
24 April 2024

AperTO - Archivio Istituzionale Open Access dell'Università di Torino

Original Citation:

Solvable Lie algebras and solvmanifolds

Terms of use:

Open Access

(Article begins on next page)

Anyone can freely access the full text of works made available as "Open Access". Works made available
under a Creative Commons license can be used according to the terms and conditions of said license. Use
of all other works requires consent of the right holder (author or publisher) if not exempted from copyright
protection by the applicable law.

Availability:

This is the author's manuscript

This version is available http://hdl.handle.net/2318/142536 since
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Abstract

We describe almost abelian Lie algebras and solvmanifolds. In particular we state

and use a method to find lattices of almost abelian Lie groups and we find the de

Rham cohomology of solvmanifolds arising from Lie groups of this kind. Then we

use the description of their minimal models to state properties about formality and

symplectic structures.

Regarding Lie algebras, we describe the complex structures in the almost abelian

case and the Dolbeault minimal models for general complex structures on nilpotent

Lie algebras.
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Introduction

The object of this thesis is the study of global features and properties of some par-

ticular classes of solvable Lie algebras and solvmanifolds.

To describe globally a differential manifold is in general quite difficult. Indeed

by definition we can obtain concrete and precise informations only locally, i.e. in the

neighborhood of a chosen point. Fortunately there are particular kind of differential

manifolds, in our case solvmanifolds and nilmanifolds, for which it is possible to find

global properties.

Nilmanifolds are defined as compact homogeneous spaces G/Γ, where G is a

connected and simply connected nilpotent Lie group and Γ is a lattice in G. The

obvious generalizations of nilmanifolds are solvmanifolds that are obtained taking G

solvable.

Nilmanifolds provided in the 1980s the first examples of symplectic manifolds

without a Kähler structure. A symplectic structure over a differential manifold M is

a closed and not degenerate 2-form, while a Kähler metric is given by a J-hermitian

Riemannian metric on a complex manifold (M,J) whose fundamental form is closed

[14].

Even if a Kähler structure is richer than a symplectic one, for many years no one

was able to find symplectic manifolds with no Kähler structure. The first example of

a differential manifold with this feature is due to Thurston [46] and it is a nilmanifold.

Indeed in 1988 Benson and Gordon proved that a nilmanifold has a Kähler structure

if and only if it is a torus [3].

Many important global properties of nilmanifolds can not be generalized for solv-

manifolds, for this reason these manifolds are presently widely studied.

1



2 Introduction

One of the most important features of nilmanifolds G/Γ is that we can always

compute their de Rham cohomology in terms of the Lie algebra g of G. In 1920 de

Rham proved the isomorphism between the de Rham cohomology groups and the

singular cohomology ones, then the de Rham cohomology gives us topological and

homotopical informations about the manifold, but it is in general difficult to compute

because it is a global object.

In 1954 Numizu proved that we can always compute the cohomology of a nilman-

ifold because it is isomorphic to the cohomology of the associated Lie algebra [35].

Unfortunately this is not true in general for solvmanifolds, but only in particular

cases. For example when the Mostow condition holds [34] we are sure that this iso-

morphism holds. For this reason we consider a technique to compute the de Rham

cohomology of solvmanifolds. We will apply it to particular solvmanifolds G/Γ called

almost abelian, i.e. G = Rn Rn and Γ = Z n Zn.

In order to study nilmanifolds and solvmanifolds, we need previously to construct

them. In particular it is in general not easy to understand when a discrete subgroup

of a Lie group is a lattice. Again for nilmanifolds we have a complete theory, indeed

Malčev Theorem assures us that we can find a lattice in a nilpotent Lie group if and

only if the structure constants of the associated Lie algebra are rational.

As for many other features, also the existence of a lattice is not as much easy to

find for a general solvable Lie group. Fortunately if the solvable Lie group is almost

abelian we have a method to construct lattices (Proposition 1.3).

Nilmanifolds are important also in relation to minimal models.

Minimal models are objects of rational homotopy theory introduced by Sullivan

in the 1960s to describe the rational part of homotopy groups [14], but they provide

also informations on the cohomology of differential manifolds.

By definition the minimal model of a nilmanifold can always be computed, but

again there is not a generalization of this property for solvmanifolds, so the study of

the models of solvmanifolds is quite interesting.

All these helpful properties of nilmanifolds do not hold for the Dolbeault coho-

mology. For instance, we cannot state general theorems like the one of Nomizu for

the Dolbeault cohomology of nilmanifolds, but for nilmanifolds endowed with some
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classes of complex structures the Dolbeault cohomology can be computed in terms

of invariant differential forms [7, 9, 41].

For this reason we are interested in complex structures of solvable Lie algebras

and Dolbeault minimal models of nilpotent ones.

In Chapter 1 we give the basic definitions and properties that we will use in the

following chapters. In the first section we define solvmanifolds and nilmanifolds and

we state properties related to their cohomology, in particular we are interested in

understanding when the cohomology of a solvmanifold is isomorphic to the cohomol-

ogy of the associated Lie algebra, i.e. when the Mostow condition holds (Theorems

1.7, 1.8 and 1.10).

In the second section we describe complex structures of general vector spaces, of

differential manifolds and with more details of Lie algebras (Proposition 1.4) stating

also a general version of the ∂∂̄-Lemma.

In the third one we define minimal models and we state only the propositions

and theorems that we will use in Chapter 6 [14], in particular we are interested in

models of fibrations and the concept of formality.

The last section is about symplectic structures and the Hard Lefschetz property.

From Chapter 2 we begin with original material.

In Chapter 2 we describe a symplectic version of the Hodge theory developed

by Tseng and Yau [47] related to the Hard Lefschetz property, in particular we are

interested in the other cohomology groups that they define. Indeed we prove that if

the de Rham cohomology of a solvmanifold is isomorphic to the invariant one, then

also these symplectic cohomologies are isomorphic to cohmologies of the Lie algebra

(Theorem 2.2) [25].

In Chapter 3 we find Betti numbers and symplectic structures of six dimensional

unimodular solvable Lie algebras (Appendices B and C).

Then we compute the dimensions of the invariant cohomologies, finding by Theo-

rem 2.2 symplectic solvmanifolds for which the Hard Lefschetz property holds (The-

orem 3.3).

In Chapter 4 we consider solvmanifolds for which the Mostow condition could

not hold. In the first section we describe and use a method to compute lattices of
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many six dimensional almost abelian solvmanifolds (Theorem 4.1).

Unlike nilpotent Lie groups for which Malčev Theorem (Theorem 1.4) gives a simple

criterion for the existence of a lattice, for solvable Lie group it is in general a hard

task to find a lattice. In the case of almost abelian Lie groups there is a method

(Proposition 1.3) which we apply to determine lattices in six dimensional examples

for which the Mostow condition does not hold.

In the second section we describe a technique developed by Kasuya to compute

the de Rham cohomology of some solvmanifolds (Proposition 4.1) and in the third

one we use it to compute the de Rham cohomology groups of some six dimensional

almost abelian solvmanifolds.

In Chapter 5 we describe complex structures of almost abelian Lie algebras.

In the first section we consider the real case g = Rn Rn. First we study when g

can admit a generic complex structure J and in this case we find a description of J

(Theorem 5.3), then we consider two particular cases of complex structures, namely

bi-invariant and abelian structures. In particular we prove that almost abelian Lie

algebras does not admit bi-invariant complex structures (Theorem 5.4) and that only

one kind of almost abelian Lie algebras admits an abelian one (Theorem 5.5). For

this last structure we are also able to compute the Dolbeault cohomology.

In the second section we generalize the concept of almost abelian Lie algebra and

consider a complex analogue g = Cnad Cn with dimR Im ad = 1. In this case we are

again able to study a particular type of complex structure and find similar results to

the real case (Theorem 5.7). Moreover we prove that for these complex Lie algebras

the ∂∂̄-Lemma does not hold (Theorem 5.8).

In Chapter 6 we study minimal models. In the first section we consider nilmani-

folds and the work of Hasegawa [20], in the second one we study minimal models of

almost abelian solvmanifolds.

We start from the idea of Oprea and Tralle [36] of using the Mostow fibration and the

model of fibrations (Theorem 6.2) to compute the cohomology of almost abelian solv-

manifolds. We use the method described by Oprea and Tralle and the cohomology

groups found in Chapter 4.3 to compute the minimal models of some six dimensional

almost abelian solvmanifolds. Then we use this same method to find properties about
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formality (Theorem 6.4) and symplectic structures (Proposition 6.7) [26].

In the third section we define Dolbeault minimal models proving that we have not

an existence theorem in this case (Example 6.4). Then we prove that every nilpotent

Lie algebra endowed with a complex structure is Dolbeaul minimal (Theorem 6.9),

generalizing a result of Cordero, Fernández and Ugarte [10].





Chapter 1

Preliminaries

1.1 Solvmanifolds

We recall some basic definitions of Lie group and Lie algebras, for a complete de-

scription of this topic see for example [14, 18, 49].

Definition 1.1. A Lie group is a differential manifold G that is endowed with a

group structure such that the map

G×G → G

(a, b) 7→ ab−1

is C∞.

A Lie algebra is a vector space g together with a bilinear, antisimmetric map

called bracket [, ] : g× g→ g such that ∀X,Y, Z ∈ g

[[X,Y ], Z] + [[Y, Z], X] + [[Z,X], Y ] = 0 Jacobi identity

Example 1.1. Examples of Lie groups are

• (Rn,+), (Cn,+).

• (Rr {0}, ·), (Cr {0}, ·), S1 ⊂ Cr {0}.

• (GLn(R), ·).

7



8 Chapter 1. Preliminaries

• The product G×H of two Lie groups G and H.

• The torus Tn as product of the unit circle S1 n times.

Examples of Lie algebras are

• The set of smooth vector fields χ(M) over a differential manifold M .

• Every vector space V with bracket [ , ] ≡ 0, in particular this Lie algebra is

called abelian.

• The set of real n× n matrices gln(R) with bracket given by

[A,B] := AB −BA ∀A,B ∈ gln(R).

In particular this means that for every vector space V of dimension n,

gl(V ) := End(V ) is a Lie algebra.

If g = 〈X1, · · · , Xn〉, with bracket defined by [Xi, Xj ] =
∑

k≤n c
k
i,jXk ∀ i, j ≤ n,

we call the scalars cki,j structure constants of g.

Given a Lie group G and g ∈ G, let Lg and Rg be respectively the left and right

translations, then

Definition 1.2. A vector field X ∈ χ(G) is left invariant if

∀ a, b ∈ G (La)∗Xb = Xab.

Similarly we define right invariant vector fields.

The set of left invariant vector fields is a Lie algebra g = Lie(G).

Example 1.2. The Lie algebra of the Lie group GLn(R) is gln(R).

Remark 1.1. The Lie algebra g associated to the Lie group G can be identified to

tangent space in the identity element eG by the isomorphism of vector spaces

g → TeGG

X 7→ XeG

.
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Important tools in the study of Lie groups and Lie algebras are the adjoint rep-

resentations and the exponential map:

Definition 1.3. Given a Lie algebra g its adjoint representation is

ad : g → gl(g)

X 7→ adX

where adX(Y ) := [Y,X].

Given a Lie group G its adjoint representation is

Ad : G → gl(g)

g 7→ Adg

where Adg(X) := (Ig)∗(X) with Ig := LgRg−1 .

Definition 1.4. Let G be a Lie group and g its Lie algebra. The exponential map is

exp : g → G

X 7→ ΦX(1)

where ΦX is the integral curve of the vector field X such that ΦX(0) = eG.

Proposition 1.1. For the exponential map the following properties hold:

• ΦX(t+ s) = ΦX(t) · ΦX(s) ∀t, s ∈ R,

• ΦX(ts) = ΦtX(s) ∀t, s ∈ R,

• Ad(expX) = eadX ∀X ∈ g.

In our work Lie groups and Lie algebras will always be sets of matrices, indeed

we have the following theorem.

Theorem 1.1. (Ado) [49] Every finite dimensional Lie algebra is a subalgebra of

gl(V ) for some finite dimensional vector space V .

In particular this theorem implies that every real Lie algebra of finite dimension

n is a subalgebra of gln(R). As a consequence for every finite dimensional Lie algebra

g there is a Lie group G < GLn(R) such that g = Lie(G) [49].

Given a Lie group G we can construct another differential manifold by the quo-

tient map:
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Definition 1.5. Let H be a closed subgroup of a Lie group G. The set of left cosets

of H, G/H is called a homogeneous space.

It inherits the structure of differential manifold by G using the projection map

G→ G/H.

Solvmanifolds are important types of homogeneous spaces defined as follow.

Definition 1.6. A solvmanifold S is a compact homogeneous space S = G/Γ, where

G is a connected and simply connected solvable Lie group and Γ is a lattice in G,

i.e. a discrete subgroup with compact quotient space.

If G is nilpotent, the homogeneous space is called nilmanifold.

We recall that given a Lie algebra g its derived series d∗ and descending series

g∗ are defined inductively by

d0 = g0 = g, dk = [dk−1, dk−1], gk = [gk−1, g]

A Lie group G and its Lie algebra g are called solvable or nilpotent if there exist

k̄ such that respectively dk̄ = 0 or gk̄ = 0.

In particular every nilpotent Lie algebra is also solvable.

Example 1.3. Abelian Lie algebras are trivial examples of nilpotent Lie algebras,

then the torus Tn = Rn/Zn is a nilmanifold.

The set of real strictly upper triangular matrices is a nilpotent Lie algebra, while

the set of real upper triangular matrices is a solvable Lie algebra.

The last example is very important indeed it describes all solvable Lie algebras:

Theorem 1.2. (Engel) A Lie algebra g is nilpotent if and only if the endomorphism

adX is nilpotent for every X ∈ g.

Theorem 1.3. (Lie) A Lie algebra g is solvable if and only if the endomorphism

adX is solvable for every X ∈ g.

These theorems imply in particular that nilpotent Lie algebras can be represented

by strictly upper triangular matrices, while solvable Lie algebras by upper triangular

ones. For the proofs see for example [18].



1.1. Solvmanifolds 11

In general it is not very easy to construct a solvmanifold, indeed given a solvable

Lie group we do not have a general method to find its lattices.

For nilmanifolds the problem has a straight solution due to Malčev:

Theorem 1.4. (Malčev) [30] Let G be a nilpotent and simply connected Lie group

and let g be its Lie algebra. G admits a discrete subgroup Γ such that G/Γ is compact

if and only if g has rational structure constants.

For solvmanifolds in general we have just a necessary condition [32]:

Proposition 1.2. A solvable, connected and simply connected Lie group G can admit

a lattice only if its Lie algebra g is unimodular, i.e. ∀X ∈ g Tr adX = 0.

For a particular case of solvable Lie groups we have a necessary and sufficient

condition. The solvmanifolds associated to these groups are called almost abelian

and will be studied in details in the following chapters.

Definition 1.7. Given two Lie groups G and H and an action ϕ : G×H → H the

semidirect product GnH is the Lie group G×H with the operation of group given

by

(g1, h1) · (g2, h2) := (g1 · g2, h1 · ϕ(g1)(h2)) ∀ g1, g2 ∈ G, ∀h1, h2 ∈ H.

Given two Lie algebras g and h and an action ψ : g × h → h the semidirect product

gn h is the Lie algebra g× h with the bracket given by

[(X1, Y1), (X2, Y2)] := ([X1, X2], [Y1, Y2] + ψ(X1)(Y2)− ψ(X2)(Y1))

∀X1, X2 ∈ g ∀Y1, Y2 ∈ h.

In particular the Lie algebra of a semidirect product of Lie groups is the semidirect

product of the associated Lie algebras.

Definition 1.8. A solvmanifold S = G/Γ is almost abelian if the solvable Lie group

G and its lattice Γ are semidirect products of the kind G = RnϕRn, Γ = Znϕ|ZZ
n,

where ϕ is some action on Rn depending on the direction R.
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In particular if g is the Lie algebra of G, then also g is called almost abelian and

g = RnadXn+1
Rn, where R = 〈Xn+1〉 and Rn = 〈X1, · · · , Xn〉, and ϕ(t) := etadXn+1 .

A nice feature of almost abelian solvable groups is that there is a criterion on the

existence of a lattice [4]:

Proposition 1.3. Let G = RnϕRn be an almost abelian solvable Lie group. Then G

admits a lattice if and only if there exists a t0 6= 0 for which ϕ(t0) can be conjugated

to an integer matrix.

In particular the lattice is generated by this value t0, Γt0 := Zt0 nϕ(t0) Zn.

The lattice determine the topology of the solvmanifold because it is its funda-

mental group. Indeed every solvable connected and simply connected Lie group

is diffeomorphic to Rn, then solvmanifolds are Eilenberg-MacLane spaces of type

K(π, 1), i.e. all their homotopy groups vanish, besides the first. Actually, lattices of

solvmanifolds yield their diffeomorphism class:

Theorem 1.5. [40, Theorem 3.6] Let Gi/Γi be solvmanifolds for i ∈ {1, 2} and

ψ : Γ1 → Γ2 an isomorphism. Then there exists a diffeomorphism Ψ : G1 → G2 such

that

• Ψ|Γ1 = ψ,

• Ψ(pγ) = Ψ(p)ψ(γ), for any γ ∈ Γ1 and any p ∈ G1.

Much of the rich structure of solvmanifolds is encoded by the Mostow fibration

associated to every solvmanifold.

Let S = G/Γ be a solvmanifold and let N be the nilradical of G, i.e. the largest

nilpotent normal subgroup of G (of course N agrees with G if and only if S is a

nilmanifold). Then ΓN := Γ ∩ N is a lattice in N , ΓN = NΓ is closed in G and

G/(NΓ) =: Tk is a torus. Thus we have the so-called Mostow fibration [33]:

N/ΓN = (NΓ)/Γ ↪→ G/Γ −→ G/(NΓ) = Tk, (1.1)

In general, the Mostow bundle is not principal.
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A connected and simply-connected solvable Lie groupG with nilradicalN is called

almost nilpotent if its nilradical has codimension one. The group G is then given by

the semidirect product G = R nϕ N of its nilradical with R. From a geometrical

point of view, ϕ(t) encodes the monodromy of the Mostow bundle.

Obviously an almost abelian solvable group is an almost nilpotent group whose

nilradical is abelian N = Rn. In this case the Mostow fibration (1.1) becomes

Rn/Zn ↪→ S −→ R/Z.

Homogeneous spaces are very interesting when we want to study the de Rham

cohomology of a differential manifold.

We recall that given a differential manifold M with complex of differential forms

(
∧∗(M), d) we define for every k ∈ N the k-esim group of de Rham cohomology of

M as the set of classes of closed forms over the exat ones:

Hk(M) :=
{α ∈

∧k(M) / dα = 0}
{α ∈

∧k(M) / ∃β ∈
∧k−1(M) / dβ = α}

We can give a definition of cohomology also over a Lie algebra:

Definition 1.9. Let g be a Lie algebra and g∗ its dual Lie algebra, then we can

define a differential d :
∧k g∗ →

∧k+1 g∗ over the exterior algebra
∧∗ g∗ by

dω(X1, ..., Xk+1) =
∑
i<j

(−1)i+jω([Xi, Xj ], X1, ..., X̂i, ...., X̂j , ..., Xk+1)

∀ω ∈
∧k g∗, ∀X1, · · · , Xk+1 ∈ g.

(
∧∗ g∗, d) is called Chevalley-Eilenberg complex.

Then the cohomology groups of g are the the cohomology groups associated to

this complex:

Hk(g) :=
{ω ∈

∧k g∗ / dω = 0}
{ω ∈

∧k g∗ / ∃ η ∈
∧k−1 g∗ / dη = ω}

By definition the algebra of differential forms
∧∗(M) of a homogeneous space

M = G/Γ is the set of differential forms over the Lie group G that are left



14 Chapter 1. Preliminaries

Γ-invariant, while if g is the Lie algebra associated to G,
∧∗ g∗ is the set of differential

forms over the Lie group G that are left G-invariant.

Then we have an inclusion
∧∗ g∗ ⊆ ∧∗(M) that for solvmanifolds is preserved

passing to the cohomology [40]:

Theorem 1.6. [40, Theorem 7.23] For any solvmanifold S = G/Γ the inclusion∧∗ g∗ ⊆ ∧∗(M) induces a natural injection H∗(g)→ H∗(S).

For nilmanifolds and some cases of solvmanifolds this inclusion becomes an iso-

morphism.

Theorem 1.7. (Nomizu) [35] Let N = G/Γ be a nilmanifold and g the Lie algebra

associated to G, then H∗(g) ∼= H∗(N).

Unfortunately there is not a similar propriety for solvmanifolds in general, but

only in particular cases.

Definition 1.10. A solvable Lie group G is completely solvable if the adjoint repre-

sentation ad : g→ gl(g) of the Lie algebra g associated to G has only real eigenvalues.

Theorem 1.8. (Hattori) [22] Let S = G/Γ be a solvmanifold such that the Lie

group G is completely solvable, then H∗(g) ∼= H∗(S).

Definition 1.11. [8] A subgroup A of GLn(R) is a real algebraic group if it is the

set of zeros {g = (gi,j)} of a family {f} of real valued functions on GLn(R) for which

there is a polynomial p ∈ R[X1, · · · , Xn2+1] such that f(g) = p(gi,j ,det(g−1)).

Indeed, GL(n,R) can be viewed as a closed subgroup of SLn+1(R) via the em-

bedding ρ : GLn(R)→ SLn+1(R) defined by

ρ(A) =


0

A
...

0

0 · · · 0 1
detA


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As a subset of Rn2
, a real algebraic group has both the Euclidean and Zariski

topology.

In general, given a Lie group G, we recall that AdG(G) is the subgroup of GL(g)

generated by eadX , for all X ∈ g. Since Ad expX = eadX , we have that AdG(G)

has ad(g) as Lie algebra [8].

It turns out that if G is a simply connected solvable Lie group then AdG(G) is a

solvable algebraic group, then it is well defined its Zariski closure A(AdG(G)).

If H is a subgroup of a connected Lie group G, we will denote by A(AdG(H))

the (almost) Zariski closure of AdG(H) in the real algebraic group Aut(g), where g

is the Lie algebra of G.

Theorem 1.9. (Borel Density Theorem) [40, Theorem 5.5] Let G be a sim-

ply connected, solvable Lie group and Γ a lattice of G, then there exists a maximal

compact torus Tcpt ⊂ A(AdG(G)) such that

A(AdG(G)) = TcptA(AdG(Γ)).

When this torus Tcpt is trivial Mostow proved that we can compute the cohomol-

ogy of the solvmanifold S = G/Γ by invariant forms:

Definition 1.12. Given a lattice Γ of a simply connected, solvable Lie group G, the

Mostow condition holds for Γ and G if A(AdG(G)) = A(AdG(Γ)).

Theorem 1.10. (Mostow) [34] Let G be a simply connected, solvable Lie group, Γ

a lattice of G, S = G/Γ a solvmanifold and g the Lie algebra associated to G. If the

Mostow condition holds for Γ and G, then H∗(g) ∼= H∗(S).

The Nomizu and Hattori theorems are corollary of the Mostow theorem, indeed

if a solvable Lie group is nilpotent or completely solvable, then the Mostow condition

holds for each of its lattices.

Even if Theorem 1.10 is very useful, it is difficult to understand if the Mostow

condition holds.
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1.2 Almost Complex Structures

In this section we give some basic definitions of complex structures on vector spaces

and differential manifolds and after we describe with more details complex structures

on Lie algebras [14], indeed our study about this topic will be focused on complex

structures on almost abelian Lie algebras (Chapter 5).

Definition 1.13. Let V be a real vector space of even dimension, an almost complex

structure on V is an endomorphism J : V → V such that J2 = −Id.

An almost complex structure J gives V the structure of complex vector space:

i · v := J(v) ∀v ∈ V.

If J is an almost complex structure on V , we can define an almost complex

structure on the dual space V ∗ = hom(V,R) by

∀ f ∈ V ∗,∀ v ∈ V Jf(v) := f(Jv).

Let J be an almost complex structure on the real vector space V , suppose to

extend it to the complexification J : V C → V C, then by definition J has only

eigenvalues ±i with eigenspaces

V 1,0 := {z ∈ V C/Jz = iz} = {v − iJv / v ∈ V }

V 0,1 := {z ∈ V C/Jz = −iz} = {v + iJv / v ∈ V }

then V 1,0 ∼= V 0,1 and V C = V 1,0 ⊕ V 0,1.

Vice versa if V is a real vector space, every decomposition of V C in V C = V1 ⊕ V2

such that V2
∼= V̄1 endows V with an almost complex structure with V 1,0 ∼= V1 and

V 0,1 ∼= V2.

Moreover a complex basis (a1−ib1, ..., an−ibn), ak, bk ∈ V of V1 yields a complex basis

(a1, ..., an) of V and the almost complex structure J on V is defined by J(ak) = bk.

Let
∧
V C be the complex exterior algebra of V C, then we define∧p,q V C :=

∧p V 1,0 ⊗
∧q V 0,1



1.2. Almost Complex Structures 17

and we have

•
∧
V C =

∧
V 1,0 ⊗

∧
V 0,1 =

∑
p,q

∧p,q V C,

•
∧p,q V C ∼=

∧q,p V C,

• if (e1, ..., en) is a basis of V 1,0, then (ē1, ..., ēn) is a basis of V 0,1 and

{ej1 ∧ · · · ∧ ejp ∧ ēk1 ∧ · · · ∧ ēkq} is a basis of
∧p,q V C.

Definition 1.14. Let M be a smooth differential manifold of dimension 2n, an

almost complex structure on M is a bundle map J : TM → TM such that every Jp

is an almost complex structure on the real vector space TpM . The couple (M,J) is

called almost complex manifold.

Let (M,J) be an almost complex structure of dimension 2n, then the real tangent

space in p ∈ M TR
p M = R〈 ∂

∂xj
, ∂
∂yj
〉j=1,··· ,n has an almost complex structure Jp.

Let TC
p M = C〈 ∂

∂xj
, ∂
∂yj
〉 be its complexification, called complex tangent space, then

TC
p M can be decomposed in the two eigenspaces of J , TC

p M = T 1,0
p ⊕T 0,1

p that define

the two sub-bundles T 1,0 and T 0,1 of TCM .

Considering the dual bundles we obtain the decomposition of the cotangent space

ΩC
pM = Ω1,0

p ⊕ Ω0,1
p and of the cotangent bundle ΩCM .

Then we have the decomposition of the algebra of differential forms with values

in C ∧C∗(M) =
∧∗(M)⊗R C =

⊕
p,q

∧p,q(M).

If now we consider the differential d :
∧r(M)→

∧r+1(M), we have that

d (
∧p,q(M)) ⊂

∧p+2,q−1(M) +
∧p+1,q(M) +

∧p,q+1(M) +
∧p−1,q+2(M).

Then we can define two components of d

∂ :
∧p,q(M)→

∧p+1,q(M) and ∂̄ :
∧p,q(M)→

∧p,q+1(M)

but obviously in general we do not have the decomposition d = ∂+ ∂̄ that occurs

when M is a complex manifold [14].
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Definition 1.15. Given an almost complex manifold (M,J), J is integrable if for

every vector fields X,Y ∈ χ(M) the Nijenhuis tensor N is zero:

N(X,Y ) = [X,Y ]− [JX, JY ] + J [JX, Y ] + J [X, JY ] = 0 (1.2)

We have the following theorem [14]:

Theorem 1.11. An almost complex manifold (M,J) is a complex manifold if and

only if J is integrable.

As a vector space, we can define an almost complex structure over a real Lie

algebra g and then considering its complexification gC we have

gC∗ =
∧1,0 gC∗ ⊕

∧0,1 gC∗ = g1,0∗ ⊕ g0,1∗

∧k gC∗ =
⊕

p+q=k

∧p g1,0∗ ⊗
∧q g0,1∗ =

⊕
p+q=k

∧p,q gC∗

∧p,q gC∗ =
∧q,p gC∗

We now consider the Chevalley-Eilenberg complex (
∧∗ g∗, d).

As for manifolds we say that the almost complex structure J on g is integrable if

equation (1.2) holds, in this case we can refer to J simply as a complex structure on

g.

For complex structures on Lie algebras we have the following properties [41]:

Proposition 1.4.

1. The real Lie algebra g has the structure of complex Lie algebra induced by the

almost complex structure J if and only if ∀X,Y ∈ g J [X,Y ] = [JX, Y ] and

then J is integrable. These kind of complex structures are called bi-invariant.

2. J is integrable if and only if g1,0 is a subalgebra of gC with induced bracket.

3. J is integrable if and only if dg1,0∗ ⊂ g1,1∗ ⊕ g2,0∗.
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4. If G is a real Lie group with Lie algebra g, then giving a left invariant almost

complex structure on G is equivalent to assign an almost complex structure J on

g and J is integrable if and only if it is integrable as almost complex structure

on G. In this case it induce a complex structure on G and G becomes a complex

Lie group.

Proof.

1. ⇒: as on the vector spaces, the almost complex structure J implies that g is

a complex vector space by i ·X := J(X) ∀X ∈ g, then we have only to prove

the bilinearity over C of the bracket. But this is obvious using the hypothesis.

⇐: if g is a complex Lie algebra, then the multiplication by i is an almost

complex structure on g and by bilinearity of the bracket over C we have the

thesis.

2. ⇒: we want to prove that given two elements in g1,0 their bracket is in g1,0,

i.e. if v = [X − iJX, Y − iJY ] with X,Y ∈ g, then Jv = iv.

By bilinearity of the bracket we have

Jv = J([X,Y ]− i[JX, Y ]− i[X,JY ]− [JX, JY ]) =

= J [X,Y ]− iJ [JX, Y ]− iJ [X, JY ]− J [JX, JY ]

Equation (1.2) implies = J [X,Y ] + i[X,Y ]− i[JX, JY ]− J [JX, JY ]

and by N(X, JY ) = 0 we have

= J [X,Y ] + i[X,Y ]− i[JX, JY ] + [X, JY ] + [JX, Y ]− J [X,Y ] =

= i([X,Y ]− [JX, JY ]− i[X,JY ]− i[JX, Y ]) = iv.

⇐: by hypothesis g1,0 is a subalgebra of gC, i.e. if v = [X − iJX, Y − iJY ],

then Jv = iv:

J [X,Y ]− iJ [X, JY ]− iJ [JX, Y ]− J [JX, JY ] =

= i[X,Y ] + [X, JY ] + [JX, Y ]− i[JX, JY ]

that implies
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{
J [X,Y ]− J [JX, JY ] = [X, JY ] + [JX, Y ]

−J [X,JY ]− J [JX, Y ] = [X,Y ]− [JX, JY ]

that is equivalent to equation (1.2).

3. given ω ∈ g1,0∗ we want to prove that the component in g0,2∗ of dω is zero if

and only if g is integrable, that by point 2 is equivalent to prove that g1,0 and

g0,1 are subalgebras of gC.

∀X,Y ∈ gC we consider their componentsX = X1,0+X0,1 and Y = Y 1,0+Y 0,1,

then

dω(X,Y ) = −ω([X,Y ]) = −

g2,0∗︷ ︸︸ ︷
ω([X1,0, Y 1,0])−

g1,1∗︷ ︸︸ ︷
ω([X1,0, Y 0,1] + [X0,1, Y 1,0]) +

−ω([X0,1, Y 0,1])︸ ︷︷ ︸
g0,2∗

.

But g0,1 is a subalgebra, i.e. [X0,1, Y 0,1] ⊂ g0,1, if and only if ω([X0,1, Y 0,1]) =

0, because ω ∈ g1,0∗ and then ω(g0,1) = 0.

4. All the statements are direct consequences of the definition of almost complex

structure on a differential manifold and of Remark 1.1.

Remark 1.2. We observe that the third property is equivalent to ∂̄2 = 0, then

when a real Lie algebra g is endowed with a complex structure J , we can define

the Dolbeault complex (
∧p,q gc∗, ∂̄) associated to (g, J) and the Dolbeault cohomology

groups Hp,q

∂̄
(g) associated to this complex.

In general when the differential d can be decomposed in d = ∂ + ∂̄ we can study

if the ∂∂̄-Lemma holds. We enunciate it for a general complex (
∧∗,∗ V, d = ∂+ ∂̄), if

we refer to a complex manifold we have to add the hypothesis of compactness.

Lemma 1.1. (∂∂̄-Lemma) Let v ∈
∧∗,∗ V such that ∂v = ∂̄v = 0, then
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• if v = ∂̄u, then there exists w such that u = ∂w,

• if v = ∂u, then there exists w such that u = ∂̄w.

Remark 1.3. A real case of the previous lemma is the dd∗-Lemma, where d∗ is

defined as d∗ := i(∂̄−∂). In particular by definition the ∂∂̄-Lemma holds if and only

if the dd∗-Lemma does.

For a complete study of this subject see [5] and [12].

If the ∂∂̄-Lemma and the dd∗-Lemma hold we have an important property that

we will see in the following section (Theorem 1.13).

1.3 Minimal Models

Minimal models are objects of rational homotopy theory introduced by Quillen and

Sullivan in the late 1960s.

We refer to [14, 45] for a deep study of these topics.

Definition 1.16. Let K ba a field of characteristic 0. A graded K-vector space is a

family of K-vector spaces A = {Ap}p≥0. An element of a ∈ A has degree p, |a| = p,

if it belongs to Ap.

Definition 1.17. A commutative differential graded K-algebra, cdga, (A, d) is a

graded K-vector space A together with a multiplication Ap ⊗ Aq → Ap+q that is

associative, with unit 1 ∈ A0 and commutative in the graded sense, i.e.

∀a ∈ Ap, b ∈ Aq a · b = (−1)pqb · a, (1.3)

and with a differential d : Ap → Ap+1 such that d2 = 0 and

∀ a ∈ Ap, b ∈ Aq d(a · b) = da · b+ (−1)pa · db. (1.4)

Example 1.4. The complex of differential forms over a differential manifold and the

Chevalley-Eilenberg complex over a Lie algebra are cdgas.
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Given a K-cdga (A, d) its cohomology algebra H∗(A,K) is well defined and it is

a K-cdga with d ≡ 0.

The Betti numbers of A are the dimensions of the cohomology groups of A,

bi(A) := dimH i(A,K).

Definition 1.18. A cdga homomorphism f : (A, dA)→ (B, dB) is a family of homo-

morphisms fp : Ap → Bp such that fp+q(a · b) = fp(a) · f q(b) and dBf
p = fpdA.

Definition 1.19. A cdga (M, d) is Sullivan if it is free commutative, i.e. M =
∧
V

with V graded vector space, V 0 = K and there exist a ordered basis {xα} of V such

that dxα ∈
∧

(xβ)β<α.

A cdga (M, d) is minimal if it Sullivan and |xβ| ≤ |xα| for β < α or equivalently

dV ⊂
∧≥2 V , where with

∧≥2 V we mean
∧i V with i ≥ 2.

A minimal (Sullivan) model of the cdga (A, d) is a minimal (Sullivan) cdga (M, d)

together with a cdga quasi isomorphism ψ : M→ A, i.e. a morphism that induces

an isomorphism on cohomology.

For every topological space T , Sullivan defined a Q-cdga APL(T ) called the piece-

wise linear cdga associated to T . We refer to [14] for its definition, we only need to

know that its cohomology is the cohomology of the space T over the constant sheaf

Q and then we can use all the theory over this cdgas for differential manifolds and

their de Rham cohomology only by replacing Q with R.

In particular from now on, the model of a topological space T is the model of

APL(T ), while the model of a differential manifold M is the model of
∧∗(M).

To understand what minimal models are, we give a fundamental example of their

computation:

Example 1.5. Let A =
∧∗(Sp) be the algebra of differential forms over the sphere

of dimension p, then

Hk(Sp) =


R k = 0

Rω k = p

0 k 6= 0, p
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Where ω is the volume form of Sp.

