
Physics Letters B 726 (2013) 505–511
Contents lists available at ScienceDirect

Physics Letters B

www.elsevier.com/locate/physletb

Lepton mass effects in the Bethe–Heitler process

M.B. Barbaro a, C. Maieron b, E. Voutier b,∗
a Dipartimento di Fisica, Universitá di Torino and INFN Sezione di Torino, Via P. Giuria 1, 10125 Torino, Italy
b Laboratoire de Physique Subatomique et de Cosmologie, CNRS/IN2P3, Université Joseph Fourier, INPG, 53 avenue des Martyrs, 38026 Grenoble, France

a r t i c l e i n f o a b s t r a c t

Article history:
Received 23 July 2013
Received in revised form 23 August 2013
Accepted 23 August 2013
Available online 29 August 2013
Editor: W. Haxton

We develop the full finite lepton mass formalism for the production of real photons via the Bethe–Heitler
reaction of unpolarized leptons off unpolarized nucleons. Genuine lepton mass effects are described, in
particular their dependence upon the lepton mass and the initial beam energy, as well as their sensitivity
to the nucleon isospin. In the minimum momentum transfer region, these effects dominate the muon
induced proton cross section and become significant for electron scattering at small xB .
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1. Introduction

The Bethe–Heitler (BH) reaction [1] is a basic process for the
production of real photons. When the real photons are produced
from the interaction of an incoming electron with the Coulomb
field of an atom or a nucleus, it corresponds to the bremsstrahlung
reaction which is commonly used to generate linearly and circu-
larly polarized photon beams of various energies [2]. When the in-
teraction occurs with the nuclear electromagnetic field, the Bethe–
Heitler process carries information about the internal structure of
the target nucleus represented by its electromagnetic form factors.
While the inclusive process is a radiative correction to the lepton
scattering cross section [3], the exclusive process is an essential
tool for the experimental determination of generalized nucleon po-
larizabilities [4] and generalized parton distributions (GPD) [5].

In the effort to improve our understanding of the nuclear struc-
ture [6] and to unravel the parton structure of nucleons and
nuclei [7] via the (deeply) virtual Compton scattering process
((D)VCS) [8], the BH reaction appears as a powerful contamina-
tion of the global process of the lepto-production of real photons.
(D)VCS corresponds to the absorption of a virtual photon by the
nucleus (parton) followed by the emission of a real photon from
the excited nucleus (parton). Involving the same initial and final
states the BH and (D)VCS processes interfere coherently. In the
multi-GeV energy range relevant for these studies, the cross sec-
tion for the lepto-production of real photons contains a strong,
often dominant, contribution of the BH amplitude. The nuclear
structure information of interest is extracted [9] from the unpolar-
ized lepton cross section as a deviation from the BH contribution
that should consequently be accurately subtracted. Considering the
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cross section difference for incident polarized leptons of opposite
helicities or opposite charges, the BH process serves as a magni-
fier of the (D)VCS signal, the precise knowledge of its magnitude
being still required to access the nuclear structure information.
Specifically, the BH process is the reference reaction of the lepto-
production of real photons, and any attempt to access the nuclear
structure via this reaction requires a very accurate knowledge of
this reference process.

In most of the available calculations of this process (see [10]
for a review), the mass of the incoming and scattered leptons is
neglected, at variance with the crossed process (lepton pair pro-
duction) where a few finite lepton mass calculations exist [11,12].
Indeed, the ultra-relativistic approximation seems well-justified in
the energy range spanned by electron scattering experiments at
MAMI [13], JLab [14,15] and DESY [16–18], and still justified for
muon scattering experiments at CERN [19]. However, a recent
work on the bremsstrahlung and pair-creation processes may mo-
tivate a closer look at this approximation. Revisiting cross sections
and polarization observables for these processes, this work [20]
showed that finite electron mass effects may result in strong dif-
ferences as compared to previous massless calculations [2]. In the
bremsstrahlung process, finite electron mass effects are shown to
be significant in the end-point region of the cross section, and reg-
ularize polarization observables in that kinematical domain. The
differences are even more striking for the pair-creation process,
the reciprocal of bremsstrahlung, where the finite electron mass
calculation allows for consistent polarization observables at ener-
gies as low as the reaction threshold. If it is intuitive that finite
electron mass calculations should be more accurate at low incom-
ing energy, it is less obvious to expect persistent strong differences
as the energy increases. It is the merit of these calculations to
show that additional terms involving the electron mass may sig-
nificantly affect experimental observables even at relativistic ener-
gies.
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Fig. 1. Feynman diagrams for the Bethe–Heitler process. The four-momenta of the
lepton l, nucleon N , virtual photon γ ∗ and real photon γ are indicated in paren-
thesis.

