=T AW AT A -+ Awda £ 0
eifir=175=1butvV2<r<p i.#nandVvV2<a<gq
Ja #n, then ag = w! Aw2 A AW AQ' AGT2 A -+~ Awde and
Joy = iBW" NG AwW2 A AW ARYA@T2 A - A @4
FOW NG AW2 A~ AwP A@YA@2 A AN@Ia #£0
eifiir=1751=nbutV2<r<p i,#nandVvV2<a<gq
Ja # 1, then a5 = w! Aw2 A~ AW A" A2 A -+ Awla and
Oas = AW ADIAW2 A AwP AG" A@I2Z A - A DI+
—CW" NG ANWE A AW NG ADT2 A AT £ 0
e ifiy=1,i,=mn,j1 =1, but V2 <a<qj, #n, then ag = w’ Aw A

AW AWT AR AD2 A - A@Je and
Jog = CW' NG " AW2 A - AWP L AW AGY A2 A A G

oifz'lzl,z'p:n,jl:n,butv2§a§qja7é1,thena7:w1/\wi2/\

e AWPTT AW AT ADI2 A - Awde and
Oy = iAW NG AW A AWP P AWP AGT AT A AT

oifi1:1,j1:1,jq:n,butv2Srﬁpir#n,thenagzwl/\wiQ/\

AW AR A2 A AJ1 A" and Dag = 0
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o ifi; =1,4,=n, j1 =1, j, =n, then

ag =w AW2 A~ AwP= T AW At A@?2 A - Al Aw™ and Jag = 0

Then the space of closed (p, ¢)-forms is generated by elements of kind a1, iAay+
Cas, 1Aag + Caz, ag, ag. But

e iAoy + Cas = day — iBag + C’o/l,

e (Aag +Car = 50[3,

® (g — 1 (50&4 — iBOél),

Q- Ql

e a9 = &0ag,

then again the cohomology is given only by elements of kind 1, i.e.
HPA(g) = (W A~ Aw? AGTLA -~ Awda) withi, #1 V1<r<p.

5.2 g=R?x,qR>”

In order to study complex structures, it seems more natural consider Lie algebras of
kind g = R? Xad R?",

Because of the isomorphism C =2 R? we will call these Lie algebras complex almost
abelian Lie algebras, i.e. g =C x,q C".
We will restrict to complex almost abelian Lie algebra g such that
dimg Imad = 1. In particular this means that for every real basis {Y7,Y2} of R?
there exists k& € R such that ady, = kady,. By a simple basis change in R? we can
suppose that there exists a real basis {Xj,---, Xo,} of R?" such that

VZ:L ,2n [XZ,Yl]:[Xz,YQ]

We want to study a particular type of complex structures J on g: J = J; & Jo
with J; and Jy complex structures defined in terms of the basis (Y7, Y2, X1, -+, Xon)
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J1 . C - C
Jo: C* — C™
YI = xiYhi+xeYe X o Y X (5.38)
2 . .
Yo — —%Yl —x1Yo v k<2n PkiVk

The main result is the following theorem. As in the real case it is direct conse-

quence of the properties and lemmas below.

Theorem 5.6. Let g = Cx ,;C" be a complex almost abelian Lie algebra such that
dimg Imad = 1. If g is endowed with a complex structure J of type (5.38) then in
Jordan form with respect to the basis (Y1,Y2, X1, -+, Xo,) we have

ail 1

ai

at 1

ady, = ady, =

at
b1 C1

—C1 b1

with not necessarily a; # ay or bj +icj # by +icy, for j # k.

Proposition 5.5. Let g = C x ,;C" be a complex almost abelian Lie algebra such
that dimg Imad = 1. An almost complex structure J on g of type defined by (5.58)
1s integrable if and only if

JXi, ] = [JX;, ] =0 Vi< 2n. (5.39)
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Proof. By definition of g, for every almost complex structure of type (5.38) we have
NY1,Y2) = N(X;,X;) = 0 Vi,j, then we have to prove the proposition only
considering N (X;,Y;) Vi, j.

= J is integrable, then by equation (1.2) and [X;, Y] = [X;, Y], Vi < 2n

N(X;, Y1) = [ Xy, +J[JX;, Y]+
+(x1+ x2)(J[ X, V1] — [JX;, V1)) = 0

2
+(dae ) (7, vi] - [0, Vi) = 0

Then

L+ (x1+ x2)?

N(X;, Y1) — N(X;,Ys) = ( "

) (J[X;, V1] — [JX;,Y1]) =0

that implies J[XZ, Yl] — [JXZ, Yl] = 0.

<: Suppose that equation (5.39) holds. Since J? = —Id, it is equivalent to
[(Xi, V1] + J[JX;, Y1) =0 Vi< 2n, then

([ N(X;, Y1) = [Xi,Vi]+ J[JX;, Y]+
+(X1 + X2)(J[X17Y1] - [JXhYl]) =
— 0+ (u +x)(0) = 0

N(X;,Ye) = [X;,h]+ J[JX;, Yi]+
(e (i vy - [TX, V) =

1+x3+x1x2 _
{ 0+ (;72)(0) =0

that is that J is integrable.

Suppose that ad is given in Jordan form, i.e.

g:<X11,---,X1 "'vaa"'7X£zva117"'72217117"'aZiJv"'7Z§nqu1aY2>

my?
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with
[X Yl]:[ ]—atX{ Vi=1,---,p
[(Xiv] = [X], V2] = X{_) + auX] Vi=2--,my
[Zhyl]:[ZlaY?]_bZl CsZs Vs=1,---,q
[Zwyl] = [25,Ya] = csZ5 + b Z3
23 }:[ 5i 1, Ya] = Zoj 3+ bsZ5; | —csZs; Vj=2,---,ng
[23’ }:[ 28 ] Zoj—2+ CsZs; 1+bZ2

Consider Js give by

,t
JX} = i Xy + Z Ytz
u=1,-,p u= 7
v=1,,my v=1,-
= T z ez
u:l,-~~,p
v=1,-- My, n

We do not give the proofs of the following lemmas and propositions because they

are similar to those we proved in the real case.

Lemma 5.6. Vi,i we have

JXP= Y e X (5.40)

ay=at
v<g
Moy —V>M—1

Proposition 5.6. Let g = C x ,;C" be a complex almost abelian Lie algebra such
that dimg Imad =1,

1. if ad has a real eigenvalues a; such that a; # a, for every real eigenvalue a,,

then g does not admit a complex structure of type (5.538).

2. if ad has a real eigenvalues a; of multiplicity my > m,, for every real eigenvalue

ay, such that a, = a¢, then g does not admit a complex structure of type (5.38).

3. if ad has a real eigenvalue with odd algebraic multiplicity, then g does not admit

a complex structure of type (5.38).
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Lemma 5.7. Vs=1,--- ,q Vj=1,---,2n,

IZi = > (B 21+ 53 23).
by, =bs

Cy=Cs

Proposition 5.7. Let g = C x ,;C" be a complex almost abelian Lie algebra such
that dimg Imad = 1, if ad has complex Jordan blocks of dimension greater then 1,

then g does not admit a complex structure of type (5.38).

We summarize all the results in the following theorem.

Theorem 5.7. Let g = C x ,7C" be a complex almost abelian Lie algebra such that

dimg Imad = 1. Suppose that g is endowed with an almost complex structure J of

type (5.38).
J 1s integrable if and only if the hypothesis of Propositions 5.6 and 5.7 does not hold
and if given g = (Xll,... ,X,}ﬂ”... ,Xifj... aanp,Zl,"' ,qu,Yl,Y2> with

Xi ] = [X1,Ys] = a X} Vi=1,---,p

XLYi) = [X5Ya] = X! + anX! Vi=2- . my

Zoj_1, V1] = [Z2j—1,Ya] =bjZoj_1 —¢;Za; Vj=1,--+,q
ZQj7Y1] = [ZQj,YQ] = CjZQj_l + ijZj

o

we have

JX! = Z OV X V< p, Vi< my

Ay =0t
v<1i
My —V>Me—1

JZyj 1= (BrjZon—+wiZm) Vi<q

bp=b;
CL=Cj

J 25 = Z (=Vk,jZok—1 + BrjZor) Vij<q.

br=b;
CL=C¢Cj



108 Chapter 5. Complex structures on almost abelian Lie algebras

Now we want to describe the complex of Dolbeault forms on the dual of the

complexification of g. Suppose that g'* is generated by
{Zl = X1 - iJXl, cee ,Zgn = Xgn - iJXQn,Al = Yl - iJYl,AQ = Yé - ZJY&}

and g%! by their complex conjugate elements.
Proposition 5.5 implies that structure constants of g and g€ are basically the

same:
Lemma 5.8. If [X;,Y1] = [X;,Y2] = >, i1 Xk, then

[Zi, A1) = Z@zkzkn [Zi, As] = ZUCZka,

Ay =Y ecinZy, Zi, Ag] = ZO’CM:Z/C
k
(Zi, A1) = Z€Czkzk7 [Zi, As] = Zﬂcszk,
= Zéci,kzk, (Z;, Ag] = Za'ci,kzk
2 k

2
where € := 1 —i(x1 + x2) and 0 := 1+ (% +X1)

Proof. By Proposition 5.5 we have that [Z;,Y1] = >, ¢; . Z) and [Z;, V1] = Dok c@ka
and because of [X;,Y1] = [X;, Y2] we have the thesis. O

This Lemma implies that the study of the d0-lemma for these algebras is very
simple. We observe that we can not describe in general a basis extracted among the
generators {Z;, Z;, } of g© without knowing a particular description of the complex
structure J, but we are able to study this lemma all the same.

Suppose that B is a basis of g''¥ \ (A, A3), then B @ (A;) is a basis of g'?
because by definition of J, (A4, Ag) is generated by A;.

A basis of g©* is

(W', @b, Mi=1,n
where w' = Z¥, n = A} and Z; € B.
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By Lemma 5.8 we have the following description of the complexes (A** g®*, d)
and (A" g%, 0):

Owt = ok C@kawk AN
0wt =3, C; e An
on=0n1=0
(5.41)
dw' =37, C; gwh A7
0wt =3, C; ew® A7
on = 0n = 0.

where constants C; depends on ¢;x, J and the choice of the basis B.

Theorem 5.8. Let g = Cx ,;C" be a complex almost abelian Lie algebra such that
dimg Imad = 1. Suppose that g is endowed with a complex structure J of type (5.38),
then for N** g%* the 00-Lemma does not hold.

Proof. By equations (5.41) we have that Vo € A** g©*

da=caAn Ja=EaNq

** gC* eventually & = 0.

for some & € \™
Let o = ea; An A7 with ag € A" g% ~ (,7) such that there exists 3 €
N7 g%~ (n,7) with 8 = ea1 An (if g is not abelian there exists always such ).
Then d(BAR) = 0B A7 =cai AnATQ =« and da = Oa = 0 and we have the
hypothesis of the lemma satisfied.
If BAG# 0y Ve A" g%, then the lemma does not hold.
If there exists v € A** g®* such that 8 A7 = 0, then let consider
vE e N g® (i) Bi=BAG+B An, then 98 = (B A7) +0 = «, but
Vv 8y =&y A7, then v # 8 and the lemma does not hold. O






Chapter 6
Minimal models and formality

In this chapter we want to study minimal models and formality of nilmanifolds and
solvmanifolds.

De Rham models of nilmanifolds were completely described by Hasegawa in [20]
and we will only state its result. About solvmanifolds we will use a result of Oprea
and Tralle [36] to compute the minimal models of the almost abelian solvmanifolds
studied in Chapter 4 and to study formality and symplectic structures in the almost
abelian case [26]. In particular we will find a necessary condition to formality and a
method to define symplectic forms.