We have to consider two cases:

p = 2n− 1: Let x be an element of degree 2n−1 such that dx = 0, then the minimal model

of A is M =
∧

(x) the exterior algebra generated by x and

ρ :M → A
x 7→ ω

Indeed M is by definition free commutative and the map induced on cohomo-

logy is

H2n−1(M) ∼= H2n−1(A)

[x] 7→ [ω]

The only generator has degree 2n − 1, then we do not have elements of lower

degree and

Hk(M) = 0 = Hk(A) ∀ 0 < k < 2n− 1.

Besides by equation (1.3) in Definition 1.17, xx = −xx, that implies x2 = 0,

then we do not have either elements of greater degree:

Hk(M) = 0 = Hk(A) ∀ k > 2n− 1.

p = 2n: By a similar argument to the previous case, we consider an element x of degree

2n such that dx = 0, then

x
ρ7→ ω ⇒

H2n(M) ∼= H2n(A)

[x] 7→ [ω]

But now x2 6= 0, then to kill the higher cohomology groups we need another

generator: let y be such that |y| = 4n− 1 and dy = x2, thenM =
∧

(x, y) and

ρ :M → A
x 7→ ω

y 7→ 0

Indeed:
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• we do not have elements of degree lower of 2n then

Hk(M) = 0 = Hk(A) ∀ 0 < k < 2n.

• All the elements of degree greater then 2n that represent cohomology

classes, i.e. that are closed, are also exact, then their class is the zero one:

dy 6= 0, then we have to check only powers of x.

∀ i > 0 (xi−2y) = xi , then [xi] = [d(xi−2y)] = [0] and

Hk(M) = 0 = Hk(A) ∀ k > 2n.

We have a theorem of existence and uniqueness of minimal models for path con-

nected K-cdga, i.e. A such that H0(A) = K:

Theorem 1.12. [14] A path connected cdga A admits always a minimal model M
that is unique up to isomorphism.

Proof of Existence. Let M(n) ⊂ M be the subalgebra generated by elements of

degree ≤ n, thenM(n) ⊂M(n+ 1) ⊂ · · · ⊂ M. We computeM by induction on n:

Let M(0) be K and ρ0 : 1 7→ 1.

∀n we compute M(n) with the map ρn :M(n)→ A such that

1. ρ∗n : Hq(M(n)) → Hq(A) is an isomorphism ∀ q ≤ n and it is injective for

q = n+ 1.

2. ρn+1|M(n)
= ρn.

In this way, M(n) ⊂ M ∀n implies that ρ∗ : Hq(M) ∼= Hq(A) is an isomorphism

∀ q.
Suppose for simplicity that A is simply connected, i.e. that H1(A) = 0.

By inductive hypothesis, we suppose to haveM(n) and ρn and computeM(n+1)

and ρn+1: we add toM(n) new generators αn+1
1 , · · · , αn+1

k , βn+1
1 , · · · , βn+1

l of degree

n+ 1 such that:
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• {αn+1
i }i=1,··· ,k is a basis of the cokernel of

0→ Hn+1(M(n))
ρ∗n→ Hn+1(A) :

Let an+1
i ∈ An+1 be closed elements that are representative of αn+1

i in coho-

mology, i.e.

ρn+1(αn+1
i ) = an+1

i and dαn+1
i = 0

• Let {ηn+2
1 , · · · , ηn+2

l } ∈ Mn+2(n) be a basis of the kernel of

Hn+2(M(n))
ρ∗n→ Hn+2(A),

and let bn+1
j ∈ An+1 be such that dbn+1

j = ρn(ηn+2
j ), then we choose βn+1

j such

that

ρn+1(βn+1
j ) = bn+1

j and dβn+1
j = ηn+2

j ∈Mn+2(n).

If we define M(n+ 1) =M(n){αn+1
i , βn+1

j }, then we have:

• M(n+ 1) is obviously free commutative,

• dαn+1
i = 0 and dβn+1

j ∈ Mn+2(n) ⊂ [M(n)]2 ⊂ [M(n + 1)]2 where we have

the first inclusion because every element of degree n+ 2 generated by elements

of degree less or equal to n, must be given by products.

Then M(n+ 1) is a minimal cdga.

Moreover:

• ρn+1 :M(n+ 1)→ A is a cdga homomorphism and obviously ρn+1|M(n)
= ρn,

• ρ∗n+1 : Hq(M(n+1))→ Hq(A) by inductive hypothesis is injective for q ≤ n+1

and it is surjective for q ≤ n.

We added to M(n) the cokernel of Hn+1(M(n))
ρ∗n→ Hn+1(A), then ρ∗n+1 is

surjective also for q = n+ 1.

Moreover, what was sent by ρ∗n in the kernel for q = n + 2, i.e. ηn+2
j , with

ρ∗n+1 are differentials of βn+1
j , then are 0 in cohomology, and then the kernel is

trivial and ρ∗n+1 is injective also for q = n+ 2.
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We observe that we do not have to check anything else in the kernel of ρ∗n+1

because A is simply connected, then M1(n) = 0 and so elements of degree

n+ 2 can not be generated by those we add of degree n+ 1 multiplied by those

of degree 1.

2

A fundamental notion related to minimal models is formality. We have two

equivalent definitions of formal cdga [14]:

Definition 1.20. A cdga (A, d) is formal if there exists a cgda homomorphism

ψ : A → H∗(A) that induces the identity in cohomology.

Definition 1.21. A minimal cdga (M =
∧
V, d) is formal if V = C ⊕N such that

• d(C) = 0

• d is injective on N

• ∀n ∈ I :=
∧
V ·N such that dn = 0, then n is exact in

∧
V .

We say that a differential manifold is formal if its algebra of differential forms is

formal. In particular we have the following fundamental property:

Theorem 1.13. [5, 12, 14] A compact complex manifold satisfying equivalently the

dd∗-Lemma or the ∂∂̄-Lemma is formal.

Proof. Let Zp,q∂ (M) and Hp,q
∂ (M) be respectively the spaces of cocycles and the

cohomology groups for the differential ∂, we consider the cdga diagram:

(Hp,q
∂ (M), ∂̄)

ρ←− (Zp,q∂ (M), ∂̄)
j−→ (

∧p,q(M), d)

where j is the inclusion and ρ(α) := [α].

1. j∗ is surjective:

let [α] ∈ Hp+q(M), then dα = 0, ∂̄(∂α) = ∂̄(dα − ∂̄α) = −∂̄2α = 0 and

∂(∂α) = 0.
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By the lemma there exists β such that ∂α = ∂∂̄β, then considering γ := α−dβ,

we have ∂γ = ∂α − ∂dβ = ∂α − ∂(∂ + ∂̄)β = ∂α − ∂∂̄β = 0, i.e. γ is

a ∂-cocycle and ∂̄γ = ∂̄α − ∂̄dβ = −∂α − ∂̄∂β = −(∂α − ∂∂̄β) = 0, then

j∗[γ] = [γ]Hp+q(M) = [α]Hp+q(M).

2. j∗ is injective:

let α ∈ Zp,q∂ (M), such that j∗[α] = [α]Hp+q(M) = 0, i.e. α = dβ. ∂(∂β) = 0 and

∂̄(∂β) = −∂(∂̄β) = −∂(dβ − ∂β) = −∂(dβ) = −∂α = 0, then by the lemma

there exists γ such that ∂β = ∂∂̄γ = −∂̄∂γ.

Then α = dβ = ∂β + ∂̄β = −∂̄∂γ + ∂̄β = ∂̄(β − ∂γ) is a ∂̄-coboundary and

[α]Hp,q

∂̄
(M) = 0.

3. ρ∗ is surjective:

let α be such that ∂α = 0. ∂̄(∂̄α) = 0 and ∂(∂̄α) = −∂̄(∂α) = 0 imply by

the lemma that there exists β such that ∂̄α = ∂̄∂β. Let consider γ := α− ∂β,

then ∂γ = ∂α − ∂2β = 0 − 0 = 0 and ∂̄γ = ∂̄α − ∂̄∂β = ∂̄α − ∂̄α = 0 and so

ρ∗[γ] = [γ]Hp,q
∂ (M) = [α]Hp,q

∂ (M).

4. ρ∗ is injective:

let α be such that ρ∗[α] = [α]Hp,q
∂ (M) = 0 i.e. ∂α = ∂̄α = 0 and α = ∂β. Then

by the lemma there exists γ such that α = ∂∂̄γ = −∂̄∂γ, then [α]Hp,q

∂̄
(M) = 0.

5. The differential induced by ∂̄ in Hp,q
∂ (M) is zero:

let α be such that ∂α = 0, then ∂̄(∂̄α) = 0, ∂(∂̄α) = −∂̄(∂α) = 0 and by the

lemma there exists γ such that ∂̄α = ∂̄∂γ = −∂∂̄γ. But then [∂̄α]Hp,q
∂ (M) = 0.

Then there exists a homomorphism between (
∧p,q(M), d) and (Hp,q

∂ (M), 0) that in-

duces the identity on cohomology.

We can generalize the concept of formality. There are two equivalent definitions

of s-formality [14–16]:

Definition 1.22. A cdga (
∧
V, d) is s-formal if there is a cdga homomorphism

ψ :
∧
V ≤s → H∗(

∧
V ), such that the map ψ∗ : H∗(

∧
V ≤s) → H∗(

∧
V ) induced on
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cohomology is equal to the map i∗ : H∗(
∧
V ≤s)→ H∗(

∧
V ) induced by the inclusion

i :
∧
V ≤s →

∧
V .

Definition 1.23. A minimal cdga (
∧
V, d) is s-formal if for every i ≤ s

V i = Ci ⊕N i such that

• d(Ci) = 0

• d is injective on N i

• ∀n ∈ Is :=
∧
V ≤s ·N≤s such that dn = 0, then n is exact in

∧
V .

In particular a (
∧
V, d) is formal if it is s-formal ∀s ≥ 0.

We can generalize a little the idea of minimal models applying it to homomor-

phisms and then to fibrations [14].

Definition 1.24. A relative minimal cdga is a homomorphism of cdgas of kind

i : (A, dA)→ (A⊗
∧
V, d)

where

• i(a) = a ∀ a ∈ A,

• d|A = dA,

• d(V ) ⊂ (A+ ⊗
∧
V ) ⊕

∧≥2 V , where with A+ we mean all the elements in A
with degree greater than 0,

• there exist a ordered basis {xα} of V such that dxα ∈ A⊗
∧

(xβ)β<α.

Remark 1.4. By definition if A is Sullivan, then also the relative minimal cdga

A⊗
∧
V is Sullivan, but if A is also minimal A⊗

∧
V is just Sullivan.
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Definition 1.25. (Homotopy lifting property) Given two topological spaces E

and B, a fibration is a map p : E → B such that for every topological space X and

for every commutative diagram

X × {0} g //

(Id,i)
��

E

p

��
X × [0, 1]

f // B

there is a continuous map h : X × [0, 1]→ E such that p ◦ h = f and h ◦ (Id, i) = g.

In particular if B is path connected all the fibres p−1(x), with x ∈ B, have the

same homotopy type and then we write the fibration F → E
p→ B with F the fibre.

For a fibration we can define a concept similar to minimal models [14, 36]:

Definition 1.26. Let F → E
p→ B be a fibration of path connected spaces and let

APL(B)→ APL(E)→ APL(F ) be the map induced on the piecewise linear cdgas.

The Sullivan model of the fibration is the commutative diagram

APL(B) // APL(E) // APL(F )

(
∧
X, dX)

i //

σ

OO

(
∧

(X ⊕ Y ), D)

τ

OO

q // (
∧
Y, dY )

ρ

OO

where

• (
∧
X,σ) is the minimal model of B,

• τ is a quasi isomorphism,

• i is a relative minimal cdga,

• (
∧
Y, dY ) is the quotient cdga (

∧
(X ⊕ Y ), D)/(

∧+X ⊗
∧
Y ) and q is the

quotient map.

Remark 1.5. We observe that the last point in the definition means that

Dy = dY y + cx ∧ y′, ∀ y ∈ Y
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with c ∈ Q, x ∈
∧
X+ and y′ ∈

∧
Y <y, where

∧
Y <y is the subalgebra of

∧
Y

generated by all the generators prior to y with respect to an order among the basis

of Y .

Definition 1.26 does not describe the map ρ : (
∧
Y, dY ) → APL(F ), indeed in

general we are not able to feature it. Only in particular cases ρ can be described:

Definition 1.27. A fibration F → E
p→ B is quasi nilpotent if B and F are path

connected and the natural action of π1(B) on the homology groups of F is nilpotent.

In particular if B is simply connected every fibration F → E
p→ B is quasi

nilpotent.

We state now a theorem that will be generalized and used in Chapter 6.2.

Theorem 1.14. [14] Let F → E
p→ B be a quasi nilpotent fibration, if B and F

have finite Betti numbers and the map induced on the first cohmology group H1(p)

is injective, then the map ρ is a quasi isomorphism and the cdga (
∧
Y, dY ) is the

minimal model of the fibre F .

1.4 Symplectic geometry and Hard Lefschetz property

In this section we give some basic definition and properties of symplectic geometry.

In particular we are interested in the Hard Lefschetz property and its relation to

the symplectic version of the Hodge theory and the dd∗-Lemma [29]. For a complete

study of this subject see [14].

Definition 1.28. Let M be a differential manifold of dimension 2n. A symplectic

structure on M is a closed 2-form ω in
∧∗(M) such that ωn 6= 0, i.e. ω is not

degenerate.

Brylinski developed a symplectic analogue of the Hodge theory for complex mani-

folds:



1.4. Symplectic geometry and Hard Lefschetz property 31

Definition 1.29. Let (M,ω) be a symplectic manifold of dimension 2n, the sym-

plectic star operator ∗s :
∧k(M)→

∧2n−k(M) is defined by the following properties:

• ∗s1 = ωn

n! .

• ∗s is linear.

• ∗s(fα) = f(∗sα), for every function f and for every form α.

• ∗s∗s = 1.

• α ∧ ∗sα = 0 if and only if α = 0.

• α ∧ ∗sβ = β ∧ ∗sα.

Note that the first condition implies that the star operator depends on the sym-

plectic structure of the manifold.

In particular using coordinates (x1, .., x2n) on M it is given by ∀ γ, β ∈
∧k(M),

γ ∧ ∗sβ = (ω−1)k(γ, β)dvol :=
1

k!
(ω−1)i1j1(ω−1)i2j2 ...(ω−1)ikjkγi1i2...ikβj1j2...jk

ωn

n!
.

Definition 1.30. Let (M,ω) be a symplectic manifold of dimension 2n, the Lefschetz

operator is

L :
∧k(M)→

∧k+2(M)

η 7→ η ∧ ω

The dual Lefschetz operator Λ :
∧k(M) →

∧k−2(M) is its dual operator with

respect to the scalar product ( , ) defined using the symplectic form ω.

Remark 1.6. (see [47])

1. Λ = ∗sL∗s.

2. Using coordinates (x1, .., x2n) on M the above operators are defined in the

following way:

Λ(η) :=
1

2
(ω−1)iji∂xi i∂xj η

where i is the interior product.
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Using Λ we can construct another differential d∧ :
∧k(M)→

∧k−1(M):

d∧ := (−1)k+1 ∗s d∗s = dΛ− Λd.

Remark 1.7. For the differential d∧ equation (1.4) does not hold.

We observe that the classical Hodge theory is given in a similar way: if (M, g) is

a Riemannian manifold we define the Hodge operator ∗ as in Definition 1.29 just by

considering the volume form defined by the metric g instead of the volume form ωn

n!

defined by the symplectic structure. In particular with this notation the operator d∗

that we introduced in Section 1.2 can be defined as d∗ := − ∗ d∗ and then it is the

analogue of d∧ in the symplectic case.

On a symplectic manifold (M,ω) we can always find a compatible almost com-

plex structure J [14, Proposition 4.86], i.e. ω(X, JX) > 0 and ω(JX, JY ) =

ω(X,Y ) ∀X,Y ∈ χ(M). In particular this means that it is well defined the Rieman-

nian metric g(X,Y ) := ω(X, JY ). If now we define the Hodge operator ∗ associated

to this metric, we have a relation between the two star operators:

∗ = =∗s

where = :=
∑

p,q i
p−q∏p,q.

The differential d∧ can be used to state a symplectic analogue of the dd∗-Lemma:

Definition 1.31. A symplectic manifold satisfies the dd∧-Lemma if

Imd ∩ ker d∧ = Imd∧ ∩ ker d = Imdd∧

Definition 1.32. A form α ∈
∧∗(M) is symplectically harmonic if dα = d∧α = 0.

The Lefschetz operator allows us to define the following fundamental property:

Definition 1.33. The Hard Lefschetz Property holds if the map induced in coho-

mology by the Lefschetz operator

Hk(M) → H2n−k(M)

[α] 7→
[
ωn−k ∧ α

]
is an isomorphism ∀ k ≤ n.
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Theorem 1.15. [14, 29] Let (M,ω) be a symplectic manifold of dimension 2n, then

the following statements are equivalent:

1. Any cohomology class contains at least one symplectically harmonic form.

2. (M,ω) satisfies the Hard Lefschetz Property.

Using Theorem 1.15 Markulov proved the following theorem:

Theorem 1.16. [14, 31] A compact symplectic manifold satisfies the Hard Lefschetz

property if and only if it satisfy the dd∧-Lemma.

We observe that Remark 1.7 implies that we do not have an analogue of Theorem

1.13 in the symplectic case, indeed Zd∧ is not a cdga [5, Remarks pagg. 14 and 83],

[14].

Remark 1.8. Complex and symplectic geometries intersect in Kähler manifolds.

Indeed Kähler manifolds satisfy both the dd∗-Lemma and the dd∧-Lemma and then

are formal and for them the Hard Lefschetz property holds.

Formality of symplectic and Kähler manifolds is deeply studied in [11].
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Tesng-Yau Cohomology

L.S. Tseng and S.T. Yau introduced some classes of finite dimensional cohomologies

for symplectic manifolds [47]. These cohomology classes depend on the symplectic

form and are in general distinct from the de Rham cohomology, so that they provide

new symplectic invariants. As shown in [47] (cf. also Proposition 2.3 below), these

new invariants actually agree with the de Rham cohomology if and only if the Hard

Lefschetz property holds.

Below we discuss these cohomological invariants, proving that they can be com-

puted using invariant forms, provided this is the case for the Rham cohomology (see

Theorem 2.2). This result will allow us to go through the list of symplectic structures

on solvable Lie algebras (Appendix C), to see which solvmanifolds, supposing that

for them the Mostow condition holds, satisfy the Hard Lefschetz property (Theorem

3.3).

We will give all the definition and properties referring to a differential manifold,

but they can similarly be given for a Lie algebra with a symplectic structure.

Let (M,ω) be a symplectic manifold of dimension 2n, L be the Lefschetz operator,

Λ be the dual Lefschetz operator and ∗s be the symplectic star operators.

We consider another operator H :=
∑

k(n − k)
∏k called degree count operator,

where
∏k :

∧∗(M)→
∧k(M) projects onto forms of degree k.

L,Λ and H give a representation of the sl2(R) algebra acting on
∧∗(M) by

[Λ, L] = H, [H,Λ] = 2Λ, [H,L] = −2L.

35
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Using the differentials d and d∧ we can obtain another differential

dd∧ :
∧k(M)→

∧k(M)

and for these operator the following lemma holds.

Lemma 2.1. The differential operators (d, d∧, dd∧) satisfy the following commuta-

tion relations with respect to the sl2(R) representation (L,Λ, H):

[d, L] = 0, [d,Λ] = d∧, [d,H] = d,

[d∧, L] = d, [d∧,Λ] = 0, [d∧, H] = −d∧,

[dd∧, L] = 0, [dd∧,Λ] = 0, [dd∧, H] = 0.

Using these 3 operators we can define, besides the de Rham cohomology ones

H∗d(M), the following cohomology groups

Hk
d∧(M) :=

ker d∧ ∩
∧k(M)

im d∧ ∩
∧k(M)

Hk
d+d∧(M) :=

ker(d+ d∧) ∩
∧k(M)

im dd∧ ∩
∧k(M)

Hk
dd∧(M) :=

ker dd∧ ∩
∧k(M)

im d ∩
∧k(M) + im d∧ ∩

∧k(M)

Hk
d∩d∧(M) := Hk

d ∩Hk
d∧ = Hk

d+d∧ ∩Hk
dd∧ =

ker(d+ d∧) ∩
∧k(M)

im d ∩
∧k

0(M) + im d∧ ∩
∧k

0(M)

where
∧k

0(M) is ker dd∧ ∩
∧k(M).

We now analyse these cohmologies separately. Using the Hodge operator ∗ we

can define the Hodge adjoint operators d∧∗ := ∗d∧∗ and (dd∧)∗ := (−1)k+1 ∗ dd∧∗.

Proposition 2.1. (Brylinski) The operator ∗s gives an isomorphism between Hk
d (M)

and H2n−k
d∧ (M).
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This proposition implies in particular that the Hd∧ cohomology does not lead to

new invariants.

We can define the Laplacian associated to d∧: ∆d∧ := d∧∗d∧ + d∧d∧∗. A diffe-

rential form α ∈∗ (M) is d∧-harmonic if ∆d∧α = 0 or equivalently d∧α = d∧∗α = 0.

We denote the space of d∧-harmonic k-forms by Hkd∧(M).

∆d∧ is an elliptic differential operator, then we have the Hodge decomposition∧k = Hkd∧ ⊕ d∧
∧k+1⊕d∧∗

∧k−1

that implies the isomorphism Hkd∧(M) ∼= Hk
d∧(M).

Now we consider the Laplacian operators associate to the other differential that

define these particular cohomologies [47]:

• ∆d+d∧ := dd∧(dd∧)∗ + λ(d∗d+ d∧∗d∧),

• ∆dd∧ := (dd∧)∗dd∧ + λ(dd∗ + d∧d∧∗),

• ∆d∩d∧ := dd∗ + d∗d+ d∧d∧∗ + d∧∗d∧.

We define the harmonic spacesHkd+d∧(M), Hkdd∧(M) andHkd∩d∧(M) as the spaces

of k-forms on which respectively these Laplacians are zero, then we have the following

decompositions

Theorem 2.1. [47] (Tseng-Yau) Let M be a compact symplectic manifold. For

any compatible triple (ω, J, g) there are the orthogonal decompositions

•
∧k = Hkd+d∧ ⊕ dd∧

∧k⊕(d∗
∧k+1 +d∧∗

∧k−1),

•
∧k = Hkdd∧ ⊕ (d

∧k−1 +d∧
∧k+1)⊕ (dd∧)∗

∧k,

•
∧k = Hkd∩d∧ ⊕ (d

∧k−1
0 +d∧

∧k+1
0 )⊕ (d∗

∧k+1 +d∧∗
∧k−1).

These decompositions imply respectively the isomorphisms

Hkd+d∧(M) ∼= Hk
d+d∧(M), Hkdd∧(M) ∼= Hk

dd∧(M), Hkd∩d∧(M) ∼= Hk
d∩d∧(M).

Since ∗∆d+d∧ = ∆dd∧∗ there is the following corollary.



38 Chapter 2. Tseng-Yau Cohomology

Corollary 2.1. The operator ∗s gives an isomorphism between Hk
d+d∧(M) and H2n−k

dd∧ (M).

We consider the analogue Lefschetz property related to these cohomology groups.

Lemma 2.2. [47] The Laplacians ∆d+d∧ , ∆dd∧ and ∆d∩d∧ commute with the sl2(R)

triple (L,Λ, H).

Using this lemma we can prove directly the following proposition

Proposition 2.2. [47] (Tseng-Yau) On a symplectic manifold of dimension 2n

and a compatible triple (ω, J, g), the Lefschetz operator defines the isomorphisms

Ln−k : Hk
d+d∧(M) ∼= H2n−k

d+d∧ (M) ∀ k ≤ n,

Ln−k : Hk
dd∧(M) ∼= H2n−k

dd∧ (M) ∀ k ≤ n,

Ln−k : Hk
d∩d∧(M) ∼= H2n−k

d∩d∧ (M) ∀ k ≤ n.

This proposition implies that the Lefschetz operator does not give invariants or

other informations if we relate it to these cohomologies. Fortunately we have the

following property.

Proposition 2.3. [47] (Tseng-Yau) On a compact symplectic manifold (M,ω) the

following properties are equivalent:

• the Hard Lefschetz property holds.

• the canonical homomorphism Hk
d+d∧(M) → Hk

d (M) is an isomorphism for all

k.

• the canonical homomorphism Hk
d∩d∧(M) → Hk

d+d∧(M) is an isomorphism for

all k.

Remark 2.1. These particular cohomologies are studied in details also in [1].

There are also a complex analogue of these cohomologies, namely the Bott-Chern

and the Aeppli cohomolgy. They are very interesting in relation to the ∂∂̄-Lemma

because they give a necessary ans sufficient condition to it [2, 12].
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We are interested in the Lie groups associated to the six dimensional unimodular

solvable non-nilpotent Lie algebras which admit a lattice and for which the de Rham

cohomology of the associated solvmanifold can be computed by invariant forms.

Indeed the following theorem holds:

Theorem 2.2. Let G be a Lie group admitting a left invariant symplectic structure

and a lattice Γ such that the quotient Q = G/Γ is compact. Let g be the Lie algebra

of G.

If the inclusion
∧∗ g∗ i

↪→
∧∗(Q) is a quasi-isomorphism, i.e. H∗d(Q) ∼= H∗d(g),

then

H∗d∧(Q) ∼= H∗d∧(g), H∗d+d∧(Q) ∼= H∗d+d∧(g),

H∗dd∧(Q) ∼= H∗dd∧(g), H∗d∩d∧(Q) ∼= H∗d∩d∧(g).

Proof. We divide the proof into four steps:

1. We prove that the invariant cohomologies are well defined, i.e. the algebra of

invariant forms
∧∗ g∗ is closed for the operator d∧.

To this aim it suffices to prove that the operator ∗s sends invariant forms to

invariant forms. If L : G → G denotes the left translation, then α and β are

invariant if L∗α = α and L∗β = β. Then

L∗(α ∧ ∗sβ) = L∗
(

1

k!
(ω−1)i1j1(ω−1)i2j2 · · · (ω−1)ikjkαi1i2···ikβj1j2···jk

ωn

n!

)
=

1

k!
(L∗(ω)−1)i1j1(L∗(ω)−1)i2j2 · · · (L∗(ω)−1)ikjkL∗(αi1i2···ik)L∗(βj1j2···jk)

L∗(ωn)

n!

=
1

k!
(ω−1)i1j1(ω−1)i2j2 · · · (ω−1)ikjkαi1i2···ikβj1j2···jk

ωn

n!
= α ∧ ∗sβ .

Therefore, α ∧ ∗sβ = L∗(α ∧ ∗sβ) = L∗(α) ∧ L∗(∗sβ) = α ∧ L∗(∗sβ) and so

∗sβ = L∗(∗sβ) .

2. We show that H∗d∧(Q) ∼= H∗d∧(g), H∗d∩d∧(Q) ∼= H∗d∩d∧(g) and that H∗d+d∧(Q) ∼=
H∗d+d∧(g) if and only if H∗dd∧(Q) ∼= H∗dd∧(g).
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We observe that point 1 and Proposition 2.1 imply the commutativity of the

diagram

Hk
d (g)

∗s
∼
//

∼
��

H2n−k
d∧ (g)

��
Hk
d (Q) ∗s

∼ // H2n−k
d∧ (Q)

so that, since by assumption the isomorphism holds for H∗d , it holds for H∗d∧ , i.e.

H∗d∧(Q) ∼= H∗d∧(g). Moreover, since Hk
d∩d∧(Q) := Hk

d ∩Hk
d∧ , the isomorphism

holds also for the d ∩ d∧-cohomology.

Hence Corollary 2.1 implies that if the isomorphism between cohomology and

invariant cohomology holds for Hd+d∧ , then it is also true for Hdd∧ and vice

versa.

3. i∗ : H∗d+d∧(g∗)→ H∗d+d∧(Q) is injective (see also [40, page 123]).

Since Q is compact, there exists an invariant metric 〈 , 〉 on Q. One can use

this metric to define the adjoint operators of d, d∧, d+d∧ and dd∧. Let
∧⊥k g∗

be the orthogonal complement of
∧k g∗ in

∧k(Q).

Then
∧k(Q) =

∧k g∗ ⊕
∧⊥k g∗ and

∧k g∗ and
∧⊥k g∗ are closed under d+ d∧

and dd∧.

If i∗[α] := [i(α)] = 0, then there exists a form η ∈
∧

(Q) such that

i(α) = dd∧η = dd∧(η̃ + η̃⊥) = dd∧η̃ + dd∧η̃⊥,

with η̃ ∈
∧k g∗ and η̃⊥ ∈

∧⊥k g∗.
Moreover dd∧η̃ ∈

∧k g∗, so i(α− dd∧η̃) = dd∧η̃⊥ and [α] = [α− dd∧η̃].

So we can choose α̃ := α − dd∧η̃ as a representative of the cohomology class

[α] in H∗d+d∧(g∗).

Observe that α̃ ∈
∧k g∗ so (dd∧)∗α̃ ∈

∧k g∗ and

i((dd∧)∗α̃) = (dd∧)∗i(α̃) = (dd∧)∗dd∧η̃⊥ ∈
k∧
g∗,

but then η̃⊥ ∈
∧⊥k g∗ is orthogonal to (dd∧)∗dd∧η̃⊥ ∈

∧k g∗. This implies

0 = 〈η̃⊥, (dd∧)∗dd∧η̃⊥〉 = 〈dd∧η̃⊥, dd∧η̃⊥〉 ,
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so dd∧η̃⊥ = 0. But then i(α) = dd∧η̃, with η̃ in
∧k g∗, so α = dd∧η̃ in

∧k g∗,

that is [α] = 0 belongs to H∗d+d∧(g∗).

Remark 2.2. We can similarly prove that also i∗ : H∗dd∧(g∗) → H∗dd∧(Q) is

injective.

In particular point 3 is always true, independent on the fact that the map i is

a quasi-isomorphism.

4. i∗ : H∗d+d∧(g∗)→ H∗d+d∧(Q) is surjective.

Let η ∈
∧k(Q) be such that dη = d∧η = 0. Then the cohomology class [η]kd+d∧

is well defined. But also [η]kd and [η]kd∧ exist and by hypothesis they have an

invariant representative: η = η̃1 + dµ1 and η = η̃2 + d∧µ1 with η1, η2 ∈
∧∗ g∗

and dη̃1 = d∧η̃2 = 0.

Since dd∧η = 0, the cohomology class [η]kdd∧ exists and

η =
1

2
(η̃1 + η̃2) + d

µ1

2
+ d∧

µ2

2

then 1
2(η̃1 + η̃2) is an invariant representative for [η]kdd∧ .

Now we apply the isomorphism of Corollary 2.1:

[∗sη]2n−kd+d∧
∼= [η]kdd∧ =

[
η̃1 + η̃2

2

]k
dd∧

∼=
[
∗s
( η̃1 + η̃2

2

)]2n−k

d+d∧
.

Let ∗sη = N, ∗sη̃1 = N1, ∗sη̃2 = N2. Then N1+N2
2 is an invariant representa-

tive in [N ]2n−kd+d∧ .

To complete the proof we have to show that every N ∈
∧2n−k(Q) such that

dN = d∧N = 0 is of the form N = ∗sη with η ∈
∧k(Q) and dη = d∧η = 0.

To this aim, it is sufficient to impose η := ∗sN , then ∗sη = ∗s ∗s N = N .

Moreover d∧ := (−1)k+1 ∗s d∗s, so ∗sd∧ = (−1)k+1d∗s and d∧∗s = (−1)k+1 ∗s d.

Then for every β ∈
∧k(Q) if d∧β = 0, also ∗sd∧β = 0 and then d ∗s β = 0 and

similarly if dβ = 0, then d∧ ∗s β = 0.

Hence dη = d∧η = 0.



42 Chapter 2. Tseng-Yau Cohomology

Remark 2.3. We recall that in particular Theorem 2.2 applies in the following cases:

• If G is nilpotent, using Nomizu theorem [35].

• If G is completely solvable, using Hattori theorem [22].

• If AdG(G) and AdG(Γ) have the same algebraic closure, using Mostow theorem

[34].
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Low dimensional unimodular

solvable Lie algebras

We have seen in Chapter 1.1 that if the Mostow condition holds, we can compute

the de Rham cohomology of a solvmanifold using only its associated Lie algebra

(Theorem 1.10).

The study of solvable Lie algebras have been developed up to dimension 5, (see

for instance [4]), for this reason we want to improve this classification by studying

six dimensional solvable Lie algebras. Six dimensional nilpotent Lie algebras were

classified in [43] then by Proposition 1.2 we will consider six dimensional unimodular

solvable Lie algebras [25].

The complete list of these Lie algebras is given in Appendix A.

3.1 Cohomology of six dimensional unimodular solvable

Lie algebras

In this Section we compute the second and third Betti number of six dimensional

solvable Lie algebras. Solvable Lie algebras g with the property that b2(g) = b3(g)

are interesting because of a class of manifolds endowed with a closed 3 form, called

Strong geometry, considered in [28]. Strong geometry is an important example of

connection between mathematics and physics, in particular multi-moment maps are

43
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used in string theory and one-dimensional quantum mechanics [28].

Let M be a manifold, then (M,γ) is a Strong geometry if γ is a closed 3-form on

M . Suppose there is a Lie group G that acts on M preserving γ, then we denote by

Pg the kernel of the map
∧2 g→ g induced by the Lie bracket of g.

A Multi-moment map is an equivariant map ν : M → P∗g such that d〈ν, p〉 = ipγ, for

any p ∈ Pg, (where ip denotes the interior product) [27].

We refer to [27] and [28] for details on strong geometry. In particular Madsen and

Swann [28] proved the following proposition.

Proposition 3.1. Let (M,γ) be a Strong geometry and suppose there is a Lie group

G that acts on M preserving γ with Lie algebra g. If b2(g) = b3(g) = 0, then there

exists a multi-moment map for the action of G on the manifold M .

Because of this result they listed the Lie algebras with trivial second and third

Betti numbers, up to dimension five. We add to their classification the Betti numbers

of 6-dimensional solvable, non-nilpotent unimodular Lie algebras.

Remark 3.1. Every Lie algebra g whose Lie group is solvable has b1(g) > 0 [4].

In Appendix B we list 6-dimensional unimodular, solvable, non-nilpotent Lie

algebras g together with their first, second and third Betti numbers. The Betti

numbers of the 6-dimensional Lie algebras with 5-dimensional nilradical were also

computed by M. Freibert and F. F. Schulte-Hengesbach [17].

Comparing the Betti numbers in Appendix B and the structure constants in

Appendix A we obtain the following theorem

Theorem 3.1. Let g be a six dimensional unimodular, solvable, non-nilpotent Lie

algebra

• if b1(g) = 1, then its nilradical has codimension 1 and b2(g) = 0 if and only if

b3(g) = 0.

• if its nilradical has codimension greater then 1, then b1(g) ≥ 2 and b2(g) = 1 if

and only if b3(g) = 0.
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Guan studied properties about the steps of nilmanifolds, showing that if a nil-

manifold G/Γ admits a symplectic structure then G has to be at most two step as

a solvable Lie group [19]. He also conjectured that the Lie group of a solvmanifold

admitting a symplectic structure is at most 3-step solvable.

Again looking directly at Appendix A we can prove that this is true for all

six dimensional unimodular solvable Lie algebra, regardless of existence or not of a

symplectic structure.

Proposition 3.2. Every six dimensional unimodular, solvable, non-nilpotent Lie

algebra g is 2 or 3-step solvable, in particular

• if its nilradical has codimension 1, it is 3-step solvable unless it is almost

abelian, or g is isomorphic to one of the following Lie algebras:

ga,06.14, g6.17, g0,0
6.18, g6.20, g0

6.21, g0,0,ε
6.23 , g−1,0

6.25 , g0,0,ε
6.29 , g0,0

6.36, g0,−1
6.54 ,

g6.63, g0,0
6.65, g0,0

6.70, g0,0,0
6.88 .

• if its nilradical has codimension greater then 1, it is 2-step solvable unless g is

isomorphic to one of the following Lie algebras:

g6.129, g6.135, g5.19 ⊕ R, g5.20 ⊕ R, g5.23 ⊕ R, g5.25 ⊕ R, g5.26 ⊕ R,
g5.28 ⊕ R, g5.30 ⊕ R, g4.8 ⊕ 2R, g4.9 ⊕ 2R.