The purpose of the present work is to investigate the effects
of finite lepton mass on the BH process in the perspective of the
on-going and future VCS and DVCS experimental programs. The
next section describes the formalism for the unpolarized BH pro-
cess off the nucleon and discusses the comparison with a previous
massless calculation. The following sections focus on the specific
features of the calculation here-below developed.

2. Formalism

Within the Born approximation, the Bethe–Heitler elastic pro-
cess

l + N → l′ + N ′ + γ (1)

is described by the two diagrams in Fig. 1. In the laboratory frame
the four-momenta indicated in the figure are

Pμ = (M, �0), P ′
μ = (

E ′, �p′) = (√
p′ 2 + M2, �p′),

Kμ = (k0, �k) = (√
k2 + m2, �k)

,

K ′
μ = (

k′
0,

�k′) = (√
k′ 2 + m2, �k′),

Q μ = Kμ − K ′
μ = (ω, �q), Q ′

μ = (
ω′, �q′),

where M and m are the nucleon and lepton mass, respectively, Q μ

is the equivalent virtual photon four-momentum corresponding to
the true virtual photon of the (D)VCS process, and Q ′ 2 = 0. The
four-momentum transfer to the nucleon writes

�μ = (�0, ��) = Q μ − Q ′
μ = P ′

μ − Pμ. (2)

The corresponding elementary cross section can be expressed as1

d9σ = 1

4kM

1

2k′
0

d3k′

(2π)3

1

2ω′
d3q′

(2π)3

1

2E ′
d3 p′

(2π)3
(2π)4

× δ4(Q μ − Q ′
μ + Pμ − P ′

μ

)|T |2. (3)

Integrating over the final nucleon and the real photon energy, the
differential cross section with respect to the final lepton three-
momentum �k′ and to the outgoing photon solid angle Ωγ reads

d5σ

d3k′ dΩγ
= 1

(2π)5

1

32kk′
0

1

2M3

(2Mω + �2)
2

2Mω − |Q 2| |T |2. (4)

The T -matrix for the Bethe–Heitler process is expressed in terms
of the leptonic and hadronic tensors according to

|T |2 = e6

�4
Lμν W μν (5)

where

1 We use the following normalization for the lepton and hadron spinors:

u(p)u(p) = 2m and U (P )U (P ) = 2M .
Lμν =
∑
λ′

εα
λ′ε

β∗
λ′

∑
spin

l∗α,μlβ,ν, W μν =
∑

spin
Jμ

∗
Jν . (6)

The sum over spin states stands for unpolarized electron scattering
off unpolarized nucleon target. The electromagnetic nucleon cur-
rent matrix element is

Jμ = U
(

P ′)[F1
(
�2)γ μ + i

F2(�
2)

2M
σμν�ν

]
U (P ), (7)

where F1 and F2 are the Dirac and Pauli electromagnetic form fac-
tors of the nucleon. εα

λ′ is the real photon polarization vector and

lα,μ = u
(

K ′)[γαΠ
(

K ′ + Q ′)γμ + γμΠ
(

K − Q ′)γα

]
u(K ) (8)

is the lepton current written in terms of the lepton propagator

Π(K ) = 1

/K − m + iε
= /K + m

K 2 − m2 + iε
. (9)

The sum over the photon polarization components reads

∑
λ′

εα
λ′ε

β∗
λ′ = −gαβ − Q ′ α Q ′β

q′ 2
(10)

where the gauge term does not contribute to the scattering ampli-
tude because of current conservation (Q ′ αlα,μ = 0). Introducing

�2 P1 = �2 − 2K · � = 2K ′ · Q ′ (11)

�2 P2 = �2 + 2K ′ · � = −2K · Q ′ (12)

and performing the spin traces, the leptonic tensor can be recast
in the following form