In the last part we will define Dolbeault minimal models and we will generalize
results of Cordero, Fernandez and Ugarte about the Dolbeault model of a nilpotent
Lie algebra [10]. In particular we will prove that the Dolbeault complex of a nilpotent

Lie algebra endowed with a complex structure is always minimal.

6.1 de Rham models of nilmanifolds

Let N = G/T be a nilmanifold. Nomizu theorem implies that the de Rham minimal
model of N is the model of the nilpotent Lie algebra g associated to G.

In /\0 g we have only constant functions, then H'(g) is generated by 1-forms
a such that d(a) = 0, that is d(a)(X,Y) := —a([X,Y]) = 0 VX,Y € g, then by

111
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1-forms that are null on g! = [g, g].
In particular these 1-forms are well defined on the quotient g/g' and we can

consider

k = bi(g) = dim H'(g) = dim(g/g").

g2 g'®g/g', then we can choose a basis {X1,---, Xz, -+ , X} of g, m >k >2
such that
gt = (Xpi1,- oo Xom).
Lemma 6.1.  [X;, X;] =3, a]; X, ay; € Q.
Proof. We consider the descending series
{0yc---cgfcgttcglcy:

g2 = [g,0'] C g!, then we can choose a basis of g' such that

Xt eors Xy Xt 1 oery X -

€gl\g? €g?

Ifk+1<ij<h X;,X;€gh\g? then [X;,X;] € ¢° and it is linear
combination of Xp 11, ..., X, then ¢ < 5 < p.
Otherwise if one of the index, name j, is between k + 1 and h, i.e. X; € g?, then

[X;, X;] € g® = [g,9%], and we can choose a basis of g? such that

Xh+17 '“7Xt7 Xt+17 ey Xm :

cg?\g3 €gd

We repeat this computation for every terms if the series and we always have

1< j<p. O
If {w!, - ,w™} is the dual basis of {X3, -, X,,} we have

dwy, = Z a?jwi A wj (6.1)

1<j<p

where dw, = 0 for p < k and dw, # 0 for p > k.

Equation 6.1 and Theorem 1.7 imply directly the following property.
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Proposition 6.1. If N = G/T" is nilmanifold with Lie algebra g, then the minimal
model (M, d) of N is isomorphic to (\" ¢*,d).

Also about formality in the case of nilmanifold we have a complete theory [20].
Lemma 6.2. dM™ 1 =0

Proof. {z1 2234 Tm} Vg = 1,..,m is a basis of M™~! then we have to

prove that d(xix2---Zq---xpy) = 0. But this is consequence of equation (6.1). O

Remark 6.1. This Lemma implies that M™ = (z1 - - - 2,) and then b,,(M) = 1.

Theorem 6.1. (Hasegawa) [20] Let N be a nilmanifold with minimal model M,
then M is formal if and only if N is a torus.

Proof. N is a torus if and only if its Lie algebra g is abelian, i.e. g! = 0.
Then dim(g/g') = dim(g) and k = m with k = dim H'(g) = dim H*(M). This
implies that we have to prove that M is formal if and only if m = k.

Let suppose by contradiction that M is formal for k& < m, then there exists
Y M — H*(M) that induces the identity in cohomology. We consider the restric-
tion 1! of ¥ to M'. 1 sends every closed form of M in its cohomology class, then
Vi (zy) = [14) € HY (M) VYg=1,. k.
{[zg]}g=1. k is a basis of H'(M) then, to have the identity in cohomology, M! must
be generated by x1,- -,z together with a basis {yxi1, ..., Ym} of keryl.
But then in dimension m, where there is only one generator, we have zixs-- -z, =
ary - TpYp+1 - Ym With a # 0.

yi € kerp! then Y(z129 -+ 1) = at(T1 - TpYky1 - Ym) = 0, but x129 - - - 2y is
a closed element, then ¢(z1x9 - xy,) = [x122 - - ] and then [z129 - - x4, = 0 that

by Remark 6.1 is not possible. O
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6.2 de Rham models of almost abelian solvmanifolds

Proposition 6.1 states that the Chevalley-Eilenberg complex associated to a nilpotent
Lie algebra is a minimal cdga. This property does not generalize to solvmanifolds,
then can be interesting to compute their minimal model.

In particular we will use a method developed by Oprea and Tralle, that consists
in applying a generalization of Theorem 1.14 due to Felix and Thomas to the Mostow
fibration [36].

Definition 6.1. A cdga A is of finite type if it is a finite dimensional vector space.

Theorem 6.2. [36], [37, Theorem 4.6] Let F — E — B be a fibration and let U be
the largest m1(B)-submodule of H*(F,Q) on which m(B) acts nilpotently. Suppose
that H*(F, Q) is a vector space of finite type and that B is a nilpotent space, then in
the Sullivan model of the fibration

Apr(B) Apr(E) Apr(F)

1 |

(AX,dx) —>(AN(X @Y),D) *— (\Y,dy)

the cdga homomorphism p : (A\Y,dy) — Apr(F) induces an isomorphism
p* HY(\Y.dy) - U.

We recall that by definition of Sullivan model of a fibration (Definition 1.26), we

have that in the commutative diagram of Theorem 6.2
e (AX,dx) and (A\Y,dy) are minimal cdga,

e 0 and T are quasi isomorphisms,

1 is the inclusion and ¢ is the projection,

eVre X Dr=dxrandVy €Y Dy=dyy+cx Ay withce Q,z e AXT and
y' € NY <Y, where with A\ X+ we mean all the elements in A\ X with degree
greater than 0 and with A Y<Y the subalgebra of AY generated by all the

generators prior to y with respect to an order among the basis of Y.
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If we apply this theorem to the Mostow fibration (1.1), we can construct the
minimal model (A(X @ Y), D) of the solvmanifold using the models of the base T*
and of the fibre N/T'y (actually of its submodule U).

In general, finding U is very difficult, because the action named in Theorem 6.2
is not easily described. But when the solvmanifold S = R x,R"/Z x|, Z" is almost
abelian Oprea and Tralle found an easy computation of this action (see [36]). In this

case the Sullivan model of the Mostow fibration is

N (R/Z) N (S) N (R /Z7)

g 1 |
(A(4),0) —= (A(X @Y), D) =——= (A Y, dy)
with |A| = 1. Moreover for degree reason also (A(X @Y'), D) is minimal and the

following proposition holds.

Proposition 6.2. [37, Theorem 3.8] For an almost abelian solvmanifold
S =R x,R"/Z x Z" the action of mi(R/Z) = Z on H*(R™/Z") is given by:

o restricting ¢ : R — Aut(R™) to ¢ : Z — Aut(R"),

o taking the dual automorphism @' : 7 — Aut(R"),

o cxtending to the exterior algebra N\ o' : Z — Aut(AR") as cdga map,

o taking the induced automorphism on cohomology (\ ¢*)* : Z — Aut(H*(\R")).

To simplify the notation we denote the action (/\ ¢)* with ¢.
By definition of nilpotent action we have that a form « is in U if and only if there
exists a constant & € Nt such that (¢ — Id)*(a) = 0, where Id is the identity
map. Even with Proposition 6.2 to compute U could be quite tough, fortunately the

following properties simplify the computation.

Proposition 6.3. « € U if and only if ps(a) = «, where @4 is the semisimple part
of p.

Proof. We give the proof in 4 steps:
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1. we can prove the proposition on the complexification:

let V' a generic real vector space generated by {v1,--- ,v,}, then its complexi-
fication VC is generated by elements wj := vj +ivg. Given an endomorphism
@ of V, we can extend it to the complexification, ¢C, and we can define the

unipotent spaces:
U= {veV/3Ip,(p—1d)"(v) =0}
US = {w e V®/3p, (¢* — 1d)"(w) = 0}
w € US & (¢° —1d)P(wjk) = 0 & (p — 1d)P(v)) + i(p — 1d)P(vy,) = 0

@{ ( — 1d)P(v;) = 0 @{ v el
(¢ —Id)P(vg) = 0. vy €U

ps(vj) = vj

oS (wik) = wit, & @s(v)) +ips(vy) = vj + ivy, &
(Ps(vk) = Vg

Then w € U® < ¢S (w) = w implies v € U < ¢4(v) = v.

. ¢C has a canonic form:

let ady,,,, be in Jordan form. Then we can consider ¢* on AFC™ for every k

to be associated to a matrix made of blocks

€ *

0 e/\t

Let o be a generator of A¥ C™ such that the coefficients of ¢ () belong to this
block, then ¢®(a) = eMa + 3, where 3 is combination of elements belonging
to this same block, (the * part).

Now we decompose ¢C in the unipotent and semisimple part:

1 *

©C = ¢ T where ©C is made of blocks and the semisimple

0 1
part ¢ consists of diagonal blocks of the form e MId.
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This means that @S (o) = a+ 3, where #' is combination of elements belonging
to this same block, (the x part), ¢$(a) = e*Ma and g = eMj'.
Then ¢®(a) = e*¢C(a) and in general ¢ = e MpC for some .

3.Wp (¢9P(a) = (5P ()
we use induction: for p = 2 we have
(#9)(@) = e (Mg () = M (g (@),
but 3’ is combination of elements belonging to the same block, then

= (Mo (v () = () (a).

If now suppose that the property holds for p — 1 we can prove it for p in a

similar way.

4. (¢ —1d)k(a) =0 & pS(a)=a:

let 7 be the dimension of the block to which « belong, then

(¢ = 1d)/(a) = 0.

“=": Let h > max{j, k}, then
0= (¢ —1d)"(a) = (Mo, —10)"(a) =

= [N (py —1d) + (¥ ~1d)]" (o) =

h
— h M 1)) - P (€ — Id)P(a) =
_I; (p)( Id)"?(a) (g — 1d)P ()

h—1
h
- ( )@ =10 P(a) - P TP (@) + P - 1))
p=0 p
but h > j, then the last summand is 0 and

h—1
=@ 1)@ [ X (1)@ - 10w e - 107(a)

p=0 p

then (eM —Id)(a) = 0, i.e. p$(a) = eMa = a.
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‘= pla)=a & M=1 o %) = ¢%(a), then
(€ — 10 (a) = (€ — Td)i(a) = 0.

O]

This proposition gives also a geometrical meaning to the complexification of U,
UC: let V) be the subspace of C" generated by the generators o of C" such that the
coefficients of ¢®(a) belong a block of eigenvalue ),

ie. pC(a) = eMpC(a), then

vt = D Vo A\ AT,

(i1, ik} {1 n}, X, iy t=0

Now we prove a property of U that we will use after to study formality of S.

Proposition 6.4. Let o, € H*(R™), where R™ is the n-dimensional abelian Lie
algebra, and suppose that o € U, then 8 € U if and only if a NS € U.

Proof. Due to Proposition 6.3 this proof is very simple.

=: a and # € U is equivalent to ¢s(a) = a and ¢s(3) = 3, then
ps(a N B) = ps(a) ANps(B) = anp.
<: aand a A S € U is equivalent to ps(a) = o and ps(a A ) = a A S, then

aAB=ps(ahB)=ps(a) Nps(B) = a A ps(B),

then ¢s(8) = B + 7 for some v € H*(R") such that o Ay = 0, but this is true
for every «, then v =0 and ¢s(8) = [ that is equivalent to 5 € U.

O]

Remark 6.2. U is a submodule of H*(R"), then also in U the zero class is repre-
sented only by the zero form in A*(R").
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We now compute the minimal model of the solvmanifolds we found in Chapter 4.3
using this method and then we study its formality. Unfortunately, with this method,
in some of our examples we cannot find the model uniquely, because we can have
different choices for the construction of (A(X @ Y), D). However, we can identify

the right one, knowing the cohomology groups from the previous computations.