3.2 Symplectic structure and Hard Lefschetz property

for six dimensional unimodular solvable Lie algebras

Solvmanifolds up to dimension six admitting an invariant symplectic structure were

studied by Bock [4]. In particular, he considered the conditions of being cohomolog-

ically symplectic, formality and the Hard Lefschetz property.

Now we consider all the Lie algebras listed in Appendix A and study the existence

of a symplectic structure over them.

Similarly to the case of differential manifolds we define a symplectic structure on

a real Lie algebra of dimension 2n as a closed and not degenerate 2-form ω in
∧∗ g∗.
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If g = Lie(G) for a Lie group G, then ω is an left invariant symplectic structure

on G.

Let g be a six dimensional real solvable unimodular Lie algebra and let {X1, · · · , X6}
be an ordered basis of g, then a 2-form ω is associated in a natural way to a matrix

M = (ωij) ∈M6(R), where ωij := ω(Xi, Xj), and ωn 6= 0⇔ detM 6= 0.

We use this notation in Appendix C.

Theorem 3.2. The six dimensional real solvable, non-nilpotent unimodular Lie al-

gebras admitting a symplectic structure are the following:

g0,−1
6.3 , g0,0

6.10, g
1
2
,−1,0

6.13 , g
−1, 1

2
,0

6.13 , g−1
6.15, g−1,−1

6.18 , g0
6.21, g0,0,ε

6.23 , with ε 6= 0

g0,0,ε
6.29 , g0,0

6.36, g0
6.38, g0,−1

6.54 , g0,0
6.70, g6.78, g0,±1,−1

6.118 , n±1
6.84, gp,−p,−1

5.7 ⊕ R,
g−1

5.8 ⊕ R, g0
5.14 ⊕ R, g0,0,r

5.17 ⊕ R, gp,−p,±1
5.17 ⊕ R, g0,0,±1

5.17 ⊕ R, g0
5.18 ⊕ R,

g−2,2
5.19 ⊕ R, g

− 1
2
,−1

5.19 ⊕ R, g−1
3.4 ⊕ 3R, g0

3.5 ⊕ 3R, g3.1 ⊕ g−1
3.4, g3.1 ⊕ g0

3.5,

g−1
3.4 ⊕ g−1

3.4, g−1
3.4 ⊕ g0

3.5, g0
3.5 ⊕ g0

3.5.

Their symplectic forms are listed in Appendix C.

Proof. To construct the symplectic form we take the generic element ω ∈ ker d ⊂∧2 g∗ and we impose it to be not degenerate, that is ω3 6= 0.

With this direct computation we can see that the six dimensional solvable unimodular

Lie algebras not listed above have always ω3 = 0 for every ω ∈ ker d ⊂
∧2 g∗.

We give the computation of the first Lie algebra g
−a+1

3
,a

6.3 , for the other cases the

idea is similar.

By Appendix A for (g
−a+1

3
,a

6.3 )∗ we have dα1 = a+1
3 α16−α26, dα2 = a+1

3 α26−α36,

dα3 = a+1
3 α36, dα4 = −α46, dα5 = −aα56, dα6 = 0 with 0 < |a| ≤ 1. Then

dα12 = −2
3(a+ 1)α126 + α136

dα13 = −2
3(a+ 1)α136 + α236

dα14 = 2−a
3 α146 + α246

dα15 = 2a−1
3 α156 + α256

dα16 = 0

dα23 = −2
3(a+ 1)α236

dα24 = 2−a
3 α246 + α346

dα25 = 2a−1
3 α256 + α356

dα26 = 0
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dα34 = 2−a
3 α346

dα35 = 2a−1
3 α356

dα36 = 0

dα45 = (a+ 1)α456

dα46 = 0

dα56 = 0.

Let ω be a generic 2-form on g
−a+1

3
,a

6.3 . If a 6= −1, 1
2 , then dω = 0 if and only if

ω = ω1,6α
16 + ω2,6α

26 + ω3,6α
36 + ω4,6α

46 + ω5,6α
56,

but in this case det(ωi,j) = 0 and ω is degenerate.

If a = 1
2 , then dω = 0 if and only if

ω = ω1,6α
16 + ω2,6α

26 + ω3,5α
35 + ω3,6α

36 + ω4,6α
46 + ω5,6α

56,

but again in this case det(ωi,j) = 0 and ω is degenerate.

If a = −1, then dω = 0 if and only if

ω = ω1,6α
16 + ω2,3α

23 + ω2,6α
26 + ω3,6α

36 + ω4,5α
45 + ω4,6α

46 + ω5,6α
56

and in this case det(ωi,j) 6= 0 if and only if ω1,6ω2,3ω4,5 6= 0. Then for this value of

the parameter we have a symplectic form.

Remark 3.2. Symplectic structures of four dimensional Lie algebras are studied in

[39].

Using Theorem 2.2 and Proposition 2.3 we can examine which symplectic solv-

manifold G/Γ whose Lie algebra is in Appendix A with G completely solvable, is

Hard Lefschetz.

Let {α1, · · · , α6} be the dual basis of {X1, ..., X6}. Then a generic element in∧2 g∗ is β =
∑

i<j bi,jα
ij , where we use the notation αi1···in := αi1 ∧ · · · ∧ αin .

For any such solvmanifold we perform the computation only for a particular

choice of the symplectic form. Namely we consider the form composed by the fewest
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possible generators αij of
∧2 g∗, and we check if the Hard Lefschetz property holds

only for this particular choice. This is because computations are very involved for a

generic symplectic form.

Proposition 3.3. [4] The symplectic and completely solvable Lie algebras in Ap-

pendix C whose Lie group admits a lattice are the following:

g3.1 ⊕ 3R, g3.1 ⊕ g3.4, g3.4 ⊕ g3.4, gp,−p,−1
5.7 ⊕ R, g5.8 ⊕ R, g5.15 ⊕ R, g6.3,

g6.15, g0
6.21, g0,0,±1

6.23 , g0,0,±1
6.29 , g0,0,0

6.29 , g0,−1
6.54 , g6.78.

By computing the cohomologies H∗d+d∧(g) and H∗d∩d∧(g) we obtain that the Hard

Lefschetz property holds only for the solvmanifolds associated to the following sym-

plectic Lie algebras.

• g3.4 ⊕ 3R :
ω = ω1,2α

12 + ω3,6α
36 + ω4,5α

45, ω̃ = ω1,2α
12 + ω3,4α

34 + ω5,6α
56

ω̂ = ω1,2α
12 + ω3,5α

35 + ω4,4α
46

b1d = b1d+d∧ = b1d∩d∧ = 4

b2d = b2d+d∧ = b2d∩d∧ = 7

b3d = b3d+d∧ = b3d∩d∧ = 8

• g3.4 ⊕ g3.4 : ω = ω1,2α
12 + ω3,6α

36 + ω4,5α
45

b1d = b1d+d∧ = b1d∩d∧ = 2

b2d = b2d+d∧ = b2d∩d∧ = 3

b3d = b3d+d∧ = b3d∩d∧ = 4

• gp,−p,−1
5.7 ⊕ R :

p = 1: ω = ω1,4α
14 + ω2,3α

23 + ω5,6α
56, ω̃ = ω1,3α

13 + ω2,4α
24 + ω5,6α

56

b1d = b1d+d∧ = b1d∩d∧ = 2

b2d = b2d+d∧ = b2d∩d∧ = 5

b3d = b3d+d∧ = b3d∩d∧ = 8
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p 6= 1: ω = ω1,4α
14 + ω2,3α

23 + ω5,6α
56

b1d = b1d+d∧ = b1d∩d∧ = 2

b2d = b2d+d∧ = b2d∩d∧ = 3

b3d = b3d+d∧ = b3d∩d∧ = 4

We have then proved:

Theorem 3.3. There exists a symplectic structure for which the following solvman-

ifolds are Hard Lefschetz:

(Gp,−p,−1
5.7 × R)/Γ, (G3.4 × 3R)/Γ, (G3.4 ×G3.4)/Γ,

where Γ are lattices listed in [4].

Remark 3.3. The case of (Gp,−p,−1
5.7 × R)/Γ was already considered in [4].





Chapter 4

Lattices and de Rham

cohomology of solvmanifolds

In this chapter we consider solvmanifolds for which we are not sure that the Mostow

condition holds.

In this case the invariant cohomology can be strictly included in the cohomology of

the solvmanifold (Theorem 1.6), but sometimes even if the Mostow condition does

not hold, the de Rham cohomolgy is isomorphic to the invariant one (Proposition

4.1).

We will consider a technique due to Kasuya to understand if this isomorphism

holds and in particular we will use it to compute the de Rham cohomology of some

almost abelian six dimensional solvmanifolds.

Of course we can apply a method to compute the cohomology only when we have

a lattice. For this reason we will first prove, for every case considered, the existence

or not of the lattice, also for some value of the parameters for which we can not apply

the method, giving examples of many almost abelian solvmanifolds.

4.1 Lattices

In this section we study the existence of lattices for six dimensional, unimodular al-

most abelian Lie groups which are not completely solvable, since we want to compute

51
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the de Rham cohomology of the corresponding solvmanifolds and study the prop-

erty of formality (see Chapter 6). Our aim is to have situations when the Mostow

condition could not hold, in particular we consider cases in which we can apply a

proposition that we will state in the following section (Proposition 4.1).

We can show the following

Theorem 4.1. The simply-connected Lie groups whose Lie algebra is one of the

following

ga,b,c,06.8 : [X1, X6] = aX1, [X2, X6] = bX2, [X3, X6] = cX3, [X4, X6] = X5, [X5, X6] = X4,

a+ b+ c = 0, 0 < |c| ≤ |b| ≤ |a|.

g0,06.10: [X2, X6] = X1, [X3, X6] = X2, [X4, X6] = −X5, [X5, X6] = X4.

ga,0,q,s6.11 : [X1, X6] = aX1, [X2, X6] = −x3, [X3, X6] = X2, [X4, X6] = qX4 − sX5,

[X5, X6] = sX4 + qX5, a+ 2q = 0, as 6= 0.

g−1,0,r
5.13 ⊕ R: [X1, X5] = X1, [X2, X5] = −X2, [X3, X5] = −rX4, [X4, X5] = rX3, r 6= 0.

g05.14 ⊕ R: [X2, X5] = X1, [X3, X5] = −X4, [X4, X5] = X3.

gp,−p,r5.17 ⊕ R: [X1, X5] = pX1 −X2, [X2, X5] = X1 + pX2, [X3, X5] = −pX3 − rX4,

[X4, X5] = rX3 − pX4, r 6= 0.

g05.18 ⊕ R: [X1, X5] = −X2, [X2, X5] = X1, [X3, X5] = X1 −X4, [X4, X5] = X2 +X3.

g03.5 ⊕ R3: [X1, X3] = −X2, [X2, X3] = X1.

admit a lattice.

Proof. In the indecomposable case the solvable Lie algebras are of the form

R nadX6
R5, where R = span〈X6〉 and we will give for any Lie algebra the matrix

expression of adX6 with respect to the basis {X1, . . . , X5} of R5. By using Proposition

1.3 if there exists a real number t0 such that exp(t0adX6) is conjugate to an integer

matrix, then t0 determines a lattice Γt0 of the corresponding simply connected almost

abelian solvable Lie group.

In particular if the characteristic polynomial and the minimal polynomial of

exp(t0adXn+1) do not have integer coefficients, then Γt0 is not a lattice. Otherwise a

possible choice for the conjugate integer matrix is [4]
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A =



0 0 0 . . . −a0

1 0 0 . . . −a1

0 1 0 . . . −a2

...
. . .

. . .
. . .

...

0 · · · 0 1 −an−1


where ai are the coefficients of the characteristic polynomial.

We consider all the six dimensional, unimodular almost abelian Lie groups which

are not completely solvable. There are eleven such Lie groups that can admit a

lattice and their Lie algebras are the following [4] (see Appendix A):

ga,b,c,p6.8 , ga,b,p6.9 , g
a,− 3

2
a

6.10 , ga,p,q,s6.11 , g−4p,p
6.12 , g−1−2q,q,r

5.13 ⊕ R, g0
5.14 ⊕ R,

gp,−p,r5.17 ⊕ R, g0
5.18 ⊕ R, g−2p,p

4.6 ⊕ R2, g0
3.5 ⊕ R3.

This idea is in general not very simple to use, for this reason we start by con-

sidering a value of t0 such that at least a complex block of the semisimple part of

exp(t0adX6) is of kind

(
ept0 cos(2nπ) ept0 sin(2nπ)

−ept0 sin(2nπ) ept0 cos(2nπ)

)
with n ∈ Z, i.e.

(
ept0 0

0 ept0

)
.

With this choice, the analysis of the characteristic and minimal polynomials becomes

operable.

If this is a lattice for some value of the parameters, we continue by studying for

the same parameters if also for t = t0
k with k ∈ Z we have a lattice. In this way we

can usually use the ideas and construction of the previous case.

We performed some of the computation with the help of the Maple software.

• Γ2π is a lattice in Ga,b,c,p6.8 only for p = 0:

adX6 =



−b− c− 2p 0 0 0 0

0 b 0 0 0

0 0 c 0 0

0 0 0 p 1

0 0 0 −1 p


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So

exp(2πadX6) =



e2π(−b−c−2p) 0 0 0 0

0 e2πb 0 0 0

0 0 e2πc 0 0

0 0 0 e2πp 0

0 0 0 0 e2πp


We put e2πb = w, e2πc = v, e−2πp = k, so the matrix becomes

k2

wv 0 0 0 0

0 w 0 0 0

0 0 v 0 0

0 0 0 1
k 0

0 0 0 0 1
k


Its minimal polynomial is

m(x) = k − k3wv + wk2 + k2v + v2w2

wvk
x+

vk3 + wk3 + w2v2k + k2 + wv2 + w2v

wvk
x2 +

−k
3 + kwv2 + kw2v + w

wvk
x3 + x4

So the minimal polynomial can have integer coefficients only if k ∈ Z.

We put w + v = r, wv = s and the coefficients become:

p1 =
k3s+ k2r + s2

ks
= k2 +

k2r + s2

ks

p2 =
k3r + kr2 + k2 + rs

ks
p3 =

k3 + krs+ s

ks

So p1 ∈ Z if and only if q1 = k2r+s2

ks ∈ Z and p2 − kq1 = k2+rs
ks .

If p1, p2 ∈ Z then h := p2 − kq1 ∈ Z. s = k2

hk−r , then p3 = hk2+1
k = hk + 1

k .

So p3 ∈ Z if and only if 1
k ∈ Z, but k ∈ Z, so k = 1 and p = 0.

We found out that for p 6= 0 Γ2π is not a lattice.

Now we check for p = 0: the characteristic polynomial has coefficients
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a0 = −1 a1 = 2 +
r + s2

s
a2 = −1− 2s2 + 2r + rs+ 1

s
= −1− 2

s2 + r

s
− rs+ 1

s

a3 = 1 +
2rs+ 2 + s2 + r

s
= 1 + 2

rs+ 1

s
+
s2 + r

s
a4 = −2− rs+ 1

s

So a1, a2, a3, a4 ∈ Z if and only if s2+r
s , rs+1

s ∈ Z and we must check that the

solutions are such that w and v are positive:

we solve the system


s2+r
s = h1

rs+1
s = h2

r > 0

0 < s ≤ r2

4

and find that it admits solutions for some values of the integers h1 and h2 (for

example for h1 = 5, h2 = 6). In particular we can not accept the solutions {s = r−1},
because they correspond to b = 0 or c = 0 and {s = 1}, because it corresponds to

a = 0.

Thus, for p = 0, we can find values of b and c (and a = −b − c) such that the

characteristic polynomial of exp(2πadX6) has integer coefficients and we can check

by direct computation that exp(2π adX6) is conjugate to



0 0 1 0 0

1 0 −h1 0 0

0 1 h2 0 0

0 0 0 1 0

0 0 0 0 1


.

Therefore, for some choice of the parameters b and c, Γ2π is a lattice. We denote

the group Ga,b,c,06.8 for the above choices of the parameters a, b, c by Gp=0
6.8 for short.

•Γ2π/k with k ∈ N is a lattice in Ga,b,c,06.8 only if k = 2, 3, 4, 6:

Let consider lattices Γ2π/k with k ∈ N, then the conditions for the parameters

a, b, c that are imposed for Γ2π to be a lattice must be satisfied also for Γ2π/k.
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exp(
2π

k
adX6) =



e2π(−b−c)/k 0 0 0 0

0 e2πb/k 0 0 0

0 0 e2πc/k 0 0

0 0 0 cos 2π/k sin 2π/k

0 0 0 − sin 2π/k cos 2π/k


We put e2πb/k = w, e2πc/k = v, cos 2π/k = u/2, and w+ v = r, wv = s, then the

coefficients of the characteristic polynomial become:

a1 =
us+ r + s2

s
= u+

r + s2

s
a2 = −1− ur + us2 + 1 + rs

s

a3 = 1 +
u+ urs+ s2 + r

s
a4 = −1 + rs+ us

s
= −1 + rs

s
− u

Then a2 = −ua1+a4+u+u2−1 and a3 = −ua4+a1−u−u2+1, so if a1, a2, a3, a4 ∈ Z,

then a1 + a4 and a2 + a3 are integer and so u ∈ Q.

We have found out that if cos 2π/k is not rational, then Γ2π/k is not a lattice.

If u ∈ Q, then the characteristic polynomial has integer coefficients if and only if

u ∈ Z and the same system as t = 2π admits a solution, with h1, h2 ∈ Z:
s2+r
s = h1

rs+1
s = h2

r > 0

0 < s ≤ r2

4

We know that the solution exists for some conditions on h1 and h2 so we can

have a lattice for t = π, π
2 ,

π
3 ,

2π
3 .

With direct computation we check that the matrix exp(t0adX6) is similar to A

for t0 = π
2 ,

π
3 ,

2π
3

and it is similar to



0 0 1 0 0

1 0 −h1 0 0

0 1 h2 0 0

0 0 0 1 0

0 0 0 0 1


for t0 = π.
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• Γ2nπ is never a lattice in Ga,b,p6.9 for every n ∈ Z:

adX6 =



−2b− 2p 0 0 0 0

0 b 1 0 0

0 0 b 0 0

0 0 0 p 1

0 0 0 −1 p


so

exp(2nπadX6) =



e−4nπ(b+p) 0 0 0 0

0 e2nπb 2nπe2nπb 0 0

0 0 e2nπb 0 0

0 0 0 e2nπp 0

0 0 0 0 e2nπp


We put e2nπb = w, e−2nπp = k, so the matrix becomes

k2

w2 0 0 0 0

0 w 2πw 0 0

0 0 w 0 0

0 0 0 1
k 0

0 0 0 0 1
k


Its minimal polynomial is

m(x) = k − w3 + 2k2 + k3w

wk
x+

2w3 + kw4 + k2 + 2k3w

w2k
x2 +

−k
3 + 2kw3 + w2

w2k
x3 + x4

So the m(x) can have integer coefficients only if k ∈ Z.

The first coefficient is p1 = −w
3 + 2k2

kw
− k2, so it is integer if and only if

h1 :=
w3 + 2k2

kw
is integer. Then w3 = h1kw − 2k2 and replacing in the other

coefficients we have

p2 =
2h1kw − 3k2

kw2︸ ︷︷ ︸
X

+h1k
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p3 =
−w2 − 2h1k

2w + 3k3

kw2
= −1

k
− kX

So p2 ∈ Z if and only if X ∈ Z, then p3 ∈ Z if and only if k = 1 and so p = 0.

We found out that for p 6= 0 Γ2π is not a lattice.

Now we check for p = 0: the characteristic polynomial has coefficients

a0 = −1 a1 = 2 +
2 + w3

w

a2 = −1− 2w3 + 2w4 + 4w + 1

w2
= −1− 2w3 + 1

w2
− 2

2 + w3

w

a3 = 1 +
2w + 2 + 4w3 + w4

w2
= 1 + 2

2w3 + 1

w2
+

2 + w3

w
a4 = −2− 2w3 + 1

w2

So a1, a2, a3, a4 ∈ Z if and only if
2w3 + 1

w2
,
2 + w3

w
∈ Z

The solutions of the equation
2 + w3

w
= h ∈ Z are

w =
1

3

3

√
−27 + 3

√
−3h3 + 81 +

h
3
√
−27 + 3

√
−3h3 + 81

w = −1

6

3

√
−27 + 3

√
−3h3 + 81− 1

2

h
3
√
−27 + 3

√
−3h3 + 81

+

± 1

2i

√
3

(
1

3

3

√
−27 + 3

√
−3h3 + 81− h

3
√
−27 + 3

√
−3h3 + 81

)

If we replace these values in
2w3 + 1

w2
∈ Z we obtain that −3h3 + 81 must be a

perfect square. Suppose −3h3 + 81 = ±n2, in this way we consider all possible real

w, then

81 = 3h3 ± n2 =

{
n2 − (−3h3) = (n−

√
−3h3)(n+

√
−3h3)

3h3 − n2 = (
√

3h3 − n)(
√

3h3 + n)

If we decompose 81 = αβ, with α ≥ β, then
√
±3h3 = α±β

2 .

81 = 81 · 1, 27 · 3, 9 · 9, so
√

3h3 = 41, 15, 9, then h3 = 1681
3 , 75, 27, but the

only cube is 27, so h = 3.
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√
−3h3 = 40, 12, 0, then h3 = −1600

3 , −48, 0, but the only cube is 0, so h = 0.

For h = 3 we have w = 1,−2 and k = 3,−15
4 , so we can accept only w = 1, that

is b = 0, but we already have p = 0, so also a = 0 that is not allowed.

For h = 0 we have w = − 3
√

2, 1
2

3
√

2± 1
2 i
√

3 3
√

2, we are interested only in the real

value and for this w, k = −3
2

3
√

2, not integer, so we have no lattice for G6.9 and

t = 2nπ.

• Γ2π is a lattice in Ga6.10 if and only if a = 0:

adX6 =



a 1 0 0 0

0 a 1 0 0

0 0 a 0 0

0 0 0 −3
2a 1

0 0 0 −1 −3
2a


so

exp(2πadX6) =



e2aπ 2πe2aπ 2π2e2aπ 0 0

0 e2aπ 2πe2aπ 0 0

0 0 e2πb 0 0

0 0 0 e−3aπ 0

0 0 0 0 e−3aπ


We put eaπ = w, so the matrix becomes

w2 2πw2 2π2w2 0 0

0 w2 2πw2 0 0

0 0 w2 0 0

0 0 0 1
w3 0

0 0 0 0 1
w3


Its minimal polynomial is

m(x) = w3 − (w6 + 3w)x+ 3
1 + w5

w
x2 − 1 + 3w5

w3
x3 + x4
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So m(x) can have integer coefficients only if w3 ∈ Z, but then also w6 ∈ Z and

so p1 ∈ Z if and only if 3w ∈ Z, then 3w4 = 3w · w3 ∈ Z and so p2 = 3
w + 3w4 ∈ Z if

and only if 3
w ∈ Z.

Now put w = k
3 with k ∈ Z, then 3

w = 9
k ∈ Z if and only if k = ±1, ±3, ±9, but

w must be positive by definition, so k = 1, 3, 9 and w = 1
3 , 1, 3.

We want w3 ∈ Z, so w = 1, 3 and p3 = 4, 730
27 , then w = 1 and a = 0.

We found out that for a 6= 0 Γ2π is not a lattice.

For a = 0 the characteristic polynomial is

x5 − 5x4 + 10x3 − 10x2 + 5x− 1

and we can check with direct computation that in this case exp(2πadX6) is conjugate

to the matrix 

1 0 0 0 0

0 1 0 0 0

0 −2 1 0 0

0 0 0 1 0

0 2 −2 0 1


and then Γ2π is a lattice.

•Γ2π/k with k ∈ N is a lattice in G0
6.10 only if k = 2, 3, 4, 6:

Let consider lattices Γ2π/k with k ∈ Z:

exp(
2π

k
adX6) =



1 2π
k

2π2

k2 0 0

0 1 2π
k 0 0

0 0 1 0 0

0 0 0 cos
(

2π
k

)
sin
(

2π
k

)
0 0 0 − sin

(
2π
k

)
cos
(

2π
k

)


Its characteristic polynomial is

x5+

(
−3− 2 cos

(
2π

k

))
x4+

(
4 + 6 cos

(
2π

k

))
x3+

(
−4− 6 cos

(
2π

k

))
x2+

(
3 + 2 cos

(
2π

k

))
x−1
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then it has integer coefficients if and only if 2 cos
(

2π
k

)
∈ Z, so we consider

t0 = π, π
2 ,

π
3 :

for t0 = π exp(tadX6) is conjugate to the matrix

−1 0 0 0 0

0 1 0 0 0

0 −1 1 0 0

0 0 0 −1 0

0 1 −2 0 1


and then Γπ is a lattice.

For t0 = π
2 exp(tadX6) is conjugate to the matrix

0 0 0 −1 0

0 1 0 0 0

0 −1 1 0 0

1 0 0 0 0

0 1 −2 0 1


and then Γπ

2
is a lattice.

For t0 = π
3 exp(tadX6) is conjugate to the matrix A, then Γπ

3
is a lattice.

Remark 4.1. The lattice Γπ was found in [4, Proposition 6.18]. In part (ii) it is

stated that if there is a lattice in G0
6.10 such that the corresponding solvmanifold

satisfies b1 = 2 and b2 = 3, then it is symplectic and not formal. Here we show

that, for example, Γπ, is such a lattice. We will deal about symplectic structures and

formality later (Chapter 6.2).
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• Γ2π is a lattice in Ga,p,q,s6.11 only if p = 0:

adX6 =



−2(p+ q) 0 0 0 0

0 p 1 0 0

0 −1 p 0 0

0 0 0 q s

0 0 0 −s q


then

exp(2πadX6) =



e−4(p+q)π 0 0 0 0

0 e2pπ 0 0 0

0 0 e2pπ 0 0

0 0 0 e2qπ cos 2sπ e2qπ sin 2sπ

0 0 0 −e2qπ sin 2sπ e2qπ cos 2sπ


We put e2qπ = w, e−2pπ = k, cos 2sπ = u, so the matrix becomes



k2

w2 0 0 0 0

0 k−1 0 0 0

0 0 k−1 0 0

0 0 0 wu w
√

1− u2

0 0 0 −w
√

1− u2 wu


Its minimal polynomial is

m(x) = k −
(
2 k2u+ w3 + k3w

)
x

kw
+

(
2 k3wu+ 2w3u+ k2 + kw4

)
x2

kw2
+

−
(
2w3uk + k3 + w2

)
x3

kw2
+ x4

So m(x) can have integer coefficients only if k ∈ Z.

p1 = −2uk2 + w3

kw
− k2, so it is integer if and only if h1 :=

2uk2 + w3

kw
∈ Z, then

w3 = kh1w − 2uk2.
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Replacing in the other coefficients we have

p2 =
2h1kuw − 4k2u2 + k2

kw2︸ ︷︷ ︸
X

+h1k

p3 =
1

k
− kX

so p2 ∈ Z if and only if X ∈ Z and then p3 ∈ Z if and only if 1
k ∈ Z, that is k = 1

and p = 0.

We found out that for p 6= 0 Γ2π is not a lattice.

Now we check for p = 0: the characteristic polynomial has coefficients

a0 = −1, a1 =
w3 + 2u

w
+ 2, a2 = −2

w3 + 2u

w
− 2w3u+ 1

w2
− 1

a3 =
w3 + 2u

w
+ 2

2w3u+ 1

w2
+ 1, a4 = −2w3u+ 1

w2
− 2

then it has integer coefficients if and only if the following system admits solutions



w3 + 2u

w
= h1 ∈ Z

2w3u+ 1

w2
= h2 ∈ Z

w > 0

−1 ≤ u ≤ 1

From the first equation we get u = wh−w3

2 , so the system becomes
w4h− w6 + 1

w2
= h2 ∈ Z

w > 0

−1 ≤ wh−w3

2 ≤ 1

that admits solution for particular values of the integer h1 and h2.

So for p = 0, we can find values of q and s such that the characteristic polynomial

has integer coefficients and we can check with direct computation that in this case
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exp(2πadX6) is conjugate to the matrix



0 0 1 0 0

1 0 −h1 0 0

0 1 h2 0 0

0 0 0 1 0

0 0 0 0 1


.

and then Γ2π is a lattice.

•Γ2π/k with k ∈ N is a lattice in Ga,0,q,s6.11 only if k = 2, 3, 4, 6:

Let consider lattices Γ2π/k with k ∈ N:

exp(
2π

k
adX6) =



e−q
4π
k 0 0 0 0

0 cos
(

2π
k

)
sin
(

2π
k

)
0 0

0 − sin
(

2π
k

)
cos
(

2π
k

)
0 0

0 0 0 eq
2π
k cos

(
2π
k s
)

eq
2π
k sin

(
2π
k s
)

0 0 0 −eq
2π
k sin

(
2π
k s
)

eq
2π
k cos

(
2π
k s
)


If we put e

2qπ
k = w, cos 2π

k = v, cos 2π
k s = u its characteristic polynomial is

−1 +

(
2wv + 2u+ w3

)
x

w
−
(
4uwv + 2w4v + 2w3u+ w2 + 1

)
x2

w2
+

+

(
4 vw3u+ 2 v + 2wu+ w4 + w2

)
x3

w2
−
(
2 vw2 + 2w3u+ 1

)
x4

w2
+ x5

Its coefficients can be decomposed in a similar way to the G6.8 case, so we obtain

that they can be integer only if v ∈ Z and under this hypothesis this is equivalent to

the following system admitting a solution

1 + 2w3u

w2
= h1 ∈ Z

2u+ w3

w
= h2 ∈ Z

w > 0

−1 ≤ u ≤ 1

Again a solution can be found under particular conditions on the integer h1 and

h2 and for all the admitted values of t0 the lattice exists.
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• Γ2πs2 is never a lattice in G
a,p,q,

s1
s2

6.11 for every value of the parameters:

Let s = s1
s2
∈ Q and t = 2πs2:

exp(2πs2adX6) =



e−4(p+q)πs2 0 0 0 0

0 e2pπs2 0 0 0

0 0 e2pπs2 0 0

0 0 0 e2qπs2 0

0 0 0 0 e2qπs2


We put e−2(p+q)πs2 = α and e−2qπs2 + e−2pπs2 = β, so its minimal polynomial is

m(x) = −α+

(
α2β + 1

)
x

α
−
(
α3 + β

)
x2

α
+ x3

so it can have integer coefficients only if α ∈ Z. Then α2β+1
α = β+ 1

α ∈ Z implies

β ∈ Q.

But then α3+β
α = α2 + β

α ∈ Z implies β
α ∈ Z and so β ∈ Z.

Therefore if α and β are not both integer we have no lattice Γ2πs2 .

Suppose α, β ∈ Z, then β + 1
α ∈ Z only if α = 1 that is a = p + q = 0, but this

value is not acceptable, so Γ2πs2 is not a lattice.

• Γ2mπ is never a lattice in G−4p,p
6.12 for every m ∈ Z:

adX6 =



−4p 0 0 0 0

0 p 1 1 0

0 −1 p 0 1

0 0 0 p 1

0 0 0 −1 p


so
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exp(2mπadX6) =



e−8pmπ 0 0 0 0

0 e2pmπ 0 2mπe2pmπ 0

0 0 e2pmπ 0 2mπe2pmπ

0 0 0 e2pmπ 0

0 0 0 0 e2pmπ


We put e−2pmπ = w, so the matrix becomes

w4 0 0 0 0

0 1
w 0 2mπ 1

w 0

0 0 1
w 0 2mπ 1

w

0 0 0 1
w 0

0 0 0 0 1
w


Its minimal polynomial is

m(x) = −w2 +

(
1 + 2w5

)
x

w2
+

(
2 + w5

)
x2

w
+ x3

So the m(x) can have integer coefficients only if w2 ∈ Z, that is w =
√
n with

n ∈ N.

The coefficients become

p1 =
1

n
+ 2n

√
n, p2 =

2√
n

+ n2

then p2 ∈ Z if and only if 2√
n

= k ∈ Z, that is n = 4
k2 ∈ N.

so we have only 2 cases:

k = ±2 then n = 1 that is w = 1 and p = 0 that is not acceptable.

k = ±1 then n = 4 that is w = 2, but then p1 = 1
4 + 8 · 2 /∈ Z
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• Γ 2π
r

is a lattice in G−1−2q,q,r
5.13 × R only if q = 0:

adX5 =


1 0 0 0

0 −1− 2q 0 0

0 0 q r

0 0 −r q


then

exp(
2π

r
adX5) =


e

2π
r 0 0 0

0 e
−2(1+2q)π

r 0 0

0 0 e
2πq
r 0

0 0 0 e
2πq
r


then the minimal polynomial is

m(x) = x3 + (−e
2πq
r − e

−2(1+2q)π
r − e

2π
r )x2 + (e

−2π(1+q)
r + e

2π(1+q)
r + e

−4πq
r )x− e

2πq
r .

If we put e
2π
r = w 6= 0 its coefficients become:

a0 =
1

wq
, a1 =

1

wq+1
+ wq+1 +

1

w2q
, a2 = −wq − 1

w1+2q
− w

a0 ∈ Z implies that also 1
w2q ∈ Z, then if a1 ∈ Z we get 1

wq+1 + wq+1 ∈ Z, or

equivalently that there exists k ∈ Z such that 1 + w2(q+1) = kwq+1.

Then a2 = −wq− 1+w2(q+1)

w1+2q = −wq− kwq+1

w1+2q = −wq−k 1
wq ∈ Z implies also wq ∈ Z

and so wq = 1 and q = 0.

Then for q 6= 0 Γ 2π
r

is not a lattice.

For q = 0

exp(tadX5) =


e

2π
r 0 0 0

0 e
−2π
r 0 0

0 0 1 0

0 0 0 1





68 Chapter 4. Lattices and de Rham cohomology of solvmanifolds

and its characteristic and minimal polynomials have integer coefficients if and

only if

e
2π
r + e

−2π
r ∈ Z. (4.1)

Moreover this matrix is conjugate to the matrix


e

2π
r + e

−2π
r 1 0 0

−1 0 0 0

0 0 1 0

0 0 0 1


then for values of r ∈ RrQ for which equation (4.1) is satisfied, Γ 2π

r
is a lattice.

•Γ 2π
k

with k ∈ N is a lattice in G−1,0,r
5.13 × R for k = 2, 4, 6:

Now we consider t0 = 2π
rk with k ∈ N:

exp(t0adX5) =


e

2π
rk 0 0 0

0 e
−2π
rk 0 0

0 0 cos(2π
k ) sin(2π

k )

0 0 − sin(2π
k ) cos(2π

k )


and its characteristic polynomial has coefficients

a2 = 2 + 2 cos(2π
k )e

2π
rk + 2 cos(2π

k )e−
2π
rk a1 = a3 = −2 cos(2π

k )− e−
2π
rk − e

2π
rk .

Suppose that equation (4.1) is satisfied, i.e. e
2π
r + e

−2π
r = h ∈ Z, then for k ∈ N

such that both 2 cos(2π
k ) and e−

2π
rk +e

2π
rk are integer, we have integer coefficients.

This means that we have to consider k = 2, 4, 6 and prove that for these values also

e−
2π
rk + e

2π
rk ∈ Z.

k = 2: (e−
π
r + e

π
r )2 = e

2π
r + e

−2π
r + 2, then we have to consider r such that h+ 2 = n2

for some n ∈ N.

k = 4: (e−
π
2r + e

π
2r )4 = e

2π
r + e

−2π
r + 6 + 4(e−

π
r + e

π
r ), then we want to find an integer

n such that n4 = h+ 6 + 4n2, that is possible for r such that h = n4 + 4n2 − 6

for n ≥ 2.
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k = 6: if we put e
2π
r = w, equation (4.1) is equivalent to w = h±

√
h2−4
2 and we want

to find n ∈ Z such that 6
√
w + 1

6√w = n or equivalently 6
√
w = n±

√
n2−4
2 ,

then we want (n±
√
n2−4
2 )6 = h±

√
h2−4
2 that is possible for r such that h =

n6 − 6n4 + 9n2 − 2 for n ≥ 2.