Lμν = 8

P1 P2
lμν (13)

lμν = Agμν + B
K ′

μK ′
ν

�2
+ C

KμKν

�2
+ D

K ′
μ�ν + �μK ′

ν

�2

+ E
Kμ�ν + �μKν

�2
+ F

K ′
μKν + KμK ′

ν

�2
+ G

�μ�ν

�2
(14)

where

A = K ′ 2
� + K 2

� − 2μ2 [1 + K ′
� − K�]2

P1 P2
, B = 1 + μ2 P1

P2
,

C = 1 + μ2 P2

P1
, D = −K ′

� + 2μ2 K ′
� + K�

P2
,

E = −K� + 2μ2 K ′
� + K�

P1
, F = −G = −2μ2,

being μ2 = m2/�2, K� = K ·�/�2, and K ′
� = K ′ ·�/�2. The elec-

tromagnetic hadronic tensor can be written as [21]2

W μν = 4M2 wμν

= −4M2W1

(
gμν − �μ�ν

�2

)
+ 4M2W2 V μV ν, (15)

where

V μ = 1

M

(
Pμ − P · �

�2
�μ

)
= 1

M

(
Pμ + �μ

2

)
(16)

and

2 We only consider the symmetric part of the tensor, since the antisymmetric
part does not contribute to the cross section for unpolarized electrons.
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W1 = τ (F1 + F2)
2 = τ G2

M , (17)

W2 = F 2
1 + τ F 2

2 = 1

1 + τ

(
G2

E + τ G2
M

)
, (18)

having introduced τ = −�2/(4M2) and the Sachs electric and
magnetic nucleon form factors [22]. By contracting the reduced
leptonic tensor (Eq. (14)) and the hadronic tensor (Eq. (15)) we
get

lμν wμν = W2
(

AV 2 − B K ′ 2
V − C K 2

V − 2F K V K ′
V

)
− W1

[
3A + B

(
μ2 − K ′ 2

�

) + C
(
μ2 − K 2

�

)
+ F

(
1 + 2K ′

� − 2K� − 2K ′
�K� + 2μ2)] (19)

being K V = K · V /
√−�2 and K ′

V = K ′ · V /
√−�2. Note that D , E

and G do not contribute. In the m = 0 limit, A = K 2
� + K ′ 2

� , B =
C = 1, F = 0, and the above expression simplifies to

lμν wμν |m=0 = (
V 2W2 − 2W1

)[
K ′ 2

� + K 2
�

]
− W2

[
K ′ 2

V + K 2
V

]
. (20)

Different contributions can be distinguished in the tensor contrac-
tion of Eq. (19), following the relation

lμν wμν = F = F0 + μ2F2 + μ4F4 (21)

expressing a polynomial dependence in the squared reduced lep-
ton mass μ, in addition to the intrinsic mass dependence built into
kinematics. The polynomial coefficients write

F0 = α1W1 + α2W2, (22)

F2 = β1W1 + β2W2, (23)

F4 = γ1W1 (24)

with

α1 = −1 + P1 + P2 − P 2
1 + P 2

2

2
, (25)

α2 = 1

2
+ k0 − k′

0

2M
− k2

0 + k′ 2
0

4M2τ
− k0 P1 − k′

0 P2

2M
− P1 + P2

2

+ P 2
1 + P 2

2

4
, (26)

β1 = 7

4

(
P1

P2
+ P2

P1

)
+ P1 + P2

2
+ 3P1 P2

2
, (27)

β2 = −1 − 2τ + k0 − k′
0

M
+ k0k′

0

M2τ
− P1

P2

(
1

2
+ k′

0

2M
+ k′ 2

0

4M2τ

)

− P2

P1

(
1

2
− k0

2M
+ k2

0

4M2τ

)
− 3

2

(
k0

M
P2 − k′

0

M
P1

)

− 3τ

2

(
P1 P2 − P1 − P2 + P1

2P2
+ P2

2P1

)
, (28)

γ1 = 4 − P1

P2
− P2

P1
. (29)

F0 is formally identical to the massless tensor contraction
(Eq. (20)) and differs from it only by the finite lepton mass kine-
matics. F2 and F4 are additional contributions to the cross section
attached to the second and fourth power of the reduced lepton
mass, respectively, and originating from the finite mass leptonic
tensor (Eq. (14)). Finally, the Bethe–Heitler differential cross sec-
tion with respect to the scattered lepton momentum and the real
photon solid angle, for unpolarized incoming lepton and initial tar-
get, writes
d5σ

dk′ dΩe dΩγ

= α3

π2

1

kM

k′ 2

k′
0

(2Mω + �2)
2

2Mω − |Q 2|
1

�4

1

P1 P2
lμν wμν, (30)

where α is the fine structure constant.
Fig. 2 shows the results of the present calculations for typical