In all the following computation we denote the degree of an element by its sub-
script and by (Mg, d) the minimal cdga (A Y, dy') and by (M, D) the minimal model
(NX@®Y),D) of S.

szgo/Fgﬂ-l

(o', a®) C H'(n)
(%) € H?(n)

U=4 (a'®) c Hn) ,
<a12 1235> C H4(n)
<a12345> H5(n)

and a minimal model for U is My = (A(z1,y1,23),0).

The minimal model of the base R/Z is (A(A),0). So the minimal model of the
solvmanifold is M = (A(A4, z1,y1, 23), D) with 2 possible choices for the differential:
D=0or DA=Dx=Dz=0, Dy = Ax.

Since we do not know the cohomology groups of this solvmanifold, we are not

able in this case to identify the right model.

G68 T,

i
7273

(o) C H?(n)
U=4 (a')c Hn)
<a12345> — H5(n)

So My = (A(x2,B3,43),d), dv = dy = 0, dB = 2% and the minimal model of the

solvmanifold is
M = (/\(A,J:g,ﬁg,yg),D), DA=Dx=Dy=0, D =x>.

To study formality we consider the cdga map
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Q@atbi
A A

— 0

that gives the identity in cohomology, then M is formal.

ngg/r%:

U:H*(Il) = MU:(/\(xlabel’pla(h)aO)

The minimal model of the solvmanifold is M = (A(A4, z1,y1, 21,p1,q1), D), but we

have 7 different choices for D:
1. D=0
2. DA=Dx=Dy=Dz=Dp=0, Dg= Ax
3. DA=Dx=Dy=Dz=0Dp= Az, Dg= Ay
4. DA=Dx=Dy=Dz=0Dp= Az, Dg= Ap
5. DA=Dx=Dy=0Dz= Ax Dp= Ay, Dqg= Az
6. DA=Dx=Dy=0Dz=Ax Dp= Az, Dq= Ap

7. DA=Dx=0Dy=Ax Dz= Ay Dp = Az, Dq= Ap

Again we do not know the cohomology groups of this solvmanifold and then we are

not able to identify the right model.

a=0
GG.lO Fﬂ'y

r T,
273




6.2. de Rham models of almost abelian solvmanifolds 121

The minimal model of the solvmanifold is M = (A(A, z1,y1, 21, t2, 83), D), but we
have 13 different choices for D. Fortunately, only the following are not isomorphic

with each other:
1. DA=Dz=Dy=Dz=Dt=0, DB =t>
2. DA=Dx=Dy=0, Dz= Ay Dt =0, D3 =t
3. DA=Dx =0, Dy= Az, Dz = Ay Dt =0, DB = t?
Computing the cohomology groups of these c.d.g.a. and comparing with those of

G 10/F,r z =, we find that (3) is the right one.

M is not formal, indeed if

v M = H*(M)
A — [4]
x = ]
y +— 0
z — 0
t — [t]
8 — 0
we have that [Az] # 0, but ¥*([4z]) = 0.
G, 11/F27r
(@?,a%) C H'(n)
(@) C H?(n)
U=4q (a') C Hn) = My = (A(z1,91,23),0),
<a1245 1345> C H4(1’1)
< 12345) (n)

\
The minimal model of the solvmanifold is M = (A(A,z1,y1, 23), D), but we have 2

different choices for D:
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2. DA=Dx =0, Dy= Az, Dz=0

Again we do not know the cohomology groups of this solvmanifold, so we can not

choose the right model.

GGll 55"

7273

(a®) C H?(n)
U={ (@) cH(n) = My =(Alz2,08,y3),d),
(12345) = H5(n) dr =dy =0, dB = z*

The minimal model of the solvmanifold is
M = (N\(A,z3,85,y3),D),  DA=Dz=Dy=0, D =a?

and it is formal as in the case of Gf ¢ /F,r zz.
Gi13” X R/T2x:

(o®,a) c H'(n)
(@'?,a) C H?(n)
(123, 0124y ¢ H3(n)
(@!?3) = H*(n)

then My = (A(z1,y1, 22, B33),d) with do = dy = dz = 0, d3 = 2% and the mini-
mal model of the solvmanifold is M = (A(u1, A, z1, 41, 22, 53), D) with 4 different

choices:
1. Du=DA=Dx=Dy=Dz=0, DB =2
2. Du=DA=Dx=Dy=0, Dz = Azy, Df3 = 2>
3. Du=DA=Dx =0, Dy= Az, Dz =0, D3 = 2°
4. Du= DA =Dx =0, Dy = Az, Dz = Azy, Dj3 = 2°

We are not able to know the right model.
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_17077" .

U <0612,0434> C Hz(tl)
<a1234> — H4(n)

then My = (A(x2,v2,83,73),d) with do = dy = 0, dB = 22, dy = y? and the
minimal model of the solvmanifold is M = (A(u1, 4, z2, y2, B3,73), D) with
Du= DA =Dz =Dy=0, D3 =22, Dy=1>

This model is formal.

U = H*(n) then My = (A(x1,v1,21,t1),0) and the minimal model of the solv-
manifold is M = (A(u1, 4, x1,91, 21, t1), D) with 4 different choices:

1. Du=DA=Dx=Dy=Dz=Dt=0
2. Du=DA=Dx=Dy=Dz=0, Dt = Ax
3. Du=DA=Dx=Dy=0, Dz = Ax, Dt = Ay
4. Du=DA=Dx =0, Dy= Azx,Dz = Ay, Dt = Az
Again we can not make a choice.
Gg_14XR/F2%:
al,a?) C Hl(n)

(a,
. <a12,a34> C HZ(n)
(
(

a134,a234> C H3(n) ’
a1234> — H4(t‘l)
then My = (A(x1,91, 22, 83),d), dv = dy = dz = 0, d = 2? and the minimal model
of the solvmanifold is M = (A(u1, 4, z1,y1, 22, f3), D) with 4 different choices:
1. Du=DA=Dx=Dy=Dz=0, DB =2

2. Du=DA=Dx=Dy=0, Dz = Azy, D = 2>
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3. Du=DA=Dx=Dz=0, Dy= Az, DB = 2*
4. Du= DA = Dx =0, Dy = Az, Dz = Azy, D3 = 22

Using the cohomology we know that the third is the right one, then because of [Ay],

M is not formal.

Giir" X R/Dopyar, (r= :_; € Q):

ifp=0 U=H*(n) = My=(\x1,y1,21,t1),0)

The minimal model of the solvmanifold is M = (A(u1, A4, x1,y1,21,t1), D), with

different choices for D, but again we are not able to choose the right one.

<0413, 0414, a23’ a24> C H2(n)
<a1234> — H4(n)

To list all the generators in My; is almost impossible in this case: to every degree

)

ifp £ 0 U:{

we need to add several generators to get the isomorphism in cohomology, but in this
way we improve the number of generators needed.

Let us denote with M™ the subalgebra of M generated by all generators of M
of degree n. Then M}, = {0}, M?, = (A(z2,y2, 22, t2),0) and for any n > 2 M
can be computed by induction (Theorem 1.12).

Then the minimal model of the solvmanifold is
M: (/\(Ul,A,MU),D),
but we can not describe D in this case.

Now we consider all the solvmanifolds of kind GE'1P" x R/T 2x with 7 € Z for

which we were able to compute the cohomology groups using Proposition 4.1.
GEP" x R/T, with 7 even and p # 0:
U= ('Y = Hin) = My=(A4,5r),d), de =0,dB = x>

then the minimal model of the solvmanifold is M = (A(u1, A, 24, 87), D),
Du= DA =Dz =0, D3 = z°.



6.2. de Rham models of almost abelian solvmanifolds 125

It is formal as in the case of G, 80/1}75,5.

G517 x R/T'z with r =2 mod 4:
(% a3ty c H?(n)
(041234> — H4(t‘l)
My = (N(x2,92,83,73),d), dz = dy = 0,dB = a*,dy = y* and using the cohomol-
ogy we find that the model of the solvmanifold is

M = (A(u1, A, 29, y253,73), D), Du= DA = Dz = Dy =0,D8 = 22, Dy = ¢°.

Again we have formality as in the case of ngo / Fﬂ’%%.

p—OandU—{ then

G15),1—7p,7" X R/Fg

er =2 mod 6:
ifp#£0 U= (a'?)=Hin) = My=(A(z4,pbr),d), dv=0,dp = 22

then the minimal model of the solvmanifold is M = (A(u1, A, 24, B7), D),
Du= DA =Dz =0, D3 = 2°.

It is formal as in the case of GF5 /T x nx.

. (a'?,0%) C H(n)
iftp=0 U= then
p { <041234> — H4(n)

My = (N(w2,2, B3,73),d), dx = dy = 0,dS = 22,dy = y? and using the cohomol-
ogy we find that the model of the solvmanifold is
M = (A(u1, A, 22,9283,%3), D), Du= DA = Dz =Dy =0,Df =2 Dy =y

Again we have formality as in the case of GE ¢ / | R z I

e =3 mod 6: p= 0 and we have the same computation of the case t = § with
r =2 mod 4.

e r =4 mod 6: we have the same computation of the case »r =2 mod 6.
GO XR/FQTW withr=1,k=3o0orr=3k=8orr=>5k=12:

tpL0 U= <a13 4 a247a14 _ a23> C H2(n)
<a1234> — H4(1‘1)
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<O[127 old &+ ()[247 ald — a237 a34> C H2(n)
<a1234> — H4(n)

The computation of the minimal model My is complicated, in particular we have

i

ifp=20 U:{

no generators in degree 1 and
M = (A(z,9),0) for p # 0,

M2, = (N(x,y,2,t),0) for p =0,
and for any n > 2 M7, can be computed by induction (Theorem 1.12).
In both cases we have M = (A(u1, A, My), D), Du= DA =0, D|nm, =d.

To study formality of this solvmanifold we use the following theorem.

Theorem 6.3. [15] Let M be a connected and orientable compact differentiable man-

ifold of dimension 2n, or 2n — 1. Then M is formal if and only if is (n — 1)-formal.

We can apply this theorem to the c.d.g.a. My because the manifold M in the
hypothesis can be replaced by a real c.d.g.a. A with the following properties:

o H'(A) =R;
e for any i > dim(A) H(A) = 0;
o HIMM)=i(A) = HY(A) (Poincaré duality).

My has dimension 4 and it has these three characteristics, so to prove that it
is formal we must only prove that it is 1-formal. In particular in this case My is
simply connected because U! = {0}, so it is 1-formal and then the theorem states
that it is always formal.

Now we use formality of (My, d) to study formality of the model of the solvman-
ifold (M, D): since M has differential D such that D|rq, = d, then it is obviously

formal.

U = H*(n) then we have the same computation of GY ;, with ¢ = 27, and again

we can not make a choice.

G515 X R/Fg T 2w

727 3
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- (@12, + a21, o — a2, 03%) C H2(n)
<a1234> — H4(n) ’
then U has the same model of the case last case of G5 17.

Again we have different choices for the model of the solvmanifold, but the right

one is

M = (/\(Ul,A,MU),D), Du:DA:Dl‘:Dy:(), Dz:Ax, Dt:Ay,
Dlpmy =dVn>2.

Again it is not formal.

Ggﬁ X RS/F%:
U = H*(n), then My = (A(z1,11),0).
The minimal model of the solvmanifold is M = (A(wy,v1,u1, A, 21,11), D),

but we can not describe D.

U=(a?)=H*n) = My=(Az2,05),d), dv=0,df = 2?

then the minimal model of the solvmanifold is M = (A (w1, v1,u1, A, z2, 83), D),
Dw = Dv=Du=DA= Dz =0, D3 = 2? and it is formal.