In particular the matrix exp(2π
rk adX5) is similar to A for t0 = π

2r and t0 = π
3r

and it is similar to 
e
π
r + e

−π
r 1 0 0

−1 0 0 0

0 0 1 0

0 0 0 1


for t0 = π

r .

• Γ2πr2 is never a lattice in G
−1−2q,q,

r1
r2

5.13 × R for every value of the parameters:

if r = r1
r2

and t = 2πr2

exp(tadX5) =


e2πr2 0 0 0

0 e−2(1+2q)πr2 0 0

0 0 e2πqr2 0

0 0 0 e2πqr2


then the minimal polynomial has coefficients:

a2 = −e2πr2 − e−2π(1+2q)r2 − e2πqr2

a1 = e−4πqr2 + e−2π(1+q)r2 + e2π(1+q)r2

a0 = −e−2πqr2

If we impose a0 = h0 ∈ Z we get a1 = h2
0 + h

1+q
q

0 + h
− 1+q

q

0 and

a2 = −1+h
1+3q
q

0 +h
−1+q
q

0
h0

.

Now from a1 = h1 ∈ Z we get q = lnh0

− lnh0+ln
(h1±
√
h2

1−4

2

) and then

a2 = − 1
h0
− h0h1, so it can be integer only if h0 = 1, that is q = 0, so for q 6= 0 Γ2πr2

can not be a lattice.

If q = 0 the minimal polynomial has integer coefficients if and only if e2πr2 +

e−2πr2 = h ∈ Z, but this is not possible for r2 integer, so Γ2πr2 can never be a lattice.
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• Γ2π is a lattice in G0
5.14 × R:

adX5 =


0 1 0 0

0 0 0 0

0 0 0 1

0 0 −1 0


so for t0 = 2π we have

exp(2πadX5) =


1 2π 0 0

0 1 0 0

0 0 1 0

0 0 0 1


then the characteristic polynomial x4−4x3 +6x2−4x+1 has integer coefficients.

In particular exp(2πadX5) is conjugate to
1 1 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 by the matrix


1 1 0 0

0 2π 0 0

0 0 1 0

0 0 0 1

 and so Γ2π is a lattice.

•Γ 2π
k

with k ∈ N is a lattice in G0
5.14 × R only if k = 2, 3, 4, 6:

Let consider Γ2π/k:

exp(
2π

k
adX5) =


1 2π

k 0 0

0 1 0 0

0 0 cos 2π
k sin 2π

k

0 0 − sin 2π
k cos 2π

k


has characteristic polynomial x4−2x3(cos 2π

k +1)+2x2(2 cos 2π
k +1)−2x(cos 2π

k +1)+1

so we can have lattices for values of k ∈ Z such that cos 2π
k = ±1,±1

2 , 0.

In particular if sin 2π
k 6= 0 exp(2π/k adX5) is conjugate to A, otherwise we can use

the analogous matrix of the case k = 1 to get the same integer matrix.
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• Γ2π is never a lattice in Gp,−p,r5.17 × R with r ∈ RrQ:

adX5 =


p 1 0 0

−1 p 0 0

0 0 −p r

0 0 −r −p


If t = 2π

exp(tadX5) =


e2πp 0 0 0

0 e2πp 0 0

0 0 e−2πp cos (2πr) e−2πp sin (2πr)

0 0 −e−2πp sin (2πr) e−2πp cos (2πr)


then the minimal polynomial has coefficients:

a2 = −2e−2πp cos (2πr)− e2πp, a1 = e−4πp + 2 cos (2πr) , a0 = −e−2πp.

a0 ∈ Z if and only if e−2πp ∈ Z, then a1 ∈ Z if and only if 2 cos (2πr) ∈ Z and

then a2 ∈ Z if and only if e2πp ∈ Z, but this means p = 0, so for p 6= 0 we have no

lattice in this case.

For p = 0 the minimal polynomial is x3 + (−2 cos(2πr)−1)x2 + (2 cos(2πr) + 1)x−1,

so we want 2 cos (2πr) ∈ Z, but it is not possible for r ∈ R r Q and Γ2π is never a

lattice.

• Γ2πr2 is a lattice in G
p,−p, r1

r2
5.17 × R for some values of the parameters:

if r = r1
r2
∈ Q and t0 = 2πr2 we have

exp(2πr2adX5) =


e2πpr2 0 0 0

0 e2πpr2 0 0

0 0 e−2πpr2 0

0 0 0 e−2πpr2


has both minimal and characteristic polynomials with integer coefficients if and

only if

e2πpr2 + e−2πpr2 = h ∈ Z. (4.2)
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Unfortunately in this case the matrix is not conjugate to the matrix A, so we

must find another integer matrix:

from (4.2) we have pr2 = 1
2π ln

(
h±
√
h2−4
2

)
for every 2 ≤ h ∈ Z, then exp(2πr2adX5)

becomes


h+
√
h2−4
2 0 0 0

0 h+
√
h2−4
2 0 0

0 0 h−
√
h2−4
2 0

0 0 0 h−
√
h2−4
2


Using the matrix

1√
h2−4

0 − 1√
h2−4

0
√
h2−4−h

2
√
h2−4

0
√
h2−4+h

2
√
h2−4

0

0 1√
h2−4

0 − 1√
h2−4

0
√
h2−4−h

2
√
h2−4

0
√
h2−4+h

2
√
h2−4


we obtain the conjugate integer matrix


h 1 0 0

−1 0 0 0

0 0 h 1

0 0 −1 0


so for these values of p and r2 Γ2πr2 is a lattice.

• Γ 2π
k

is a lattice in Gp,−p,r5.17 × R for some values of k, r ∈ Z:

to study other lattices we consider for the sake of simplicity the case r ∈ Z and

t0 = 2π
k with k ∈ N.

The characteristic polynomial of exp(t0adX5) is

x4 +
(
− 2e

−2πp
k cos

2πr

k
− 2e

2πp
k cos

2π

k

)
x3 +

(
e

−4πp
k + 4 cos

2πr

k
cos

2π

k
+ e

4πp
k

)
x2+

+
(
− 2e

2πp
k cos

2πr

k
− 2e

−2πp
k cos

2π

k

)
x+ 1
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The coefficients of this polynomial depend strongly on the relation between k and

r, so it is difficult to determine in general for which values of k they are integer.

For this reason we consider only particular cases:

◦ k = 2:

If r is even the coefficients become:

a1 = −a3 = 2

√
h+
√
h2−4
2 − 2

√
h−
√
h2−4
2 = 2

√
h− 2

a2 =

√
h+
√
h2−4
2 − 4 +

√
h−
√
h2−4
2 = h− 4 ∈ Z.

So we consider only h ∈ Z such that h − 2 = n2 for some n ∈ Z and the matrix

becomes 
n+
√
n2−4
2 0 0 0

0 n+
√
n2−4
2 0 0

0 0 n−
√
n2−4
2 0

0 0 0 n−
√
n2−4
2


that is conjugate to an integer matrix (see k = 1), then in these cases we have a

lattice.

If r is odd the coefficients become a1 = a3 = 2
√
h+ 2 a2 = h + 4 ∈ Z and

similarly we have a lattice if there exists an integer n such that h+ 2 = n2.

◦ k = 4:

If r ≡ 0 mod 4 then a1 = −2ep
π
2 , a2 = epπ + e−pπ, a3 = −2e−p

π
2 that are

integer if and only if p = 0 and for this value our matrix is integer, so there is the

lattice.

If r ≡ 1 mod 4 then a1 = a3 = 0 a2 = e−pπ + epπ =
√
h+ 2 so again we have

a lattice only if h+ 2 = n2 for some n ∈ Z:

exp(t0adX5) =


0

√
n+2+

√
n−2

2 0 0

−
√
n+2+

√
n−2

2 0 0 0

0 0 0
√
n+2−

√
n−2

2

0 0 −
√
n+2−

√
n−2

2 0


is conjugate to
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
0 0 0 −1

0 0 1 1

0 1 0 0

1 −n− 2 0 0


so we have a lattice.

If r ≡ 2 mod 4 then a1 = 2ep
π
2 , a2 = epπ + e−pπ, a3 = 2e−p

π
2 so again there

is a lattice only if p = 0.

If r ≡ 3 mod 4 we get same coefficients as if r ≡ 1 mod 4 and then we have a

lattice only if h+ 2 = n2 for some n ∈ Z.

◦ k = 6:

If r ≡ 0 mod 6 then a1 = −e−p
π
3 − 2ep

π
3 , a2 = 2 + e−p

2π
3 + ep

2π
3 ,

a3 = −ep
π
3 − 2e−p

π
3 .

a1 = n ∈ Z if and only if ep
π
3 = −n±

√
n2−8

4 , then a3 = 5n±3
√
n2−8

4 can be integer

only if n2 − 8 = x2 for some integer x, that is {x = ±1, n = ±3}. Then ep
π
3 = 1, 1

2 ,

but only for p = 0 a3 ∈ Z.

In this case exp(tadX5) is conjugate to the matrix A, then there is a lattice.

If r ≡ 1 mod 6 then a1 = a3 = −e−p
π
3 − ep

π
3 , a2 = 1 + e−p

2π
3 + ep

2π
3 .

a1 = a3 = n ∈ Z if and only if ep
π
3 = n±

√
n2−4
2 , but from (4.2) we know that

e2πp = h±
√
h2−4
2 , this means that

(
n±
√
n2−4
2

)6
= h±

√
h2−4
2 , that is possible only for

integer h of kind h = n6 − 6n4 + 9n2 − 2 for every 2 ≤ n ∈ Z.

Also in this case exp(tadX5) is conjugate to the matrix A, then there is a lattice.

If r ≡ 2 mod 6 then a1 = −a3 = −e−p
π
3 + ep

π
3 , a2 = −1 + e−p

2π
3 + ep

2π
3 ,

then with the same computation of the last case we get a lattice if h is of kind

h = n6 + 6n4 + 9n2 + 2 for every n ∈ Z.

If r ≡ 3 mod 6 then a1 = −e−p
π
3 + 2ep

π
3 , a2 = −2 + e−p

2π
3 + ep

2π
3 ,

a3 = −ep
π
3 + 2e−p

π
3 , then in a similar manner to the first case we have a lattice if

and only if p = 0.

If r ≡ 4 mod 6 the coefficients of the characteristic polynomial are just opposite

to those in the case r ≡ 2 mod 6, while if r ≡ 5 mod 6 the coefficients are equal to
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those in the case r ≡ 1 mod 6, then there is a lattice under the same conditions.

◦ Now we consider separately the particular case p = 0 and we try to find in

general for which values of k ∈ N Γ2π/k is a lattice:

exp(t0adX5) =


cos 2π

k sin 2π
k 0 0

− sin 2π
k cos 2π

k 0 0

0 0 cos 2πr
k sin 2πr

k

0 0 − sin 2πr
k cos 2πr

k


has characteristic polynomial

x4 +
(
− 2 cos

2πr

k
− 2 cos

2π

k

)
x3 +

(
2 + 4 cos

2πr

k
cos

2π

k

)
x2 +

(
− 2 cos

2πr

k
− 2 cos

2π

k

)
x+ 1

If we now impose {
a1 = a3 = h1 ∈ Z
a2 − 2 = h2 ∈ Z

(4.3)

we get

cos
2π

k
=
−h1 ±

√
h2

1 − 4h2

4
cos

2πr

k
=
−h1 ∓

√
h2

1 − 4h2

4
.

The limitations −4 ≤ a1, a2−2 ≤ 4 imply h1, h2 ∈ [−4, 4]∩Z, but these integers

must also satisfy −1 ≤ −h1−
√
h2

1−4h2

4 ≤ −h1+
√
h2

1−4h2

4 ≤ 1.

So we get the system


h1, h2 ∈ [−4, 4] ∩ Z
−h1−

√
h2

1−4h2

4 ≥ −1
−h1+

√
h2

1−4h2

4 ≤ 1

that admits solutions

{h1 = 0, h2 = −4,−3,−2,−1, 0}, {h1 = ±1, h2 = −2,−1, 0},

{h1 = ±2, h2 = 0, 1}, {h1 = ±3, h2 = 2}, {h1 = ±4, h2 = 4}

We now use these values in (4.3) to get r ∈ Z, k ∈ Z r {2, 4, 6} and find

{r = 0, k = 3} (not acceptable), {r = 1, k = 3}, {r = 3, k = 8}, {r = 5, k = 12}.

For all these values the matrix exp(t0adX5) is conjugate to the matrix A, so we

have lattices.
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• Γ2π is a lattice in G0
5.18 × R:

adX5 =


0 1 1 0

−1 0 0 1

0 0 0 1

0 0 −1 0


so for t0 = 2π we have:

exp(2πadX5) =


1 0 2π 0

0 1 0 2π

0 0 1 0

0 0 0 1


then the characteristic polynomial x4−4x3 +6x2−4x+1 has integer coefficients.

In particular exp(2πadX5) is conjugate to


1 0 2 0

0 1 0 2

0 0 1 0

0 0 0 1

 by the matrix


1
π 0 0 0
1
π 1 0 0

0 0 1 0

0 0 1 π


so we have a lattice Γ2π.

•Γ 2π
k

with k ∈ N is a lattice in G0
5.18 × R only if k = 2, 3, 4, 6:

let consider the other lattices Γ2π/k with k ∈ N,

exp(
2π

k
adX5) =


cos 2π

k sin 2π
k

2π
k cos 2π

k
2π
k sin 2π

k

− sin 2π
k cos 2π

k −2π
k sin 2π

k
2π
k cos 2π

k

0 0 cos 2π
k sin 2π

k

0 0 − sin 2π
k cos 2π

k


has characteristic polynomial x4 − 4 cos 2π

k x
3 + (4 cos 2π

k + 2)x2 − 4 cos 2π
k x+ 1

so we can have lattices for k = 2, 3, 4, 6.

For k = 2 we get the conjugate matrix


−1 0 −1 0

0 −1 0 −1

0 0 −1 0

0 0 0 −1

 by the same
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matrix as k = 1, while for the other values of k our matrix is conjugate to A.

• Γ2π is never a lattice in G−2p,p
4.6 × R2:

adX4 =


−2p 0 0

0 p 1

0 −1 p

 .

exp(2πadX4) =


e−4πp 0 0

0 e2πp 0

0 0 e2πp


has minimal polynomial x2 − x(e2πp + e−4πp) + e−2πp, so a0 ∈ Z if and only if

e−2πp ∈ Z, then e−4πp ∈ Z and a1 ∈ Z if and only if e2πp ∈ Z. But this means p = 0

that is not admitted, so we have no lattice in this case.

• Γ2π is a lattice in G0
3.5 × R3:

adX3 =

(
0 1

−1 0

)
so for t0 = 2π we have

exp(2πadX3) =

(
1 0

0 1

)
has integer coefficients, so we have a lattice Γ2π.

•Γ 2π
k

with k ∈ N is a lattice in G0
3.5 × R3 only if k = 2, 3, 4, 6:

Let consider now t = 2π
k with k ∈ N:

exp(t0adX3) =

(
cos t sin t

− sin t cos t

)
has characteristic polynomial x2 − 2x cos t+ 1 so we must consider k = 6, 4, 3, 2:
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for k = 2, 4 exp(2π
k adX3) has integer coefficients, while for k = 6, 3 it is conjugate

to

(
0 −1

1 2 cos 2π
k

)
so we have a lattice for all these values of k.

4.2 Kasuya’s techniques

We will state a proposition that allows us to understand when the invariant coho-

mology is isomorphic to the non-invariant one, also when the Mostow condition does

not hold.

Let g be a solvable Lie algebra and n its nilradical, then there exists a vector

space V ∼= Rk such that g = V ⊕ n as vector spaces and ads(A)(B) = 0 ∀A,B ∈ V
where ads(A) is the semisimple part of ad(A) [13].

We can define the map ads : g → Der(g) by ads(A + X)(Y ) = (adA)s(Y ), for

A ∈ V, X ∈ n and Y ∈ g [23].

Therefore ads is linear and [ads, ads] = 0. Since g1 ⊂ n, ads is a representation

of g and its image ads(g) is abelian and consists of semisimple elements.

We will denote by Ads : G → Aut(g) the extension of ads to G, then Ads(G) is

diagonalizable.

Let T = A(Ads(G)) be the Zariski closure of Ads(G) in Aut(gC), then T is

diagonalizable and it is a torus in A(AdG(G)).

Lemma 4.1. The Zariski closure T = A(Ads(G)) of Ads(G) is a maximal torus of

the Zariski closure A(AdG(G)) of AdG(G).

Proposition 4.1. [23, Corrolary 10.1] Let G be a simply connected solvable Lie

group with a lattice Γ and g be the Lie algebra of G. Suppose that the semisimple part

of AdG(G) is represented by diagonal matrices as (Adg)s = diag(α1(g), · · · , αn(g))

and that the following condition is satisfied:



4.3. Six dimensional almost abelian solvmanifolds 79

• for any {i1, · · · , ip} ⊂ {1, · · · , n} if the character αi1···ip is non-trivial then its

restriction on Γ αi1···ip |Γ is also non-trivial, with αi1···ip the product of charac-

ters αi1 , · · · , αip.

Then an isomorphism H∗(G/Γ,C) ∼= H∗(gC,C) holds.

In particular this implies also H∗(G/Γ) ∼= H∗(g).

We observe that in this proposition the Mostow condition does not appear, then

we can consider it also when we do not have this information, that usually is quite

difficult to obtain.

4.3 Six dimensional almost abelian solvmanifolds

We want to apply this method to almost abelian solvmanifolds Rnϕ Rn/Z nϕ|Z Z
n.

Remark 4.2. We observe that in the almost abelian case g = R nadXn+1
Rn, the

vector space V such that g = V ⊕ n is isomorphic to R, then in this case ads is the

semisimple part of adXn+1 .

If for t = t0 we have a lattice, we usually have by similar arguments a lattice

also for t = t0
k with k ∈ N, as we have seen in the previous section. Moreover to use

Proposition 4.1 it seems a good choice t0 such that the complex eigenvalues of ϕ|Z
are of kind ρ(cos(2hπ) + i sin(2hπ)) with h ∈ N. In this way also the other lattices

with t = t0
k can be easily studied and we can give a good description of these kind

of solvmanifolds.

We consider the almost abelian Lie groups of Theorem 4.1.
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Ga,b,c,p
6.8

adX6 =



−b− c− 2p 0 0 0 0

0 b 0 0 0

0 0 c 0 0

0 0 0 p 1

0 0 0 −1 p


If we consider t0 = 2π, by Theorem 1.3, for p 6= 0 we do not have a lattice, then

we consider p = 0.

exp(tadX6) =



et(−b−c) 0 0 0 0

0 etb 0 0 0

0 0 etc 0 0

0 0 0 cos t sin t

0 0 0 − sin t cos t


.

and

exp(2πadX6) =



e2π(−b−c) 0 0 0 0

0 e2πb 0 0 0

0 0 e2πc 0 0

0 0 0 1 0

0 0 0 0 1


.

Obviously the character cos t+ i sin t 6= 1 on the group, but it is the identity on

the lattice Γ2π, then in this case we can not apply the method.

Let consider lattices Γ2π/k with k ∈ N: by Theorem 4.1 we can have a lattice for

t = π, π
2 ,

π
3 ,

2π
3 .

We can easily verify that for all these values of t the condition of Proposition 4.1

is satisfied, then

H1(Gp=0
6.8 /Γt) = H1(gp=0

6.8 ) = 〈α6〉
H2(Gp=0

6.8 /Γt) = H2(gp=0
6.8 ) = 〈α45〉

H3(Gp=0
6.8 /Γt) = H3(gp=0

6.8 ) = 〈α123, α456〉.
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Ga
6.10

adX6 =



a 1 0 0 0

0 a 1 0 0

0 0 a 0 0

0 0 0 −3
2a 1

0 0 0 −1 −3
2a


,

by Theorem 4.1 for t0 = 2π we have to consider a = 0.

exp(tadX6) =



1 −t 1
2 t

2 0 0

0 1 −t 0 0

0 0 1 0 0

0 0 0 cos t − sin t

0 0 0 sin t cos t


and

exp(2πadX6) =



1 2π 2π2 0 0

0 1 2π 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1


.

Again in this case the complex block does not allow us to apply the method.

Let consider lattices Γt with t = π, π
2 ,

π
3 : using Proposition 4.1 we obtain for all

these t
H1(G0

6.10/Γt) = H1(g0
6.10) = 〈α3, α6〉

H2(G0
6.10/Γt) = H2(g0

6.10) = 〈α16, α23, α45〉
H3(G0

6.10/Γt) = H3(g0
6.10) = 〈α123, α126, α345, α456〉.
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Ga,p,q,s
6.11

adX6 =



−2(p+ q) 0 0 0 0

0 p 1 0 0

0 −1 p 0 0

0 0 0 q s

0 0 0 −s q


If t0 = 2π by Theorem 4.1 we take again p = 0 and

exp(tadX6) =



e−2 qt 0 0 0 0

0 cos t sin t 0 0

0 − sin t cos t 0 0

0 0 0 eqt cos(ts) eqt sin(ts)

0 0 0 −eqt sin(ts) eqt cos(ts)


and

exp(2πadX6) =



e−4qπ 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 e2qπ cos(2πs) e2qπ sin(2πs)

0 0 0 −e2qπ sin(2πs) e2qπ cos(2πs)


then also in this case we can not apply the method.

If we consider the other lattices Γ2π/k with k = 2, 4, 6, thanks to Proposition 4.1

we have

H1(Gp=0
6.11/Γt̄) = 〈α6〉

H2(Gp=0
6.11/Γt̄) = 〈α23〉

H3(Gp=0
6.11/Γt̄) = 〈α145, α236〉 .

If s = s1
s2
∈ Q another good choice is t0 = 2πs2, but by Theorem 4.1 Γ2πs2 is

never a lattice.
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G−1−2q,q,r
5.13 × R

adX5 =


1 0 0 0

0 −1− 2q 0 0

0 0 q r

0 0 −r q


As in the previous case we would consider two different cases:

again by Theorem 4.1 we have q = 0, otherwise Γ 2π
r

is not a lattice and if r = r1
r2
∈ Q,

t0 = 2πr2 is never a lattice.

If t0 = 2π
r we can not apply the method.

Now we consider t = 2π
rk with k = 2, 4, 6: for all these values we can apply

Proposition 4.1 and the cohomology groups are:

H1(G−1,0,r
5.13 × R/Γ 2π

rk
) = H1(g−1,0,r

5.13 ⊕ R) = 〈α5, α6〉 ,
H2(G−1,0,r

5.13 × R/Γ 2π
rk

) = H2(g−1,0,r
5.13 ⊕ R) = 〈α12, α34, α56〉 ,

H3(G−1,0,r
5.13 × R/Γ 2π

rk
) = H3(g−1,0,r

5.13 ⊕ R) = 〈α125, α126, α345, α346〉 .

G0
5.14 × R

adX5 =


0 1 0 0

0 0 0 0

0 0 0 1

0 0 −1 0


so for t = 2π again we can not apply the method.

Let consider the cases Γ2π/k with k = 2, 4, 6: we can use Proposition 4.1 and the

cohomology groups are:
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H1(G0
5.14 × R/Γ 2π

k
) = H1(g0

5.14 ⊕ R) = 〈α2, α5, α6〉 ,
H2(G0

5.14 × R/Γ 2π
k

) = H2(g0
5.14 ⊕ R) = 〈α12, α15, α26, α34, α56〉 ,

H3(G0
5.14 × R/Γ 2π

k
) = H3(g0

5.14 ⊕ R) = 〈α125, α126, α156, α234, α345, α346〉 .

Gp,−p,r
5.17 × R

adX5 =


p 1 0 0

−1 p 0 0

0 0 −p r

0 0 −r −p


If r = r1

r2
∈ Q and t0 = 2πr2 we know by the prove of Theorem 4.1 that we have

a lattice for e2πpr2 + e−2πpr2 ∈ Z.

exp(tadX5) =


etp cos t etp sin t 0 0

−etp sin t etp cos t 0 0

0 0 e−tp cos(tr) e−tp sin(tr)

0 0 −e−tp sin(tr) e−tp cos(tr)


and

exp(2πr2adX5) =


e2πpr2 0 0 0

0 e2πpr2 0 0

0 0 e−2πpr2 0

0 0 0 e−2πpr2


For p = 0, again cos t+ i sin t 6= 1, but on the lattice Γ2πr2 it is trivial.

For p 6= 0 the character etp(cos t + i sin t) · e−tp(cos(rt) + i sin(rt)) can not be

trivial for every t, but for t0 = 2πr2 it becomes e2πpr2 · e−2πpr2 = 1.

Then Proposition 4.1 does not allow us to compute the cohomology of the solv-

manifold.

Now we consider all the other lattices considered in Theorem 4.1.
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p = 0: the only characters αi1···ip that are trivial for every t are

(cos t+ i sin t) · (cos t− i sin t) and (cos rt+ i sin rt) · (cos rt− i sin rt).

But for r = 2πm
t for some m ∈ Z we have that (cos rt+ i sin rt) and

(cos rt − i sin rt) are trivial, for r = 2πm
t − 1 for some m ∈ Z we have that

(cos t+ i sin t) · (cos rt+ i sin rt) and (cos t− i sin t) · (cos rt− i sin rt) are trivial

and for r = 2πm
t +1 for some m ∈ Z we have that (cos t+i sin t)·(cos rt−i sin rt)

and (cos t− i sin t) · (cos rt+ i sin rt) are trivial.

Since in our computation t = 2π
k we have that

– if r ≡ 0 mod k or r ≡ 1 mod k or r ≡ −1 mod k, then we can not

apply Proposition 4.1,

– if r ≡ j mod k with j 6= 0,±1, then by Proposition 4.1 we have

H1(G0,0,r
5.17 × R/Γ 2π

k
) = H1(g0,0,r

5.17 ⊕ R) = 〈α5, α6〉,
H2(G0,0,r

5.17 × R/Γ 2π
k

) = H2(g0,0,r
5.17 ⊕ R) = 〈α13 + α24, α14 − α23, α56〉,

H3(G0,0,r
5.17 × R/Γ 2π

k
) = H3(g0,0,r

5.17 ⊕ R) = 〈α135 + α245, α145 − α235, α146 − α236,

α136 + α246〉.

p 6= 0: any character αi1···ip is not trivial.

But for r = 2πm
t −1 for some m ∈ Z we have that (cos t+i sin t)·(cos rt+i sin rt)

and (cos t−i sin t)·(cos rt−i sin rt) are trivial and for r = 2πm
t +1 for somem ∈ Z

we have that (cos t+i sin t) ·(cos rt−i sin rt) and (cos t−i sin t) ·(cos rt+i sin rt)

are trivial.

Then we have that

– if r ≡ 1 mod k or r ≡ −1 mod k, then we can not apply Proposition

4.1,

– if r ≡ j mod k with j 6= ±1, then by Proposition 4.1 we have

H1(Gp,−p,r5.17 × R/Γ 2π
k

) = H1(gp,−p,r5.17 ⊕ R) = 〈α5, α6〉,
H2(Gp,−p,r5.17 × R/Γ 2π

k
) = H2(gp,−p,r5.17 ⊕ R) = 〈α56〉,

H3(Gp,−p,r5.17 × R/Γ 2π
k

) = H3(gp,−p,r5.17 ⊕ R) = {0}.
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G0
5.18 × R

adX5 =


0 1 1 0

−1 0 0 1

0 0 0 1

0 0 −1 0


so for t = 2π as usual we can not apply the method.

Let consider the other lattices Γ2π/k with k = 2, 4, 6: we can apply Proposition

4.1 only for k 6= 2.

Indeed we have characters cos t± i sin t, cos t± i sin t, then the product

(cos t ± i sin t) · (cos t ± i sin t), that for t generic is not trivial, for t = mπ for some

m ∈ Z is trivial, then we can not compute the cohomology for Γπ.

For k = 3, 4, 6, by Proposition 4.1 we have

H1(G0
5.18 × R/Γ 2π

k
) = H1(g0

5.18 ⊕ R) = 〈α5, α6〉
H2(G0

5.18 × R/Γ 2π
k

) = H2(g0
5.18 ⊕ R) = 〈α13 + α24, α34, α56〉

H3(G0
5.18 × R/Γ 2π

k
) = H3(g0

5.18 ⊕ R) = 〈α125, α135 + α245, α136 + α246, α346〉

G0
3.5 × R3

adX3 =

(
0 1

−1 0

)
so for t = 2π we can not apply the method.

For t = 2π
k with k = 2, 4, 6 by Proposition 4.1 we have that the cohomology

groups are

H1(G0
3.5 × R3/Γ 2π

k
) = H1(g0

3.5 ⊕ R) = 〈α3, α4, α5, α6〉,
H2(G0

3.5 × R3/Γ 2π
k

) = H2(g0
3.5 ⊕ R) = 〈α12, α34, α35, α36, α45, α46, α56〉,

H3(G0
3.5 × R3/Γ 2π

k
) = H3(g0

3.5 ⊕ R) = 〈α123, α124, α125, α126, α345, α346, α356, α456〉.



Chapter 5

Complex structures on almost

abelian Lie algebras

We have seen in Chapter 1.2 that the existence of a complex structure on a differential

manifold or a Lie algebra allows to define the Dolbeault cohomology groups (Theorem

1.11 and Remark 1.2).

A complex structure on an homogeneous space M = G/Γ is invariant if it comes

from a complex structure on the associated Lie algebra g or equivalently from a left

invariant complex structure on G ( Proposition 1.4).

Like for the de Rham cohomology, the inclusion
∧∗,∗ g∗ ⊆ ∧∗,∗(S) of the exterior

algebras induces for solvmanifolds S only an inclusion in the Dolbeault cohmology

up to isomorphism H∗,∗
∂̄

(g) ⊆ H∗,∗
∂̄

(S) [7].

Unfortunately all the theorems that (in the real case) assure us that this inclusion

is an isomorphism ( Theorems 1.7, 1.8 and 1.10 ) do not hold in general for the

Dolbeault cohmology.

We have an analogue of the Nomizu theorem in a large group of nilmanifolds (see

Theorem 6.7) and it is an open problem to prove that it is always true [41]. We will

discuss this subject in Chapter 6.3.1.

87
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There is not a similar result for solvmanifolds, but for dimension 4 we have a

result due to Hasegawa:

Theorem 5.1. [21] Every complex structure on a four dimensional solvmanifold is

invariant.

In view of these results and with the hope that more can be developed, we are

interested in describing complex structures on almost abelian solvable Lie algebras.

In particular we find a description for a general complex structure on g = R n Rn

and for the complex analogue g = C nad Cn with dimR Im ad = 1. In this case we

also find a property related to the ∂∂̄-Lemma.

5.1 g = Rn R2n−1

5.1.1 General case

Let g = Rn R2n−1 be an almost abelian Lie algebra, we want to study the complex

structures J on g.

The main result of this section is the following theorem:

Theorem 5.2. An almost abelian Lie algebra g = R nadX2n
R2n−1 can admit a

complex structure J , only if adX2n has at least a real eigenvalue and its complex part

is C-diagonalizable.

Proof. This theorem is direct consequence of the following lemmas and propositions

and then a corollary of Theorem 5.3.

Suppose that adX2n can be written in Jordan form, i.e. there exists a basis of g

such that

g = 〈X1
1 , · · · , X1

m1
, · · · , Xp

1 , · · · , X
p
mp , Y

1
1 , · · · , Y 1

2n1
, · · · , Y q

1 , · · · , Y
q

2nq
, X2n〉
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with [
Xt

1, X2n

]
= atX

t
1 ∀ t = 1, · · · , p[

Xt
i , X2n

]
= Xt

i−1 + atX
t
i ∀ i = 2, · · · ,mt

[Y s
1 , X2n] = bsY

s
1 − csY s

2 ∀ s = 1, · · · , q
[Y s

2 , X2n] = csY
s

1 + bsY
s

2[
Y s

2j−1, X2n

]
= Y2j−3 + bsY

s
2j−1 − csY s

2j ∀ j = 2, · · · , ns[
Y s

2j , X2n

]
= Y2j−2 + csY

s
2j−1 + bsY

s
2j .

Consider J on R2n−1 given by a general almost complex structure

JXt
i =

∑
u=1,··· ,p
v=1,··· ,mu

ϕu,tv,iX
u
v +

∑
u=1,··· ,q
v=1,··· ,nu

ψu,tv,iY
u
v + ηtiX2n

JY s
j =

∑
u=1,··· ,p
v=1,··· ,mu

αu,sv,jX
u
v +

∑
u=1,··· ,q
v=1,··· ,nu

βu,sv,j Y
u
v + ρsjX2n

such that J2 = −Id.

Lemma 5.1. If ηti 6= 0 then, by the integrability of J , i = mt and at = a1.

Proof. If we consider the coefficient of X2n in N(Xt
i , X

s
j ) ∀ s, t we obtain

ηt1η
s
1(at − as) = 0 i = j = 1 (5.1)

ηt1η
s
i (at − as)− ηt1ηsi−1 = 0 i 6= 1, j = 1 (5.2)

ηtjη
s
i (at − as) + ηsi η

t
j−1 − ηtjηsi−1 = 0 i 6= 1, j 6= 1 (5.3)

∀ t such that mt > 1 we have that for s = t and i = 2, equation (5.2) becomes

ηt1 = 0, then in (5.3) we have for j = 2, i = 3 ηt2 = 0, then by induction for

i = j + 1 ηtj = 0 ∀ j < mt and equations (5.1) and (5.3) are satisfied.

Equation (5.3) becomes ηtmtη
s
ms(at − as) = 0, then if as 6= at it implies ηtmt = 0

or ηsms = 0. So we can suppose to fix s = 1 and then for at 6= a1 we have also

ηtmt = 0.
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Lemma 5.2. For every t, i such that ηti = 0 we have

JXt
i =

∑
au=at
v≤i

mu−v≥mt−i

ϕu,t1,i−v+1X
u
v . (5.4)

Proof. Let s ≤ p be such that ηsms 6= 0, then N(Xs
ms , X

t
i ) = 0 is equivalent ∀u to

ϕu,tv,i(at − au)− ϕu,tv+1,i + ϕu,tv,i−1 = 0 ∀ v < mu (5.5)

ϕu,tmu,i(at − au) + ϕu,tmu,i−1 = 0 (5.6)

ψu,t2v−1,i(at − bu)− ψu,t2v,icu − ψ
u,t
2v+1,i + ψu,t2v−1,i−1 = 0 ∀ v < nu (5.7)

ψu,t2v,i(at − bu) + ψu,t2v−1,icu − ψ
u,t
2v+2,i + ψu,t2v,i−1 = 0 ∀ v < nu (5.8)

ψu,t2nu−1,i(at − bu)− ψu,t2nu,i
cu + ψu,t2nu−1,i−1 = 0 (5.9)

ψu,t2nu,i
(at − bu) + ψu,t2nu−1,icu + ψu,t2nu,i−1 = 0 (5.10)

where the underlined parts are those we do not have when i = 1.

Starting by equations (5.9) and (5.10) and applying then induction on v in equa-

tions (5.7) and (5.8) we obtain ψu,t2v−1,1 = ψu,t2v,1 = 0 ∀ v and by induction on i in all

these 4 equations we have ψu,t2v−1,i = ψu,t2v,i = 0 ∀ v, i.

By a similar argument on equations (5.5) and (5.6) we have ϕu,tv,i = 0 ∀u, v such

that au 6= at.

If au = at, then equations (5.5) and (5.6) become

ϕu,tv+1,1 = 0 ∀ v < mu (5.11)

ϕu,tv+1,i = ϕu,tv,i−1 ∀ v < mu, ∀ i > 1 (5.12)

ϕu,tmu,i−1 = 0 ∀ i > 1 (5.13)

Using equations (5.11) and (5.12) we obtain that ϕu,tv,i = 0 ∀ v > i, while using

(5.13) and (5.12) we have ϕu,tv,i = 0 ∀ v such that mt − i > mu − v.