JLab and COMPASS kinematics, using the Galster parametrization
for the proton electromagnetic form factors [23]. The particle an-
gles and momenta are referenced in the laboratory frame of the
equivalent virtual photon (Q ) with �z-axis parallel to �q; in that
frame φγ is the out-of plane angle between the leptonic plane

(�k, �k′) and the hadronic plane ( �q′, �p′). The results are displayed as
function of the polar angle θγ of real photons for in-plane kine-
matics (φγ = 0,π ). The massless lepton result of Eq. (20) (dotted
line) is first compared with the previous massless calculation of
Ref. [9] (full line): both approaches are in this case strictly identi-
cal, yielding the same numerical values. It is then compared with
the finite mass calculations for electron- (dashed line) and muon-
(dash-dotted line) induced BH. A first region is identified and
singled-out in the upper left corner of the graphs, corresponding
to the quasi-singularities of the intermediate leptons propagators
where strong differences between massless and finite mass results
are observed, particularly for muons. On the right panel, a second
region is identified at lower xB , corresponding to the kinematical
threshold (minimum absolute momentum transfer) where signifi-
cant finite mass effects are also observed. Note that the existence
of these regions is in agreement with earlier observations of L. Mo
and Y. Tsai who used similar arguments to derive specific peaking
approximations for the calculation of radiative corrections to elas-
tic and inelastic lepton scattering [3]. The next sections detail the
mechanisms at play in these two specific regions.

3. Lepton propagator quasi-singularities

The intermediate lepton propagators entering the BH cross sec-
tion are responsible for the local singular behavior, observed on
Fig. 2, through the denominators (P1, P2). Simple algebra shows
that the condition P1 = 0 is equivalent to K ′ · Q ′ = 0 (similarly,
P2 = 0 is equivalent to K · Q ′ = 0), leading to

K ′ · Q ′ = 0 −→ cos θk′q′ =
√

k′ 2 + m2

k′ . (31)

This condition is obviously never satisfied for finite mass leptons
and is verified only by massless leptons emitting a real photon in
the forward direction. At fixed lepton kinematics, the �2-location
of these in-plane quasi-singularities are

�2
1 = −2M

∣∣Q 2
∣∣ k0

2M(k0 − ω) + |Q 2| (32)

for P1, and

�2
2 = −2M

∣∣Q 2
∣∣ k0 − ω

2Mk0 − |Q 2| (33)

for P2. At these momentum transfers, massless cross sections are
infinite while finite mass cross sections yield finite values whose
magnitudes depend on the lepton mass. This singular behavior of
the cross section was already noticed in Ref. [9]. Considering fi-
nite lepton mass in the kinematics regularizes the cross section
but does not allow for a precise determination of the cross section
in the quasi-singularity regions, since it ignores the extra terms
associated to the full leptonic tensor.
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Fig. 2. (Color online.) BH differential cross section off proton at kinematics relevant of the JLab and CERN experimental program (k0 is the incident lepton energy and
xB = |Q 2|/(2Mω) the Bjorken variable). The full (green) line corresponds to the massless lepton calculation of Ref. [9]. The numerical results of the present work are shown
for different lepton mass: dotted (red) line for massless leptons, dashed (black) line for electrons, and dash-dotted (blue) line for muons.
The importance of extra contributions to the leptonic tensor
specific of the finite lepton mass formalism can be expressed by
the ratio

Rμ = F −F0

F0
, (34)

identical to the corresponding differential cross section ratio. Fig. 3
shows the xB evolution of this ratio calculated for typical JLab
and COMPASS lepton kinematics at the quasi-singularity �2

1 corre-
sponding to emission of real photons in the direction of scattered
leptons. Globally, the extra terms F2 and F4 are significantly con-
tributing to the cross section at the quasi-singularity. Notably, Rμ

exhibits a saturation behavior more or less rapidly reached de-
pending on kinematics, the saturation value being roughly inde-
pendent of the lepton mass. Eqs. (22)–(29) help understand these
features. At the quasi-singularity �2

1, P1 is quasi-null and extra
contributions can be reduced to their dominant contribution in
1/P1

F2 � P2

P1

[
7

4
W1 −

(
1

2
+ 3τ

4
− k0

2M
+ k2

0

4τ M2

)
W2

]
, (35)

F4 � − P2

P1
W1. (36)

Moreover, from Eqs. (11) and (12) one obtains at �2
1

P1 � q′

k′ μ
2, (37)