6.2.1 Formality and symplectic structures on almost abelian solv-
manifolds

The previous computations shows that this method can be used to find the minimal
model of an almost abelian solvmanifold if we know its cohomology groups.

In [36] the aim of this method was to find the cohmology groups of an al-
most abelian solvmanifold by computing its minimal model and then its cohomology

groups that by Definition 1.19 are isomorphic to those of the solvmanifold.
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Because of the different possible choices that we usually have to compute the
model of the solvmanifold, we want to use this idea to find properties of the solv-

manifold related to formality and symplectic structures.

Proposition 6.5. (My,d) is always formal.

Proof. We use the definition of formality given in Definition 1.21: My = AY with
Y=C&N, d(C) =0 and d is injective on N.

We observe that Proposition 6.4 implies that if m € My such that dm # 0, then
p(m) = 0 with p the cdga homomorphism that defines the minimal model. Indeed
we never need to kill a class that is sent by p* in a product in H*(R™) that is not
in U, we only have to consider products that are zero in H*(R™) and by Remark 6.2
that are zero in \"(R").

In particular this means that for every generator y € N we have p(y) = 0.
Suppose that there exists a closed element n in My that liesin I = AV - N, then
dn=0and n=3,nt - n) with at least one of the two factors in N. If for example
nb € N, then p(n}) = 0 and so p(n) = >, p(n}) - p(ny) = 0. This implies that
p*([n]) = 0, then to keep the isomorphism in cohomology also [n] = 0, i.e. n is exact.

Then by Definition 1.21 (My, d) is formal. O

Remark 6.3. We observe that as in [44] Sullivan used that the product of harmonic
forms is harmonic to prove the formality of a Riemannian manifold [14, 24], we used

only Proposition 6.4 to prove that My is formal.

Now consider the minimal model (M, D) of the solvmanifold S.
By definition DA = 0 and
dx or
V€Y Dz = ( . (6.2)
dr +yA withy € AY<?
A generic element in (M, D) has form s = = + yA with z,y € My, then s is
closed if and only if Dz 4+ Dy - A = 0.
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Suppose Dx = dz + 2’ A and Dy = dy + y'A (2’ and ' can be also zero and we will

use this notation from now on), then

dr =0
Ds=dz + (' +dy)A =0 if and only if { " (6.3)
' +dy=0.
If s is also exact, i.e. there exists r = p 4+ qA with p and ¢ € My such that Dr = s,
=d
then v /p
y=p +dq

Definition 6.2. A cdga A is of k-finite type if Vi < k A’ is a finite dimensional

vector space.

Remark 6.4. Obviously M is of k-finite type if and only if My is of k-finite type.

We can now prove results about the formality:

Theorem 6.4. If M is of k-finite type and S is k-formal then
ker Dj|p, = kerd; Vi <k,
where with d; we mean d‘M}'J'

Proof. Suppose that for some i < k ker D;|rq, € kerd;, then there exists z € ./\/l@
such that dz = 0, but Dz # 0. This means for (6.2) that Dx = yA with 0 # y €
M5", then D(Az) =0 and x € N, so Az € I, is closed.

If it is not exact, then M is not k-formal, otherwise there exists an element of
degree i ! € M>* such that Dz! = Az, then 2' € N’ and again Az' € I}, is closed.
If it is not exact M is not k-formal, otherwise there exists another element of degree
i 22 € M>®>% guch that Dz? = Az! and so on, but M is of k-finite type, then
exists p € N such that D(AzP) = 0 not exact and so M is not k-formal.

O]
We also have a sufficient condition to formality:

Proposition 6.6. If Dijr, =d; Vi < k, then S is k-formal.
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Proof. If Di|pm, = d; Vi < k, then M’ = M @ M7 A (A) Vi < k, then by
Proposition 6.5 M is k-formal. O

Remark 6.5. We observe that in all the examples above if D;|rq,, # d; for some i,
then in particular ker D;|aq, € kerd;, then with these two results we have a good

=

description of formality of almost abelian solvmanifolds.

Example 6.1. Let consider the almost abelian Lie algebra g = R x ady R” of
8
dimension 8 defined by

01000 0 O

001 00 0 O

00000 0O O

adx,=1 0 0 0 p 1 0 0 p # 0.

000 0p 0 O

00000 —p 1

00000 0 —p

The map on the Lie group G is
1 ¢t 42 0 0 0 0
0 1 ¢ 0 0 0 0
00 1 0 0 0 0
exp(tadx,)=| 0 0 0 et tePt 0 0 ,

0 0 O ePt 0 0
00 0 O 0 e Pt te Pt
00 0 O 0 0 e P

then choosing p € R and t € R such that el + e Pt € 7 we can prove that its
characteristic polynomial has integer coefficients and that this matrix is conjugate
to the integer matrix A (see Chapter 4). Then by Proposition 1.3 I'; is a lattice and
S = G/TI'; is an almost abelian solvmanifold.

G is completely solvable, then by Hattori theorem H*(S) = H*(g). In particular
we have H(S) = (a?,a®).
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To study the formality of .S we do not need to compute all the module U or the
minimal model M;:

we just compute U using Proposition 6.3:

ps(a) = o,
@8(a2) = a2’
ps(@®) = o,
@s(a4) = epta4’
QOS(C“E)) = epta5’
pula®) = P
ps(a’) = ePlal.

Then U! = (al, a3, a3) and in particular M, = (A(z, v, 2),0), but H1(S) = (a3, a®),
then
M= (/\(A,:c,y,z),D) with DA = Dz =0,Dy = zA, Dz = yA

and so for Theorem 6.4 S is not 1-formal.

Now we analyse how this method allows us to find symplectic structures on almost
abelian solvmanifolds.

Suppose that S = R x R?"~1/7Z x Z?"~! has dimension 2n and is endowed with
a symplectic structure w. We denote with {a,---,a2" 1} the basis of A\'(R2*"1)
and with {a?"} the basis of A'(R).

The concept of symplectic structure can be transferred in odd dimension.

Definition 6.3. If M is a (2n — 1)-dimensional manifold a co-symplectic structure
on M is a couple (F,n) where F is a 2-form, 7 is a 1-form on M, both are closed and
Fr=tAn#£0.

For a complete study of co-symplectic structures see [6].

We call a co-symplectic structure on U a co-symplectic structure (F,7n) on R?n~!
such that [F],[n] € U. Observe that every form on R?"~! is closed, so the only

necessary condition to get this structure is the non-degeneracy.
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Let (F,n) be a co-symplectic structure on U. This means that

F = Z aijozij, n = Z bra”

1<i<j<2n—1 1<k<2n—1
[F],[n] €U and F* ' An #0.

Now consider the minimal model M of S. If A is the generator we add to U from
A’ (R), then with the notation of Theorem 6.2 we have o(A4) = a?" and then also

M = AY(9)
A = o
My = p(My) C AR
[F],[n] € U then there exist € M% and y € M}, such that p*([z]) = [F] and

p*([y]) = [n]-
But in U ¢ H*(R?"~!) we do not have exact forms. So p(z) = F and p(y) = n.

Therefore dz = dy = 0 and if s := 2 +yA € M? Ds = Dz = 2'A.

n

s"=(r+yA)" = Z <n> TV TPYP AP = 2" 4 na" iy A
p
p=0

because both y and A have odd degree and then their powers are 0. But

p(x"1y) = (p(x))"'p(y) = F" " An #£0,

then 2" 'y # 0 in My and so 2" 'yA # 0 in M.
2" € My, then 2" # —nz""lyA € M, then s" # 0 in M.
In particular w := 7(s) = 7(z) + 7(y)7(A) = F + n A a®" is a 2-form on S and

W =71(s") = (1(2))" + n(r(x)" ' (y)T(A) = F" + nF" 1 AnAa®™.

F™ = 0 because it is in A(al, - ,a?*~1) and F"~! An # 0 by hypothesis, then
also w™ = nF" "L AnAa® £0.
Since dw = 7(Ds) by Definition 1.18, if 2’ = 0, w is closed and we have a symplectic

structure on S.

We have then proved the following proposition:
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Proposition 6.7. If ker Da|rq, = kerdy and there exists a co-symplectic structure

F on U, then there exists a symplectic structure w := F +n A o™ on S.
(Fyn ; ymp n

Example 6.2. Let consider S = G&¢39/T 2n studied in Chapter 4.

In this case the generic co-symplectic structure on U is given by

5

F = 0120412 + a13a13 + a23a23 + a45a4 and n = blal + b2a2 + b30<3

with F? A n#0 & 2a45(a12b3 — aigbs + algbl) £ 0.
Let z € M? and y € M{; such that 7(z) = F and 7(y) = 1, then
T = a12:2Y + a13zx + a23yx + CL45t

and y = b1z + boy + b3x.
The element s := = + yA € M? is closed if and only if

¥ = a1pzr + ajzyr =0

that is if and only if a1o = a13 = 0.
Then if we consider F = as3a2® + assa®® and n = bial + bya? + bz with

b1 # 0, ass3 # 0, ags # 0, we have a symplectic structure on S given by w := F+nAaS.

Remark 6.6. We observe that the symplectic form found in this example is invariant
and then listed in Appendix C, but in general this method allows us to find also non-

invariant symplectic structures.

6.3 Dolbeault models of Lie algebras

We want to modify the concept of cdga and its minimal models to associate them to
Dolbeault cohomology. In this way we can define minimality and formality also in

the Dolbeault cohomology case.
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Definition 6.4. Let K ba a field of characteristic 0. A bigraded K-vector space is a
family of K-vector spaces A = {AP9}, ;>0. An element of A has degree (p,q) if it
belongs to AP1.

Definition 6.5. A commutative differential bigraded K-algebra, cdba, (A,d) is a
bigraded K-vector space A together with a multiplication

.Ap’q ®Ara5 — AP+T7Q+5

that is associative, with unit 1 € A%? and commutative in the graded sense, i.e.
Ya € AP9b € A a-b = (—1)PT)+9)p . o and with a differential of bidegree
(0,1) d : AP9 — AP4+1 guch that d? = 0 and

Va € AP be A d(a-b) =da-b+ (—1)" - db. (6.4)

We observe that given a cdba (A,d) also its cohomology algebra is a cdba
(H**(A),0).

Example 6.3. The Dolbeault complex of complex manifolds and Lie algebras en-

dowed with a complex structure are C-cdba’s.

Definition 6.6. A cdba morphism f : (A,d) — (B,d) is a family of homomorphisms
[ AP? — BP9 such that df = fd and f(a-b) = f(a)- f(b).

Suppose that a cdba (A**, d) is endowed also with another differential of bide-
gree (1,0)
dy : AP — APTLT

then (A, d = dy +da) is a cdga and for these kind of cdba’s (A**, d;, d2) we can state
the 0-Lemma (Lemma 1.1).

We can now state a rational homotopy version of Theorem 1.13:

Theorem 6.5. If for the cdba (A,d1,ds) the 00-Lemma holds, then (A, dy + dg) is

a formal cdga.
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We consider now minimality of cdba’s:

Definition 6.7. [10] A cdba (M**,d) is minimal if it is free commutative, i.e.
M** = \"*V with V bigraded vector space, and there exist a ordered basis {x,}
of V such that dz, € A™"(25)s<o and the total degree is respected, |zg| < |z4].

A minimal model of the cdba (A**,d) is a minimal cdba (M**,d) together with a
cdba quasi-isomorphism ¢ : (M, d) — (A, d).

Observe that obviously if the cdba is minimal, it is itself its minimal model with

a quasi-isomorphism the identity map.

It is well known that for every path connected cdga there exists a minimal model
(Theorem 1.12), but it is not true in general for cdba, i.e. in the bigraded case.
The problem comes from the fact that d has bidegree (0, 1), indeed if we compute
a cdba minimal model following the usual construction of models for cdga in some
cases we cannot proceed.