In particular (5.12) implies that ϕu,tv,i = ϕu,t1,i−v+1.
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In a similar way to the previous proof we obtain the following lemma:

Lemma 5.3. ∀ t, s such that ηtmt 6= 0, ηsms 6= 0 we have

ϕu,sv,msη
t
mt − ϕ

u,t
v,mtη

s
ms = 0 ∀ au 6= a1, ∀ v (5.14)

ϕu,sv,msη
t
mt − ϕ

u,t
v,mtη

s
ms = 0 ∀ au = a1, ∀ v > 1 (5.15)

ψu,sv,msη
t
mt − ψ

u,t
v,mtη

s
ms = 0 ∀u, v. (5.16)

Proposition 5.1. Let g = Rn R2n−1 be an almost abelian Lie algebra,

1. if adX2n has 2 real eigenvalues at1 and at2 of multiplicity greater then 1 such

that for every real eigenvalue au of multiplicity greater then 1, at1 6= au and

at2 6= au, then g does not admit a complex structure,

2. if adX2n has two different real eigenvalues at1 and at2 such that for every real

eigenvalue au with au = ati we have mti > mu for i = 1, 2, then g does not

admit a complex structure,

3. if adX2n has 2 different real eigenvalues with odd algebraic multiplicity, then g

does not admit a complex structure.

Proof.

1. If at1 6= au and at2 6= au, then at least one of at1 and at2 is different from a1.

Suppose that at1 6= a1, then by equation (5.4) the coefficient of Xt1
i in J2(Xt1

i )

is (ϕt1,t11,1 )2 that can not be −1.

2. At least one of at1 and at2 is different from a1. Suppose that at1 6= a1. For

every real eigenvalue au such that au = at1 consider i such that mu = i − 1.

Then equation (5.13) becomes ϕu,t1i−1,i−1 = 0 and then (5.12) implies ϕu,t1i,i =

0 ∀ i < mt1 . In particular we have ϕu,t11,1 = 0, then JXt1
1 = ϕt1,t11,1 Xt1

1 and then

J2 = −Id is impossible.
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3. At least one of the two eigenvalues is different from a1, then equation (5.4)

implies that its algebraic multiplicity must be even, because it is equivalent to

J : V → V almost complex structure with V = 〈Xu
1 〉.

Lemma 5.4. ρsj = 0 for any s = 1, · · · , q, for any j = 1, · · · , 2ns.

Proof. We use induction on j:

If we consider the coefficient of X2n in N(Y s
1 , Y

s
2 ) ∀ s we obtain

−cs[(ρs1)2 + (ρs2)2]

that can be 0 only if ρs1 = ρs2 = 0.

If we now generalize to N(Y s
2j−1, Y

s
2j) ∀ j = 1, · · · , ns we have

ρs2j−1ρ
s
2j−2 − ρs2jρs2j−3 − cs[(ρs2j−1)2 + (ρs2j)

2]

but by induction hypothesis it becomes −cs[(ρs2j−1)2 + (ρs2j)
2] that is zero only if

ρs2j−1 = ρs2j = 0.

Proposition 5.2. Let g be an almost abelian Lie algebra. If adX2n has only complex

eigenvalues, then g does not admit a complex structure.

Proof. By Lemma 5.4 we have that if adX2n has not real eigenvalues, then J2X2n =

−X2n implies that the square of the coefficient of X2n in JX2n is equal to −1 that

is impossible in R.

Now we consider the complex blocks:

Lemma 5.5. ∀ s = 1, · · · , q ∀ j = 1, · · · , 2ns

JY s
j =

∑
bu=bs
cu=cs

(βu,s1,j Y
u

1 + βu,s2,j Y
u

2 ).
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Proof. Let Xt
mt such that ηtmt 6= 0, then N(Xt

mt , Y
s

2j−1) = 0 imply ∀u, v

(au − bs)αu,sv,2j−1 + csα
u,s
v,2j − α

u,s
v,2j−3 + αu,sv+1,2j−1 = 0 (5.17)

(au − bs)αu,smu,2j−1 + csα
u,s
mu,2j

− αu,smu,2j−3 = 0 (5.18)

(bu − bs)βu,s2v−1,2j−1 + cuβ
u,s
2v,2j−1 + csβ

u,s
2v−1,2j − β

u,s
2v−1,2j−3+ (5.19)

βu,s2v+1,2j−1 = 0

(bu − bs)βu,s2v,2j−1 − cuβ
u,s
2v−1,2j−1 + csβ

u,s
2v,2j − β

u,s
2v,2j−3+ (5.20)

βu,s2v+2,2j−1 = 0

(bu − bs)βu,s2nu−1,2j−1 + cuβ
u,s
2nu,2j−1 + csβ

u,s
2nu−1,2j − β

u,s
2nu−1,2j−3 = 0 (5.21)

(bu − bs)βu,s2nu,2j−1 − cuβ
u,s
2nu−1,2j−1 + csβ

u,s
2nu,2j

− βu,s2nu,2j−3 = 0 (5.22)

and N(Xt
mt , Y

s
2j) = 0 imply ∀u, v

(au − bs)αu,sv,2j − csα
u,s
v,2j−1 − α

u,s
v,2j−2 + αu,sv+1,2j = 0 (5.23)

(au − bs)αu,smu,2j − csα
u,s
mu,2j−1 − α

u,s
mu,2j−3 = 0 (5.24)

(bu − bs)βu,s2v−1,2j + cuβ
u,s
2v,2j − csβ

u,s
2v−1,2j−1 − β

u,s
2v−1,2j−2+ (5.25)

βu,s2v+1,2j = 0

(bu − bs)βu,s2v,2j − cuβ
u,s
2v−1,2j − csβ

u,s
2v,2j−1 − β

u,s
2v,2j−2+ (5.26)

βu,s2v+2,2j = 0

(bu − bs)βu,s2nu−1,2j + cuβ
u,s
2nu,2j

− csβu,s2nu−1,2j−1 − β
u,s
2nu−1,2j−2 = 0 (5.27)

(bu − bs)βu,s2nu,2j
− cuβu,s2nu−1,2j − csβ

u,s
2nu,2j−1 − β

u,s
2nu,2j−2 = 0 (5.28)

where the underlined parts are those we do not have when j = 1.

Using induction both on j and v we obtain by equations (5.17), (5.18), (5.23) and

(5.24) αu,sv,j = 0 ∀u, v, while by the other 8 equations that βu,sv,j 6= 0 only for v = 1, 2

and bu + icu = bs + ics.

This Lemma implies the following proposition
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Proposition 5.3. Let g be an almost abelian Lie algebra, if adX2n has complex

Jordan blocks of dimension greater then 1, then g does not admit a complex structure.

Proof. For j > 2 we have that Y s
j does not appear in J2(Y s

j ), then it can not be

equal to −Y s
j .

We now consider also JX2n:

Proposition 5.4. Let g = RnadX2n
R2n−1 be an almost abelian Lie algebra endowed

with an almost complex structure J : g→ g.

If N |R2n−1×R2n−1 = 0, then J is integrable.

Proof. We consider g = h1⊕ h2⊕ 〈X2n〉, where h2 is the bigger J-invariant subspace

of g, i.e. J(h2) ⊂ h2. In particular by the previous notation in h1 we have only all

the Xt
mt such that ηtmt 6= 0.

By hypothesis J2 = −Id and ∀X,Y ∈ h1⊕h2 N(X,Y ) = 0. In particular if X ∈ h2

and Y ∈ h1 we have JX ∈ h2 and JY = Y 1 + Y 2 + yX2n where Y i ∈ hi, i = 1, 2,

then N(X,Y ) = −y[JX,X2n] + yJ [X,X2n] that is zero only if

[JX,X2n]− J [X,X2n] = 0. (5.29)

Using J2 = −Id this is equivalent to

J [JX,X2n] + [X,X2n] = 0. (5.30)

Suppose that JX2n = X1 +X2 + xX2n where Xi ∈ hi, i = 1, 2.

We consider 2 cases:

Z ∈ h2:

N(Z,X2n) = [Z,X2n]− x[JZ,X2n] + J [JZ,X2n] + xJ [Z,X2n] =

= [Z,X2n] + J [JZ,X2n] + x(J [Z,X2n]− [JZ,X2n])

that by equations (5.29) and (5.30) is zero.
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Z ∈ h1: let JZ = Z1 + Z2 + zX2n where Zi ∈ hi, i = 1, 2, then

JZ1 = Y 1 + Y 2 + yX2n where Y i ∈ hi, i = 1, 2 and JZ2 = Z̃2 ∈ h2.

We now consider the 2 hypothesis: J2Z = −Z is equivalent to
Y 1 + zX1 = −Z
Y 2 + Z̃2 + zX2 = 0

y + zx = 0

(5.31)

and N(Z,Z1) = 0 is equivalent to

−y[JZ,X2n] + z[JZ1, X2n]− zJ [Z1, X2n] + yJ [Z,X2n] = 0.

By (5.31) y = −xz, then this equation becomes

x[JZ,X2n] + [JZ1, X2n]− J [Z1, X2n]− xJ [Z,X2n] = 0. (5.32)

N(Z,X2n) = [Z,X2n]− x[JZ,X2n] + z[X1, X2n] + z[X2, X2n] +

+J [Z1, X2n] + J [Z2, X2n] + xJ [Z,X2n]

but by equation (5.29) J [Z2, X2n] = [JZ2, X2n] = [Z̃2, X2n], then

= [Z,X2n]−x[JZ,X2n]+z[X1, X2n]+J [Z1, X2n]+xJ [Z,X2n]+[zX2+Z̃2, X2n].

By (5.31) [zX2 + Z̃2, X2n] = [−Y 2, X2n] = [−JZ1 + Y 1 + yX2n, X2n] =

= −[JZ1, X2n] + [Y 1, X2n] = −[JZ1, X2n]− [Z,X2n]− z[X1, X2n], then

= −x[JZ,X2n] + J [Z1, X2n] + xJ [Z,X2n]− [JZ1, X2n]

that by (5.32) is zero.

We summarize all the results in the following theorem.
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Theorem 5.3. Let g = R nadX2n
R2n−1 be an almost abelian Lie algebra endowed

with an almost complex structure J .

J is integrable if and only if the hypothesis of Propositions 5.1, 5.2 and 5.3 do not

hold and g has a basis

〈X1
1 , · · · , X1

m1
, · · · , Xp

1 , · · · , X
p
mp , Y1, · · · , Y2q, X2n〉[

Xt
1, X2n

]
= atX

t
1 ∀ t ≤ p with not necessarily at 6= as for t 6= s ≤ p[

Xt
i , X2n

]
= Xt

i−1 + atX
t
i ∀ t such that mt > 1, ∀ 1 < i ≤ mt

[Y2j−1, X2n] = bjY2j−1 − cjY2j ∀ j ≤ q
[Y2j , X2n] = cjY2j−1 + bjY2j .

In particular we have

If at = a1 JXt
mt =

∑
u≤p
v≤mu

ψuv,tX
u
v +

∑
k≤2q

ρk,tYk + ηtX2n ∀ i ≤ r,

If at 6= a1 JXt
mt =

∑
au=at
v≤mt

ϕu,t1,mt−v+1X
u
v ∀ t ≤ p

∀i < mt JXt
i =

∑
au=at
v≤i

mu−v≥mt−i

ϕu,t1,i−v+1X
u
v ∀ t ≤ p

JY2j−1 =
∑
bk=bj
ck=cj

(βk,jY2k−1 + γk,jY2k) ∀ j ≤ q

JY2j =
∑
bk=bj
ck=cj

(−γk,jY2k−1 + βk,jY2k) ∀ j ≤ q

with J2 = −Id and the equations of Lemma 5.3 satisfied.

Remark 5.1. We observe that in [38, Prop. 3] this result was found for dimension

4.
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5.1.2 Bi-invariant and abelian cases

Next we consider two particular cases of complex structures.

Let g = RnadX2n
R2n−1 be an almost abelian Lie algebra, with

g = 〈X1, · · · , X2n〉 and [Xi, X2n] =
∑

k<2n cikXk.

Suppose that g admits a bi-invariant complex structure J (see Proposition 1.4).

This is a much stronger condition than integrability requested by equation (1.2),

indeed we have the following theorem:

Theorem 5.4. An almost abelian Lie algebra can not be endowed with a bi-invariant

complex structure.

Proof. ∀ i, j < 2n we have J [Xi, Xj ] = J(0) = 0.

Suppose ∀i ≤ 2n JXi =
∑

k≤2n ϕk,iXk, then

0 = [JXi, Xj ] =
∑
k≤2n

ϕk,i[Xk, Xj ] = −ϕ2n,i[Xj , X2n] = −
∑
k<2n

ϕ2n,icjkXk

then ∀ k < 2n ϕ2n,icjk = 0, this means that ∀ i, j, k < 2n (also i = j = k or i = j

or i = k or j = k) we have ϕ2n,icjk = 0, but if g is not abelian, then there exist

j, k < 2n such that cjk 6= 0.

If we fix these j and k than ϕ2n,icjk = 0 implies ϕ2n,i = 0 ∀i < 2n, then ∀i < 2n

JXi =
∑

k<2n ϕk,iXk that, as in Proposition 5.2, implies J2X2n 6= −X2n.

Now suppose that g is endowed with an abelian complex structure J , i.e. J is an

almost complex structure on g and [JX, JY ] = [X,Y ] ∀X,Y ∈ g or equivalently

[JX, Y ] = −[X,JY ]. (5.33)

Again this is a stronger condition than integrability, then if we want to study

when g admits an abelian complex structure, we can suppose that we have the same

setting as in the statements of Proposition 5.4 and Theorem 5.3.

Theorem 5.5. An almost abelian Lie algebra g = R nadX2n
R2n−1 can be endowed

with an abelian complex structure J only if adX2n has a unique non zero eigenvalue
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a, that is real and has geometric muliplicity equal to 1.

In particular if [X1, X2n] = aX1 is the only not zero bracket, we have for i = 1, 2n

JXi =
∑

k≤2n ϕk,iXk with ϕ2n,1 6= 0 and for 1 < i < 2n JXi =
∑

1<k<2n ψk,iXk such

that J2 = −Id.

Proof. We use the notation of Proposition 5.4: if both X and Y are in h2, then also

JX, JY ∈ h2 and [JX, Y ] = [X, JY ] = 0.

Suppose now that X ∈ h1 and Y ∈ h2, then [X, JY ] = 0 and if JX = X1 +X2 +

xX2n we have [JX, Y ] = −x[Y,X2n] and then [Y,X2n] = 0, i.e. [h2, X2n] = 0. In

particular because of Lemmas 5.1, 5.2 and 5.4 this implies that we do not have real

eigenvalues ai with mi > 1 and we do not have complex eigenvalues at all.

In h1 we have Xt
mt such that at = a1 and ηt 6= 0, then this implies that ∀ ai 6=

a1 ai = 0 and ∀ ai = a1 mi = 1.

Now consider Zi, Zj ∈ h1: [JZi, Zj ] = −ηia1Zj and [Zi, JZj ] = ηja1Zi, then

equation (5.33) becomes ηiZj−ηjZi = 0 that implies ηi = ηj = 0, but then J2X2n 6=
−X2n, so we have just one generator in h1, i.e. adX2n has a unique eigenvalue a not

zero, that is real and has geometric multiplicity equal to 1.

Suppose then h1 = 〈X〉 with [X,X2n] = aX, JX = X1 + X2 + xX2n and

JX2n = Z1 +Z2 + zX2n with Xi, Zi ∈ hi, in particular X1 = uX and Z1 = vX with

u, v ∈ R.

[JX,X2n] = uaX [X, JX2n] = zaX, then equation (5.33) is satisfied for u = −z.

In the general case we were not able to describe the Dolbeault complex (
∧∗,∗ gC∗, ∂̄)

associated to g without knowing specifically J , but when J is an abelian complex

structure we can.

Suppose that g1,0 is generated by {Z1 := X1 − iJX1, · · · , Z2n := X2n − iJX2n}
and g0,1 by their complex conjugate elements.

The complex structure J is abelian, then we have ∀ 1 ≤ r, s ≤ 2n

[Zr, Zs] = [Xr, Xs]− [JXr, JXs] + i([Xr, JXs] + [JXr, Xs]) = 0.

Similarly we get [Z̄r, Z̄s] = 0 and [Zr, Z̄s] = 2[Xr, Xs]− 2i[Xr, JXs], then

∀ 1 < r, s < 2n [Zr, Z̄s] = 0,
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∀ 1 < s < 2n [Z1, Z̄s] = [Zs, Z̄1] = [Z2n, Z̄s] = [Zs, Z̄2n] = 0,

[Z1, Z̄2n] = λ(1 + iϕ1,1)(Z1 + Z̄1),

[Z2n, Z̄1] = λ(−1 + iϕ1,1)(Z1 + Z̄1),

[Z1, Z̄1] = −iλϕ2n,1(Z1 + Z̄1),

[Z2n, Z̄2n] = iλϕ1,2n(Z1 + Z̄1).

To can define the differential on g∗C we need to extract a basis B from the set of

generators {Z1, · · · , Z2n} of g1,0: we impose Z1 ∈ B, if for every A ∈ C Z2n 6= A·Z1,

we can impose also Z2n ∈ B, otherwise Z2n /∈ B.

Let 0 6= A = A1 + iA2 ∈ C such that Z2n 6= A · Z1. Then

X2n − iJX2n = A(X1 − iJX1) ⇔ X2n − i
∑
k≤2n

ϕk,2nXk = A(X1 − i
∑
k≤2n

ϕk,1Xk)

⇔ −iϕ1,2nX1 −
∑

1<k<2n

iϕk,2nXk + (1− iϕ2n,2n)X2n =

= A((1− iϕ1,1)X1 −
∑

1<k<2n

iϕk,1Xk − iϕ2n,1X2n)

⇔


−iϕ1,2n = A(1− iϕ1,1)

∀ 1 < k < 2n − iϕk,2n = −iAϕk,1
1 + iϕ1,1 = −iAϕ2n,1

(5.34)

By the second equation we have that if there exists 1 < k < 2n such that ϕk,2n 6= 0,

then also ϕk,1 6= 0 and then A ∈ R and the first equation implies A = 0, then

∀ 1 < k < 2n ϕk,2n = ϕk,1 = 0 and the sistem (5.34) becomes{
−iϕ1,2n = (A1 + iA2)(1− iϕ1,1)

1 + iϕ1,1 = −iϕ2n,1(A1 + iA2)
⇒

{
A1 = − ϕ1,1

ϕ2n,1

A2 = 1
ϕ2n,1

Remark 5.2. ϕk,2n = 0 ∀ 1 < k < 2n ⇔ ϕk,1 = 0 ∀ 1 < k < 2n

Indeed if ϕk,2n = 0 ∀ 1 < k < 2n, J2X2n = −X2n implies ϕ1,2nϕp,1 = 0

∀ 1 < p < 2n and then ϕp,1 = 0 ∀ 1 < p < 2n.

Similarly if ϕk,1 = 0 ∀ 1 < k < 2n, J2X1 = −X1 implies ϕp,2n = 0 ∀ 1 < p <

2n.
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We have then two cases:

1. if ∀ 1 < k < 2n ϕk,2n = 0, then Z2n =
(
−ϕ1,1+i
ϕ2n,1

)
Z1, Z2n /∈ B and we can

choose B = {Z1, Zk2 , · · · , Zkn} with k2, · · · , kn ∈ {2, · · · , 2n− 1}.
If {ω1, · · · , ωn} is its dual basis in g1,0∗ then{

dω1 = iλϕ2n,1ω
1 ∧ ω̄1

dωk = 0 ∀k > 1

Now we compute the Dolbeault cohomology groups H∗,∗(g):

gC∗ = 〈ω1, · · · , ωn, ω̄1, · · · , ω̄n〉 with
∂̄ω1 = cω1 ∧ ω̄1, with c = iλϕ2n,1

∂̄ωk = 0 ∀k > 1

∂̄ω̄k = 0 ∀k ≥ 1

Let α be a generator of
∧p,q gC∗, then α = ωi1 ∧ · · · ∧ ωip ∧ ω̄j1 ∧ · · · ∧ ω̄jq .

If ∀ 1 ≤ r ≤ p ir 6= 1, ∂̄α = 0 (5.35)

If ∃ 1 ≤ r ≤ p such that ir = 1, let say i1 = 1, then

∂̄(ωi2 ∧ · · · ∧ ωip ∧ ω̄j1 ∧ · · · ∧ ω̄jq) = 0 and then

∂̄α = cω1 ∧ ω̄1 ∧ ωi2 ∧ · · · ∧ ωip ∧ ω̄j1 ∧ · · · ∧ ω̄jq

If ∃ 1 ≤ s ≤ q such that js = 1, ∂̄α = 0 (5.36)

If ∀ 1 ≤ s ≤ q js 6= 1, ∂̄α = ±cα ∧ ω̄1 6= 0 (5.37)

Then the space of closed (p, q)-forms is generated by elements of kind (5.35)

and (5.36).
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Now let β be a generator of
∧p,q−1 gC∗, then

β = ωi1 ∧ · · · ∧ ωip ∧ ω̄j1 ∧ · · · ∧ ω̄jq−1 .

∂̄β = α implies ∂̄β 6= 0, then β is of kind (5.37) and then α = ∂̄β = cω1 ∧ ω̄1 ∧
ωi2 ∧ · · · ∧ ωip ∧ ω̄j1 ∧ · · · ∧ ω̄jq−1 .

In particular α is of kind (5.36) and then the space of exact (p, q)-forms is

generated by elements of kind (5.36).

This means that Hp,q(g) = 〈ωi1 ∧ · · · ∧ωip ∧ ω̄j1 ∧ · · · ∧ ω̄jq〉 with ir 6= 1 ∀ 1 ≤
r ≤ p.

2. if ∃ 1 < k < 2n such that ϕk,2n 6= 0, then Z2n 6= AZ1 ∀A ∈ C and we can

choose B = {Z1, Zk3 , · · · , Zkn , Z2n} with k3, · · · , kn ∈ {2, · · · , 2n− 1}.
If {ω1, · · · , ωn} is its dual basis in g1,0∗ then

dω1 = −λ(1 + iϕ1,1)ω1 ∧ ω̄n + iλϕ2n,1ω
1 ∧ ω̄1+

+λ(1− iϕ1,1)ωn ∧ ω̄1 − iλϕ1,2nω
n ∧ ω̄n

dωk = 0 ∀k > 1

Again we compute the Dolbeault cohomology:

gC∗ = 〈ω1, · · · , ωn, ω̄1, · · · , ω̄n〉 with
∂̄ω1 = iAω1 ∧ ω̄1 + iBωn ∧ ω̄n + Cω1 ∧ ω̄n − C̄ωn ∧ ω̄1

∂̄ωk = 0 ∀k > 1

∂̄ω̄k = 0 ∀k ≥ 1

where A = λϕ2n,1, B = −λϕ1,2n, C = −λ(1 + iϕ1,1).

A generator of
∧p,q gC∗ is of kind α = ωi1 ∧ · · · ∧ ωip ∧ ω̄j1 ∧ · · · ∧ ω̄jq , then we

have to consider 9 different cases:

• if ∀ 1 ≤ r ≤ p ir 6= 1, then ∂̄α1 = 0.
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• if i1 = 1, but ∀ 2 ≤ r ≤ p, 1 ≤ a, b ≤ q ir 6= n, ja 6= 1, jb 6= n, then

α2 = ω1 ∧ ωi2 ∧ · · · ∧ ωip ∧ ω̄j1 ∧ · · · ∧ ω̄jq and

∂̄α2 = iAω1 ∧ ω̄1 ∧ ωi2 ∧ · · · ∧ ωip ∧ ω̄j1 ∧ · · · ∧ ω̄jq+
+iBωn ∧ ω̄n ∧ ωi2 ∧ · · · ∧ ωip ∧ ω̄j1 ∧ · · · ∧ ω̄jq+
+Cω1 ∧ ω̄n ∧ ωi2 ∧ · · · ∧ ωip ∧ ω̄j1 ∧ · · · ∧ ω̄jq+
−C̄ωn ∧ ω̄1 ∧ ωi2 ∧ · · · ∧ ωip ∧ ω̄j1 ∧ · · · ∧ ω̄jq 6= 0

• if i1 = 1, ip = n, but ∀ 1 ≤ a, b ≤ q ja 6= 1, jb 6= n, then α3 =

ω1 ∧ ωi2 ∧ · · · ∧ ωip−1 ∧ ωn ∧ ω̄j1 ∧ · · · ∧ ω̄jq and

∂̄α3 = iAω1 ∧ ω̄1 ∧ ωi2 ∧ · · · ∧ ωip−1 ∧ ωn ∧ ω̄j1 ∧ · · · ∧ ω̄jq+
+Cω1 ∧ ω̄n ∧ ωi2 ∧ · · · ∧ ωip−1 ∧ ωn ∧ ω̄j1 ∧ · · · ∧ ω̄jq 6= 0

• if i1 = 1, j1 = 1, but ∀ 2 ≤ r ≤ p ir 6= n and ∀ 2 ≤ a ≤ q
ja 6= n, then α4 = ω1 ∧ ωi2 ∧ · · · ∧ ωip ∧ ω̄1 ∧ ω̄j2 ∧ · · · ∧ ω̄jq and

∂̄α4 = iBωn ∧ ω̄n ∧ ωi2 ∧ · · · ∧ ωip ∧ ω̄1 ∧ ω̄j2 ∧ · · · ∧ ω̄jq+
+Cω1 ∧ ω̄n ∧ ωi2 ∧ · · · ∧ ωip ∧ ω̄1 ∧ ω̄j2 ∧ · · · ∧ ω̄jq 6= 0

• if i1 = 1, j1 = n, but ∀ 2 ≤ r ≤ p ir 6= n and ∀ 2 ≤ a ≤ q
ja 6= 1, then α5 = ω1 ∧ ωi2 ∧ · · · ∧ ωip ∧ ω̄n ∧ ω̄j2 ∧ · · · ∧ ω̄jq and

∂̄α5 = iAω1 ∧ ω̄1 ∧ ωi2 ∧ · · · ∧ ωip ∧ ω̄n ∧ ω̄j2 ∧ · · · ∧ ω̄jq+
−C̄ωn ∧ ω̄1 ∧ ωi2 ∧ · · · ∧ ωip ∧ ω̄n ∧ ω̄j2 ∧ · · · ∧ ω̄jq 6= 0

• if i1 = 1, ip = n, j1 = 1, but ∀ 2 ≤ a ≤ q ja 6= n, then α6 = ω1 ∧ ωi2 ∧
· · · ∧ ωip−1 ∧ ωn ∧ ω̄1 ∧ ω̄j2 ∧ · · · ∧ ω̄jq and

∂̄α6 = Cω1 ∧ ω̄n ∧ ωi2 ∧ · · · ∧ ωip−1 ∧ ωn ∧ ω̄1 ∧ ω̄j2 ∧ · · · ∧ ω̄jq

• if i1 = 1, ip = n, j1 = n, but ∀ 2 ≤ a ≤ q ja 6= 1, then α7 = ω1 ∧ ωi2 ∧
· · · ∧ ωip−1 ∧ ωn ∧ ω̄n ∧ ω̄j2 ∧ · · · ∧ ω̄jq and

∂̄α7 = iAω1 ∧ ω̄1 ∧ ωi2 ∧ · · · ∧ ωip−1 ∧ ωn ∧ ω̄n ∧ ω̄j2 ∧ · · · ∧ ω̄jq

• if i1 = 1, j1 = 1, jq = n, but ∀ 2 ≤ r ≤ p ir 6= n, then α8 = ω1 ∧ ωi2 ∧
· · · ∧ ωip ∧ ω̄1 ∧ ω̄j2 ∧ · · · ∧ ω̄jq−1 ∧ ω̄n and ∂̄α8 = 0
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• if i1 = 1, ip = n, j1 = 1, jq = n, then

α9 = ω1 ∧ ωi2 ∧ · · · ∧ ωip−1 ∧ ωn ∧ ω̄1 ∧ ω̄j2 ∧ · · · ∧ ω̄jq−1 ∧ ω̄n and ∂̄α9 = 0

Then the space of closed (p, q)-forms is generated by elements of kind α1, iAα4+

Cα5, iAα6 + Cα7, α8, α9. But

• iAα4 + Cα5 = ∂̄α2 − iBα1 + C̄α′1,

• iAα6 + Cα7 = ∂̄α3,

• α8 = 1
C (∂̄α4 − iBα1),

• α9 = 1
C ∂̄α6,

then again the cohomology is given only by elements of kind 1, i.e.

Hp,q(g) = 〈ωi1 ∧ · · · ∧ ωip ∧ ω̄j1 ∧ · · · ∧ ω̄jq〉 with ir 6= 1 ∀ 1 ≤ r ≤ p.

5.2 g = R2 nad R2n

In order to study complex structures, it seems more natural consider Lie algebras of

kind g = R2 nad R2n.

Because of the isomorphism C ∼= R2 we will call these Lie algebras complex almost

abelian Lie algebras, i.e. g = Cnad Cn.

We will restrict to complex almost abelian Lie algebra g such that

dimR Im ad = 1. In particular this means that for every real basis {Y1, Y2} of R2

there exists k ∈ R such that adY1 = k adY2 . By a simple basis change in R2 we can

suppose that there exists a real basis {X1, · · · , X2n} of R2n such that

∀ i = 1, · · · , 2n [Xi, Y1] = [Xi, Y2].

We want to study a particular type of complex structures J on g: J = J1 ⊕ J2

with J1 and J2 complex structures defined in terms of the basis 〈Y1, Y2, X1, · · · , X2n〉
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by

J1 : C → C
Y1 7→ χ1Y1 + χ2Y2

Y2 7→ −1+χ2
1

χ2
Y1 − χ1Y2

J2 : Cn → Cn

Xi 7→
∑

k≤2n ϕk,iXk

(5.38)

The main result is the following theorem. As in the real case it is direct conse-

quence of the properties and lemmas below.

Theorem 5.6. Let g = Cnad Cn be a complex almost abelian Lie algebra such that

dimR Im ad = 1. If g is endowed with a complex structure J of type (5.38) then in

Jordan form with respect to the basis 〈Y1, Y2, X1, · · · , X2n〉 we have

adY1 = adY2 =



a1 1

. . .
. . .

. . . 1

a1

. . .

at 1

. . .
. . .

. . . 1

at

b1 c1

−c1 b1
. . .

bq cq

−cq bq


with not necessarily aj 6= ak or bj + icj 6= bk + ick for j 6= k.

Proposition 5.5. Let g = C nad Cn be a complex almost abelian Lie algebra such

that dimR Im ad = 1. An almost complex structure J on g of type defined by (5.38)

is integrable if and only if

J [Xi, Y1]− [JXi, Y1] = 0 ∀ i ≤ 2n. (5.39)
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Proof. By definition of g, for every almost complex structure of type (5.38) we have

N(Y1, Y2) = N(Xi, Xj) = 0 ∀ i, j, then we have to prove the proposition only

considering N(Xi, Yj) ∀ i, j.

⇒: J is integrable, then by equation (1.2) and [Xi, Y1] = [Xi, Y2], ∀ i ≤ 2n



N(Xi, Y1) = [Xi, Y1] + J [JXi, Y1]+

+(χ1 + χ2)(J [Xi, Y1]− [JXi, Y1]) = 0

N(Xi, Y2) = [Xi, Y1] + J [JXi, Y1]+

+(
1+χ2

1+χ1χ2

χ2
)(J [Xi, Y1]− [JXi, Y1]) = 0

Then

N(Xi, Y1)−N(Xi, Y2) =

(
1 + (χ1 + χ2)2

χ2

)
(J [Xi, Y1]− [JXi, Y1]) = 0

that implies J [Xi, Y1]− [JXi, Y1] = 0.

⇐: Suppose that equation (5.39) holds. Since J2 = −Id, it is equivalent to

[Xi, Y1] + J [JXi, Y1] = 0 ∀ i ≤ 2n, then



N(Xi, Y1) = [Xi, Y1] + J [JXi, Y1]+

+(χ1 + χ2)(J [Xi, Y1]− [JXi, Y1]) =

= 0 + (χ1 + χ2)(0) = 0

N(Xi, Y2) = [Xi, Y1] + J [JXi, Y1]+

+(
1+χ2

1+χ1χ2

χ2
)(J [Xi, Y1]− [JXi, Y1]) =

0 + (
1+χ2

1+χ1χ2

χ2
)(0) = 0

that is that J is integrable.

Suppose that ad is given in Jordan form, i.e.

g = 〈X1
1 , · · · , X1

m1
, · · · , Xp

1 , · · · , X
p
mp , Z

1
1 , · · · , Z1

2n1
, · · · , Zq1 , · · · , Z

q
2nq
, Y1, Y2〉
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with [
Xt

1, Y1

]
=
[
Xt

1, Y2

]
= atX

t
1 ∀ t = 1, · · · , p[

Xt
i , Y1

]
=
[
Xt
i , Y2

]
= Xt

i−1 + atX
t
i ∀ i = 2, · · · ,mt[

Zs1 , Y1

]
=
[
Zs1 , Y2

]
= bsZ

s
1 − csZs2 ∀ s = 1, · · · , q[

Zs2 , Y1

]
=
[
Zs2 , Y2

]
= csZ

s
1 + bsZ

s
2[

Zs2j−1, Y1

]
=
[
Zs2j−1, Y2

]
= Z2j−3 + bsZ

s
2j−1 − csZs2j ∀ j = 2, · · · , ns[

Zs2j , Y1

]
=
[
Zs2j , Y2

]
= Z2j−2 + csZ

s
2j−1 + bsZ

s
2j

Consider J2 give by

JXt
i =

∑
u=1,··· ,p
v=1,··· ,mu

ϕu,tv,iX
u
v +

∑
u=1,··· ,q
v=1,··· ,nu

ψu,tv,iZ
u
v

JZsj =
∑

u=1,··· ,p
v=1,··· ,mu

αu,sv,jX
u
v +

∑
u=1,··· ,q
v=1,··· ,nu

βu,sv,jZ
u
v

We do not give the proofs of the following lemmas and propositions because they

are similar to those we proved in the real case.

Lemma 5.6. ∀ t, i we have

JXt
i =

∑
au=at
v≤i

mu−v≥mt−i

ϕu,t1,i−v+1X
u
v . (5.40)

Proposition 5.6. Let g = C nad Cn be a complex almost abelian Lie algebra such

that dimR Im ad = 1,

1. if ad has a real eigenvalues at such that at 6= au for every real eigenvalue au,

then g does not admit a complex structure of type (5.38).

2. if ad has a real eigenvalues at of multiplicity mt > mu for every real eigenvalue

au such that au = at, then g does not admit a complex structure of type (5.38).

3. if ad has a real eigenvalue with odd algebraic multiplicity, then g does not admit

a complex structure of type (5.38).
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Lemma 5.7. ∀ s = 1, · · · , q ∀ j = 1, · · · , 2ns

JZsj =
∑
bu=bs
cu=cs

(βu,s1,jZ
u
1 + βu,s2,j Z

u
2 ).

Proposition 5.7. Let g = C nad Cn be a complex almost abelian Lie algebra such

that dimR Im ad = 1, if ad has complex Jordan blocks of dimension greater then 1,

then g does not admit a complex structure of type (5.38).

We summarize all the results in the following theorem.

Theorem 5.7. Let g = Cnad Cn be a complex almost abelian Lie algebra such that

dimR Im ad = 1. Suppose that g is endowed with an almost complex structure J of

type (5.38).