P2 � q′
′ ′ , (38)
k + q
such that the μ2 dependence of P2/P1 leads to a lepton mass
independent ratio Rμ up to μ4 order. Assuming further xB = 1,
leading to q′ = 0 and �2 = Q 2, we obtain

μ2F2 + μ4F4 � 7

4
W1 −

(
1

2
+ 3τ

4
− k

2M
+ k2

4τ M2

)
W2, (39)

F0 � −W1 +
(

1

2
+ k

M
− k2

2τ M2

)
W2. (40)

In the approximation of the dominance of the magnetic form factor
contribution to the cross section, the electric contribution to W2 in
Eq. (18) can be neglected and Eq. (34) becomes

Rμ � 1

2
− 3

1 + τ
τ+1 ( k

Mτ − 1)
2
. (41)

This expression shows that Rμ reaches a maximum value about
1/2 at small τ and reproduces the Q 2-dependence observed on
the left panel of Fig. 3 at xB = 1. A minimum value about −1 is
also reproduced at the maximum kinematically allowed Q 2, con-
sistently with exact calculations. Similar arguments can also be
developed for the quasi-singularity at �2

2 corresponding to emis-
sion of real photons in the lepton beam direction.

To conclude this section, it is worth stressing that an accurate
evaluation of the BH cross section in the quasi-singularity regions
requires the higher order terms in μ2 specific of the finite lepton
mass formalism, independently of the kinematics of the reaction
and most notably even in the ultra-relativistic case.

4. Kinematical threshold region

Significant finite lepton mass effects are also identified at min-
imum momentum transfer �2 (right panel of Fig. 2), a region
min



M.B. Barbaro et al. / Physics Letters B 726 (2013) 505–511 509
Fig. 3. (Color online.) xB evolution of the ratio Rμ for electron (left) and muon (right) scattering off proton calculated at the scattered lepton quasi-singularity �2
1 for different

initial energy and momentum transfer of the equivalent virtual photon. The additional full line on the left panel (upper curve) indicates the muon ratio at |Q 2| = 3 GeV2/c2;
other |Q 2| cannot be distinguished from the electron ratio.
of particular interest for the experimental determination of the Ji
sum rule [8] leading to the measurement of parton contribution
to the total angular momentum of the nucleon. At this momentum
transfer, real photons are emitted in the direction of the equivalent
virtual photon with an energy

ω′ = ω + �2
min

2M
(42)

where

�2
min = −M

(ω − q)2

ω − q + M
. (43)

Fig. 4 shows that the BH differential cross section in the �2
min re-

gion is strongly sensitive to the lepton mass, several orders of mag-
nitude distinguishing massless and finite mass calculations. These
effects originate again from the extra terms of the leptonic tensor.

The ratio Rμ (Eq. (34)) characterizing the deviation of the fi-
nite mass with respect to the massless leptonic tensor is shown
on Fig. 5 for different equivalent virtual photon squared four-
momentum at the kinematical point �2

min , for an incident beam
energy of 190 GeV. The muon ratio for a proton target (upper
curves of the left panel) shows very large effects in the small
xB region. The electron ratio (lower curves of the left panel) ex-
hibits the same behavior and scales with the muon ratio as the
squared lepton mass ratio. Most notably, Rμ appears almost inde-
pendent of Q 2 except in the region of the kinematical boundaries
of the phase space. Additionally, the initial beam energy has lit-
tle influence on this behavior and essentially acts as a phase space
magnifier: higher beam energies open access to smaller xB where
larger ratios are obtained. It is interesting to note that extra contri-
butions effects appear negligible for a neutron target (right panel
of Fig. 5).
Fig. 4. (Color online.) BH differential cross section off proton in the �2
min region at

fixed kinematics and for different incident lepton masses.
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Fig. 5. (Color online.) xB evolution of the ratio Rμ calculated for different Q 2 at �2
min and an incident beam energy of 190 GeV of muons (upper curves) and electrons (lower

curves): proton (left panel), neutron (right panel).
These features can be understood by considering a simplified
expression of the leptonic tensor. Introducing the physics scale
parameter z = M2x2

B/|Q 2|, the dimensionless lepton energy ζ =
k0/M , and τmin = −�2

min/(4M2), we have

4τmin = x2
B

xB(1 − xB) + z

[
1 + (1 − xB)(1 − √

1 + 4z)

2z

]
, (44)

P1 = −(1 − xB)

[
1√

1 + 4z
+ ζ

xB

(
1 + 1√

1 + 4z

)]
, (45)

P2 = −(1 − xB)