We recall how it goes for cdga’s: to compute a cdga minimal model M 4 we start
considering the first cohomology group of the cdga A that is not trivial H' =
([a1], -+ ,[ak]) and taking a number of generators of that degree equal to the di-

mension of the group, Mi‘ = A(x1,--- ,x) with de; =0Vj=1---k and

My — A
rj — aj
Then we consider all the products and powers of these generators and we check the
cohomology classes that they generate. If these classes are sent by ¥* in classes not
zero in H*(A), then we have a quasi isomorphism, otherwise we have to “kill” these
classes to maintain the cohomology isomorphism and then we add new generators to
make these elements exact.
We continue considering the following not zero cohomology group and adding the
number of generators in M 4 needed to have the cohomology isomorphism also in
this dimension and then again we check powers and products and so on for every

cohomology group.

If now we apply the same idea to compute the minimal model M of a cdba A

the only obstruction appear when we have to “kill” a cohomology class in HP*(M).
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Indeed in this case we have a closed element x, g € M and we want to make it exact,
but we cannot add y € M such that dy = x because of the degree of x, since d has
bidegree (0, 1), so we cannot have the cohomology isomorphism and then we cannot
have a minimal model.

In particular this can happen in the computation of the Dolbeault minimal model
of a complex manifold M or a Lie algebra g endowed with a complex structure J.
Suppose to have a closed generator x, o € M with p even, then for every power r we
have total degree |z} ;| = rp even and then zj, # 0. But if )(z) = a € AN (g%,
then must exist a power r such that o” = 0 and then we have to “kill” [z} o] but it

is not possible.

Example 6.4. Let g =R X ad R?"~1 with
2n
a 0 0 0 0
0 b1 C1 0 0
0 —C1 b1 0 0 0
adx% =
0 O 0o . 0 0
0 0 0 0 b2n72 Con—2
0 0 0 0 —copno bopyo

and b; + ic; # by + icy, for j # k.
Then by Theorem 5.3 a complex structure J is given by Vj =1,--- ,2n — 2

—1 = 2
JX1 = o1 Xh +onXon, JYoj1 =Y, JYo; = Yo, 1, JXo, = T%Xl —p1Xop

n

A basis for 91,0 is {Xl — i((ple + (anQn), Y'Qj_l — iYQj}j:l’...’Qn_Q, then if

1,0%

{n, wj}jzl,... 2n—2 is the dual basis of g we have in particular that

b = b = o1 b)) s
2¢n,
Then

©1(bj +br) — (¢ + cx) +i(w1(ej + cx) + (b + br))

wl AP AT
20n,

AW Awh) =

that for by = —b; and ¢, = —c¢; is zero.
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In this case to compute the Dolbeault minimal model we would need to add a
generator xg with ¥(z) = w’/ A w* which is impossible. Thus the model does not

exists.

6.3.1 Minimality and Formality of nilpotent Lie algebras

Next we consider nilpotent Lie algebras. We already observed in Chapter 5 that the
properties about the isomorphism between the de Rham cohomology of a solvmani-
fold and its invariant one do not hold in general for the Dolbeault cohomology.

The only theorem that has a complex version is the Nomizu theorem [7, 9, 41]:
Definition 6.8. [41] Let g be a nilpotent Lie algebra.
o A rational structure for g is a subalgebra gg defined over the rational such that
go®R=g.

e A complex structure J on g is a rational complex structure if it maps gg into
itself.

Theorem 6.6. [7, Theorem 2] Let N = G/T be a nilmanifold endowed with an

invariant complex structure J. If J is rational then Hg’*(g) = Hg’* (N).
There are few examples of nilpotent Lie algebras that are not endowed with a
rational complex structure, moreover we have a more general result.

Theorem 6.7. [/1, Theorem 1.10] Let N = G/T" be a nilmanifold endowed with an

invariant complex structure J. The inclusion i : Hy"(g) — Hy"(N) is an isomor-

phism if

e the complex structure J is bi-invariant, G is a complex Lie group and N is

complex parallelizable [}2];
e the complex manifold N is an iterated principal holomorphic torus bundle [9];
e the complex structure J is rational [7, Theorem 2J;

e the complex structure J is abelian [7];
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e g admits a torus bundle series for J compatible with the rational structure
induced by T'.

Moreover, there is a dense open subset U of the space of all invariant complex

structures on N such that i is an isomorphism for all J € U [7, Theorem 1].

Because of these theorems the Dolbeult minimal model of a nilpotent Lie algebra
is often also the Dolbeault model of a nilmanifold and then the study of these models

is quite interesting.
Suppose that g is a nilpotent Lie algebra, then the following theorem holds [43]:

Theorem 6.8. A nilpotent Lie algebra g of dimension n admits a complex structure if

and only if g has a basis (W', ,w", @', -+ ,@") such that dw' € I(w', -+, wi™1).

1

In particular this means that there exist a basis (w!, - - ,w™) of gh%*

and constants
a;k, b;k € C such that

dw) = Y [ A(dt + e

1<j<i, 1<k<n

or equivalently

I(w') = Y 1<j<i, 1<k<n b;kwj AP

(@' = dw' = D 1<j<i, 1<k<n aj’k@j AP

Definition 6.9. [10] A complex structure on a nilpotent Lie algebra is nilpotent if

there exist a basis (w!, -+ ,w") of g"%* such that
dw' € /\(wl,--- Wil ol oo @),

In particular this means that Vk > afy = bl = 0 and then (A" g©*,0) is a

minimal cdba with both the ordered basis (w!,@!, -+ ,w", &") and

((D R ’a]n’wl’... 7&)”)'
Particular cases of nilpotent complex structures are the bi-invariant complex
structures, i.e. b;k = 0 also for £ < ¢ and the abelian complex structures, i.e.

a;k = 0 also for k < 3.
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In [10] the authors proved that if a nilpotent Lie algebra g is endowed with a
nilpotent complex structure, then the ecdba (A** g**, d) is minimal, similarly to the

de Rham case.

We want to improve this result: if we ask that only a;'.k =0 Vk > 1, then again

we get minimality with the order (@!,---,@" w!,---,w") and more in general if
there exist an order i; < --- < i, for which the cdga (A" g®!*,d) is minimal with
the ordered basis (_ik)kﬂ n» then considering the basis (@i, @ wh - W)

we get minimality for the cdba (A** g®*,d). This idea can be further generalized.

Theorem 6.9. Let (g,J) be a nilpotent Lie algebra with complex structure J, then

there exists an ordered basis for which the cdba (\** g**,0) is minimal.

Proof. Because of Theorem 6.8 we know that if there exists a basis (7',---,7") of
g% for which (A* g®'*,9) is a minimal cdga, then (A** g**,d) is a minimal cdba
with respect to the basis (7', - , 7% w!, -+ ,w") where (w!,---,w") is the basis of

g"%* used in Theorem 6.8.

We recall that on a nilpotent Lie algebra g we can always find a basis (X1, -+, X,)
such that the structure constants are [X;, X;] = > . <j<p c? X, or equivalently a basis
(al,---,a™) of g* such that da? = — ZK]@CP a¥. In partlcular this implies that
if g is a nilpotent Lie algebra, then (A" g*,d) is a minimal cdga [20] (Section 6.1).

0,1x

Then we need to prove that g is nilpotent.

From Theorem 6.8 we know that 9(w?) = D 1<j<i, 1<k<n a;lkwf A&k
Let consider the Lie algebra b such that in the cdga (A" b*,d) we have

do' = Z dékaj Ao
1<j<i, 1<k<n
for a given basis (al,---,a™) of b*, then the cdga’s (A" g®'*,9) and (A\*b*,d) are
isomorphic.
dat = D o1<j<i, 1<k<n &;kaj/\ak is equivalent to [Xy, X;] = —[X;, Xi| = >_, dé.kXi

for the dual basis (X1, -+, X,) of h. Then the endomorphism adx, of h is associated
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to the strictly triangular matrix

0
2
ayy,
3
Aok
n n n
ayy g, o Ay_q O

that is that ady, is a nilpotent endomorphism for every k.
Theorem 1.2 implies then that b is a nilpotent Lie algebra and so (A* b*,d) and

(A" ¢%1*,0) are minimal cdga’s. O

Remark 6.7. Because of Theorems 6.6 and 6.7 we have that if N is a complex
nilmanifold, there exist .J invariant complex structure over N such that (A** g&*,d)

is the Dolbeault minimal model of (N, J).

Example 6.5.

dim 6: The only not nilpotent complex structure on a Nilpotent Lie algebra of dimen-

sion 6 is given by the following basis of g0* [48]

dwl =0

dwy = Ewy A wsg + w1 A ws

dws = Awy N w1 + ibwy A Wy — ibEWQ AN
where A, E € C with |[E| =1 and b€ R\ {0}.

In particular we have

Owy =0

5w2 = w1 A W3

Ows = Awi A @1 + ibwi A @y — ibEws A @0y
0 =0

Owe = Ein A i3

Jiws =0
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dim &:

dim 10:

Then taking the order (@', @?%, %, w', w?, w?) the cdba (A" g&*, 0) is minimal.

[41] Let (A* g*,d) be the 8-dimensional cdga with

da' =0, da? =0, do® = 0, da* = 0, da® = 0, da’® = o'?, da” = o'6 + o?

do® = a?® — o' and consider the complex structure J given by

Jal = o2 Ja =ab Ja =a’ Ja ab.

*

Then J is not nllpotent and the basis of g~* is given by

([ Owy =0
5w2 = w1 A\ W2
5(,03 = %wl/\wl
0wy =0
0w =0
Oy =0
diws =0
Ows =0

then taking the order (0!, @2, @3, 0%, w!, w?, w3, w*) we get minimality.

[41] Let (A™ g*,d) be the 10-dimensional cdga with

da' =0, do? =0, do® =0, da* =0, do® = 0, da® = 0, da” = 0,
do® = a'® + a6 4+ a? + 030, da® = a?® + a6 4 o + a9,

da'? = a'® + 038 + a2 + o* and consider the complex structure J

given by Ja!' = a2, Jo? = at, Ja® = a7, Jab = a0, Jab = o’.
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Then J is not nilpotent and the basis of g* is given by
( 0wy =0
Owy =0
Ows =0
Owy = Jw1 A W3 + 3w A @5 + w2 A s
Ows = —2wy A @y + Lwy A1 — Swa A @y + Swy Ao
0w =0
Oy =0
w3 =0
Oy = 301 A W3 + 5@1 A W5 + 52 A s
0w5 =0
then taking the order (0!, @2, @3, &% @*, w!, w?, w3, w*, w®) we get minimality.

The definition of formality on cdba is equal to the definition given on cdga:

Definition 6.10. A cdba (A**,d) is formal if there exist a cdba morphism
that induces the identity on cohomology.

For the real case Hasegawa proved that a nilpotent Lie algebra g is formal if and
only if it is abelian (Theorem 6.1).

The proof is based on the minimality of (A" g*,d), then we can follow the same
idea also for (A™* g©*,d).

In particular if J is nilpotent a proof can be found in [10].
Lemma 6.3. (A" ¢**) =0.

Proof. Minimality implies that the 0 of a generator is always combination of wedge
of two prior generators, but in every element of A™" ! gC* all but one generator
appear, i.e. it is generated by elements of kind W' A+ - AW A@I A ADEA - AR,
then we always have wedge of a generator with itself in the 0 and then it must be

Zero. O
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Remark 6.8. Lemma 6.3 implies in particular that ™" = 1.
Theorem 6.10. (A\"* g%, ) is formal if and only if g is abelian.

Proof. Suppose by contradiction that g is not abelian and (A** g®*,d) is formal,
then H0(g®) @ H%(g®) C ¢©*, but there exists
¢ N* g — H**(g%*) such that ¢* = Id.