J is integrable if and only if the hypothesis of Propositions 5.6 and 5.7 does not hold

and if given g = 〈X1
1 , · · · , X1

m1
, · · · , Xp

1 , · · · , X
p
mp , Z1, · · · , Z2q, Y1, Y2〉 with

[
Xt

1, Y1

]
=
[
Xt

1, Y2

]
= atX

t
1 ∀ t = 1, · · · , p[

Xt
i , Y1

]
=
[
Xt
i , Y2

]
= Xt

i−1 + atX
t
i ∀ i = 2, · · · ,mt[

Z2j−1, Y1

]
=
[
Z2j−1, Y2

]
= bjZ2j−1 − cjZ2j ∀ j = 1, · · · , q[

Z2j , Y1

]
=
[
Z2j , Y2

]
= cjZ2j−1 + bjZ2j

we have

JXt
i =

∑
au=at
v≤i

mu−v≥mt−i

ϕu,t1,i−v+1X
u
v ∀ t ≤ p, ∀ i ≤ mt

JZ2j−1 =
∑
bk=bj
ck=cj

(βk,jZ2k−1 + γk,jZ2k) ∀ j ≤ q

JZ2j =
∑
bk=bj
ck=cj

(−γk,jZ2k−1 + βk,jZ2k) ∀ j ≤ q.
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Now we want to describe the complex of Dolbeault forms on the dual of the

complexification of g. Suppose that g1,0 is generated by

{Z1 := X1 − iJX1, · · · , Z2n := X2n − iJX2n, A1 := Y1 − iJY1, A2 := Y2 − iJY2}

and g0,1 by their complex conjugate elements.

Proposition 5.5 implies that structure constants of g and gC are basically the

same:

Lemma 5.8. If [Xi, Y1] = [Xi, Y2] =
∑

k ci,kXk, then

[Zi, A1] =
∑
k

εci,kZk, [Zi, A2] =
∑
k

σci,kZk,

[Zi, Ā1] =
∑
k

ε̄ci,kZk, [Zi, Ā2] =
∑
k

σ̄ci,kZk

[Z̄i, A1] =
∑
k

εci,kZ̄k, [Z̄i, A2] =
∑
k

σci,kZ̄k,

[Z̄i, Ā1] =
∑
k

ε̄ci,kZ̄k, [Z̄i, Ā2] =
∑
k

σ̄ci,kZ̄k

where ε := 1− i(χ1 + χ2) and σ := 1 + i
(

1+χ2
1

χ2
+ χ1

)
Proof. By Proposition 5.5 we have that [Zi, Y1] =

∑
k ci,kZk and [Z̄i, Y1] =

∑
k ci,kZ̄k

and because of [Xi, Y1] = [Xi, Y2] we have the thesis.

This Lemma implies that the study of the ∂∂̄-lemma for these algebras is very

simple. We observe that we can not describe in general a basis extracted among the

generators {Zi, Z̄i, } of gC without knowing a particular description of the complex

structure J , but we are able to study this lemma all the same.

Suppose that B is a basis of g1,0 r 〈A1, A2〉, then B ⊕ 〈A1〉 is a basis of g1,0,

because by definition of J, 〈A1, A2〉 is generated by A1.

A basis of gC∗ is

〈ωi, ω̄i, η, η̄〉i=1,··· ,n

where ωi = Z∗i , η = A∗1 and Zi ∈ B.
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By Lemma 5.8 we have the following description of the complexes (
∧∗,∗ gC∗, ∂)

and (
∧∗,∗ gC∗, ∂̄):

∂ωi =
∑

k Ci,kεω
k ∧ η

∂ω̄i =
∑

k C̄i,kεω̄
k ∧ η

∂η = ∂η̄ = 0

∂̄ωi =
∑

k Ci,kε̄ω
k ∧ η̄

∂̄ω̄i =
∑

k C̄i,kε̄ω̄
k ∧ η̄

∂̄η = ∂̄η̄ = 0.

(5.41)

where constants Ci,k depends on ci,k, J and the choice of the basis B.

Theorem 5.8. Let g = Cnad Cn be a complex almost abelian Lie algebra such that

dimR Im ad = 1. Suppose that g is endowed with a complex structure J of type (5.38),

then for
∧∗,∗ gC∗ the ∂∂̄-Lemma does not hold.

Proof. By equations (5.41) we have that ∀α ∈
∧∗,∗ gC∗

∂α = εα̃ ∧ η ∂̄α = ε̄α̃ ∧ η̄

for some α̃ ∈
∧∗,∗ gC∗, eventually α̃ = 0.

Let α = εα1 ∧ η ∧ η̄ with α1 ∈
∧∗,∗ gC∗ r 〈η, η̄〉 such that there exists β ∈∧∗,∗ gC∗ r 〈η, η̄〉 with ∂β = εα1 ∧ η (if g is not abelian there exists always such β).

Then ∂(β ∧ η̄) = ∂β ∧ η̄ = εα1 ∧ η ∧ η̄ = α and ∂α = ∂̄α = 0 and we have the

hypothesis of the lemma satisfied.

If β ∧ η̄ 6= ∂̄γ ∀ γ ∈
∧∗,∗ gC∗, then the lemma does not hold.

If there exists γ ∈
∧∗,∗ gC∗ such that β ∧ η̄ = ∂̄γ, then let consider

∀β′ ∈
∧∗,∗ gC∗ r 〈η, η̄〉 β̃ := β ∧ η̄ + β′ ∧ η, then ∂β̃ = ∂(β ∧ η̄) + 0 = α, but

∀ γ ∂̄γ = ε̄γ̃ ∧ η̄, then ∂̄γ 6= β̃ and the lemma does not hold.





Chapter 6

Minimal models and formality

In this chapter we want to study minimal models and formality of nilmanifolds and

solvmanifolds.

De Rham models of nilmanifolds were completely described by Hasegawa in [20]

and we will only state its result. About solvmanifolds we will use a result of Oprea

and Tralle [36] to compute the minimal models of the almost abelian solvmanifolds

studied in Chapter 4 and to study formality and symplectic structures in the almost

abelian case [26]. In particular we will find a necessary condition to formality and a

method to define symplectic forms.

In the last part we will define Dolbeault minimal models and we will generalize

results of Cordero, Fernández and Ugarte about the Dolbeault model of a nilpotent

Lie algebra [10]. In particular we will prove that the Dolbeault complex of a nilpotent

Lie algebra endowed with a complex structure is always minimal.

6.1 de Rham models of nilmanifolds

Let N = G/Γ be a nilmanifold. Nomizu theorem implies that the de Rham minimal

model of N is the model of the nilpotent Lie algebra g associated to G.

In
∧0 g we have only constant functions, then H1(g) is generated by 1-forms

α such that d(α) = 0, that is d(α)(X,Y ) := −α([X,Y ]) = 0 ∀X,Y ∈ g, then by

111
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1-forms that are null on g1 = [g, g].

In particular these 1-forms are well defined on the quotient g/g1 and we can

consider

k = b1(g) = dimH1(g) = dim(g/g1).

g ∼= g1⊕g/g1, then we can choose a basis {X1, · · · , Xk, · · · , Xm} of g, m ≥ k ≥ 2

such that

g1 = 〈Xk+1, . . . , Xm〉.

Lemma 6.1. [Xi, Xj ] =
∑

i<j<p a
p
ijXp, apij ∈ Q.

Proof. We consider the descending series

{0} ⊂ · · · ⊂ gk ⊂ gk−1 ⊂ g1 ⊂ g :

g2 = [g, g1] ⊂ g1, then we can choose a basis of g1 such that

Xk+1, ..., Xh︸ ︷︷ ︸
∈g1\g2

, Xh+1, ..., Xm︸ ︷︷ ︸
∈g2

.

If k + 1 ≤ i, j ≤ h, Xi, Xj ∈ g1 \ g2, then [Xi, Xj ] ∈ g2 and it is linear

combination of Xh+1, ..., Xm, then i < j < p.

Otherwise if one of the index, name j, is between k+ 1 and h, i.e. Xj ∈ g2, then

[Xi, Xj ] ∈ g3 = [g, g2], and we can choose a basis of g2 such that

Xh+1, ..., Xt︸ ︷︷ ︸
∈g2\g3

, Xt+1, ..., Xm︸ ︷︷ ︸
∈g3

.

We repeat this computation for every terms if the series and we always have

i < j < p.

If {ω1, · · · , ωm} is the dual basis of {X1, · · · , Xm} we have

dωp =
∑
i<j<p

apijωi ∧ ωj (6.1)

where dωp = 0 for p ≤ k and dωp 6= 0 for p > k.

Equation 6.1 and Theorem 1.7 imply directly the following property.
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Proposition 6.1. If N = G/Γ is nilmanifold with Lie algebra g, then the minimal

model (M, d) of N is isomorphic to (
∧∗ g∗, d).

Also about formality in the case of nilmanifold we have a complete theory [20].

Lemma 6.2. dMm−1 = 0

Proof. {x1 · x2 · · · x̂q · · ·xm} ∀ q = 1, ...,m is a basis of Mm−1, then we have to

prove that d(x1x2 · · · x̂q · · ·xm) = 0. But this is consequence of equation (6.1).

Remark 6.1. This Lemma implies that Mn = 〈x1 · · ·xm〉 and then bm(M) = 1.

Theorem 6.1. (Hasegawa) [20] Let N be a nilmanifold with minimal model M,

then M is formal if and only if N is a torus.

Proof. N is a torus if and only if its Lie algebra g is abelian, i.e. g1 = 0.

Then dim(g/g1) = dim(g) and k = m with k = dimH1(g) = dimH1(M). This

implies that we have to prove that M is formal if and only if m = k.

Let suppose by contradiction that M is formal for k < m, then there exists

ψ :M→ H∗(M) that induces the identity in cohomology. We consider the restric-

tion ψ1 of ψ to M1. ψ sends every closed form of M in its cohomology class, then

ψ1(xq) = [xq] ∈ H1(M) ∀q = 1, .., k.

{[xq]}q=1,··· ,k is a basis of H1(M) then, to have the identity in cohomology,M1 must

be generated by x1, · · · , xk together with a basis {yk+1, ..., ym} of kerψ1.

But then in dimension m, where there is only one generator, we have x1x2 · · ·xm =

ax1 · · ·xkyk+1 · · · ym with a 6= 0.

yi ∈ kerψ1 then ψ(x1x2 · · ·xm) = aψ(x1 · · ·xkyk+1 · · · ym) = 0, but x1x2 · · ·xm is

a closed element, then ψ(x1x2 · · ·xm) = [x1x2 · · ·xm] and then [x1x2 · · ·xm] = 0 that

by Remark 6.1 is not possible.
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6.2 de Rham models of almost abelian solvmanifolds

Proposition 6.1 states that the Chevalley-Eilenberg complex associated to a nilpotent

Lie algebra is a minimal cdga. This property does not generalize to solvmanifolds,

then can be interesting to compute their minimal model.

In particular we will use a method developed by Oprea and Tralle, that consists

in applying a generalization of Theorem 1.14 due to Felix and Thomas to the Mostow

fibration [36].

Definition 6.1. A cdga A is of finite type if it is a finite dimensional vector space.

Theorem 6.2. [36], [37, Theorem 4.6] Let F → E → B be a fibration and let U be

the largest π1(B)-submodule of H∗(F,Q) on which π1(B) acts nilpotently. Suppose

that H∗(F,Q) is a vector space of finite type and that B is a nilpotent space, then in

the Sullivan model of the fibration

APL(B) // APL(E) // APL(F )

(
∧
X, dX)

i //

σ

OO

(
∧

(X ⊕ Y ), D)

τ

OO

q // (
∧
Y, dY )

ρ

OO

the cdga homomorphism ρ : (
∧
Y, dY )→ APL(F ) induces an isomorphism

ρ∗ : H∗(
∧
Y, dY )→ U.

We recall that by definition of Sullivan model of a fibration (Definition 1.26), we

have that in the commutative diagram of Theorem 6.2

• (
∧
X, dX) and (

∧
Y, dY ) are minimal cdga,

• σ and τ are quasi isomorphisms,

• i is the inclusion and q is the projection,

• ∀x ∈ X Dx = dXx and ∀y ∈ Y Dy = dY y + cx∧ y′ with c ∈ Q, x ∈
∧
X+ and

y′ ∈
∧
Y <y, where with

∧
X+ we mean all the elements in

∧
X with degree

greater than 0 and with
∧
Y <y the subalgebra of

∧
Y generated by all the

generators prior to y with respect to an order among the basis of Y .
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If we apply this theorem to the Mostow fibration (1.1), we can construct the

minimal model (
∧

(X ⊕ Y ), D) of the solvmanifold using the models of the base Tk

and of the fibre N/ΓN (actually of its submodule U).

In general, finding U is very difficult, because the action named in Theorem 6.2

is not easily described. But when the solvmanifold S = RnϕRn/Znϕ|Z Z
n is almost

abelian Oprea and Tralle found an easy computation of this action (see [36]). In this

case the Sullivan model of the Mostow fibration is

∧∗(R/Z) //
∧∗(S) //

∧∗(Rn/Zn)

(
∧

(A), 0)
i //

σ

OO

(
∧

(X ⊕ Y ), D)

τ

OO

q // (
∧
Y, dY )

ρ

OO

with |A| = 1. Moreover for degree reason also (
∧

(X ⊕Y ), D) is minimal and the

following proposition holds.

Proposition 6.2. [37, Theorem 3.8] For an almost abelian solvmanifold

S = Rnϕ Rn/Z n Zn the action of π1(R/Z) = Z on H∗(Rn/Zn) is given by:

• restricting ϕ : R→ Aut(Rn) to ϕ : Z→ Aut(Rn),

• taking the dual automorphism ϕt : Z→ Aut(Rn),

• extending to the exterior algebra
∧
ϕt : Z→ Aut(

∧
Rn) as cdga map,

• taking the induced automorphism on cohomology (
∧
ϕt)∗ : Z→ Aut(H∗(

∧
Rn)).

To simplify the notation we denote the action (
∧
ϕt)∗ with ϕ.

By definition of nilpotent action we have that a form α is in U if and only if there

exists a constant k ∈ N+ such that (ϕ − Id)k(α) = 0, where Id is the identity

map. Even with Proposition 6.2 to compute U could be quite tough, fortunately the

following properties simplify the computation.

Proposition 6.3. α ∈ U if and only if ϕs(α) = α, where ϕs is the semisimple part

of ϕ.

Proof. We give the proof in 4 steps:
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1. we can prove the proposition on the complexification:

let V a generic real vector space generated by {v1, · · · , vn}, then its complexi-

fication V C is generated by elements wjk := vj + ivk. Given an endomorphism

ϕ of V , we can extend it to the complexification, ϕC, and we can define the

unipotent spaces:

U := {v ∈ V/ ∃p, (ϕ− Id)p(v) = 0}

UC := {w ∈ V C/∃p, (ϕC − Id)p(w) = 0}

wjk ∈ UC ⇔ (ϕC − Id)p(wjk) = 0⇔ (ϕ− Id)p(vj) + i(ϕ− Id)p(vk) = 0

⇔

{
(ϕ− Id)p(vj) = 0

(ϕ− Id)p(vk) = 0.
⇔

{
vj ∈ U
vk ∈ U

ϕC
s (wjk) = wjk ⇔ ϕs(vj) + iϕs(vk) = vj + ivk ⇔

{
ϕs(vj) = vj

ϕs(vk) = vk

Then w ∈ UC ⇔ ϕC
s (w) = w implies v ∈ U ⇔ ϕs(v) = v.

2. ϕC has a canonic form:

let adXn+1 be in Jordan form. Then we can consider ϕC on
∧k Cn for every k

to be associated to a matrix made of blocks
eλt ∗

. . .

0 eλt


Let α be a generator of

∧k Cn such that the coefficients of ϕC(α) belong to this

block, then ϕC(α) = eλtα + β, where β is combination of elements belonging

to this same block, (the * part).

Now we decompose ϕC in the unipotent and semisimple part:

ϕC = ϕC
u · ϕC

s where ϕC
u is made of blocks


1 ?

. . .

0 1

 and the semisimple

part ϕC
s consists of diagonal blocks of the form eλtId.
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This means that ϕC
u (α) = α+β′, where β′ is combination of elements belonging

to this same block, (the ? part), ϕC
s (α) = eλtα and β = eλtβ′.

Then ϕC(α) = eλtϕC
u (α) and in general ϕC = eλtϕC

u for some λ.

3. ∀p (ϕC)p(α) = epλt(ϕC
u )p(α) :

we use induction: for p = 2 we have

(ϕC)2(α) = ϕC(eλtϕC
u (α)) = eλtϕC(ϕC

u (α)),

but β′ is combination of elements belonging to the same block, then

= eλt(eλtϕC
u (ϕC

u (α))) = e2λt(ϕC
u )2(α).

If now suppose that the property holds for p − 1 we can prove it for p in a

similar way.

4. (ϕC − Id)k(α) = 0 ⇔ ϕC
s (α) = α :

let j be the dimension of the block to which α belong, then

(ϕC
u − Id)j(α) = 0.

“⇒”: Let h ≥ max{j, k}, then

0 = (ϕC − Id)h(α) = (eλtϕC
u − Id)h(α) =

= [eλt(ϕC
u − Id) + (eλt − Id)]h(α) =

=
h∑
p=0

(
h

p

)
(eλt − Id)h−p(α) · epλt(ϕC

u − Id)p(α) =

=
h−1∑
p=0

(
h

p

)
(eλt − Id)h−p(α) · epλt(ϕC

u − Id)p(α) + ehλt(ϕC
u − Id)h(α)

but h ≥ j, then the last summand is 0 and

= (eλt − Id)(α)

h−1∑
p=0

(
h

p

)
(eλt − Id)h−p−1(α) · epλt(ϕC

u − Id)p(α)


then (eλt − Id)(α) = 0, i.e. ϕC

s (α) = eλtα = α.
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“⇐”: ϕC
s (α) = α ⇔ eλt = 1 ⇔ ϕC(α) = ϕC

u (α), then

(ϕC − Id)j(α) = (ϕC
u − Id)j(α) = 0.

This proposition gives also a geometrical meaning to the complexification of U ,

UC: let Vλ be the subspace of Cn generated by the generators α of Cn such that the

coefficients of ϕC(α) belong a block of eigenvalue λ,

i.e. ϕC(α) = eλtϕC
u (α), then

UC =
⊕

{i1,··· ,ik}⊆{1,··· ,n},
∑
p λip t=0

Vλi1

∧
· · ·
∧
Vλik

Now we prove a property of U that we will use after to study formality of S.

Proposition 6.4. Let α, β ∈ H∗(Rn), where Rn is the n-dimensional abelian Lie

algebra, and suppose that α ∈ U , then β ∈ U if and only if α ∧ β ∈ U .

Proof. Due to Proposition 6.3 this proof is very simple.

⇒: α and β ∈ U is equivalent to ϕs(α) = α and ϕs(β) = β, then

ϕs(α ∧ β) = ϕs(α) ∧ ϕs(β) = α ∧ β.

⇐: α and α ∧ β ∈ U is equivalent to ϕs(α) = α and ϕs(α ∧ β) = α ∧ β, then

α ∧ β = ϕs(α ∧ β) = ϕs(α) ∧ ϕs(β) = α ∧ ϕs(β),

then ϕs(β) = β + γ for some γ ∈ H∗(Rn) such that α ∧ γ = 0, but this is true

for every α, then γ ≡ 0 and ϕs(β) = β that is equivalent to β ∈ U .

Remark 6.2. U is a submodule of H∗(Rn), then also in U the zero class is repre-

sented only by the zero form in
∧∗(Rn).
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We now compute the minimal model of the solvmanifolds we found in Chapter 4.3

using this method and then we study its formality. Unfortunately, with this method,

in some of our examples we cannot find the model uniquely, because we can have

different choices for the construction of (
∧

(X ⊕ Y ), D). However, we can identify

the right one, knowing the cohomology groups from the previous computations.

In all the following computation we denote the degree of an element by its sub-

script and by (MU , d) the minimal cdga (
∧
Y, dY ) and by (M, D) the minimal model

(
∧

(X ⊕ Y ), D) of S.

Gp=0
6.8 /Γ2π:

U =



〈α4, α5〉 ⊂ H1(n)

〈α45〉 ⊂ H2(n)

〈α123〉 ⊂ H3(n)

〈α1234, α1235〉 ⊂ H4(n)

〈α12345〉 = H5(n)

,

and a minimal model for U is MU = (
∧

(x1, y1, z3), 0).

The minimal model of the base R/Z is (
∧

(A), 0). So the minimal model of the

solvmanifold is M = (
∧

(A, x1, y1, z3), D) with 2 possible choices for the differential:

D ≡ 0 or DA = Dx = Dz = 0, Dy = Ax.

Since we do not know the cohomology groups of this solvmanifold, we are not

able in this case to identify the right model.

Gp=0
6.8 /Γπ,π

2
,π
3
:

U =


〈α45〉 ⊂ H2(n)

〈α123〉 ⊂ H3(n)

〈α12345〉 = H5(n)

So MU = (
∧

(x2, β3, y3), d), dx = dy = 0, dβ = x2 and the minimal model of the

solvmanifold is

M = (
∧

(A, x2, β3, y3), D), DA = Dx = Dy = 0, Dβ = x2 .

To study formality we consider the cdga map
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ψ :M → H∗(M)

A 7→ [A]

x 7→ [x]

y 7→ [y]

β 7→ 0

that gives the identity in cohomology, then M is formal.

Ga=0
6.10/Γ2π:

U = H∗(n) ⇒ MU = (
∧

(x1, y1, z1, p1, q1), 0)

The minimal model of the solvmanifold is M = (
∧

(A, x1, y1, z1, p1, q1), D), but we

have 7 different choices for D:

1. D ≡ 0

2. DA = Dx = Dy = Dz = Dp = 0, Dq = Ax

3. DA = Dx = Dy = Dz = 0 Dp = Ax, Dq = Ay

4. DA = Dx = Dy = Dz = 0 Dp = Ax, Dq = Ap

5. DA = Dx = Dy = 0 Dz = Ax Dp = Ay, Dq = Az

6. DA = Dx = Dy = 0 Dz = Ax Dp = Az, Dq = Ap

7. DA = Dx = 0 Dy = Ax Dz = Ay Dp = Az, Dq = Ap

Again we do not know the cohomology groups of this solvmanifold and then we are

not able to identify the right model.

Ga=0
6.10/Γπ,π

2
,π
3
:

U =



〈α1, α2, α3〉 ⊂ H1(n)

〈α12, α13, α23, α45〉 ⊂ H2(n)

〈α123, α145, α245, α345〉 ⊂ H3(n) ⇒ MU = (
∧

(x1, y1, z1, t2, β3), d),

〈α1245, α1345, α2345〉 ⊂ H4(n) dx = dy = dz = dt = 0, dβ = t2

〈α12345〉 = H5(n)
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The minimal model of the solvmanifold is M = (
∧

(A, x1, y1, z1, t2, β3), D), but we

have 13 different choices for D. Fortunately, only the following are not isomorphic

with each other:

1. DA = Dx = Dy = Dz = Dt = 0, Dβ = t2

2. DA = Dx = Dy = 0, Dz = Ay Dt = 0, Dβ = t2

3. DA = Dx = 0, Dy = Ax, Dz = Ay Dt = 0, Dβ = t2

Computing the cohomology groups of these c.d.g.a. and comparing with those of

Ga=0
6.10/Γπ,π2 ,

π
3
, we find that (3) is the right one.

M is not formal, indeed if

ψ :M → H∗(M)

A 7→ [A]

x 7→ [x]

y 7→ 0

z 7→ 0

t 7→ [t]

β 7→ 0

we have that [Az] 6= 0, but ψ∗([Az]) = 0.

Gp=0
6.11/Γ2π:

U =



〈α2, α3〉 ⊂ H1(n)

〈α23〉 ⊂ H2(n)

〈α145〉 ⊂ H3(n) ⇒ MU = (
∧

(x1, y1, z3), 0),

〈α1245, α1345〉 ⊂ H4(n)

〈α12345〉 = H5(n)

The minimal model of the solvmanifold is M = (
∧

(A, x1, y1, z3), D), but we have 2

different choices for D:

1. D ≡ 0
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2. DA = Dx = 0, Dy = Ax, Dz = 0

Again we do not know the cohomology groups of this solvmanifold, so we can not

choose the right model.

Gp=0
6.11/Γπ,π

2
,π
3
:

U =


〈α23〉 ⊂ H2(n)

〈α145〉 ⊂ H3(n) ⇒ MU = (
∧

(x2, β3, y3), d),

〈α12345〉 = H5(n) dx = dy = 0, dβ = x2

The minimal model of the solvmanifold is

M = (
∧

(A, x2, β3, y3), D), DA = Dx = Dy = 0, Dβ = x2

and it is formal as in the case of Gp=0
6.8 /Γπ,π2 ,

π
3
.

G−1,0,r
5.13 × R/Γ 2π

r
:

U =


〈α3, α4〉 ⊂ H1(n)

〈α12, α34〉 ⊂ H2(n)

〈α123, α124〉 ⊂ H3(n)

〈α1234〉 = H4(n)

,

then MU = (
∧

(x1, y1, z2, β3), d) with dx = dy = dz = 0, dβ = z2 and the mini-

mal model of the solvmanifold is M = (
∧

(u1, A, x1, y1, z2, β3), D) with 4 different

choices:

1. Du = DA = Dx = Dy = Dz = 0, Dβ = z2

2. Du = DA = Dx = Dy = 0, Dz = Axy, Dβ = z2

3. Du = DA = Dx = 0, Dy = Ax, Dz = 0, Dβ = z2

4. Du = DA = Dx = 0, Dy = Ax, Dz = Axy, Dβ = z2

We are not able to know the right model.
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G−1,0,r
5.13 × R/Γ 2π

rk
:

U =

{
〈α12, α34〉 ⊂ H2(n)

〈α1234〉 = H4(n)
,

then MU = (
∧

(x2, y2, β3, γ3), d) with dx = dy = 0, dβ = x2, dγ = y2 and the

minimal model of the solvmanifold is M = (
∧

(u1, A, x2, y2, β3, γ3), D) with

Du = DA = Dx = Dy = 0, Dβ = x2, Dγ = y2.

This model is formal.

G0
5.14 × R/Γ2π:

U = H∗(n) then MU = (
∧

(x1, y1, z1, t1), 0) and the minimal model of the solv-

manifold is M = (
∧

(u1, A, x1, y1, z1, t1), D) with 4 different choices:

1. Du = DA = Dx = Dy = Dz = Dt = 0

2. Du = DA = Dx = Dy = Dz = 0, Dt = Ax

3. Du = DA = Dx = Dy = 0, Dz = Ax,Dt = Ay

4. Du = DA = Dx = 0, Dy = Ax,Dz = Ay,Dt = Az

Again we can not make a choice.

G0
5.14 × R/Γ 2π

k
:

U =


〈α1, α2〉 ⊂ H1(n)

〈α12, α34〉 ⊂ H2(n)

〈α134, α234〉 ⊂ H3(n)

〈α1234〉 = H4(n)

,

thenMU = (
∧

(x1, y1, z2, β3), d), dx = dy = dz = 0, dβ = z2 and the minimal model

of the solvmanifold is M = (
∧

(u1, A, x1, y1, z2, β3), D) with 4 different choices:

1. Du = DA = Dx = Dy = Dz = 0, Dβ = z2

2. Du = DA = Dx = Dy = 0, Dz = Axy,Dβ = z2
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3. Du = DA = Dx = Dz = 0, Dy = Ax,Dβ = z2

4. Du = DA = Dx = 0, Dy = Ax,Dz = Axy,Dβ = z2

Using the cohomology we know that the third is the right one, then because of [Ay],

M is not formal.

Gp,−p,r
5.17 × R/Γ2kpπr2 (r = r1

r2
∈ Q):

if p = 0 U = H∗(n) ⇒ MU = (
∧

(x1, y1, z1, t1), 0)

The minimal model of the solvmanifold is M = (
∧

(u1, A, x1, y1, z1, t1), D), with

different choices for D, but again we are not able to choose the right one.

if p 6= 0 U =

{
〈α13, α14, α23, α24〉 ⊂ H2(n)

〈α1234〉 = H4(n)
,

To list all the generators inMU is almost impossible in this case: to every degree

we need to add several generators to get the isomorphism in cohomology, but in this

way we improve the number of generators needed.

Let us denote with Mn the subalgebra of M generated by all generators of M
of degree n. Then M1

U = {0}, M2
U = (

∧
(x2, y2, z2, t2), 0) and for any n > 2 Mn

U

can be computed by induction (Theorem 1.12).

Then the minimal model of the solvmanifold is

M = (
∧

(u1, A,MU ), D),

but we can not describe D in this case.

Now we consider all the solvmanifolds of kind Gp,−p,r5.17 × R/Γ 2π
k

with r ∈ Z for

which we were able to compute the cohomology groups using Proposition 4.1.

Gp,−p,r
5.17 × R/Γπ with r even and p 6= 0:

U = 〈α1234〉 = H4(n) ⇒ MU = (
∧

(x4, β7), d), dx = 0, dβ = x2

then the minimal model of the solvmanifold is M = (
∧

(u1, A, x4, β7), D),

Du = DA = Dx = 0, Dβ = x2.
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It is formal as in the case of Gp=0
6.8 /Γπ,π2 ,

π
3
.

Gp,−p,r
5.17 × R/Γπ

2
with r ≡ 2 mod 4:

p = 0 and U =

{
〈α12, α34〉 ⊂ H2(n)

〈α1234〉 = H4(n)
then

MU = (
∧

(x2, y2, β3, γ3), d), dx = dy = 0, dβ = x2, dγ = y2 and using the cohomol-

ogy we find that the model of the solvmanifold is

M = (
∧

(u1, A, x2, y2β3, γ3), D), Du = DA = Dx = Dy = 0, Dβ = x2, Dγ = y2.

Again we have formality as in the case of Gp=0
6.8 /Γπ,π2 ,

π
3
.

Gp,−p,r
5.17 × R/Γπ

3
:

• r ≡ 2 mod 6:

if p 6= 0 U = 〈α1234〉 = H4(n) ⇒ MU = (
∧

(x4, β7), d), dx = 0, dβ = x2

then the minimal model of the solvmanifold is M = (
∧

(u1, A, x4, β7), D),

Du = DA = Dx = 0, Dβ = x2.

It is formal as in the case of Gp=0
6.8 /Γπ,π2 ,

π
3
.

if p = 0 U =

{
〈α12, α34〉 ⊂ H2(n)

〈α1234〉 = H4(n)
then

MU = (
∧

(x2, y2, β3, γ3), d), dx = dy = 0, dβ = x2, dγ = y2 and using the cohomol-

ogy we find that the model of the solvmanifold is

M = (
∧

(u1, A, x2, y2β3, γ3), D), Du = DA = Dx = Dy = 0, Dβ = x2, Dγ = y2.

Again we have formality as in the case of Gp=0
6.8 /Γπ,π2 ,

π
3
.

• r ≡ 3 mod 6: p = 0 and we have the same computation of the case t = π
2 with

r ≡ 2 mod 4.

• r ≡ 4 mod 6: we have the same computation of the case r ≡ 2 mod 6.

G0,0,r
5.17 × R/Γ 2π

k
with r = 1, k = 3 or r = 3, k = 8 or r = 5, k = 12:

if p 6= 0 U =

{
〈α13 + α24, α14 − α23〉 ⊂ H2(n)

〈α1234〉 = H4(n)
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if p = 0 U =

{
〈α12, α13 + α24, α14 − α23, α34〉 ⊂ H2(n)

〈α1234〉 = H4(n)
,

The computation of the minimal modelMU is complicated, in particular we have

no generators in degree 1 and

M2
U = (

∧
(x, y), 0) for p 6= 0,

M2
U = (

∧
(x, y, z, t), 0) for p = 0,

and for any n > 2 Mn
U can be computed by induction (Theorem 1.12).

In both cases we have M = (
∧

(u1, A,MU ), D), Du = DA = 0, D|MU
≡ d.

To study formality of this solvmanifold we use the following theorem.

Theorem 6.3. [15] Let M be a connected and orientable compact differentiable man-

ifold of dimension 2n, or 2n− 1. Then M is formal if and only if is (n− 1)-formal.

We can apply this theorem to the c.d.g.a. MU because the manifold M in the

hypothesis can be replaced by a real c.d.g.a. A with the following properties:

• H0(A) = R;

• for any i > dim(A) H i(A) = 0;

• Hdim(M)−i(A) ∼= H i(A) (Poincaré duality).

MU has dimension 4 and it has these three characteristics, so to prove that it

is formal we must only prove that it is 1-formal. In particular in this case MU is

simply connected because U1 = {0}, so it is 1-formal and then the theorem states

that it is always formal.

Now we use formality of (MU , d) to study formality of the model of the solvman-

ifold (M, D): since M has differential D such that D|MU
≡ d, then it is obviously

formal.

G0
5.18 × R/Γ2π:

U = H∗(n) then we have the same computation of G0
5.14 with t = 2π, and again

we can not make a choice.

G0
5.18 × R/Γπ

3
,π
2
, 2π

3
:
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U =

{
〈α12, α13 + α24, α14 − α23, α34〉 ⊂ H2(n)

〈α1234〉 = H4(n)
,

then U has the same model of the case last case of G5.17.

Again we have different choices for the model of the solvmanifold, but the right

one is

M = (
∧

(u1, A,MU ), D), Du = DA = Dx = Dy = 0, Dz = Ax, Dt = Ay,

D|Mn
U
≡ d ∀n > 2 .

Again it is not formal.

G0
3.5 × R3/Γ2π:

U = H∗(n), then MU = (
∧

(x1, y1), 0).

The minimal model of the solvmanifold is M = (
∧

(w1, v1, u1, A, x1, y1), D),

but we can not describe D.

G0
3.5 × R3/Γ 2π

k
:

U = 〈α12〉 = H2(n) ⇒ MU = (
∧

(x2, β3), d), dx = 0, dβ = x2

then the minimal model of the solvmanifold is M = (
∧

(w1, v1, u1, A, x2, β3), D),

Dw = Dv = Du = DA = Dx = 0, Dβ = x2 and it is formal.

6.2.1 Formality and symplectic structures on almost abelian solv-

manifolds

The previous computations shows that this method can be used to find the minimal

model of an almost abelian solvmanifold if we know its cohomology groups.

In [36] the aim of this method was to find the cohmology groups of an al-

most abelian solvmanifold by computing its minimal model and then its cohomology

groups that by Definition 1.19 are isomorphic to those of the solvmanifold.
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Because of the different possible choices that we usually have to compute the

model of the solvmanifold, we want to use this idea to find properties of the solv-

manifold related to formality and symplectic structures.

Proposition 6.5. (MU , d) is always formal.

Proof. We use the definition of formality given in Definition 1.21: MU =
∧
Y with

Y = C ⊕N , d(C) = 0 and d is injective on N .

We observe that Proposition 6.4 implies that if m ∈MU such that dm 6= 0, then

ρ(m) = 0 with ρ the cdga homomorphism that defines the minimal model. Indeed

we never need to kill a class that is sent by ρ∗ in a product in H∗(Rn) that is not

in U , we only have to consider products that are zero in H∗(Rn) and by Remark 6.2

that are zero in
∧∗(Rn).

In particular this means that for every generator y ∈ N we have ρ(y) = 0.

Suppose that there exists a closed element n in MU that lies in I =
∧
V · N , then

dn = 0 and n =
∑

i n
i
1 · ni2 with at least one of the two factors in N . If for example

ni2 ∈ N , then ρ(ni2) = 0 and so ρ(n) =
∑

i ρ(ni1) · ρ(ni2) = 0. This implies that

ρ∗([n]) = 0, then to keep the isomorphism in cohomology also [n] = 0, i.e. n is exact.

Then by Definition 1.21 (MU , d) is formal.

Remark 6.3. We observe that as in [44] Sullivan used that the product of harmonic

forms is harmonic to prove the formality of a Riemannian manifold [14, 24], we used

only Proposition 6.4 to prove that MU is formal.

Now consider the minimal model (M, D) of the solvmanifold S.

By definition DA = 0 and

∀x ∈ Y Dx = 〈
dx or

dx+ yA with y ∈ ΛY <x
. (6.2)

A generic element in (M, D) has form s = x + yA with x, y ∈ MU , then s is

closed if and only if Dx+Dy ·A = 0.
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Suppose Dx = dx+ x′A and Dy = dy + y′A (x′ and y′ can be also zero and we will

use this notation from now on), then

Ds = dx+ (x′ + dy)A = 0 if and only if

{
dx = 0

x′ + dy = 0.
(6.3)

If s is also exact, i.e. there exists r = p+ qA with p and q ∈MU such that Dr = s,

then

{
x = dp

y = p′ + dq

Definition 6.2. A cdga A is of k-finite type if ∀i ≤ k Ai is a finite dimensional

vector space.