[
1√

1 + 4z
+

(
1

2z
− ζ

xB

)(
1 + 1√

1 + 4z

)]
. (46)

In the limit k0 � ω, equivalent to ζ/xB � 1/2z, the lepton propa-
gators reduce to

P1 � −P2 � 2
xB − 1

xB
ζ. (47)

Replacing these expressions in Eqs. (25)–(29), one obtains at lead-
ing order in ζ

α1 � −4

(
xB − 1

xB

)2

ζ 2, (48)

α2 � 2

[(
xB − 1

xB

)2

− xB − 1

xB
− 1

4τmin

]
ζ 2, (49)

β1 � −6

(
xB − 1

xB

)2

ζ 2, (50)

β2 � 6

[
xB − 1

xB
+ τmin

(
xB − 1

xB

)2

+ 1

4τmin

]
ζ 2, (51)

γ1 � 6. (52)
It is readily seen from these relations that the leptonic tensor ratio
(Eq. (34)) is approximately independent of the initial beam energy
and of Q 2-dependence. The additional approximation z 	 xB , valid
in the kinematical region Q 2 � M2, leads to

1

4τmin
� x2

B

1 − xB
, (53)

α2 � 0, (54)

β2 � 6

(
xB − 1

xB

)2

(1 + τmin)ζ
2. (55)

The leptonic tensor ratio then writes

Rμ � 3

2

m2

M2

1 − xB

x2
B

W1 − [1 + τmin]W2

W1

� 6
m2

M2

(1 − xB)2

x4
B

G2
E

G2
M

. (56)

This approximate expression shows the strong xB -dependence of
the ratio responsible for the large effects observed at small xB , and
provides an explanation for its sensitivity to the nucleon isospin
(Fig. 5). It also shows that mass effects become sizable (Rμ > 1) for
the proton when xB < 0.26 for muon scattering and xB < 0.02 for
electron scattering, in agreement with the exact results of Fig. 5. It
may be somehow surprising that finite lepton mass effects appear
sensitive to the nucleon target isospin. It is indeed quite uncon-
ventional that finite mass effects are, as in the present case, linked
to the electromagnetic structure of the nucleon. The difference be-
tween the BH cross section for protons and neutrons expresses not
only in the magnitude of the massless lepton cross section but also
in the sensitivity to mass corrective terms, as seen from the ratio
dependence on the electric form factor (Eq. (56)) which vanishes
at small momentum transfer for the neutron.
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Summarizing, extra contributions to the leptonic tensor have
been shown to dominate the BH differential cross section off pro-
tons in the minimum momentum transfer region. This effect is
definitely important for muon scattering and becomes significant
for electron scattering when the beam energy is high enough to
allow exploring the region of xB below a few 10−2, that is for
example, the kinematical range of the next generation of electron–
ion colliders [24].

5. Conclusions

This work presents a full calculation of the BH process of un-
polarized leptons off unpolarized nucleons where, at variance with
previous calculations, the initial and final lepton masses are not
neglected. The inclusion of the finite lepton mass has been shown
to generate additional contributions to the cross section that be-
come determinant in two specific domains:

• Lepton propagator quasi-singularities: here extra contributions
to the leptonic tensor are required for an accurate determi-
nation of the BH cross section, independently of the lepton
considered;

• Minimum momentum transfer regions: in the �2
min region, of

particular interest for the experimental determination of the
Ji sum rule, extra contributions dominate muon scattering off
protons and must also be considered for electron scattering
when xB becomes significantly small (a few 10−2). Moreover,
they cancel for a neutron target as a consequence of their de-
pendence on the electric nucleon form factor.

The BH cross section is generally sensitive to the parametrization
of the nucleon electromagnetic form factors, however the magni-
tude of lepton mass effects as expressed by the leptonic tensor
ratio (Eq. (34)) is only weakly depending on the model. This de-
pendence increases with the four-momentum transfer in the quasi-
singularity region, while it does not show up in the minimum mo-
mentum region because of the smallness of the four-momentum
transfer. Before concluding it is worth emphasizing that the effects
investigated in this work are genuine finite mass effects in the
sense that they do not rely on the extreme relativistic limit of the
kinematics, usually employed in high energy calculations, but are
related to extra terms appearing in the leptonic tensor. Moreover,
their magnitude increases with the beam energy, in opposition to
the ultra-relativistic limit. These effects have been shown to be
very sizable in the above mentioned kinematic regions and may
affect the quantitative analysis of high energy lepton scattering ex-
perimental DVCS data.
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