Let {a',---,a*} and {B',---, 8"} be respectively a basis of H'(g®*) and
H%'(g®) and let ! be P|gex, then if {41, 4?"=h=k} is a basis of ker ! we have

wl . g(C* — Hl,O(g(C*) @ HO,l(g(C*)
ol = [af]
B[]
¥ = 0

o Cx,

Now consider A\™" g®*: by definition of cdba morphism we have 1! (al)--- ! (o) -
YH(BY) - (BE) -t (Y (PR = et A At ABE A ABE AT A
o APTRERY = A AP ABY A A BE AN A AR but o (4F) = 0,
then [a* A--- Al ABEA - ABF AL A Aq2=h=K] = 0 that is a contradiction of
Lemma 6.3. O

Corollary 6.1. Let N = G/T be a nilmanifold endowed with an invariant complex

structure J such that Hg’* (9) = Hg’*(N), then (N, J) is formal if and only if it is a

complex torus.






Appendix A

Six dimensional solvable (non

nilpotent) unimodular Lie

algebras

Algebra Structure equations
gor e do! = —a'%, da? = —aa®5, da® = —baS
0<lel <l <ol <lal <1, do* = —ca®®, da® = —ea®®, da® =0
a+b+ct+e=-1
gese dot = —aa'® — % da? = —aa®S, da® = —a®®,
0<lel <le| <1, do* = —ca®®, da® = —ea®®, da® =0

2a+c+e=-1

g;;;lv“ dol = %ﬂalﬁ —a® da? = %ﬂa% — o,
0<lal <1 do® = aTHa%, da* = —af,
da® = —ac®®, da® =0
g(;% do' = 1a'® — o da? = 10?0 — o,
da?® = ia% — a8 dat = ia‘m, da® = —a®®, da® =0
gt dot = —at®, da? = —aa®® — a%%, da® = —aa®S,
a<b, a+b=-3 do* = —ba'® — %%, da® = —ba®%, dab =0
2
gg";éa da! = —aa'® — a?®, da? = —aa®® — %%, da® = —aa®S,
a#0 dot = %aoc46 — o’ da® = %aoz567do¢6 =0
9255’“’ dot = —aa?®, do? = —ba®®, do® = —ca®,
0 <l <4 < lal, da* = —pa®® — 5%, da® = a®® — pa®®, da® =0
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a+b+c+2p=0

b
95’9 da! = —aat®, da? = —ba?® — a6, da® = —ba®S,
a#0,a+2b+2p=0 da* = —pa*® — %% do® = o — pa’S,da’ =0
a,—3a
00 do' = —aa'® — 0%, da?® = —aa® — o, do® = —aa®,
dat = %aoz46 — a8, do® =o't + %aof’ﬁ7 da® =0
gg e da' = —aa'®, da? = —pa®® — o, da® = o — pa®C,
as#0,a+2p+2¢=0 do* = —qa*® — sa®%, da® = sa?® — ¢qa®®, da® =0
—ap, 1 16 2 26 36 16
0o 157 da’ = 4pa’®, da” = —pa®™ — o™ — ™,
p#0 do® = a2 — pa®® — a5, da* = —pa*® — o,
da® = a* — pa®®, da® =0
bh
0615 da' = —a®® — (a +b)a'%, do?® = —aa®®, do® = —ba®,
a#0,2a+2b+h=-1 do* = —a®®, do® = —ha®®, da® =0
b
gt da' = —a® — (a + b)a'® — o, da® = —aa®,
a#0, a+b=-1 do® = —ba®®) da'* = —a*®, da® = —(a +b)a’®, da® =0
96_&5 do! = —a?, da? = —a?%, da® = 3",
da = —a?® — a*. da® = —a% 4+ a5, da® =0
T
—1o
U6.7 dat = —a® + o', da® = 1a°, do® =0,
da* = —a®%, da® = —a®®, da® =0
—2a—
618 3 da' = —a®* — (14 a)a'®, do® = —aa®®, da® = —a®",
a#—3 do* = —0®® — %%, da® = (2a + 3)a®®, da® =0
—z
0o da' = —a2® + %alﬁ — 0™ da? = %a267 do® = —a,
do* = —a®6 — a8, da® = %a56, da® =0
96.20 da! = —a® —a'® —a%% da? =0, da® = —a®°,
do* = —a®% — %, da® = 30°%, da® =0
96.21 da! = —a®® — 240, da® = —aa?®, da® = —a?® — aa®C,
a#—1 do* = =%, do® = (da+1)a®%, da® =0
T
-5 1 23, 1,16 56 2 _ 1,26
G6.92 do’ = —a™ + 30° —a”, do” = ga™,
dod = —a2 + %aas’ do® = —a*S,
da® = %a‘%, da® =0
=7
U623 " do! = —a?® — 2aa!® — a8, do® = —aa®S,
as =0 da® = —a?® — aa®®, dat* = —a®® — aa’d,
da® = 56055, da® =0
b,—1-b
U625 da' = —a®® +ba'®, da? = —a?®, da® = (1 +b)a’®,
da* = —ba*S, da® = —a* — ba®%, da® =0
g5 b doa' = —a® — o™, da® = —a®, da® = o™,
do* =0, da® = —a®, da® =0
=2
96,2’;’*’ da' = —a®® +ba'®, do® = 2ba*®, da® = —ba®®,
b#0 da* = —a® — ba*S, da® = —a* — b8, da® =0
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05 2 da' = —a® —2a'%, da® = —a®, da® = —a® — o,
da* = 22", da® = —a’% +2a°°, da® =0
;33’1”5 dat = —a?® + bal® — a5, da? = 200°%°, do® = —ba®S,
be =0 da* = —a®% — ba*®, do® = —a* — ba®®, da® =0
gt e da' = —a?® — 200" — ea*®, da? = —aa® + o,
a>—1theh=0 do® = —a*® — aa®®, da'* = —(2a + h)a™®,
do® = (6a + h)a®®, da® =0
glsoe do’ = —a® — 240’ — o°, da® = —aa® + o,
a>0 da® = —a?% — 40?0, dot = 6aa’®,
da® = —2a0”®, dab =0
glges dat = —a?® — 200'% — 0%, do? = —aa®® + o3F,
ca =0 da® = —a?® — aa®%, dat = 200, do® = 2a0”®, da® =0
giobe dat = —a?®® — (a + b)a'%, do? = —aa®S, da® = —baC,
a+b+c=0,a2+b2#0 dot = —ca’® + o, do® = —a'® — ca®®, da® =0
e dat = —a?® — 2009, do? = —aa®®, do® = —a®® — aa®
do* = 2a0* 4+ o, do® = —a*® + 200, da® =0
g tns da' = —a?® — 2008, do? = —aa®® + %%, do® = —a®® — aa®,
s#0 da* = 2a0" 4 50°®, da® = —sa™® + 200”8, do® =0
0% a5 da' = —a®, do? = o™, da® = —a®,
do = —a®® + 0%, da® = —a — S, da® =0
U9 0 da' = —a*® — (14 h)a'®, do? = —a'® — (24 h)a?,
h#—% do® = (44 3h)a®®, da* = —ha'®, da® = —a®%, da® =0
%*EO da1:_a45_|_%a167 do? = —a'® — 1020 — ¢,
da® = —1a°%, do* = %a%, da® = —a"®, da® =0
0k dot = —a®, da? = —a® — a0, da® = a® — o,
da* = a*, da® = —a"®, da® =0
9o da' = —a* + %alﬁ, do? = —a'5 — %a267 da® = o — o,
da* = ga467 da® = —a%% da® =0
gme da' = —a®® —2a'%, do? = —a'® — 3a2%, do® = 7a°°,
da* = —a®® — a®% da® = —a®®, da® =0
0 or dot = —a® —a’% da® = —a'® — a?® — za*,
e=0,%1 da® = 3a%%, da* = —a*%, da® =0, da® =0
é(sljl)’l do' = =0 — a'%, do® = —a™ — 1%, da® = (14 20)a®®,
da* = (24 1)a*, da® = —2(1 + 1%, da® =0
0ol da' = —a® — a'® — % da® — —a® + 302,
do?® = =50, do* = —a*%, da® = 40°%, dab =0
g§56 do' = —a® — a'%, do? = —a™ + 102 — o,
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do?® = %a%, do’ = ga%, da® = fga%, da® =0
2
96 2 dot = —a% — a'% da?® = —a® %a%,
do® = _%asa’ dot = %am — a5, da® = §a567 dob =0
3
96.61 dat = —a® — 22’9, da? = —a*® + 20,
da® = —a® — o dot = ga46, do® = —a™, da® =0
95 63 dat = —a® — a'%, da? = —a® + a5 — %,
do® = =%, da* = a*, da® =0, da® =0
ggféls da' = —a® — 1%, do? = —a*® — a'® — 1a2°,
do?® = 31035, da* = —a3% + 31045, da® = —41a°®, do® =0
géf’%g dot = —a — pat® 4 a2, da? = —a® — ol — pa®®,
da® = 3pa® 4+ a8, da* = —a®% + 3pa*®, da® = —4pa’S, da® =0
-
96.71 da! = —a? — %aw, do? — —a% _ %azﬁ’
do® = —a® + %a%, da* = Za%, da® = —a®®, da® =0
96%6 dat = —a® + a'%, da? = —a®,
do® = —a?t — o™ dat = —a®®, da® = a5, daS =0
g6.78 da! = —a?® 4+ a'%, da? = —a?®, da® = —a®* — %5 — a*f,
da* = 70/16, da® = 0456, da® =0
92?533 dot = —a?* — o™, da® = —1a®° — o™, da® = —1a°°,
dat* =10, do® = a* +1a°5, da® =0
96.84 dat = —a?* — o, do® = —a®%, da® = —aF,
do* = a*®, do® =0, da® =0
ggfgél' da' = —a2* — o™, da? = —pua®® + va®®, da® = —va?® — pa,
da* = pa*® + va®®, do® = —va®® + e, da® =0
ggfg’s do' = —a* — 0, do® = —s50°%, do® = va®,
da* = sa®%, da® = —va®%, da® =0
gg?go dol = —a?4 _ a35, do? = 706467 do® — ya56,
v#1 do* = —a®%, do® = —va®®, da® =0
96.91 da' = —a®* — 0*®) do® = —a*®, da® = ",
do* = —a*®) do® = —a®®, da® =0
gy do! = —a® — o, da? = pa®, da® = —va®,
da* = va®®, do® = —pat®, daf =0
96.92+ da' = —a®* — o, da® = o, da® = a"°,
da* = —a®®, do® = =%, da® =0
Ggfgg da' = —a?* — o™, da® = —a* + 1™, da® = va®,
da* = -0 — 038 do® = —va®®, do® =0
9604 dat = —a® — a3, da? = —a® + a2, da® = 2a°5,
da* = 720446, da® = fa56, da® =0
gg,’i”o‘i’e da' = aa®® +ba', da? = ca® + ea?®®,
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at+c=-1,b+e=—1,
ab#0, 2 +e2#0