Remark 6.4. Obviously M is of k-finite type if and only if MU is of k-finite type.

We can now prove results about the formality:

Theorem 6.4. If M is of k-finite type and S is k-formal then

kerDi|MU
= ker di ∀i ≤ k,

where with di we mean d|Mi
U

.

Proof. Suppose that for some i ≤ k kerDi|MU
( ker di, then there exists x ∈ Mi

U

such that dx = 0, but Dx 6= 0. This means for (6.2) that Dx = yA with 0 6= y ∈
M<x

U , then D(Ax) = 0 and x ∈ N i, so Ax ∈ Ik is closed.

If it is not exact, then M is not k-formal, otherwise there exists an element of

degree i x1 ∈M>x such that Dx1 = Ax, then x1 ∈ N i and again Ax1 ∈ Ik is closed.

If it is not exactM is not k-formal, otherwise there exists another element of degree

i x2 ∈ M>x1>x such that Dx2 = Ax1 and so on, but M is of k-finite type, then

exists p ∈ N such that D(Axp) = 0 not exact and so M is not k-formal.

We also have a sufficient condition to formality:

Proposition 6.6. If Di|MU
= di ∀i ≤ k, then S is k-formal.
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Proof. If Di|MU
= di ∀i ≤ k, then Mi = Mi

U ⊕ M
i−1
U ∧ 〈A〉 ∀i ≤ k, then by

Proposition 6.5 M is k-formal.

Remark 6.5. We observe that in all the examples above if Di|MU
6= di for some i,

then in particular kerDi|MU
( ker di, then with these two results we have a good

description of formality of almost abelian solvmanifolds.

Example 6.1. Let consider the almost abelian Lie algebra g = R nadX8
R7 of

dimension 8 defined by

adX8 =



0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 0 0 0 0

0 0 0 p 1 0 0

0 0 0 0 p 0 0

0 0 0 0 0 −p 1

0 0 0 0 0 0 −p


p 6= 0.

The map on the Lie group G is

exp(t adX8) =



1 t 1
2 t

2 0 0 0 0

0 1 t 0 0 0 0

0 0 1 0 0 0 0

0 0 0 ept tept 0 0

0 0 0 0 ept 0 0

0 0 0 0 0 e−pt te−pt

0 0 0 0 0 0 e−pt


,

then choosing p ∈ R and t̄ ∈ R such that ept̄ + e−pt̄ ∈ Z we can prove that its

characteristic polynomial has integer coefficients and that this matrix is conjugate

to the integer matrix A (see Chapter 4). Then by Proposition 1.3 Γt̄ is a lattice and

S = G/Γt̄ is an almost abelian solvmanifold.

G is completely solvable, then by Hattori theorem H∗(S) ∼= H∗(g). In particular

we have H1(S) = 〈α3, α8〉.
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To study the formality of S we do not need to compute all the module U or the

minimal model MU :

we just compute U1 using Proposition 6.3:

ϕs(α
1) = α1,

ϕs(α
2) = α2,

ϕs(α
3) = α3,

ϕs(α
4) = eptα4,

ϕs(α
5) = eptα5,

ϕs(α
6) = e−ptα6,

ϕs(α
7) = e−ptα7.

Then U1 = 〈α1, α3, α3〉 and in particularM1
U = (

∧
(x, y, z), 0), butH1(S) = 〈α3, α8〉,

then

M1 = (
∧

(A, x, y, z), D) with DA = Dx = 0, Dy = xA, Dz = yA

and so for Theorem 6.4 S is not 1-formal.

Now we analyse how this method allows us to find symplectic structures on almost

abelian solvmanifolds.

Suppose that S = R n R2n−1/Z n Z2n−1 has dimension 2n and is endowed with

a symplectic structure ω. We denote with {α1, · · · , α2n−1} the basis of
∧1(R2n−1)

and with {α2n} the basis of
∧1(R).

The concept of symplectic structure can be transferred in odd dimension.

Definition 6.3. If M is a (2n − 1)-dimensional manifold a co-symplectic structure

on M is a couple (F, η) where F is a 2-form, η is a 1-form on M , both are closed and

Fn−1 ∧ η 6= 0.

For a complete study of co-symplectic structures see [6].

We call a co-symplectic structure on U a co-symplectic structure (F, η) on R2n−1

such that [F ], [η] ∈ U . Observe that every form on R2n−1 is closed, so the only

necessary condition to get this structure is the non-degeneracy.
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Let (F, η) be a co-symplectic structure on U . This means that

F :=
∑

1≤i<j≤2n−1

aijα
ij , η :=

∑
1≤k≤2n−1

bkα
k

[F ], [η] ∈ U and Fn−1 ∧ η 6= 0.

Now consider the minimal modelM of S. If A is the generator we add to U from∧∗(R), then with the notation of Theorem 6.2 we have σ(A) = α2n and then also

τ :M →
∧∗(S)

A 7→ α2n

MU 7→ ρ(MU ) ⊂
∧∗(R2n−1)

[F ], [η] ∈ U then there exist x ∈ M2
U and y ∈ M1

U such that ρ∗([x]) = [F ] and

ρ∗([y]) = [η].

But in U ⊂ H∗(R2n−1) we do not have exact forms. So ρ(x) = F and ρ(y) = η.

Therefore dx = dy = 0 and if s := x+ yA ∈M2, Ds = Dx = x′A.

sn = (x+ yA)n =
n∑
p=0

(
n

p

)
xn−pypAp = xn + nxn−1yA

because both y and A have odd degree and then their powers are 0. But

ρ(xn−1y) = (ρ(x))n−1ρ(y) = Fn−1 ∧ η 6= 0,

then xn−1y 6= 0 in MU and so xn−1yA 6= 0 in M.

xn ∈MU , then xn 6= −nxn−1yA ∈M, then sn 6= 0 in M.

In particular ω := τ(s) = τ(x) + τ(y)τ(A) = F + η ∧ α2n is a 2-form on S and

ωn = τ(sn) = (τ(x))n + n(τ(x))n−1τ(y)τ(A) = Fn + nFn−1 ∧ η ∧ α2n.

Fn = 0 because it is in
∧

(α1, · · · , α2n−1) and Fn−1 ∧ η 6= 0 by hypothesis, then

also ωn = nFn−1 ∧ η ∧ α2n 6= 0.

Since dω = τ(Ds) by Definition 1.18, if x′ = 0, ω is closed and we have a symplectic

structure on S.

We have then proved the following proposition:



6.3. Dolbeault models of Lie algebras 133

Proposition 6.7. If kerD2|MU
= ker d2 and there exists a co-symplectic structure

(F, η) on U , then there exists a symplectic structure ω := F + η ∧ α2n on S.

Example 6.2. Let consider S = Ga=0
6.10/Γ 2π

k
studied in Chapter 4.

In this case the generic co-symplectic structure on U is given by

F = a12α
12 + a13α

13 + a23α
23 + a45α

45 and η = b1α
1 + b2α

2 + b3α
3

with F 2 ∧ η 6= 0 ⇔ 2a45(a12b3 − a13b2 + a13b1) 6= 0.

Let x ∈M2
U and y ∈M1

U such that τ(x) = F and τ(y) = η, then

x = a12zy + a13zx+ a23yx+ a45t

and y = b1z + b2y + b3x.

The element s := x+ yA ∈M2 is closed if and only if

x′ = a12zx+ a13yx = 0

that is if and only if a12 = a13 = 0.

Then if we consider F = a23α
23 + a45α

45 and η = b1α
1 + b2α

2 + b3α
3 with

b1 6= 0, a23 6= 0, a45 6= 0, we have a symplectic structure on S given by ω := F+η∧α6.

Remark 6.6. We observe that the symplectic form found in this example is invariant

and then listed in Appendix C, but in general this method allows us to find also non-

invariant symplectic structures.

6.3 Dolbeault models of Lie algebras

We want to modify the concept of cdga and its minimal models to associate them to

Dolbeault cohomology. In this way we can define minimality and formality also in

the Dolbeault cohomology case.
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Definition 6.4. Let K ba a field of characteristic 0. A bigraded K-vector space is a

family of K-vector spaces A = {Ap,q}p,q≥0. An element of A has degree (p, q) if it

belongs to Ap,q.

Definition 6.5. A commutative differential bigraded K-algebra, cdba, (A, d) is a

bigraded K-vector space A together with a multiplication

Ap,q ⊗Ar,s → Ap+r,q+s

that is associative, with unit 1 ∈ A0,0 and commutative in the graded sense, i.e.

∀a ∈ Ap,q, b ∈ Ar,s a · b = (−1)(p+q)·(r+s)b · a, and with a differential of bidegree

(0, 1) d : Ap,q → Ap,q+1 such that d2 = 0 and

∀a ∈ Ap,q, b ∈ Ar,s d(a · b) = da · b+ (−1)p+qa · db. (6.4)

We observe that given a cdba (A, d) also its cohomology algebra is a cdba

(H∗,∗(A), 0).

Example 6.3. The Dolbeault complex of complex manifolds and Lie algebras en-

dowed with a complex structure are C-cdba’s.

Definition 6.6. A cdba morphism f : (A, d)→ (B, d) is a family of homomorphisms

f : Ap,q → Bp,q such that df = fd and f(a · b) = f(a) · f(b).

Suppose that a cdba (A∗,∗, d1) is endowed also with another differential of bide-

gree (1, 0)

d2 : Ap,q → Ap+1,q,

then (A, d = d1 +d2) is a cdga and for these kind of cdba’s (A∗,∗, d1, d2) we can state

the ∂∂̄-Lemma (Lemma 1.1).

We can now state a rational homotopy version of Theorem 1.13:

Theorem 6.5. If for the cdba (A, d1, d2) the ∂∂̄-Lemma holds, then (A, d1 + d2) is

a formal cdga.
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We consider now minimality of cdba’s:

Definition 6.7. [10] A cdba (M∗,∗, d) is minimal if it is free commutative, i.e.

M∗,∗ =
∧∗,∗ V with V bigraded vector space, and there exist a ordered basis {xα}

of V such that dxα ∈
∧∗,∗(xβ)β<α and the total degree is respected, |xβ| ≤ |xα|.

A minimal model of the cdba (A∗,∗, d) is a minimal cdba (M∗,∗, d) together with a

cdba quasi-isomorphism ϕ : (M, d)→ (A, d).

Observe that obviously if the cdba is minimal, it is itself its minimal model with

a quasi-isomorphism the identity map.

It is well known that for every path connected cdga there exists a minimal model

(Theorem 1.12), but it is not true in general for cdba, i.e. in the bigraded case.

The problem comes from the fact that d has bidegree (0, 1), indeed if we compute

a cdba minimal model following the usual construction of models for cdga in some

cases we cannot proceed.

We recall how it goes for cdga’s: to compute a cdga minimal model MA we start

considering the first cohomology group of the cdga A that is not trivial H i =

〈[a1], · · · , [ak]〉 and taking a number of generators of that degree equal to the di-

mension of the group, Mi
A =

∧
(x1, · · · , xk) with dxj = 0 ∀j = 1 · · · k and

ψ :MA → A
xj 7→ aj

Then we consider all the products and powers of these generators and we check the

cohomology classes that they generate. If these classes are sent by ψ∗ in classes not

zero in H∗(A), then we have a quasi isomorphism, otherwise we have to “kill” these

classes to maintain the cohomology isomorphism and then we add new generators to

make these elements exact.

We continue considering the following not zero cohomology group and adding the

number of generators in MA needed to have the cohomology isomorphism also in

this dimension and then again we check powers and products and so on for every

cohomology group.

If now we apply the same idea to compute the minimal model M of a cdba A
the only obstruction appear when we have to “kill” a cohomology class in Hp,0(M).
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Indeed in this case we have a closed element xp,0 ∈M and we want to make it exact,

but we cannot add y ∈ M such that dy = x because of the degree of x, since d has

bidegree (0, 1), so we cannot have the cohomology isomorphism and then we cannot

have a minimal model.

In particular this can happen in the computation of the Dolbeault minimal model

of a complex manifold M or a Lie algebra g endowed with a complex structure J .

Suppose to have a closed generator xp,0 ∈M with p even, then for every power r we

have total degree |xrp,0| = rp even and then xrp,0 6= 0. But if ψ(x) = α ∈
∧∗,∗(gC∗),

then must exist a power r such that αr = 0 and then we have to “kill” [xrp,0] but it

is not possible.

Example 6.4. Let g = RnadX2n
R2n−1 with

adX2n =



a 0 0 0 0 0

0 b1 c1 0 0 0

0 −c1 b1 0 0 0

0 0 0
. . . 0 0

0 0 0 0 b2n−2 c2n−2

0 0 0 0 −c2n−2 b2n−2


and bj + icj 6= bk + ick for j 6= k.

Then by Theorem 5.3 a complex structure J is given by ∀ j = 1, · · · , 2n− 2

JX1 = ϕ1X1 +ϕnX2n, JY2j−1 = Y2j , JY2j = −Y2j−1, JX2n =
−1− ϕ2

1

ϕn
X1−ϕ1X2n

A basis for g1,0 is {X1 − i(ϕ1X1 + ϕnX2n), Y2j−1 − iY2j}j=1,··· ,2n−2, then if

{η, ωj}j=1,··· ,2n−2 is the dual basis of g1,0∗ we have in particular that

∂̄ωj =
ϕ1bj − cj + i(ϕ1cj + bj)

2ϕn
ωj ∧ η̄.

Then

∂̄(ωj ∧ ωk) =
ϕ1(bj + bk)− (cj + ck) + i(ϕ1(cj + ck) + (bj + bk))

2ϕn
ωj ∧ ωk ∧ η̄

that for bk = −bj and ck = −cj is zero.
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In this case to compute the Dolbeault minimal model we would need to add a

generator x2,0 with ψ(x) = ωj ∧ ωk which is impossible. Thus the model does not

exists.

6.3.1 Minimality and Formality of nilpotent Lie algebras

Next we consider nilpotent Lie algebras. We already observed in Chapter 5 that the

properties about the isomorphism between the de Rham cohomology of a solvmani-

fold and its invariant one do not hold in general for the Dolbeault cohomology.

The only theorem that has a complex version is the Nomizu theorem [7, 9, 41]:

Definition 6.8. [41] Let g be a nilpotent Lie algebra.

• A rational structure for g is a subalgebra gQ defined over the rational such that

gQ ⊗ R = g.

• A complex structure J on g is a rational complex structure if it maps gQ into

itself.

Theorem 6.6. [7, Theorem 2] Let N = G/Γ be a nilmanifold endowed with an

invariant complex structure J . If J is rational then H∗,∗
∂̄

(g) ∼= H∗,∗
∂̄

(N).

There are few examples of nilpotent Lie algebras that are not endowed with a

rational complex structure, moreover we have a more general result.

Theorem 6.7. [41, Theorem 1.10] Let N = G/Γ be a nilmanifold endowed with an

invariant complex structure J . The inclusion i : H∗,∗
∂̄

(g) → H∗,∗
∂̄

(N) is an isomor-

phism if

• the complex structure J is bi-invariant, G is a complex Lie group and N is

complex parallelizable [42];

• the complex manifold N is an iterated principal holomorphic torus bundle [9];

• the complex structure J is rational [7, Theorem 2];

• the complex structure J is abelian [7];
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• g admits a torus bundle series for J compatible with the rational structure

induced by Γ.

Moreover, there is a dense open subset U of the space of all invariant complex

structures on N such that i is an isomorphism for all J ∈ U [7, Theorem 1].

Because of these theorems the Dolbeult minimal model of a nilpotent Lie algebra

is often also the Dolbeault model of a nilmanifold and then the study of these models

is quite interesting.

Suppose that g is a nilpotent Lie algebra, then the following theorem holds [43]:

Theorem 6.8. A nilpotent Lie algebra g of dimension n admits a complex structure if

and only if gC∗ has a basis (ω1, · · · , ωn, ω̄1, · · · , ω̄n) such that dωi ∈ I(ω1, · · · , ωi−1).

In particular this means that there exist a basis (ω1, · · · , ωn) of g1,0∗ and constants

aij,k, b
i
j,k ∈ C such that

d(ωi) =
∑

1≤j<i, 1≤k≤n
[ωj ∧ (aijkω

k + bijkω̄
k)]

or equivalently 
∂̄(ωi) =

∑
1≤j<i, 1≤k≤n b

i
jkω

j ∧ ω̄k

∂̄(ω̄i) = ∂ωi =
∑

1≤j<i, 1≤k≤n ā
i
jkω̄

j ∧ ω̄k

Definition 6.9. [10] A complex structure on a nilpotent Lie algebra is nilpotent if

there exist a basis (ω1, · · · , ωn) of g1,0∗ such that

dωi ∈
∧

(ω1, · · · , ωi−1, ω̄1, · · · , ω̄i−1).

In particular this means that ∀k ≥ i aijk = bijk = 0 and then (
∧∗,∗ gC∗, ∂̄) is a

minimal cdba with both the ordered basis (ω1, ω̄1, · · · , ωn, ω̄n) and

(ω̄1, · · · , ω̄n, ω1, · · · , ωn).

Particular cases of nilpotent complex structures are the bi-invariant complex

structures, i.e. bijk = 0 also for k < i and the abelian complex structures, i.e.

aijk = 0 also for k < i.
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In [10] the authors proved that if a nilpotent Lie algebra g is endowed with a

nilpotent complex structure, then the cdba (
∧∗,∗ gC∗, ∂̄) is minimal, similarly to the

de Rham case.

We want to improve this result: if we ask that only aijk = 0 ∀k ≥ i, then again

we get minimality with the order (ω̄1, · · · , ω̄n, ω1, · · · , ωn) and more in general if

there exist an order i1 < · · · < in for which the cdga (
∧∗ g0,1∗, ∂̄) is minimal with

the ordered basis (ω̄ik)k=1,··· ,n, then considering the basis (ω̄i1 , · · · , ω̄in , ω1, · · · , ωn)

we get minimality for the cdba (
∧∗,∗ gC∗, ∂̄). This idea can be further generalized.

Theorem 6.9. Let (g, J) be a nilpotent Lie algebra with complex structure J , then

there exists an ordered basis for which the cdba (
∧∗,∗ gC∗, ∂̄) is minimal.

Proof. Because of Theorem 6.8 we know that if there exists a basis (η̄1, · · · , η̄n) of

g0,1∗ for which (
∧∗ g0,1∗, ∂̄) is a minimal cdga, then (

∧∗,∗ gC∗, ∂̄) is a minimal cdba

with respect to the basis (η̄1, · · · , η̄n, ω1, · · · , ωn) where (ω1, · · · , ωn) is the basis of

g1,0∗ used in Theorem 6.8.

We recall that on a nilpotent Lie algebra g we can always find a basis (X1, · · · , Xn)

such that the structure constants are [Xi, Xj ] =
∑

i<j<p c
p
ijXp, or equivalently a basis

(α1, · · · , αn) of g∗ such that dαp = −
∑

i<j<p c
p
ijα

ij . In particular this implies that

if g is a nilpotent Lie algebra, then (
∧∗ g∗, d) is a minimal cdga [20] (Section 6.1).

Then we need to prove that g0,1∗ is nilpotent.

From Theorem 6.8 we know that ∂̄(ω̄i) =
∑

1≤j<i, 1≤k≤n ā
i
jkω̄

j ∧ ω̄k.
Let consider the Lie algebra h such that in the cdga (

∧∗ h∗, d) we have

dαi =
∑

1≤j<i, 1≤k≤n
āijkα

j ∧ αk

for a given basis (α1, · · · , αn) of h∗, then the cdga’s (
∧∗ g0,1∗, ∂̄) and (

∧∗ h∗, d) are

isomorphic.

dαi =
∑

1≤j<i, 1≤k≤n ā
i
jkα

j∧αk is equivalent to [Xk, Xj ] = −[Xj , Xk] =
∑

i>j ā
i
jkXi

for the dual basis (X1, · · · , Xn) of h. Then the endomorphism adXk of h is associated
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to the strictly triangular matrix

0

a2
1k

. . .
... a3

2k

. . .
...

...
. . .

. . .

an1k an2k · · · ann−1k 0


that is that adXk is a nilpotent endomorphism for every k.

Theorem 1.2 implies then that h is a nilpotent Lie algebra and so (
∧∗ h∗, d) and

(
∧∗ g0,1∗, ∂̄) are minimal cdga’s.

Remark 6.7. Because of Theorems 6.6 and 6.7 we have that if N is a complex

nilmanifold, there exist J invariant complex structure over N such that (
∧∗,∗ gC∗, ∂̄)

is the Dolbeault minimal model of (N, J).

Example 6.5.

dim 6: The only not nilpotent complex structure on a Nilpotent Lie algebra of dimen-

sion 6 is given by the following basis of g1,0∗ [48]


dω1 = 0

dω2 = Eω1 ∧ ω3 + ω1 ∧ ω̄3

dω3 = Aω1 ∧ ω̄1 + ibω1 ∧ ω̄2 − ibĒω2 ∧ ω̄1

where A,E ∈ C with |E| = 1 and b ∈ R \ {0}.

In particular we have



∂̄ω1 = 0

∂̄ω2 = ω1 ∧ ω̄3

∂̄ω3 = Aω1 ∧ ω̄1 + ibω1 ∧ ω̄2 − ibĒω2 ∧ ω̄1

∂̄ω̄1 = 0

∂̄ω̄2 = Ēω̄1 ∧ ω̄3

∂̄ω̄3 = 0
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Then taking the order (ω̄1, ω̄3, ω̄2, ω1, ω2, ω3) the cdba (
∧∗,∗ gC∗, ∂̄) is minimal.

dim 8: [41] Let (
∧∗ g∗, d) be the 8-dimensional cdga with

dα1 = 0, dα2 = 0, dα3 = 0, dα4 = 0, dα5 = 0, dα6 = α12, dα7 = α16 + α23,

dα8 = α26 − α13 and consider the complex structure J given by

Jα1 = α2, Jα4 = α6, Jα5 = α3, Jα7 = α8.

Then J is not nilpotent and the basis of gC∗ is given by



∂̄ω1 = 0

∂̄ω2 = ω1 ∧ ω̄2

∂̄ω3 = 1
2ω1 ∧ ω̄1

∂̄ω4 = 0

∂̄ω̄1 = 0

∂̄ω̄2 = 0

∂̄ω̄3 = 0

∂̄ω̄4 = 0

then taking the order (ω̄1, ω̄2, ω̄3, ω̄4, ω1, ω2, ω3, ω4) we get minimality.

dim 10: [41] Let (
∧∗ g∗, d) be the 10-dimensional cdga with

dα1 = 0, dα2 = 0, dα3 = 0, dα4 = 0, dα5 = 0, dα6 = 0, dα7 = 0,

dα8 = α15 + α16 + α35 + α36, dα9 = α25 + α26 + α45 + α46,

dα10 = α18 + α38 + α29 + α49 and consider the complex structure J

given by Jα1 = α2, Jα3 = α4, Jα5 = α7, Jα6 = α10, Jα8 = α9.
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Then J is not nilpotent and the basis of gC∗ is given by

∂̄ω1 = 0

∂̄ω2 = 0

∂̄ω3 = 0

∂̄ω4 = 1
2ω1 ∧ ω̄3 + 1

2ω1 ∧ ω̄5 + 1
2ω2 ∧ ω̄5

∂̄ω5 = − i
2ω1 ∧ ω̄4 + i

2ω4 ∧ ω̄1 − i
2ω2 ∧ ω̄4 + i

2ω4 ∧ ω̄2

∂̄ω̄1 = 0

∂̄ω̄2 = 0

∂̄ω̄3 = 0

∂̄ω̄4 = 1
2 ω̄1 ∧ ω̄3 + 1

2 ω̄1 ∧ ω̄5 + 1
2 ω̄2 ∧ ω̄5

∂̄ω̄5 = 0

then taking the order (ω̄1, ω̄2, ω̄3, ω̄5, ω̄4, ω1, ω2, ω3, ω4, ω5) we get minimality.

The definition of formality on cdba is equal to the definition given on cdga:

Definition 6.10. A cdba (A∗,∗, d) is formal if there exist a cdba morphism

ψ : A∗,∗ → H∗,∗(A)

that induces the identity on cohomology.

For the real case Hasegawa proved that a nilpotent Lie algebra g is formal if and

only if it is abelian (Theorem 6.1).

The proof is based on the minimality of (
∧∗ g∗, d), then we can follow the same

idea also for (
∧∗,∗ gC∗, ∂̄).

In particular if J is nilpotent a proof can be found in [10].

Lemma 6.3. ∂̄(
∧n,n−1 gC∗) ≡ 0.

Proof. Minimality implies that the ∂̄ of a generator is always combination of wedge

of two prior generators, but in every element of
∧n,n−1 gC∗ all but one generator

appear, i.e. it is generated by elements of kind ω1 ∧ · · · ∧ωn ∧ ω̄1 ∧ · · · ∧ ˆ̄ωi ∧ · · · ∧ ω̄n,

then we always have wedge of a generator with itself in the ∂̄ and then it must be

zero.
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Remark 6.8. Lemma 6.3 implies in particular that bn,n = 1.

Theorem 6.10. (
∧∗,∗ gC∗, ∂̄) is formal if and only if g is abelian.

Proof. Suppose by contradiction that g is not abelian and (
∧∗,∗ gC∗, ∂̄) is formal,

then H1,0(gC∗)⊕H0,1(gC∗) ( gC∗, but there exists

ψ :
∧∗,∗ gC∗ → H∗,∗(gC∗) such that ψ∗ ≡ Id.

Let {α1, · · · , αk} and {β1, · · · , βh} be respectively a basis of H1,0(gC∗) and

H0,1(gC∗) and let ψ1 be ψ|gC∗ , then if {γ1, · · · , γ2n−h−k} is a basis of kerψ1 we have

ψ1 : gC∗ → H1,0(gC∗)⊕H0,1(gC∗)

αi 7→ [αi]

βj 7→ [βj ]

γs 7→ 0

Now consider
∧n,n gC∗: by definition of cdba morphism we have ψ1(α1) · · ·ψ1(αh) ·

ψ1(β1) · · ·ψ1(βk) · ψ1(γ1) · · ·ψ1(γ2n−h−k) =: ψ(α1 ∧ · · · ∧ αh ∧ β1 ∧ · · · ∧ βk ∧ γ1 ∧
· · · ∧ γ2n−h−k) = [α1 ∧ · · · ∧ αh ∧ β1 ∧ · · · ∧ βk ∧ γ1 ∧ · · · ∧ γ2n−h−k], but ψ1(γi) = 0,

then [α1 ∧ · · · ∧ αh ∧ β1 ∧ · · · ∧ βk ∧ γ1 ∧ · · · ∧ γ2n−h−k] = 0 that is a contradiction of

Lemma 6.3.

Corollary 6.1. Let N = G/Γ be a nilmanifold endowed with an invariant complex

structure J such that H∗,∗
∂̄

(g) ∼= H∗,∗
∂̄

(N), then (N, J) is formal if and only if it is a

complex torus.





Appendix A

Six dimensional solvable (non

nilpotent) unimodular Lie

algebras

Algebra Structure equations

ga,b,c,e6.1 dα1 = −α16, dα2 = −aα26, dα3 = −bα36

0 < |e| ≤ |c| ≤ |b| ≤ |a| ≤ 1, dα4 = −cα46, dα5 = −eα56, dα6 = 0

a+ b+ c+ e = −1

ga,c,e6.2 dα1 = −aα16 − α26, dα2 = −aα26, dα3 = −α36,

0 < |e| ≤ |c| ≤ 1, dα4 = −cα46, dα5 = −eα56, dα6 = 0

2a+ c+ e = −1

g
− a+1

3
,a

6.3 dα1 = a+1
3
α16 − α26, dα2 = a+1

3
α26 − α36,

0 < |a| ≤ 1 dα3 = a+1
3
α36, dα4 = −α46,

dα5 = −aα56, dα6 = 0

g
− 1

4
6.4 dα1 = 1

4
α16 − α26, dα2 = 1

4
α26 − α36,

dα3 = 1
4
α36 − α46, dα4 = 1

4
α46, dα5 = −α56, dα6 = 0

ga,b6.6 dα1 = −α16, dα2 = −aα26 − α36, dα3 = −aα36,

a ≤ b, a+ b = − 1
2

dα4 = −bα46 − α56, dα5 = −bα56, dα6 = 0

g
a,− 2

3
a

6.7 dα1 = −aα16 − α26, dα2 = −aα26 − α36, dα3 = −aα36,

a 6= 0 dα4 = 2
3
aα46 − α56, dα5 = 2

3
aα56, dα6 = 0

ga,b,c,p6.8 dα1 = −aα16, dα2 = −bα26, dα3 = −cα36,

0 < |c| ≤ |b| ≤ |a|, dα4 = −pα46 − α56, dα5 = α46 − pα56, dα6 = 0
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a+ b+ c+ 2p = 0

ga,b,p6.9 dα1 = −aα16, dα2 = −bα26 − α36, dα3 = −bα36,

a 6= 0, a+ 2b+ 2p = 0 dα4 = −pα46 − α56, dα5 = α46 − pα56, dα6 = 0

g
a,− 3

2
a

6.10 dα1 = −aα16 − α26, dα2 = −aα26 − α36, dα3 = −aα36,

dα4 = 3
2
aα46 − α56, dα5 = α46 + 3

2
aα56, dα6 = 0

ga,p,q,s6.11 dα1 = −aα16, dα2 = −pα26 − α36, dα3 = α26 − pα36,

as 6= 0, a+ 2p+ 2q = 0 dα4 = −qα46 − sα56, dα5 = sα46 − qα56, dα6 = 0

g−4p,p
6.12 dα1 = 4pα16, dα2 = −pα26 − α36 − α46,

p 6= 0 dα3 = α26 − pα36 − α56, dα4 = −pα46 − α56,

dα5 = α46 − pα56, dα6 = 0

ga,b,h6.13 dα1 = −α23 − (a+ b)α16, dα2 = −aα26, dα3 = −bα36,

a 6= 0, 2a+ 2b+ h = −1 dα4 = −α46, dα5 = −hα56, dα6 = 0

ga,b6.14 dα1 = −α23 − (a+ b)α16 − α56, dα2 = −aα26,

a 6= 0, a+ b = − 1
3

dα3 = −bα36, dα4 = −α46, dα5 = −(a+ b)α56, dα6 = 0

g−1
6.15 dα1 = −α23, dα2 = −α26, dα3 = α36,

dα4 = −α26 − α46, dα5 = −α36 + α56, dα6 = 0

g
− 1

2
,0

6.17 dα1 = −α23 + 1
2
α16, dα2 = 1

2
α26, dα3 = 0,

dα4 = −α36, dα5 = −α56, dα6 = 0

ga,−2a−3
6.18 dα1 = −α23 − (1 + a)α16, dα2 = −aα26, dα3 = −α36,

a 6= − 3
2

dα4 = −α36 − α46, dα5 = (2a+ 3)α56, dα6 = 0

g
− 4

3
6.19 dα1 = −α23 + 1

3
α16 − α56, dα2 = 4

3
α26, dα3 = −α36,

dα4 = −α36 − α46, dα5 = 1
3
α56, dα6 = 0

g−3
6.20 dα1 = −α23 − α16 − α46, dα2 = 0, dα3 = −α36,

dα4 = −α36 − α46, dα5 = 3α56, dα6 = 0

ga6.21 dα1 = −α23 − 2aα16, dα2 = −aα26, dα3 = −α26 − aα36,

a 6= − 1
4

dα4 = −α46, dα5 = (4a+ 1)α56, dα6 = 0

g
− 1

6
6.22 dα1 = −α23 + 1

3
α16 − α56, dα2 = 1

6
α26,

dα3 = −α26 + 1
6
α36, dα4 = −α46,

dα5 = 1
3
α56, dα6 = 0

ga,−7a,ε
6.23 dα1 = −α23 − 2aα16 − εα56, dα2 = −aα26,

aε = 0 dα3 = −α26 − aα36, dα4 = −α36 − aα46,

dα5 = 5aα56, dα6 = 0

gb,−1−b
6.25 dα1 = −α23 + bα16, dα2 = −α26, dα3 = (1 + b)α36,

dα4 = −bα46, dα5 = −α46 − bα56, dα6 = 0

g−1
6.26 dα1 = −α23 − α56, dα2 = −α26, dα3 = α36,

dα4 = 0, dα5 = −α46, dα6 = 0

g−2b,b
6.27 dα1 = −α23 + bα16, dα2 = 2bα26, dα3 = −bα36,

b 6= 0 dα4 = −α36 − bα46, dα5 = −α46 − bα56, dα6 = 0

146



g−2
6.28 dα1 = −α23 − 2α16, dα2 = −α26, dα3 = −α26 − α36,

dα4 = 2α46, dα5 = −α46 + 2α56, dα6 = 0

g−2b,b,ε
6.29 dα1 = −α23 + bα16 − εα56, dα2 = 2bα26, dα3 = −bα36,

bε = 0 dα4 = −α36 − bα46, dα5 = −α46 − bα56, dα6 = 0

ga,−6a−h,h,ε
6.32 dα1 = −α23 − 2aα16 − εα46, dα2 = −aα26 + α36,

a > − 1
4
h, εh = 0 dα3 = −α26 − aα36, dα4 = −(2a+ h)α46,

dα5 = (6a+ h)α56, dα6 = 0

ga,−6a
6.33 dα1 = −α23 − 2aα16 − α56, dα2 = −aα26 + α36,

a ≥ 0 dα3 = −α26 − aα36, dα4 = 6aα46,

dα5 = −2aα56, dα6 = 0

ga,−4a,ε
6.34 dα1 = −α23 − 2aα16 − εα56, dα2 = −aα26 + α36,

εa = 0 dα3 = −α26 − aα36, dα4 = 2aα46, dα5 = 2aα56, dα6 = 0

ga,b,c6.35 dα1 = −α23 − (a+ b)α16, dα2 = −aα26, dα3 = −bα36,

a+ b+ c = 0, a2 + b2 6= 0 dα4 = −cα46 + α56, dα5 = −α46 − cα56, dα6 = 0

ga,−2a
6.36 dα1 = −α23 − 2aα16, dα2 = −aα26, dα3 = −α26 − aα36,

dα4 = 2aα46 + α56, dα5 = −α46 + 2aα56, dα6 = 0

ga,−2a,s
6.37 dα1 = −α23 − 2aα16, dα2 = −aα26 + α36, dα3 = −α26 − aα36,

s 6= 0 dα4 = 2aα46 + sα56, dα5 = −sα46 + 2aα56, dα6 = 0

g0
6.38 dα1 = −α23, dα2 = α36, dα3 = −α26,

dα4 = −α26 + α56, dα5 = −α36 − α46, dα6 = 0

g−4−3h,h
6.39 dα1 = −α45 − (1 + h)α16, dα2 = −α15 − (2 + h)α26,

h 6= − 4
3

dα3 = (4 + 3h)α36, dα4 = −hα46, dα5 = −α56, dα6 = 0

g
− 3

2
6.40 dα1 = −α45 + 1

2
α16, dα2 = −α15 − 1

2
α26 − α36,

dα3 = − 1
2
α36, dα4 = 3

2
α46, dα5 = −α56, dα6 = 0

g−1
6.41 dα1 = −α45, dα2 = −α15 − α26, dα3 = α36 − α46,

dα4 = α46, dα5 = −α56, dα6 = 0

g
− 5

3
6.42 dα1 = −α45 + 2

3
α16, dα2 = −α15 − 1

3
α26, dα3 = α36 − α56,

dα4 = 5
3
α46, dα5 = −α56, dα6 = 0

g−7
6.44 dα1 = −α45 − 2α16, dα2 = −α15 − 3α26, dα3 = 7α36,

dα4 = −α46 − α56, dα5 = −α56, dα6 = 0

g−3,ε
6.47 dα1 = −α45 − α16, dα2 = −α15 − α26 − εα46,

ε = 0,±1 dα3 = 3α36, dα4 = −α46, dα5 = 0, dα6 = 0

g
2(1+l),l
6.54 dα1 = −α35 − α16, dα2 = −α45 − lα26, dα3 = (1 + 2l)α36,

dα4 = (2 + l)α46, dα5 = −2(1 + l)α56, dα6 = 0

g−4
6.55 dα1 = −α35 − α16 − α46, dα2 = −α45 + 3α26,

dα3 = −5α36, dα4 = −α46, dα5 = 4α56, dα6 = 0

g
4
3
6.56 dα1 = −α35 − α16, dα2 = −α45 + 1

3
α26 − α36,
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dα3 = 1
3
α36, dα4 = 5

3
α46, dα5 = − 4

3
α56, dα6 = 0

g
− 2

3
6.57 dα1 = −α35 − α16, dα2 = −α45 + 4

3
α26,

dα3 = − 5
3
α36, dα4 = 2

3
α46 − α56, dα5 = 2

3
α56, dα6 = 0

g
− 3

4
6.61 dα1 = −α35 − 2α16, dα2 = −α45 + 3

2
α26,

dα3 = −α36 − α56, dα4 = 5
2
α46, dα5 = −α56, dα6 = 0

g−1
6.63 dα1 = −α35 − α16, dα2 = −α45 + α26 − α46,

dα3 = −α36, dα4 = α46, dα5 = 0, dα6 = 0

g4l,l
6.65 dα1 = −α35 − lα16, dα2 = −α45 − α16 − lα26,

dα3 = 3lα36, dα4 = −α36 + 3lα46, dα5 = −4lα56, dα6 = 0

g4p,p
6.70 dα1 = −α35 − pα16 + α26, dα2 = −α45 − α16 − pα26,

dα3 = 3pα36 + α46, dα4 = −α36 + 3pα46, dα5 = −4pα56, dα6 = 0

g
− 7

4
6.71 dα1 = −α25 − 5

4
α16, dα2 = −α35 − 1

4
α26,

dα3 = −α45 + 3
4
α36, dα4 = 7

4
α46, dα5 = −α56, dα6 = 0

g−1
6.76 dα1 = −α25 + α16, dα2 = −α45,

dα3 = −α24 − α36, dα4 = −α46, dα5 = α56, dα6 = 0

g6.78 dα1 = −α25 + α16, dα2 = −α45, dα3 = −α24 − α36 − α46,

dα4 = −α46, dα5 = α56, dα6 = 0

g0,l
6.83 dα1 = −α24 − α35, dα2 = −lα26 − α36, dα3 = −lα36,

dα4 = lα46, dα5 = α46 + lα56, dα6 = 0

g6.84 dα1 = −α24 − α35, dα2 = −α26, dα3 = −α56,

dα4 = α46, dα5 = 0, dα6 = 0

g0,µ,ν
6.88 dα1 = −α24 − α35, dα2 = −µα26 + να36, dα3 = −να26 − µα36,

dα4 = µα46 + να56, dα5 = −να46 + µα56, dα6 = 0

g0,ν,s
6.89 dα1 = −α24 − α35, dα2 = −sα26, dα3 = να56,

dα4 = sα46, dα5 = −να36, dα6 = 0

g0,ν
6.90 dα1 = −α24 − α35, dα2 = −α46, dα3 = να56,

ν 6= 1 dα4 = −α26, dα5 = −να36, dα6 = 0

g6.91 dα1 = −α24 − α35, dα2 = −α46, dα3 = α56,

dα4 = −α26, dα5 = −α36, dα6 = 0

g0,µ,ν
6.92 dα1 = −α24 − α35, dα2 = µα36, dα3 = −να26,

dα4 = να56, dα5 = −µα46, dα6 = 0

g0
6.92∗ dα1 = −α24 − α35, dα2 = α46, dα3 = α56,

dα4 = −α26, dα5 = −α36, dα6 = 0

g0,ν
6.93 dα1 = −α24 − α35, dα2 = −α46 + να56, dα3 = να46,

dα4 = −α26 − να36, dα5 = −να26, dα6 = 0

g−2
6.94 dα1 = −α25 − α34, dα2 = −α35 + α26, dα3 = 2α36,

dα4 = −2α46, dα5 = −α56, dα6 = 0

ga,b,c,e6.101 dα1 = aα15 + bα16, dα2 = cα25 + eα26,
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a+ c = −1, b+ e = −1, dα3 = α36, dα4 = α45, dα5 = 0, dα6 = 0

ab 6= 0, c2 + e2 6= 0

g−1,b,−2−b
6.102 dα1 = −α15 + bα16, dα2 = α25 − (2 + b)α26,

dα3 = α36, dα4 = α35 + α46, dα5 = 0, dα6 = 0

g−2,−1
6.105 dα1 = −2α15 − α16, dα2 = α26, dα3 = α35,

dα4 = α35 + α45, dα5 = 0, dα6 = 0

g−1,0
6.107 dα1 = −α15 − α26, dα2 = −α25 − α16, dα3 = α35,

dα4 = α35 + α45, dα5 = 0, dα6 = 0

ga,b,−a,c6.113 dα1 = aα15 + bα16, dα2 = −aα25 + cα26, dα3 = α36,

a2 + b2 6= 0, a2 + c2 6= 0, dα4 = α35 + α46, dα5 = 0, dα6 = 0

b+ c = −2

g
a,−1,− a

2
6.114 dα1 = aα15 − α16, dα2 = α26, dα3 = −a

2
α35 − α45,

a 6= 0, dα4 = α35 − a
2
α45, dα5 = 0, dα6 = 0

g−1,b,c,−c
6.115 dα1 = α15 + cα16 − α26, dα2 = α25 + α16 + cα26,

b 6= 0, dα3 = −α35 − bα45 − cα36, dα4 = bα35 − α45 − cα46, dα5 = 0, dα6 = 0

g0,−1
6.116 dα1 = α16, dα2 = α15 + α26, dα3 = −α45 − α36,

dα4 = α35 − α46, dα5 = 0, dα6 = 0

g0,b,−1
6.118 dα1 = −α25 + α16, dα2 = α15 + α26, dα3 = −bα45 − α36,

dα4 = bα35 − α46, dα5 = 0, dα6 = 0

g−1,−1
6.120 dα1 = −α56, dα2 = −α25 − α26, dα3 = α36,

dα4 = α45, dα5 = 0, dα6 = 0

g0,−2
6.125 dα1 = −α56, dα2 = −2α26, dα3 = −α45 + α36,

dα4 = α35 + α46, dα5 = 0, dα6 = 0

g−2,−2
6.129 dα1 = −α23 + α15 + α16, dα2 = α25, dα3 = α36,

dα4 = −2α45 − 2α46, dα5 = 0, dα6 = 0

g0,−4
6.135 dα1 = −α23 + 2α16, dα2 = α26, dα3 = α25 + α36,

dα4 = −4α46, dα5 = 0, dα6 = 0

n0
6.83 dα1 = −α45, dα2 = −α15 − α36, dα3 = −α14 + α26,

dα4 = α56, dα5 = −α46, dα6 = 0

nε6.84 dα1 = −α45, dα2 = −α15 − α36, dα3 = −α14 + α26 − εα56,

ε = ±1 dα4 = α56, dα5 = −α46, dα6 = 0

nb6.96 dα1 = −α24 − α35, dα2 = −α46, dα3 = −bα56,

dα4 = α26, dα5 = −bα36, dα6 = 0

gp,q,r5.7 dα1 = −α15, dα2 = −pα25, dα3 = −qα35,

−1 ≤ r ≤ q ≤ p ≤ 1, dα4 = −rα45, dα5 = 0

pqr 6= 0, p+ q + r = −1

g−1
5.8 dα1 = −α25, dα2 = 0, dα3 = −α35, dα4 = α45, dα5 = 0

gp,−2−p
5.9 dα1 = −α15 − α25, dα2 = −α25, dα3 = −pα35,
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p ≥ −1, dα4 = −(p+ 2)α45, dα5 = 0

g−3
5.11 dα1 = −α15 − α25, dα2 = −α25 − α35, dα3 = −α35,

dα4 = 3α45, dα5 = 0

g−1−2q,q,r
5.13 dα1 = −α15, dα2 = (1 + 2q)α25, dα3 = −qα35 − rα45,

−1 ≤ q ≤ 0, dα4 = rα35 − qα45, dα5 = 0

q 6= − 1
2
, r 6= 0

g0
5.14 dα1 = −α25, dα2 = 0, dα3 = −α45, dα4 = α35, dα5 = 0

g−1
5.15 dα1 = −α15 − α25, dα2 = −α25, dα3 = α35 − α45,

dα4 = α45, dα5 = 0

g−1,q
5.16 dα1 = −α15 − α25, dα2 = −α25, dα3 = α35 − qα45,

q 6= 0 dα4 = qα35 + α45, dα5 = 0

gp,−p,r5.17 dα1 = −pα15 − α25, dα2 = α15 − pα25, dα3 = pα35 − rα45,

r 6= 0 dα4 = rα35 + pα45, dα5 = 0

g0
5.18 dα1 = −α25 − α35, dα2 = α15 − α45, dα3 = −α45,

dα4 = α35, dα5 = 0

gp,−2p−2
5.19 dα1 = −α23 − (p+ 1)α15, dα2 = −α25, dα3 = −pα35,

p 6= −1 dα4 = (2p+ 2)α45, dα5 = 0

g−1
5.20 dα1 = −α23 − α45, dα2 = −α25, dα3 = α35, dα4 = 0, dα5 = 0

g−4
5.23 dα1 = −α23 − 2α15, dα2 = −α25, dα3 = −α25 − α35,

dα4 = 4α45, dα5 = 0

gp,4p5.25 dα1 = −α23 − 2pα15, dα2 = −pα25 + α35, dα3 = −α25 − pα35,

p 6= 0 dα4 = 4pα45, dα5 = 0

g0,ε
5.26 dα1 = −α23 − εα45, dα2 = α35, dα3 = −α25,

ε = ±1 dα4 = 0, dα5 = 0

g
− 3

2
5.28 dα1 = −α23 + 1

2
α15, dα2 = 3

2
α25, dα3 = −α35,

dα4 = −α35 − α45, dα5 = 0

g
− 4

3
5.30 dα1 = −α24 − 2

3
α15, dα2 = −α34 + 1

3
α25, dα3 = 4

3
α35,

dα4 = −α45, dα5 = 0

g−1,−1
5.33 dα1 = −α14, dα2 = −α25, dα3 = α34 + α35,

dα4 = 0, dα5 = 0

g−2,0
5.35 dα1 = 2α14, dα2 = −α24 − α35, dα3 = −α34 + α25,

dα4 = 0, dα5 = 0

g−2
4.2 dα1 = 2α14, dα2 = −α24 − α34,

dα3 = −α34, dα4 = 0

gp,−p−1
4.5 dα1 = −α14, dα2 = −pα24,

−1 ≤ p ≤ − 1
2
, dα3 = (p+ 1)α34, dα4 = 0

g−2p,p
4.6 dα1 = 2pα14, dα2 = −pα24 − α34,

p > 0 dα3 = α24 − pα34, dα4 = 0
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g−1
4.8 dα1 = −α23, dα2 = −α24, dα3 = α34, dα4 = 0

g0
4.9 dα1 = −α23, dα2 = −α34, dα3 = α24, dα4 = 0

g3.1 dα1 = −α23, dα2 = 0, dα3 = 0,

nilpotent

g−1
3.4 dα1 = −α13, dα2 = α23, dα3 = 0,

g0
3.5 dα1 = −α23, dα2 = α13, dα3 = 0,
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Appendix B

Betti numbers of 6 dimensional

unimodular, solvable,

non-nilpotent Lie algebras 1

g b1 b2 b3

g6.1 1 0 if a 6= −1, b 6= −1, b 6= −a, 0 if a 6= −1, b 6= −1, b 6= −a,
c 6= −a, c+ b 6= −1, c 6= −b, c 6= −a, c+ b 6= −1, c 6= −b,
a+ b 6= −1, a+ c 6= −1 a+ b 6= −1, a+ c 6= −1

1 if a = −1, or if b = −a, 2 if a = −1, or if b = −a,

or if b = −c, or if a+ b 6= −1 or if b = −c, or if a+ b 6= −1

2 if b = −1, 4 if b = −1,

or if c = −a or if c = −1−a, or if c = −a or if c = −1−a,

or if a = −1 and b = 1, or if a = −1 and b = 1,

or if a = −1 and b+ c = −1, or if a = −1 and b+ c = −1,

or if b = c = −a, or if b = c = −a,

or if b = −c = ±a, or if b = −c = ±a,

or if b = −c = ±(1 + a), or if b = −c = ±(1 + a),

or if b = c = −1− a or if b = c = −1− a
3 if a = − 1

2
and b = −c = ± 1

2
6 if a = − 1

2
and b = −c = ± 1

2

or if a = b = c− 1
2

or if a = b = c− 1
2

1In Table 1 we impose conditions which become at every step more restrictive. It is therefore
implicit that the previous conditions hold only when the more restrictive ones are not satisfied.
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4 if a = −b = c = 1
2

5 if a = −b = c = 1
2

g6.2 1 if a 6= 0 0 if a 6= 0, c 6= −1, e 6= −c, 0 if a 6= 0, c 6= −1, e 6= −c,
c− e 6= ±1, c+ e 6= 1, c− e 6= ±1, c+ e 6= 1,

2 if a = 0 1 if c = −1, 2 if a = 0 or if c = −1

or if e = −c, or if e = c+ 1, or if e = −c, or if e = c+ 1,

or if e = ±(1− c), or if e = ±(1− c),
2 if a = 0 or if c = −e = ± 1

2
4 if c = −e = ± 1

2

or if e = −1, or if e = −1,

or if c = −e = −1 or if c = −e = −1

g6.3 1 if a 6= −1 0 if a 6= −1, 1
2

0 if a 6= −1, 1
2

2 if a = −1 1 if a = 1
2

2 if a = 1
2

3 if a = −1 4 if a = −1

g6.4 1 0 0

g6.6 1 if a 6= − 1
2

0 if a 6= −1,− 1
2

0 if a 6= −1,− 1
2

2 if a = − 1
2

1 if a = −1 2 if a = −1

2 if a = − 1
2

2 if a = − 1
2

g6.7 1 0 0

g6.8 1 0 if a+ b 6= 0, a+ c 6= 0, 0 if a+ b 6= 0, a+ c 6= 0,

b+ c 6= 0, p 6= 0 b+ c 6= 0, p 6= 0

1 if a+ b = 0 , 2 if a+ b = 0,

or if b+ c = 0, or if b+ c = 0,

or if p = 0 or if p = 0

2 if a = −b = c, 4 if a = −b = c ,

or if a+ c = 0 or if a+ c = 0

g6.9 1 if b 6= 0 0 if bp 6= 0, a+ b 6= 0 0 if bp 6= 0, a+ b 6= 0

2 if b = 0 1 if p = 0 or if a+ b = 0 2 if bp = 0 or if a+ b = 0

2 if b = 0

g6.10 1 if a 6= 0 0 if a 6= 0 0 if a 6= 0

2 if a = 0 3 if a = 0 4 if a = 0

g6.11 1 0 if pq 6= 0 0 if pq 6= 0

1 if pq = 0 2 if pq = 0

g6.12 1 0 0

g6.13 1 if bh 6= 0 0 if a 6= −1, b 6= −1, 0 if a 6= −1, b 6= −1,

a+ b 6= 0, 2a+ b 6= 0, a+ b 6= 0, 2a+ b 6= 0,

a+ 2b 6= 0, a+ 2b+ 1 6= 0, a+ 2b 6= 0, a+ 2b+ 1 6= 0,

b+ 2a+ 1 6= 0 b+ 2a+ 1 6= 0

2 if b = 0 1 if a = −1 or if b = −1 2 if a = −1 or if b = −1

or if h = 0 or if a+ b = 0 or if a+ b = 0

or if a+ 2b = 0,−1 or if a+ 2b = 0,−1
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or if b+ 2a = 0,−1 or if b+ 2a = 0,−1

2 if a = −1 and b = 2 4 if a = −1 and b = 2

or if b = −1 and a = 2 or if b = −1 and a = 2

or if a = 1
3

and b = − 2
3

or if a = 1
3

and b = − 2
3

or if a = − 2
3

and b = 1
3

or if a = − 2
3

and b = 1
3

or if a = b = −1,− 1
3

or if a = b = −1,− 1
3

3 if a = 1
2

and b = −1 4 if a = 1
2

and b = −1

or if a = −1 and b = 0, 1
2

or if a = −1 and b = 0, 1
2

or if a = −b = ±1 6 if a = −b = ±1

g6.14 1 if a 6= − 1
3

0 if a 6= −1,− 2
3
,− 1

3
, 1

3
, 2

3
0 if a 6= −1,− 2

3
, 1

3
, 2

3

2 if a = − 1
3

1 if a = −1,− 2
3
,− 1

3
, 1

3
, 2

3
2 if a 6= −1,− 2

3
, 1

3
, 2

3

g6.15 1 2 4

g6.17 2 2 1

g6.18 1 if a 6= 0 0 if a 6= 0,− 1
2
,−1,−2,−3 0 if a 6= − 1

2
,−1,−2,−3

2 if a = 0 1 if a = 0,− 1
2
,−2,−3 2 if a = − 1

2
,−2,−3

2 if a = −1 4 if a = −1

g6.19 1 0 0

g6.20 2 1 0

g6.21 1 if a 6= 0 0 if a 6= 0,− 1
3
,−1 0 if a 6= 0,− 1

3
,−1

2 if a = 0 1 if a = − 1
3
,−1 2 if a = − 1

3
,−1

3 if a = 0 4 if a = 0

g6.22 1 0 0

g6.23 1 if a 6= 0 0 if a 6= 0 0 if a 6= 0

3 if a = 0 5 if a = 0 6 if a = 0

g6.25 1 if b 6= 0,−1 0 if b 6= 0,−1,− 1
2
, 1 0 if b 6= 0,−1,− 1

2
, 1

2 if b = 0,−1 1 if b = − 1
2
, 1 2 if b = 0,−1,− 1

2
, 1

2 if b = 0,−1

g6.26 2 2 2

g6.27 1 1 2

g6.28 1 0 0

g6.29 1 if b 6= 0 2 if b 6= 0 2 if b 6= 0

3 if b = 0 5 if b = 0 and ε 6= 0 6 if b = 0 and ε 6= 0

6 if b = 0 and ε = 0 8 if b = 0 and ε = 0

g6.32 1 if a 6= −h
2
,−h

6
0 if a 6= 0,−h

2
,−h

6
0 if a 6= 0

2 if a = −h
2
,−h

6
1 if a = 0,−h

2
,−h

6
2 if a = 0

g6.33 1 if a 6= 0 0 if a 6= 0 0 if a 6= 0

3 if a = 0 3 if a = 0 1 if a = 0

g6.34 1 if a 6= 0 0 if a 6= 0 0 if a 6= 0
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3 if a = 0 3 if a = 0 1 if a = 0

g6.35 1 if ab 6= 0 0 if c 6= 0, a 6= 0,−2b, 0 if c 6= 0, a 6= −2b,

b 6= 0,−2a b 6= −2a

2 if a = 0 1 if a = 0 or if b = 0 or if c = 0 2 if c = 0 or if a = −2b

or b = 0 or if a = −2b or if b = −2a or if b = −2a

g6.36 1 if a 6= 0 0 if a 6= 0 0 if a 6= 0

2 if a = 0 3 if a = 0 4 if a = 0

g6.37 1 0 if a 6= 0 0 if a 6= 0

1 if a = 0 2 if a = 0

g6.38 1 2 4

g6.39 1 if h 6= 0 0 if h 6= 0,− 1
2
,−1,−2,−3 0 if h 6= − 1

2
,−1,−2,−3

2 if h = 0 1 if h = 0,− 1
2
,−1,−2,−3 2 if h = − 1

2
,−1,−2,−3

g6.40 1 0 0

g6.41 1 1 2

g6.42 1 0 0

g6.44 1 0 0

g6.47 2 1 0

g6.54 1 if l 6= − 1
2
, 0 if l 6= 0,− 1

2
,−1,−2,− 3

2
,− 2

3
0 if l 6= 0,−1,− 3

2
,− 2

3

−1,−2 1 if l = 0,− 1
2
,−2,− 3

2
,− 2

3
2 if l = 0,− 3

2
,− 2

3

2 if l = − 1
2
, 3 if l = −1 4 if l = −1

−1,−2

g6.55 1 0 0

g6.56 1 0 0

g6.57 1 0 0

g6.61 1 0 0

g6.63 2 2 2

g6.65 1 if l 6= 0 0 if l 6= 0 0 if l 6= 0

3 if l = 0 5 if l = 0 6 if l = 0

g6.70 1 if p 6= 0 0 if p 6= 0 0 if p 6= 0

2 if p = 0 3 if p = 0 4 if p = 0

g6.71 1 0 0

g6.76 1 1 1

g6.78 1 1 2

g6.83 1 if l 6= 0 1 if l 6= 0 2 if l 6= 0

3 if l = 0 5 if l = 0 6 if l = 0

g6.84 2 2 2

g6.88 1 if µ 6= 0 or 1 if µν 6= 0 2 µν 6= 0

ν 6= 0 3 if µ 6= 0 and ν = 0 6 if µ 6= 0 and ν = 0
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5 if µ = 0 and or if µ = 0 and ν 6= 0 or if µ = 0 and ν 6= 0

ν = 0 9 if µ = 0 and ν = 0 10 if µ = 0 and ν = 0

g6.89 1 if sν 6= 0 1 if sν 6= 0 2 if sν 6= 0

2 if s 6= 0 3 if s 6= 0 and ν = 0 or if s 6= 0 and ν = 0

or ν 6= 0 or if s = 0 and ν 6= 0 or if s = 0 and ν 6= 0

5 if ν = 0 9 if s = 0 and ν = 0 10 if s = 0 and ν = 0

and s = 0

g6.90 1 if ν 6= 0 1 if ν 6= 0 2

3 if ν = 0 3 if ν = 0

g6.91 1 1 2

g6.92 1 if µν 6= 0 3 if µν 6= 0 4 if µν 6= 0

2 if µ 6= 0 5 if µ 6= 0 and ν = 0 6 if µ 6= 0 and ν = 0

or if ν 6= 0 or if µ = 0 and ν 6= 0 or if µ = 0 and ν 6= 0

5 if ν = 0 9 if µ = 0 and ν = 0 10 if µ = 0 and ν = 0

and µ = 0

g∗6.92 1 3 6

g6.93 1 if ν 6= 0 1 if ν 6= 0 2 if ν 6= 0

3 if ν = 0 3 if ν = 0 2 if ν = 0

g6.94 1 1 2

g6.101 2 1 if a 6= −2 or b 6= −1 0 if a 6= −2 or b 6= −1

2 if a = −2 and b = −1 1 if a = −2 and b = −1

g6.102 2 1 0

g6.105 2 1 0

g6.107 2 1 0

g6.113 2 1 if a 6= 0 or b 6= −1 0 if a 6= 0 or b 6= −1

3 if a = 0 and b = −1 2 if a = 0 and b = −1

g6.114 2 2 if a 6= ±2 2 if a 6= ±2

3 if a = ±2 3 if a = ±2

g6.115 2 1 0

g6.116 2 1 0

g6.118 2 1 if b 6= ±1 0 if b 6= ±1

3 if b = ±1 4 if b = ±1

g6.120 2 2 2

g6.121 2 2 2

g6.129 2 1 0

g6.135 2 1 0

n6.83 1 1 2

n6.84 1 1 1
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n6.96 1 if b 6= 0 1 if b 6= 0 2

3 if b = 0 3 if b = 0

g5.7 ⊕ R 2 1 if r 6= −1 0 if r 6= −1

3 if r = −1 and q 6= −1 4 if r = −1 and q 6= −1

5 if r = −1 and q = −1 8 if r = −1 and q = −1

g5.8 ⊕ R 3 5 6

g5.9 ⊕ R 2 if p 6= 0 1 if p 6= 0,−1 0 if p 6= 0,−1

3 if p = 0 3 if p = 0,−1 2 if p = 0

4 if p = −1

g5.11 ⊕ R 2 1 0

g5.13 ⊕ R 2 1 if q 6= 0 0 if q 6= 0

3 if q = 0 4 if q = 0

g5.14 ⊕ R 2 5 6

g5.15 ⊕ R 2 3 4

g5.16 ⊕ R 2 1 0

g5.17 ⊕ R 2 1 if p 6= 0 and r 6= ±1 0 if p 6= 0 and r 6= ±1

3 if p = 0 and r 6= ±1 4 if p = 0 and r 6= ±1

or if p 6= 0 and r = ±1 or if p 6= 0 and r = ±1

5 if p = 0 and r = ±1 8 if p = 0 and r = ±1

g5.18 ⊕ R 2 3 4

g5.19 ⊕ R 2 if p 6= 0 1 if p 6= 0,− 1
2
,−2 0 if p 6= 0,− 1

2
,−2

3 if p = 0 3 if p = 0,− 1
2
,−2 2 if p = 0

4 if p = − 1
2
,−2

g5.20 ⊕ R 3 3 3

g5.23 ⊕ R 2 1 0

g5.25 ⊕ R 2 1 0

g5.26 ⊕ R 3 3 2

g5.28 ⊕ R 2 1 0

g5.30 ⊕ R 2 1 0

g5.33 ⊕ R 3 3 2

g5.35 ⊕ R 3 3 1

g4.2 ⊕ 2R 3 3 2

g4.5 ⊕ 2R 3 3 2

g4.6 ⊕ 2R 3 3 2

g4.8 ⊕ 2R 3 3 2

g4.9 ⊕ 2R 3 3 2

g3.4 ⊕ 3R 4 7 8
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g3.5 ⊕ 3R 4 7 8

g3.1 ⊕ g3.4 3 5 6

g3.1 ⊕ g3.5 3 5 6

g3.4 ⊕ g3.4 2 3 4

g3.4 ⊕ g3.5 2 3 4

g3.5 ⊕ g3.5 2 3 4
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Appendix C

Symplectic structures on

6-dimensional solvable

unimodular Lie algebras

Lie algebra Symplectic form Conditions on ωi,j

g0,−1
6.3 ω = ω1,6α

16 + ω2,3α
23 + ω2,6α

26 + ω3,6α
36+ ω1,6ω2,3ω4,5 6= 0

+ω4,5α
45 + ω4,6α

46 + ω5,6α
56

g0,0
6.10 ω = ω1,6α

16 + ω2,3α
23 + ω2,6α

26 + ω3,6α
36+ ω1,6ω2,3ω4,5 6= 0

+ω4,5α
45 + ω4,6α

46 + ω5,6α
56

g
1
2
,−1,0

6.13 ω = ω1,2α
12 + ω2,3(− 1

2
α16 + α23) + ω2,6α

26+ ω1,2ω3,4ω5,6 6= 0

+ω3,4α
34 + ω3,6α

36 + ω4,6α
46 + ω5,6α

56

g
−1, 1

2
,0

6.13 ω = ω1,3α
13 + ω2,3(− 1

2
α16 + α23) + ω2,4α

24+ ω1,3ω2,4ω5,6 6= 0

+ω2,6α
26 + ω3,6α

36 + ω4,6α
46 + ω5,6α

56

g−1
6.15 ω = ω1,6α

16 + (
ω1,6+ω3,4

2
)α25 + ω3,4α

34+ ω1,6ω3,4 6= 0,

+ω3,6α
36 + ω4,6α

46 + ω5,6α
56 ω1,6 6= −ω3,4

g−1,−1
6.18 ω = ω1,6(α16 + α24) + ω2,6α

26 + ω3,5α
35+ ω1,6ω3,5 6= 0

+ω3,6α
36 + ω4,6α

46 + ω5,6α
56

g0
6.21 ω = ω1,2α

12 + ω2,3α
23 + ω2,6α

26 + ω3,6α
36+ ω1,2ω3,6ω4,5 6= 0

+ω4,5α
45 + ω4,6α

46 + ω5,6α
56

g0,0,ε
6.23 ω = ω1,2(α12 +εα35)+ω1,6(α16 +α24)+ω2,3α

23+ ω1,2 6= 0,

+ω2,5α
25 + ω2,6α

26 + ω3,6α
36 + ω4,6α

46 + ω5,6α
56 ω2

1,6 + ω1,2ω4,6 6= 0

g0,0,ε6=0
6.29 ω = ω1,3(α13 +εα45)+ω1,6(α16 +α24)+ω2,3α

23+ ω1,3 6= 0,
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+ω2,6α
26 + ω3,4α

34 + ω3,6α
36 + ω4,6α

46 + ω5,6α
56 (ω1,6, ω2,6) 6= (0, 0),

ω5,6ω1,6 6= ε(ω2,3ω1,6−
ω2,6ω1,3)

g0,0,0
6.29 ω = ω1,2α

12+ω1,3α
13+ω1,6(α16+α24)+ω2,3α

23+ ω5,6 6= 0,

+ω2,6α
26 + ω3,4α

34 + ω3,6α
36 + ω4,6α

46 + ω5,6α
56 ω1,3ω1,6 − ω1,2ω3,4 6= 0

g0,0
6.36 ω = ω1,2α

12 + ω2,3α
23 + ω2,6α

26 + ω3,6α
36+ ω1,2ω3,6ω4,5 6= 0

+ω4,5α
45 + ω4,6α

46 + ω5,6α
56

g0
6.38 ω = ω1,6(2α16 +α25−α34)+ω2,3α

23 ++ω2,4(α24+ ω1,6 6= 0

+α35) + ω2,6α
26 + ω3,6α

36 + ω4,6α
46 + ω5,6α

56

g0,−1
6.54 ω = ω1,4(α14 +α23) +ω1,6(α16 +α35) +ω2,6(α26+ ω1,4ω5,6 6= 0

−α45) + ω3,4α
34 + ω3,6α

36 + ω4,6α
46 + ω5,6α

56

g0,0
6.70 ω = ω1,3(α13 +α24) + ω1,6(α16 +α45) + ω3,4α

34+ ω1,3ω1,6ω3,5ω5,6 6= 0,

+ω3,5α
35 + ω3,6α

36 + ω4,6α
46 + ω5,6α

56 ω1,3ω5,6 + ω1,6ω3,5 6= 0

g6.78 ω = ω1,4(α14 + α35 − α26) + ω1,6(α16 − α25)+ ω1,4 6= 0

+ω2,4(α24 + α36) + ω4,5α
45 + ω4,6α

46 + ω5,6α
56

g0,±1,−1
6.118 ω = ω1,3(α13±α24) +ω1,4(α14∓α23) +ω1,5(α15+ ω1,4ω1,6ω5,6 6= 0,

α26) + ω1,6(α16 + α25) + ω3,5(±α35 − α46)+ 2ω1,4ω1,6ω3,6 + ω1,3ω3,5±
+ω3,6(α36 ± α45) + ω5,6α

56 ω2
1,3ω5,6 ± ω2

1,4ω5,6 6= 0

n6.84 ω = ω1,4(α14 − α26) + ω1,5(α15 + α36)+ ω1,6 6= 0

+ω1,6(−εα16 + α25 + α34) + ω4,5α
45 + ω4,6α

46 +

ω5,6α
56

gp,−p,−1
5.7 ⊕ R ω = ω1,4α

14 + ω1,5α
15 + ω2,3α

23 + ω2,5α
25+ ω1,4ω2,3ω5,6 6= 0

+ω3,5α
35 + ω4,5α

45 + ω5,6α
56

g1,−1,−1
5.7 ⊕ R ω = ω1,3α

13 + ω1,4α
14 + ω1,5α

15 + ω2,3α
23+ ω1,4ω2,3 − ω1,3ω2,4 6= 0,

+ω2,4α
24 + ω2,5α

25 + ω3,5α
35 + ω4,5α

45 + ω5,6α
56 ω5,6 6= 0

g−1
5.8 ⊕ R ω = ω1,2α

12 + ω1,5α
15 + ω2,5α

25 + ω2,6α
26+ ω3,4 6= 0,

+ω3,4α
34 + ω3,5α

35 + ω4,5α
45 + ω5,6α

56 ω1,2ω5,6 − ω1,5ω2,6 6= 0

g−1,0,r
5.13 ⊕ R ω = ω1,2α

12 + ω1,5α
15 + ω2,5α

25 + ω3,4α
34+ ω1,2ω3,4ω5,6 6= 0

+ω3,5α
35 + ω4,5α

45 + ω5,6α
56

g0
5.14 ⊕ R ω = ω1,2α

12 + ω1,5α
15 + ω2,5α

25 + ω2,6α
26+ ω1,5ω2,6ω3,4ω5,6 6= 0,

+ω3,4α
34 + ω3,5α

35 + ω4,5α
45 + ω5,6α

56 ω1,2ω5,6 − ω1,5ω2,6 6= 0

g−1
5.15 ⊕ R ω = ω1,4(α14 − α23) + ω1,5α

15 + ω2,4α
24+ ω1,4ω5,6 6= 0

+ω2,5α
25 + ω3,5α

35 + ω4,5α
45 + ω5,6α

56

g0,0,r
5.17 ⊕ R ω = ω1,2α

12 + ω1,5α
15 + ω2,5α

25 + ω3,4α
34+ ω1,2ω3,4ω5,6 6= 0

+ω3,5α
35 + ω4,5α

45 + ω5,6α
56

gp,−p,±1
5.17 ⊕ R ω = ω1,3(±α13 + α24) + ω1,4(∓α14 + α23)+ ω1,3 ∓ ω1,4 6= 0, ω5,6 6= 0

+ω1,5α
15 + ω2,5α

25 + ω3,5α
35 + ω4,5α

45 + ω5,6α
56

g0,0,±1
5.17 ⊕ R ω = ω1,2α

12 +ω1,3(±α13 +α24)+ω1,4(∓α14 +α23) ω1,2ω3,4 − ω2
1,3 − ω2

1,4 6= 0,

+ω1,5α
15 + ω2,5α

25 + ω3,4α
34 + ω3,5α

35+ ω3,4ω5,6 6= 0
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+ω4,5α
45 + ω5,6α

56

g0
5.18 ⊕ R ω = ω1,3(α13 + α24) + ω1,5α

15 + ω2,5α
25+ ω1,3ω5,6 6= 0

+ω3,4α
34 + ω3,5α

35 + ω4,5α
45 + ω5,6α

56

g−2,2
5.19 ⊕ R ω = ω1,2α

12 + ω1,5(α15 − α23) + ω2,5α
25+ ω1,2ω3,4ω5,6 6= 0

+ω3,4α
34 + ω3,5α

35 + ω4,5α
45 + ω5,6α

56

g
− 1

2
,−1

5.19 ⊕ R ω = ω1,3α
13 + ω1,5(α15 − α23) + ω2,4α

24+ ω1,3ω2,4ω5,6 6= 0

+ω2,5α
25 + ω3,5α

35 + ω4,5α
45 + ω5,6α

56

g−1
3.4 ⊕ 3R ω = ω1,2α

12 + ω1,3α
13 + ω2,3α

23 + ω3,4α
34+ ω1,2ω5,6ω3,4 − ω1,2ω4,6ω3,5+

g0
3.5 ⊕ 3R +ω3,5α

35 + ω3,6α
36 + ω4,5α

45 + ω4,6α
46 + ω5,6α

56 ω1,2ω4,5ω3,6 6= 0

g3.1 ⊕ g−1
3.4 ω = ω1,2α

12 + ω1,3α
13 + ω2,3α

23 + ω2,6α
26+ ω4,5 6= 0,

g3.1 ⊕ g0
3.5 +ω3,6α

36 + ω4,5α
45 + ω4,6α

46 + ω5,6α
56 ω3,6ω1,2 − ω2,6ω1,3 6= 0

g−1
3.4 ⊕ g−1

3.4 ω = ω1,2α
12 + ω1,3α

13 + ω2,3α
23 + ω3,6α

36+ ω1,2ω3,6ω4,5 6= 0

g−1
3.4 ⊕ g0

3.5 +ω4,5α
45 + ω4,6α

46 + ω5,6α
56

g0
3.5 ⊕ g0

3.5
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