do® = o, do* = a*®, do® =0, da® =0

Goas " da' = —a® +ba'®, da? = a® — (2 4+ b)aS,
do® = o, do* = 0®® +a*, do® =0, da® =0
ggjbgl da! = =20 — o', da? = a5, do® = o,
do* = a® + a0, do® =0, da® =0
96107 da' = —a'® — %, da® = —a® — a'f, da® = o™,
da* =0 +a%, da® =0, da® =0
g5 11" dat = aa’® + b8, do? = —aa®® + a0, do® = a®C,
a? +b% #0, a®> +¢* £ 0, do* = a® +a*, da® =0, da® =0
b+c=-2
92.717114’7 2 dOél = aOé15 - a16, da2 = 05267 dag = —%a35 — Oé45,
a#0, do* = a3 — %a45, da® =0, da® =0
85115 do! = a'® +ca'® —a®%, da® = a®® + a'® + ca®®,
b+#0, do® = —a®® — ba*® — a0, da* = ba®® — a?® — ca’S, da® =0, daf
I T = d =B T dl = o
da* =0 —a*, da® =0, da® =0
go1rs' da' = —a®® + o', do® = a'® +a*, do® = —ba*® — %,
da* = ba®® — a8, da® =0, dob =0
967}7261 dOél = 70{56, da2 = 7&25 —_ 05267 da?’ = a?’G’
da* =a*, do® =0, da® =0
92717225 dal = _Oé56, dOt2 = —20[26, da3 = —0645 + a36,
da* =a* +a*, do® =0, da® =0
G6.159° do! = —a® + a® + a'% da? = a5, do® = o,
da* = =20 — 20, da® =0, da® =0
96135 dat = —a? + 20, da? = a5, da® = a2 + 36,
do* = —40'%, do® =0, do® =0
nd 53 da' = —a®, da® = —a" — a®, da® = —a'® + a2,
da* = a8, do® = —a*%, da® =0
1§ 84 da' = —a®, da? = —a® — %, da® = —a'* + a2 — ca®S,
e=+1 da* = o, do® = —a?%, da® =0
n8 96 dat = —a?®* — o, do? = -0’5, da® = —ba",
da* = a®, do® = —ba®, dab =0
957" dat = —O¢157 da? = —po¢257 do® = _qa357
—1<r<qg<p<l, do* = —ra®s, do® =0
pgr #0, p+q+r=-1
ggé da! = —a?®, da? =0, da® = —a®®, da' = a*®, do® =0
g5yt P dot = —a'® —a®® do* = —a*, da® = —pa®®,
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da* = —(p+2)a*®, da® =0

p=—1,
ad, dot = —a' —a®, da® = —a® — o, da® = —a®,
da* =30%, da® =0
g;}f&zyq,r dat = —a15, da? = (1 —|—2q)o¢25, dad® = —qa35 —ra45,
-1<¢<0, da* = ra®® — ga*®, da® =0
q# —5, r#0
9314 da' = —a®®) do? =0, do® = —a*®, da* = o™, da® =0
0l dot = —a —a®, da? = —a®, da® = a®® — o,
do* =a*, da® =0
a5 14 dot = —a’ —a®, da® = —a®, da® = o™ — ga®,
q#0 da* = ga®® 4+ a*®, da® =0
P dot = —pat® — o, da? = a'® — pa®®, da® = pa®® — ra’,
r#0 da* = ra® +pa®®, da® =0
0% 15 dot = —a® — o™, da® = o'’ — %, da® = —a®,
do* = o, da® =0
ggjlfg?p% dat = —a?3 — (p+ 1)04157 da? = —a25, do® = —pa35,
p#—1 da* = (2p+2)a*®, do® =0
95.%0 da' = —a®®* — a® do® = —a®®, do® = o*°) da* =0, da® =0
9z, dot = —a® — 20", da? = —a®, da® = —a® — o,
do* = 40*, da® =0
g§j§§ dot = —a® — 2pa’®, da? = —pa® + o, do® = —a® — pa®,
p#0 da* = 4pa*®, da® =0
ggfgﬁ da' = —a?® —ea®, do? = o, do® = —a*,
e==1 da4:0,da5:O
957,2%8 dalz—a%—l—%aw, da2:%a25, do® = —a®,
da* = —a®® —a*®, da® =0
95_.3%0 dot = —a®* — 20’ da? = —a® + 1o, do® = o™,
do* = —a®®, do® =0
ggégl dot = —a', do? = —a®, da® = a® + o™,
da* =0, do® =0
9220 dot = 20 da? = —a?1 — 0%, da® = —a®t + o,
da* =0, do® =0
Ui dat = 20, do? = —a?t — o,
da® = —a®*, da* =0
gi’,’;"_l dal = 7(114’ da? = fpa24,
-1<p< -4, do® = (p+1)a®, da* =0
gzép,p dal = 2pa14, do? = fpa24 _ a34,
p>0 do?® = o®* —pa®, do* =0
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8 do' = —a?*, do® = —a*, do® = o, da* =0

0% dot = —a?, do? = —a®, do® = o®*, da* =0

g3.1 do! = —a?®, da? =0, da® =0,
nilpotent

054 dat = —a'?, do? = o3, do® =0,

g5 da' = —a??) da® = o™, do® =0,

151







Appendix B

Betti numbers of 6 dimensional

unimodular, solvable,

non-nilpotent Lie algebras

1

b1

b

b3

g6.1

0

ifa#—-1,b# —1,b# —a,
c# —a, c+b# -1, c# —b,
a+b# -1, a+c# -1
ifa=—1, or if b = —a,
orifb=—c,orifa+b# —1
if b= -1,
orifc=—aorifc=—-1-—a,
orifa=—-1land b=1,
orifa=—-1land b+c= —1,
orifb=c=—a,
orif b= —c = *a,
orifb=—c==%(1+a),

orifb=c=-1—-a
ifa=—-%fandb=—c==+1

orifa:b:c—%

0

ifa#—-1,b# —1, b# —a,
c# —a,c+b# -1, c# —b,
a+b# -1, a+c# -1
ifa=-1, orif b = —a,
orifb=—c,orifa+b#—1
ifb=—1,
orifc=—aorifc=—-1—a,
orifa=—-land b=1,
orifa=—-1land b+c=—1,
orifb=c=—a,
orif b = —c = *a,
orifb=—c==x(1+a),

orifb=c=-1—a
ifa=—-1andb=—-c==+1

orifa:b:c—%

In Table 1 we impose conditions which become at every step more restrictive. It is therefore
implicit that the previous conditions hold only when the more restrictive ones are not satisfied.
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ifa:fb:c:%

5 ifa=-b=c=

1
2

g6.2 lifa#0 0 ifa#0, c# —1, e# —c, 0 ifa#0,c# -1, e# —c,
c—e# =+l c+e#l, c—e#+l, c+e#1,
2ifa=0 1 if c=—1, 2 ifa=0orifc=-1
orife=—c,orife=c+1, orife=—c,orife=c+1,
orife==+(1-c), orife==(1-c¢),

2 ifa=0orifc=—e==+3 |4 ifc=—e=x%;3
orife=—1, orife=—1,
orifc=—-e=-1 orifc=—-e=-1

96.3 1ifa# -1 0 ifa#-1,1 0 ifas#-1,%
2ifa=—1 lifa=3 2 ifa=1%

3 ifa=-1 4 ifa=-1

96.4 1 0 0
6.6 lifa#—3 0ifas—1,-1 0 ifa#-1,—3
2ifa=—-1 lifa=-1 2 ifa=-1

2 ifa=-1 2 ifa=—3

g6.7 1 0 0
g6.8 1 0 ifa+b#0, a+c#0, 0 ifa+b#0,a+c#0,
b+c#0,p#0 b+c#0,p#0
lifa+b=0, 2 ifa+b=0,
orifb4+c=0, orifb+c¢=0,
orifp=0 orifp=0

2 ifa=-b=c, 4 ifa=-b=c,
orifa+c=0 orifat+c=0

96.9 1ifb#0 0 ifop#0, a+b#0 0 ifbp#0,a+b#0
2ifb=0 1 ifp=0orifa+b=0 2 ifbp=0orifa+b=0

2 ifb=0

96.10 lifa#0 0 ifaz#0 0 ifa#0
2ifa=0 3 ifa=0 4 ifa=0
g6.11 1 0 if pg #0 0 ifpg#0
1 ifpg=0 2 ifpg=0
96.12 1 0 0
96.13 1if bh # 0 0 ifa#—1, b#—1, 0 ifa#—1,b#—1,
a+b#0, 2a+b#0, a+b#0, 2a+b#0,
a+2b#0, a+2b+1#0, a+2b#0, a+2b+1+#0,
b+2a+1+#0 b+2a+1#0
2iftb=0 1l ifa=—-1lorifb=-1 2 ifa=—-lorifb= -1
orifh=0 orifa+b=0 orifa+b=0

orifa+2b=0,—1

orifa+2b=0,—1
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orifb+2a=0,—1

orifb+2a=0,—-1

2 ifa=—-1and b=2 4 ifa=—-1and b=2
orifb=—1and a =2 orifb=—1and a =2
orifa:%andb:—% orifa:%andb:—%
orifa:—%andb:% orifaz—%andbz%
orifa:b:—l,—% orifa:b:—l,—%

3ifa:%andb:—1 4 ifaz%andb:—l
orifaz—landbz&% orifa:—landbzo,%
orifa=-b==1 6 ifa=-b==1

06.14 Lifa#—3 0ifazt-1,-2,-1 12 0 ifa#-1,-23%2
2ifa=—1 1ifa=-1,-2,-112 2 ifast-1,-212

96.15 1 2 4

96.17 2 2 1

96.18 lifa#0 0 ifa#0,—-%,-1,-2,-3 0 ifa#—3,-1,-2,-3
2ifa=0 1ifa=0-%,-2,-3 2 ifa=-3,-2,-3

2 ifa=-1 4 ifa=-1

96.19 1 0 0

96.20 2 1 0

96.21 1ifa#0 0 ifas#0,—%,—1 0 ifa#0,—%,—1
2ifa=0 lifa=—-3,-1 2 ifa=—-3,-1

3 ifa=0 4 ifa=0

96.22 1 0 0

96.23 lifa#0 0 ifa#0 0 ifa#0
3ifa=0 5ifa=0 6 ifa=0

96.25 1ifb#0,—1 0ifb#0,-1,—3,1 0 ifb#0,-1,-1,1
2ifb=0,-1 1ifb=—3,1 2 ifb=0,-1,-1,1

2 ifb=0,-1

96.26 2 2 2

g6.27 1 1 2

96.28 1 0 0

96.29 1ifb#0 2 ifb#0 2 ifb#0
3ifb=0 5 ifb=0ande#0 6 ifb=0ande#0

6 ifb=0ande=0 8 ifb=0ande=0

96.32 1ifa;£—%,—% 0 ifaséo,—%,—% 0 ifa#0
2ifa=-2 -2 1ifa=0-% -2 2 ifa=0
96.33 lifa#0 0 ifaz#0 0 ifa#0
3ifa=0 3ifa=0 1 ifa=0
96.34 lifa#0 0 ifas#0 0 ifa#0
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3ifa=0 3 ifa=0 1 ifa=0
96.35 1ifab#0 0 if c#0,a # 0,—20, 0 if ¢ #0,a # —2b,
b#0,—2a b+# —2a
2ifa=0 1 ifa=0orifb=0o0rifc=0 |2 ifc=0o0rifa=-2b
orb=0 orifa=—-2borif b=-2a orif b= —2a
96.36 lifa#0 0 ifa#0 0 ifa#0
2ifa=0 3ifa=0 4 ifa=0
96.37 1 0 ifa#0 0 ifa#0
1 ifa=0 2 ifa=0
96.38 1 2 4
96.30 1ifh#0 0 ifh#0,—3,-1,-2,-3 0 ifh#-%,-1,-2,-3
2ifh=0 1ifh=0-3,-1,-2,-3 2 ifh=-1-1,-2,-3
96.40 1 0 0
g6.41 1 1 2
96.42 1 0 0
96.44 1 0 0
96.47 2 1 0
96.54 Lifl # -3, 0ifl#0,—3,—-1,-2,-3, -2 | 0 ifl#£0,-1,-3,-2
—1,-2 1ifl=0,-%,-2,-%,-2 2 ifl=0,-3,-2
2ifl = —3, 3ifl=-1 4 ifl=-1
—1,-2
96.55 1 0 0
96.56 1 0 0
96.57 1 0 0
96.61 1 0 0
96.63 2 2 2
96.65 1ifl#0 0 ifl#0 0 ifl#0
3ifl=0 5ifl=0 6 ifl=0
96.70 lifp#0 0 ifp#0 0 ifp#0
2ifp=0 3ifp=0 4 ifp=0
g6.71 1 0 0
96.76 1 1 1
g6.78 1 1 2
96.83 1ifl#0 1ifl#0 2 ifl#0
3ifl=0 5ifl=0 6 ifl=0
96.84 2 2 2
g6.88 1if p#0or 1 if ur#0 2 pv#0
v#0 3ifpu#O0andv =0 6 fu#0andv =0
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5 if 4 =0 and orifu=0and v#0 orifu=0and v +#0
v=20 9 ifpu=0andv=0 10if p=0and v=20
96.89 1ifsv #0 1 ifsv#0 2 ifsy#0
2ifs#0 3ifs#0andv=0 orifs#0and v =0
orv#0 orifs=0and v #0 orifs=0and v #0
5ifv=0 9 ifs=0andv=0 10ifs=0and v =0
and s =0
96.90 Lif v #0 1ifv#0 2
3ifvr=0 3 ifv=0
96.91 1 1 2
96.92 1if uv #0 3 ifur#0 4 ifur #0
2ifpu#0 5ifpu#0andv =0 6 ifpu#0andv =0
orifv#0 orif u=0and v#0 orif u=0and v#0
5ifr=0 9 ifp=0andv=0 10if y=0and v =20
and p =0
96.92 1 3 6
96.93 Lif v #0 1ifv#0 2 ifv#£0
3ifvr=0 3 ifv=0 2 ifvr=0
96.94 1 1 2
g6.101 2 1 ifa#—-2o0rb# -1 0 ifa# —2o0orb# -1
2 ifa=—-2and b= -1 1 ifa=—-2and b= -1
96.102 2 1 0
96.105 2 1 0
g6.107 2 1 0
g6.113 2 1 ifa#0orb#—-1 0 ifa#0orb#—1
3 ifa=0and b= -1 2 ifa=0and b=—-1
g6.114 2 2 ifa#=£2 2 ifa# +£2
3 ifa==2 3 ifa=42
g6.115 1 0
96.116 1 0
go.1s | 2 1 ifb#+1 0 ifb#+1
3 ifb=41 4 ifb=41
96.120 2 2 2
g6.121 2 2 2
g6.129 2 1 0
06.135 2 1 0
16.83 1 1 2
Ne.84 1 1 1
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16.96 Lifb#£0 1ifb#£0 2
3ifb=0 3ifb=0
gs7®R | 2 1 ifr#-1 0 ifr#—1
3 ifr=—-1and ¢# —1 4 ifr=—-1and q# —1
5 ifr=—-1land ¢g= -1 8 ifr=—-1landg=-1
gs8 DR 3 5 6
gso @R | 2ifp#0 1 ifp#0,-1 0 ifp#0,—1
3ifp=0 3ifp=0,-1 2 ifp=0
4 ifp=-1
g5.11 DR 1 0
g5.13 @R | 2 1 ifg#0 0 ifg#0
3ifqg=0 4 ifqg=0
9514 R | 2 5 6
g5.15 DR | 2 3 4
g5.16 DR 2 1 0
g5 BR | 2 1 if p#0andr# +1 0 ifp#0andr #+1
3 ifp=0andr#=+1 4 if p=0andr#=+l1
orifp#0andr==41 orif p#0and r = =1
5 ifp=0andr==1 8 ifp=0andr==1
g5.18 B R 3 4
0510 DR | 2ifp#0 1ifp#0,—3,-2 0 ifp#0,—3,-2
3ifp=0 3ifp=0,-1,-2 2 ifp=0
4 ifp=—3,-2
g520 PR | 3 3 3
g5.23 DR 2 1 0
gs5.25 DR 2 1 0
g526 R | 3 3 2
g528 DR | 2 1 0
g530 DR | 2 1 0
g533 R | 3 3 2
g535 BR | 3 3 1
ga2®2R | 3 3 2
gas D2R | 3 3 2
gae P2R | 3 3 2
gasB2R | 3 3 2
ga9 ®2R | 3 3 2
g3.4a®3R | 4 7 8
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93.5 ® 3R

g3.1 D g3.4

931 D g3.5

93.4 D g3.4

03.4 D @35

935 D g3.5

NN W[ W]k

WlWwW|w|o| ot 3

RS2 R =2 R e

159







Appendix C

Symplectic structures on

6-dimensional solvable

unimodular Lie algebras

Lie algebra

Symplectic form

Conditions on w;_;

ggf;l w = w600 + w2 307 + wa a0 + w3 60+ w1,6w2,3w4,5 7 0
+w4,5a45 + w4,6a46 + w5,6a56
ggflo w= w1,6a16 + w2,30623 + w2,60626 + w3,60636+ w1,6w2,3w4,5 7 0
twa 5™ +wiea’® 4+ wsea®
S w = w20 +was(—1a'® 4+ ) + wr 6™+ w1,2w3,4ws,6 7 O
+w3,4a34 + w3,6a36 + w4,6a46 + ws,aasﬁ
T
;1135’0 w=wiza"® +wrs(—5a'%+a®) + wraa®+ w1,3w2 4ws,6 7# 0
+W2,6a26 + w3,6a36 + w4,6a46 + w5,60é56
9515 w = wi,al®  (LOFTA) G2 gy oty wi,6ws3,4 # 0,
+w3,6a36 + w4,60é46 + w5,6a56 W16 # —W3,4
9&12{1 w=w1(a’® +a®) + w260 + w3 5>+ wi,6ws,s # 0
+ws3,60°° + w60’ + ws 6
96.21 w = w202 + wa 307 + wr 600 4 w360+ w1,2w3,6w4a,5 7 0
w50’ + wy et + ws sa®
a0 w=wi2(a?+ea®®) +wi (' +a®) Fwaza®®+ | w2 #0,
Fw2,50%° + w2,60°% + w3,60% + wa 60’ +ws 60" | Wi+ wiowae # 0
ggjg;#o w=wi3(a®+ea’®) +wie(a® +a*) fFwe a4+ | w1z #0,

161




26 34 36 46 56
Fw2 6™ + w3 40" w3z e’ +wie + WseQ

(w1,6,w2,6) 7 (0,0),

Ws5,6W1,6 7'é €(w2,3w1,6—

w2,6w1,3)
9833;;0 w = w1,2a12+w1,3a13+w1,6(a16+Oz24)+w2,30423+ ws,6 7# 0,
w2600 + w310 + w3,60% + wa60*® + w5 60" | w1 swie —wiowsa # O
ggng w= w1,20612 + w2,30423 + w2,60426 + w3,6a36+ w1,2w3,6wa,5 # 0
+w4,5a45 + w4,6a46 + w5,6a56
99 38 w=wi,6(20'%+a* —a®) twr 30* ++wa 4 (@®* + | wie #0
+0535) + w2,6a26 + LJJ3,60436 + (JJ4,6(146 + W5,6a56
90’54 w=wial@" +0®) +wie(a'®+a®) +wre(a®+ | wiawse #0
—a®) 4+ ws 40® + w360 + wiea’® + ws 0
a0 w=wia(a®®+a*) +wie(ar® 4+ a®®) +ws a0+ | wiswiewsswse 70,
+W3,5a35 + w3,6a36 + w4,5a46 + w5,5a56 w1,3ws,6 + wi,6w3,5 7# 0
g6.78 w=wr (™ +a® - a®) + w6’ —a®®)+ wia #0
twa,4(a® + a®) + wasa™® + wiea® + ws ea’
ggjﬁlg’_l w=wz(@®£a®) +wa(@ Fa®®) +wi s+ | wiawiewse # 0,
a®®) + w1 6(a’® + o) + w3 5(£a® — o)+ 2w1,4w1,6wW3,6 + wW1,3W3 5%
+w3,6(a36 4+ a45) + w5,6a56 wigws,e + wi4w5’6 #0
N6.84 w=wia(a™ — a®®) + wis(a® + a0+ wie #0
+wi,6(—a’® + a®® + o) + wisa®® + wieatt +
ws,6°
gfﬁ,’j;’”’l OR | w=uwi 10 +wisa® +wr30®® + wa50?+ w1,4w2,3ws,6 7 0
+w3,5a35 + w4,5a45 + w5,6a56
géf;lﬁl OR | w=wi3a" +wisaM +wisa'® +wrza®+ W1,4w2 3 — wi1,3w2,4 7 0,
Fwa,40? 4+ w2 5% + w3 50°° + wisa® + w560 | wse £ 0
g5 OR w= UJ1,20412 + UJ1,50615 + w2,5a25 + w2,6a26+ wz 4 # 0,
w320 + w3 50°° + w50 + ws 6 w1,2ws,6 — wW1,5w2,6 7 0
g;}g‘” &R w= w1,20412 + w1,50415 + w2,5a25 + w374a34—|— w1,2w3 4ws,6 7 0
+w3,5a35 + w4,50£45 + w5,6a56
9%14 eR w= w1,2a12 + w1,50415 + w2,50425 + UJ2,60626+ w1,5w2,6W3,4wWs,6 7 0,
w3403 + w3 503 + w50 4 ws 6a®® w1,2Ws,6 — Wi,5w2,6 7 0
9515 DR w=wia(aM = o) +wisa'® +ws g0+ wi,aws,6 7# 0
+w2,5a25 + w3,5a35 + w4,5a45 + w5,6a56
ggf?’; GR w=wi2a"? +wisat® +wa5a® +ws s+ w1,2wW3,4ws,6 7 0

35 45 56
+ws3 5077 + w450 + Ws,6Q

,—p, 1
915).1710 &R

w= w173(:|20513 +a24) +U.J1’4(:FO£14 +a23)+

15 25 35 45 56
+wi,50 " + w2 507 + w3 5077 +wa s + Ws,eQ

w13 Fwie #0, wse #0

0,0,%1
g5 OR

w = UJ1720é12 +W173(i0113—|—O£24)+w1,4(:|:0£14+0£23)

15 25 34 35
Fwi s’ Fwesa”” w3t + w3 s+

2 2
W1,2W3,4 — W13 —Wi4g 75 0,

w3,aws,6 0
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45 56
Fwq50°° + ws 60

gg.ls &R w= W1,3(0613 + Ot24) + UJ1,50615 + UJ2,50625+ wi,3ws,6 # 0
Fws a0 4 w3 503 4+ wasa’® + ws 60
g;f;f éR w= w20+ w1,5(0615 — a23) +wa 5025+ w1,2w3,4ws.6 7 0
+w3,40134 + w3,5a35 + w4,5a45 + w5,6a56
9;,1%9’71 OR | w=wiza® +wis(a’® —a®®) +wssa®+ w1,3w2 4ws,6 £ 0
+WQ,5(125 + UJ3,50¢35 + w4,5a45 + UJ5,50¢56
951 ® 3R w=wi2a'? +wizat® +ws 30 +ws et W1,2Ws5,6W3,4 — W1,2W4 6W3,5+
935 ® 3R w3 50% + w360 + wa 50" +wiea’® +wsea’® | wiswiswse £ 0
931 @ 034 w = w20 + w1 30" + w230 + w6+ was # 0,
931 P 095 +w3,60°° + wa50* + wiea®® + ws e w3,6W1,2 — w2,6w1,3 # 0
93_,41; 5] Q;;}; w=wi 20" + w1 30" + Wi 3023 + w3 6+ w1,2w3,6wa,5 7 0
954 D 955 twa,50"® + wiea’ + ws 6
935 D 935
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